SPATIAL VARIABILITY OF SOIL PHYSICAL PROPERTIES IN A REGION OF THE LOESS PLATEAU OF PR CHINA SUBJECT TO WIND AND WATER EROSION

ABSTRACT The analysis of the spatial variability of soil properties is important for land management and construction of an ecological environment. The objectives of this study were to investigate the spatial variability of saturated hydraulic conductivity (KS), total porosity (TP), capillary porosi...

Full description

Saved in:
Bibliographic Details
Published inLand degradation & development Vol. 24; no. 3; pp. 296 - 304
Main Authors Wang, Y. Q., Shao, M. A.
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.05.2013
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1085-3278
1099-145X
DOI10.1002/ldr.1128

Cover

Abstract ABSTRACT The analysis of the spatial variability of soil properties is important for land management and construction of an ecological environment. The objectives of this study were to investigate the spatial variability of saturated hydraulic conductivity (KS), total porosity (TP), capillary porosity (CP) and bulk density (BD) in relation to land use in a 0·54 km2 watershed on the Loess Plateau. Topsoil samples (0–5 cm) from 154 sites within the watershed were collected and analyzed by classical and geostatistical statistics in the summer of 2009. The results from the classical statistical analyses indicated that TP, CP and BD had low variability whereas KS had high variability with the watershed. Farmland had significantly lower BD and higher TP and CP than grassland, shrubland and woodland (p < 0·05). Geostatistical analyses revealed that the KS semivariogram was best fit by a spherical model, the CP semivariogram was best fit by an exponential model and the TP and BD semivariograms were best fit by Gaussian models. The nugget to sill ratios and fractal dimension values indicated that all four soil properties had strong spatial dependence. Moran's I analysis showed that a 100‐m sampling interval would be adequate for detecting the spatial structure of the four soil physical properties within the watershed. Spatial interpolation maps could provide useful information for precision agriculture practices and ecological management. Copyright © 2011 John Wiley & Sons, Ltd.
AbstractList ABSTRACT The analysis of the spatial variability of soil properties is important for land management and construction of an ecological environment. The objectives of this study were to investigate the spatial variability of saturated hydraulic conductivity (KS), total porosity (TP), capillary porosity (CP) and bulk density (BD) in relation to land use in a 0·54 km2 watershed on the Loess Plateau. Topsoil samples (0–5 cm) from 154 sites within the watershed were collected and analyzed by classical and geostatistical statistics in the summer of 2009. The results from the classical statistical analyses indicated that TP, CP and BD had low variability whereas KS had high variability with the watershed. Farmland had significantly lower BD and higher TP and CP than grassland, shrubland and woodland (p < 0·05). Geostatistical analyses revealed that the KS semivariogram was best fit by a spherical model, the CP semivariogram was best fit by an exponential model and the TP and BD semivariograms were best fit by Gaussian models. The nugget to sill ratios and fractal dimension values indicated that all four soil properties had strong spatial dependence. Moran's I analysis showed that a 100‐m sampling interval would be adequate for detecting the spatial structure of the four soil physical properties within the watershed. Spatial interpolation maps could provide useful information for precision agriculture practices and ecological management. Copyright © 2011 John Wiley & Sons, Ltd.
The analysis of the spatial variability of soil properties is important for land management and construction of an ecological environment. The objectives of this study were to investigate the spatial variability of saturated hydraulic conductivity (K sub(S)), total porosity (TP), capillary porosity (CP) and bulk density (BD) in relation to land use in a 0.54km super(2) watershed on the Loess Plateau. Topsoil samples (0-5cm) from 154 sites within the watershed were collected and analyzed by classical and geostatistical statistics in the summer of 2009. The results from the classical statistical analyses indicated that TP, CP and BD had low variability whereas K sub(S) had high variability with the watershed. Farmland had significantly lower BD and higher TP and CP than grassland, shrubland and woodland (p<0.05). Geostatistical analyses revealed that the K sub(S) semivariogram was best fit by a spherical model, the CP semivariogram was best fit by an exponential model and the TP and BD semivariograms were best fit by Gaussian models. The nugget to sill ratios and fractal dimension values indicated that all four soil properties had strong spatial dependence. Moran's I analysis showed that a 100-m sampling interval would be adequate for detecting the spatial structure of the four soil physical properties within the watershed. Spatial interpolation maps could provide useful information for precision agriculture practices and ecological management. Copyright [copy 2011 John Wiley & Sons, Ltd.
