Adaptive R-Peak Detection on Wearable ECG Sensors for High-Intensity Exercise

Objective: Continuous monitoring of biosignals via wearable sensors has quickly expanded in the medical and wellness fields. At rest, automatic detection of vital parameters is generally accurate. However, in conditions such as high-intensity exercise, sudden physiological changes occur to the signa...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors De Giovanni, Elisabetta, Teijeiro, Tomas, Millet, Grégoire P, Atienza, David
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 08.12.2021
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.2112.04369

Cover

More Information
Summary:Objective: Continuous monitoring of biosignals via wearable sensors has quickly expanded in the medical and wellness fields. At rest, automatic detection of vital parameters is generally accurate. However, in conditions such as high-intensity exercise, sudden physiological changes occur to the signals, compromising the robustness of standard algorithms. Methods: Our method, called BayeSlope, is based on unsupervised learning, Bayesian filtering, and non-linear normalization to enhance and correctly detect the R peaks according to their expected positions in the ECG. Furthermore, as BayeSlope is computationally heavy and can drain the device battery quickly, we propose an online design that adapts its robustness to sudden physiological changes, and its complexity to the heterogeneous resources of modern embedded platforms. This method combines BayeSlope with a lightweight algorithm, executed in cores with different capabilities, to reduce the energy consumption while preserving the accuracy. Results: BayeSlope achieves an F1 score of 99.3% in experiments during intense cycling exercise with 20 subjects. Additionally, the online adaptive process achieves an F1 score of 99% across five different exercise intensities, with a total energy consumption of 1.55+-0.54~mJ. Conclusion: We propose a highly accurate and robust method, and a complete energy-efficient implementation in a modern ultra-low-power embedded platform to improve R peak detection in challenging conditions, such as during high-intensity exercise. Significance: The experiments show that BayeSlope outperforms a state-of-the-art algorithm up to 8.4% in F1 score, while our online adaptive method can reach energy savings up to 38.7% on modern heterogeneous wearable platforms.
Bibliography:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.2112.04369