Brain MRI Super Resolution Using 3D Deep Densely Connected Neural Networks

Magnetic resonance image (MRI) in high spatial resolution provides detailed anatomical information and is often necessary for accurate quantitative analysis. However, high spatial resolution typically comes at the expense of longer scan time, less spatial coverage, and lower signal to noise ratio (S...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Chen, Yuhua, Xie, Yibin, Zhou, Zhengwei, Shi, Feng, Christodoulou, Anthony G, Li, Debiao
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 08.01.2018
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.1801.02728

Cover

Abstract Magnetic resonance image (MRI) in high spatial resolution provides detailed anatomical information and is often necessary for accurate quantitative analysis. However, high spatial resolution typically comes at the expense of longer scan time, less spatial coverage, and lower signal to noise ratio (SNR). Single Image Super-Resolution (SISR), a technique aimed to restore high-resolution (HR) details from one single low-resolution (LR) input image, has been improved dramatically by recent breakthroughs in deep learning. In this paper, we introduce a new neural network architecture, 3D Densely Connected Super-Resolution Networks (DCSRN) to restore HR features of structural brain MR images. Through experiments on a dataset with 1,113 subjects, we demonstrate that our network outperforms bicubic interpolation as well as other deep learning methods in restoring 4x resolution-reduced images.
AbstractList Magnetic resonance image (MRI) in high spatial resolution provides detailed anatomical information and is often necessary for accurate quantitative analysis. However, high spatial resolution typically comes at the expense of longer scan time, less spatial coverage, and lower signal to noise ratio (SNR). Single Image Super-Resolution (SISR), a technique aimed to restore high-resolution (HR) details from one single low-resolution (LR) input image, has been improved dramatically by recent breakthroughs in deep learning. In this paper, we introduce a new neural network architecture, 3D Densely Connected Super-Resolution Networks (DCSRN) to restore HR features of structural brain MR images. Through experiments on a dataset with 1,113 subjects, we demonstrate that our network outperforms bicubic interpolation as well as other deep learning methods in restoring 4x resolution-reduced images.
Magnetic resonance image (MRI) in high spatial resolution provides detailed anatomical information and is often necessary for accurate quantitative analysis. However, high spatial resolution typically comes at the expense of longer scan time, less spatial coverage, and lower signal to noise ratio (SNR). Single Image Super-Resolution (SISR), a technique aimed to restore high-resolution (HR) details from one single low-resolution (LR) input image, has been improved dramatically by recent breakthroughs in deep learning. In this paper, we introduce a new neural network architecture, 3D Densely Connected Super-Resolution Networks (DCSRN) to restore HR features of structural brain MR images. Through experiments on a dataset with 1,113 subjects, we demonstrate that our network outperforms bicubic interpolation as well as other deep learning methods in restoring 4x resolution-reduced images.
Author Shi, Feng
Chen, Yuhua
Xie, Yibin
Zhou, Zhengwei
Li, Debiao
Christodoulou, Anthony G
Author_xml – sequence: 1
  givenname: Yuhua
  surname: Chen
  fullname: Chen, Yuhua
– sequence: 2
  givenname: Yibin
  surname: Xie
  fullname: Xie, Yibin
– sequence: 3
  givenname: Zhengwei
  surname: Zhou
  fullname: Zhou, Zhengwei
– sequence: 4
  givenname: Feng
  surname: Shi
  fullname: Shi, Feng
– sequence: 5
  givenname: Anthony
  surname: Christodoulou
  middlename: G
  fullname: Christodoulou, Anthony G
– sequence: 6
  givenname: Debiao
  surname: Li
  fullname: Li, Debiao
BackLink https://doi.org/10.48550/arXiv.1801.02728$$DView paper in arXiv
https://doi.org/10.1109/ISBI.2018.8363679$$DView published paper (Access to full text may be restricted)