The analysis of the spatial variability of soil properties is important for land management and construction of an ecological environment. The objectives of this study were to investigate the spatial variability of saturated hydraulic conductivity ( K S ), total porosity ( TP ), capillary porosity ( CP ) and bulk density ( BD ) in relation to land use in a 0·54 km 2 watershed on the Loess Plateau. Topsoil samples (0–5 cm) from 154 sites within the watershed were collected and analyzed by classical and geostatistical statistics in the summer of 2009. The results from the classical statistical analyses indicated that TP , CP and BD had low variability whereas K S had high variability with the watershed. Farmland had significantly lower BD and higher TP and CP than grassland, shrubland and woodland ( p  < 0·05). Geostatistical analyses revealed that the K S semivariogram was best fit by a spherical model, the CP semivariogram was best fit by an exponential model and the TP and BD semivariograms were best fit by Gaussian models. The nugget to sill ratios and fractal dimension values indicated that all four soil properties had strong spatial dependence. Moran's I analysis showed that a 100‐m sampling interval would be adequate for detecting the spatial structure of the four soil physical properties within the watershed. Spatial interpolation maps could provide useful information for precision agriculture practices and ecological management. Copyright © 2011 John Wiley & Sons, Ltd.
The analysis of the spatial variability of soil properties is important for land management and construction of an ecological environment. The objectives of this study were to investigate the spatial variability of saturated hydraulic conductivity (KS), total porosity (TP), capillary porosity (CP) and bulk density (BD) in relation to land use in a 0·54 km² watershed on the Loess Plateau. Topsoil samples (0–5 cm) from 154 sites within the watershed were collected and analyzed by classical and geostatistical statistics in the summer of 2009. The results from the classical statistical analyses indicated that TP, CP and BD had low variability whereas KS had high variability with the watershed. Farmland had significantly lower BD and higher TP and CP than grassland, shrubland and woodland (p < 0·05). Geostatistical analyses revealed that the KS semivariogram was best fit by a spherical model, the CP semivariogram was best fit by an exponential model and the TP and BD semivariograms were best fit by Gaussian models. The nugget to sill ratios and fractal dimension values indicated that all four soil properties had strong spatial dependence. Moran's I analysis showed that a 100‐m sampling interval would be adequate for detecting the spatial structure of the four soil physical properties within the watershed. Spatial interpolation maps could provide useful information for precision agriculture practices and ecological management.
The analysis of the spatial variability of soil properties is important for land management and construction of an ecological environment. The objectives of this study were to investigate the spatial variability of saturated hydraulic conductivity (KS), total porosity (TP), capillary porosity (CP) and bulk density (BD) in relation to land use in a 0·54km2 watershed on the Loess Plateau. Topsoil samples (0-5cm) from 154 sites within the watershed were collected and analyzed by classical and geostatistical statistics in the summer of 2009. The results from the classical statistical analyses indicated that TP, CP and BD had low variability whereas KS had high variability with the watershed. Farmland had significantly lower BD and higher TP and CP than grassland, shrubland and woodland (p<0·05). Geostatistical analyses revealed that the KS semivariogram was best fit by a spherical model, the CP semivariogram was best fit by an exponential model and the TP and BD semivariograms were best fit by Gaussian models. The nugget to sill ratios and fractal dimension values indicated that all four soil properties had strong spatial dependence. Moran's I analysis showed that a 100-m sampling interval would be adequate for detecting the spatial structure of the four soil physical properties within the watershed. Spatial interpolation maps could provide useful information for precision agriculture practices and ecological management. Copyright © 2011 John Wiley & Sons, Ltd. [PUBLICATION ABSTRACT]
Author Shao, M. A.
Wang, Y. Q.
Author_xml – sequence: 1
  givenname: Y. Q.
  surname: Wang
  fullname: Wang, Y. Q.
  organization: College of Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, PR, China
– sequence: 2
  givenname: M. A.
  surname: Shao
  fullname: Shao, M. A.
