Rotating spherical particle in a continuous viscoelastic medium -- a microrheological example situation
Using analytical calculations, we characterize the rotational behavior of a rigid spherical particle when subject to a net external torque in a continuous viscoelastic environment. On long time scales, the embedding medium can either feature a net terminal flow, like a fluid, or damped reversible dy...
Saved in:
| Published in | arXiv.org |
|---|---|
| Main Authors | , , |
| Format | Paper Journal Article |
| Language | English |
| Published |
Ithaca
Cornell University Library, arXiv.org
27.08.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2331-8422 |
| DOI | 10.48550/arxiv.2108.12270 |
Cover
| Summary: | Using analytical calculations, we characterize the rotational behavior of a rigid spherical particle when subject to a net external torque in a continuous viscoelastic environment. On long time scales, the embedding medium can either feature a net terminal flow, like a fluid, or damped reversible dynamics, like an elastic solid. The coupling of the sphere to its environment together with the therein induced deformations and flows are taken into account explicitly. In reality, using magnetically anisotropic particles, the torque can, for instance, be applied via magnetic fields. We calculate corresponding response functions. This connects our study to evaluations of microrheological investigations. |
|---|---|
| Bibliography: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| ISSN: | 2331-8422 |
| DOI: | 10.48550/arxiv.2108.12270 |