BookMark eNotj8tOwzAURC0EEqX0A1hhiXWCfR03zhJaHkUFpFLWkePcoJRgBzsB-veEls2czWg054QcWmeRkDPO4kRJyS61_6m_Yq4YjxmkoA7ICITgkUoAjskkhA1jDKYpSClG5OHa69rSx9WCvvQterrC4Jq-q52lr6G2b1TM6RyxHcIGbLZ05qxF02FJn7D3uhnQfTv_Hk7JUaWbgJN_jsn69mY9u4-Wz3eL2dUy0hIg0pkCnSGiLBNUpsCsqGTJS65FkVRSSa0FAKgppqXMjDDGVIURuoAplzxRYkzO97M70bz19Yf22_xPON8JD42LfaP17rPH0OUb13s7fMqBpUKBHD6IX3qdWgo
ContentType Paper
Journal Article
Copyright 2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
DOI 10.48550/arxiv.1801.02728
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
ProQuest Engineering Database (NC LIVE)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Computer Science
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 1801_02728
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKY
GOX
ID FETCH-LOGICAL-a522-a982a9eee5d4e8cbe9bf5d1d1a3b4f585aa322286e7d59c3cccfbc3ab26151483
IEDL.DBID GOX
IngestDate Wed Jul 23 01:59:14 EDT 2025
Mon Jun 30 09:44:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a522-a982a9eee5d4e8cbe9bf5d1d1a3b4f585aa322286e7d59c3cccfbc3ab26151483
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://arxiv.org/abs/1801.02728
PQID 2073825982
PQPubID 2050157
ParticipantIDs arxiv_primary_1801_02728
proquest_journals_2073825982
PublicationCentury 2000
PublicationDate 20180108
2018-01-08
PublicationDateYYYYMMDD 2018-01-08
PublicationDate_xml – month: 01
  year: 2018
  text: 20180108
  day: 08
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2018
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.645832
SecondaryResourceType preprint
Snippet Magnetic resonance image (MRI) in high spatial resolution provides detailed anatomical information and is often necessary for accurate quantitative analysis....
Magnetic resonance image (MRI) in high spatial resolution provides detailed anatomical information and is often necessary for accurate quantitative analysis....
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Brain
Computer Science - Computer Vision and Pattern Recognition
Image resolution
Image restoration
Interpolation
Machine learning
Magnetic resonance imaging
Medical imaging
Neural networks
Quantitative analysis
Signal to noise ratio
Spatial resolution
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5qg-DNJ1Wr7MFrtMluks1BhNqWWmgptUJvYbM7AUHa2Ifov3dn2-hB8JJAkktml9lvXt8HcBMHigIrpBHlyBciTXyFCn1uQ4Hc6BBDNz42HMX9FzGYRbMajKpZGGqrrHyic9RmoSlHTpkQbqOZVIYP5btPqlFUXa0kNNROWsHcO4qxPfBCYsaqg9fujsaTn6xLGCcWQ_NtedORed2p5efrx20gHXlnQqrsnnv0xzm7E6d3CN5Ylbg8ghrOj2HfNWrq1QkM2qTpwIaTJ_a8sR8wyr9vdw9z5X_GO6yDWNoLDZt_MdfKoi2wZETEod7szXV-r05h2utOH_v-Tg_BVxYl-cr-u0oRMTICpc4xzYvIBCZQPBeFhf1KUdlExpiYKNVca13kmqs8JNQiJD-D-nwxxwawVMWGiHNEIXNhipZEKpdxrUgRVwetc2g4G2TllvIiI_Nkzjzn0KzMku22-yr7XZyL_19fwoFFHNLlMGQT6uvlBq_sqb7Or3dL9Q06PqEC
  priority: 102
  providerName: ProQuest
Title Brain MRI Super Resolution Using 3D Deep Densely Connected Neural Networks
URI https://www.proquest.com/docview/2073825982
https://arxiv.org/abs/1801.02728
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV07T8MwED61ZWFBIEAFSuWBNaJ-JLVHSltKpRZUitQt8uMisZSqDwQLvx3bScWAWDxEThTdxfZ3ufu-A7jJqA6BFQaKcpoIobqJRo0J96GAcZYhi_SxyTQbvYrxIl3UgOy5MHr9-fZR6gObzS2VUVKzy2Qd6h4oBDLv06JMTkYprmr-7zyPMeOlP1trPC-Gx3BUAT1yV3rmBGq4PIVxL3RkIJPZI3nZrXBNwt_z0vckJu8J75M-4soPgSr-RWIhivWwkAQZDf_AaVm3vTmD-XAwvx8lVTeDRHuMk2glmVaImDqB0hpUpkgddVRzIwoP2rUOSQ-ZYdelynJrbWEs14YFzCEkP4fG8n2JTSBKZy7I3ohCGuGKjsSQ7OJWh362lnYuoBltkK9KwYo8mCeP5rmA1t4sefWxbnLml7kPFP0LXv5_5xUcslD5T2nCVAsa2_UOr_15vDVtqMvhQxsOeoPp86wdXeTHyffgB6yxjXo
linkProvider Cornell University
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NS8MwFH_MDdGbn2w6NQc9Vtcm7dLDEOaUzX0gOsFbSZNXEGTOzan74_zfzMs6PQjevLTQlEBfXpPf-_wBHEe-IsMKqUQ59ISI655ChR63pkBqdICBKx_rD6L2vbh-CB8K8LmshaG0yuWe6DZq86zJR06eEG6tmVgG5-MXj1ijKLq6pNBQObWCabgWY3lhRxfn79aEmzY6LbveJ0FwdTm8aHs5y4CnLPbwlJ1RxYgYGoFSpxinWWh84yueisyCaaUoGCEjrJsw1lxrnaWaqzQgLCAkt9OuQElw-5lFKDUvBze3306eIKpbyM4X0VTXO-xMTT4e30596XqF1okEvuQe_ToL3AF3tQGlGzXGySYUcLQFqy4vVE-34bpJFBKsf9thdzP7AiN3_0JZmcs2YLzFWohje6Ha9jlzmTPa4lhGfT_Uk725RPPpDgz_QzC7UBw9j7AMLFaRoT49IpOpMFlNIkXnuFZEwKv9WgXKTgbJeNFhIyHxJE48FaguxZLkf9c0-dGFvb-Hj2CtPez3kl5n0N2HdQt2pHOfyCoUXyczPLCA4jU9zJeNQfLPivIFM0zfDA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+MRI+Super+Resolution+Using+3D+Deep+Densely+Connected+Neural+Networks&rft.jtitle=arXiv.org&rft.au=Chen%2C+Yuhua&rft.au=Xie%2C+Yibin&rft.au=Zhou%2C+Zhengwei&rft.au=Shi%2C+Feng&rft.date=2018-01-08&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1801.02728