  email: Correspondence to: M. A. Shao, No. 26, Xinong Road, Institute of Soil and Water Conservation, Chinese Academy of Science, Yangling, Shaanxi Province 712100, PR China., mashao@ms.iswc.ac.cn
  organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Science and the Ministry of Water Resources, Yangling, 712100, Shaanxi, PR, China
BookMark eNqFkV9v0zAUxSM0JLaBxEewxAsvKf4T2_Gj12atUZRESdoyXiw3daSMLBlxKtgLn51EQyAm0B4sX13_7jnXOhfeWdd31vPeIrhAEOIP7XFYIITDF945gkL4KKCfzuY6pD7BPHzlXTh3CyFEPODn3o8ik6WSMdjJXMkrFavyBqTXoEhVDLLNTaGW02OWp1mUlyoqgEqABHm0Vmkyc-UmAnEaFQXIYllGcjs3sxwsNyqRoNhefYyWJShTsFfJCsjp7CcsB1GeFpPEa-9lbVpn3_y6L73tdVQuN36crmdn31AkQh9bQSGuCZ2KQGBMjKjJoT5iQYWx1FJjRMBQBemBsAM8QEZDbmF1tBwLgii59N4_6t4P_deTdaO-a1xl29Z0tj85jenkQwhH-FkUsQBjGlIWPI8GRHDMMZsXePcEve1PQzf9WSPCAiFwyNgfwWronRtsre-H5s4MDxpBPcerp3j1HO-ELp6gVTOasem7cTBN-68B_3HgW9Pah_8K63iV_803brTff_Nm-KIZJ5zqfbLWu887yFYF12vyE5txuRk
CODEN LDDEF6
CitedBy_id crossref_primary_10_1002_jeq2_20596
crossref_primary_10_1016_j_jksus_2023_102724
crossref_primary_10_1007_s11368_019_02437_w
crossref_primary_10_1016_j_scitotenv_2024_176211
crossref_primary_10_1038_srep02846
crossref_primary_10_1002_ldr_2404
crossref_primary_10_1080_03067319_2021_1900146
crossref_primary_10_1590_1413_7054201943026318
crossref_primary_10_5194_gmd_15_3405_2022
crossref_primary_10_1002_ldr_1150
crossref_primary_10_1007_s40808_022_01402_w
crossref_primary_10_1080_03650340_2020_1795641
crossref_primary_10_1016_j_geoderma_2018_12_015
crossref_primary_10_1007_s00344_022_10809_9
crossref_primary_10_1002_ldr_2246
crossref_primary_10_3390_f13101699
crossref_primary_10_1029_2018JF004918
crossref_primary_10_1016_j_geodrs_2022_e00577
crossref_primary_10_1007_s00253_022_11838_w
crossref_primary_10_3390_agronomy14061112
crossref_primary_10_3390_f15091590
crossref_primary_10_4236_nr_2019_1012028
crossref_primary_10_1071_SR15068
crossref_primary_10_1080_09640568_2015_1066667
crossref_primary_10_1016_j_jhydrol_2016_12_047
crossref_primary_10_1007_s11368_015_1072_z
crossref_primary_10_1002_ldr_2875
crossref_primary_10_1002_ldr_2471
crossref_primary_10_3390_resources10070066
crossref_primary_10_1007_s40808_016_0160_4
crossref_primary_10_1016_j_geoderma_2018_10_016
crossref_primary_10_3390_ijms23126753
crossref_primary_10_1007_s11368_023_03460_8
crossref_primary_10_1002_ldr_2356
crossref_primary_10_1002_vzj2_20035
crossref_primary_10_1039_C3EM00521F
crossref_primary_10_1016_j_geoderma_2019_03_042
crossref_primary_10_7717_peerj_7897
crossref_primary_10_1002_saj2_20286
crossref_primary_10_1016_j_earscirev_2017_10_010
crossref_primary_10_1002_ldr_2347
crossref_primary_10_1016_j_still_2015_07_015
crossref_primary_10_1016_j_jenvman_2022_115472
crossref_primary_10_1002_ldr_2460
crossref_primary_10_1007_s11119_023_10003_1
crossref_primary_10_1071_SR21183
crossref_primary_10_1007_s13762_024_05574_z
crossref_primary_10_1016_j_rser_2017_08_003
crossref_primary_10_1016_j_apsoil_2021_104044
crossref_primary_10_1080_24749508_2018_1525669
crossref_primary_10_3390_agronomy15010037
crossref_primary_10_1016_j_enggeo_2024_107463
crossref_primary_10_1088_1755_1315_1225_1_012104
crossref_primary_10_3390_agronomy14112681
crossref_primary_10_1007_s40808_017_0296_x
crossref_primary_10_1088_1757_899X_705_1_012052
crossref_primary_10_15832_ankutbd_257726
crossref_primary_10_1080_19475705_2021_1880977
crossref_primary_10_1139_cjss_2019_0039
crossref_primary_10_1016_j_jhydrol_2020_124711
crossref_primary_10_1016_j_still_2021_105127
crossref_primary_10_1002_ldr_2334
crossref_primary_10_22616_j_balticsurveying_2019_017
crossref_primary_10_3390_su16020645
crossref_primary_10_1111_nrm_12409
crossref_primary_10_1016_j_scitotenv_2024_171707
crossref_primary_10_1080_10042857_2018_1555902
crossref_primary_10_1080_03067319_2020_1746775
crossref_primary_10_3390_land13081200
crossref_primary_10_1016_j_geoderma_2018_07_021
crossref_primary_10_5194_se_6_383_2015
crossref_primary_10_1016_j_catena_2023_107606
crossref_primary_10_1016_j_catena_2017_05_022
crossref_primary_10_1186_s12870_021_02945_3
crossref_primary_10_1016_j_jaridenv_2024_105196
crossref_primary_10_3390_ijerph191710473
crossref_primary_10_1002_ldr_2969
crossref_primary_10_1016_j_gecco_2024_e03193
crossref_primary_10_1007_s41324_016_0048_4
crossref_primary_10_1016_j_jssas_2021_10_013
crossref_primary_10_1016_j_saa_2021_119823
crossref_primary_10_1002_ldr_2324
crossref_primary_10_1007_s13201_018_0795_6
crossref_primary_10_1016_j_agee_2023_108616
crossref_primary_10_1007_s40003_020_00494_z
crossref_primary_10_1016_j_scitotenv_2023_163182
crossref_primary_10_1134_S1064229320030060
crossref_primary_10_1080_00103624_2023_2211114
crossref_primary_10_1016_j_jssas_2016_02_001
crossref_primary_10_1134_S0097807821040175
crossref_primary_10_1186_2051_3933_2_7
crossref_primary_10_1002_ldr_2318
crossref_primary_10_1016_j_catena_2018_11_020
crossref_primary_10_3390_su15086872
crossref_primary_10_1002_ldr_2674
crossref_primary_10_1002_ldr_2555
crossref_primary_10_1007_s10113_018_1396_5
crossref_primary_10_3390_f15061039
crossref_primary_10_5814_j_issn_1674_764x_2022_05_003
crossref_primary_10_1007_s10661_021_08946_x
crossref_primary_10_1080_09583157_2023_2165038
crossref_primary_10_1016_j_geoderma_2015_08_009
crossref_primary_10_5194_se_6_125_2015
crossref_primary_10_5897_AJAR2016_11812
crossref_primary_10_3390_rs11141732
crossref_primary_10_1038_s41598_020_67228_7
crossref_primary_10_1007_s40808_016_0226_3
crossref_primary_10_1016_j_catena_2024_108447
crossref_primary_10_1016_j_compag_2016_03_019
crossref_primary_10_3389_frsc_2022_1064525
crossref_primary_10_1007_s12040_018_0974_8
crossref_primary_10_1002_ldr_2423
crossref_primary_10_1371_journal_pone_0206350
crossref_primary_10_5194_se_7_55_2016
crossref_primary_10_1002_ird_2857
crossref_primary_10_1002_saj2_20411
crossref_primary_10_22616_j_balticsurveying_2018_019
crossref_primary_10_1007_s11676_014_0533_3
crossref_primary_10_18393_ejss_339032
crossref_primary_10_1016_S1002_0160_15_60101_1
crossref_primary_10_1007_s43538_022_00077_2
crossref_primary_10_1016_j_foreco_2020_117984
crossref_primary_10_1007_s11600_023_01071_y
crossref_primary_10_1002_ldr_2411
crossref_primary_10_3390_su12156117
crossref_primary_10_5194_se_6_1025_2015
crossref_primary_10_1016_j_agrformet_2019_02_039
crossref_primary_10_1038_s41598_019_41405_9
Cites_doi 10.1007/BF00033939
10.1016/j.geoderma.2007.01.022
10.1016/0167-1987(90)90109-Q
10.1016/j.jaridenv.2005.04.005
10.1016/S1001-6279(09)60016-0
10.1016/S0167-1987(96)01083-5
10.1007/s11269-009-9550-y
10.1016/S0022-1694(97)00095-4
10.1097/00010694-200412000-00004
10.1002/ldr.841
10.1016/j.geoderma.2009.10.011
10.1007/s00254-008-1575-7
10.1016/j.ecolmodel.2007.02.019
10.1016/j.geoderma.2009.11.020
10.1137/1010093
10.1016/S0933-3630(96)00093-1
10.1093/biomet/37.1-2.17
10.2136/sssaj2004.0154
10.1006/jare.1999.0618
10.1016/j.geoderma.2008.12.016
10.1016/j.geoderma.2009.01.021
10.1016/S0016-7061(02)00122-2
10.2136/sssaj1994.03615995005800050033x
10.1002/ldr.959
10.2136/sssabookser5.1.2ed.c18
10.1097/SS.0b013e3181fda413
10.1016/j.still.2008.08.010
10.1038/294240a0
10.1016/S0933-3630(97)00021-4
10.1016/j.geoderma.2006.08.018
10.1080/09064710802676377
10.1016/j.jhydrol.2009.12.041
10.1111/j.1365-2389.1983.tb01057.x
10.1016/j.geoderma.2010.01.008
10.1016/j.geoderma.2005.11.002
10.1016/S0341-8162(03)00090-0
10.1023/A:1021568415380
10.2136/sssaj2002.1296
10.1016/0016-7061(95)00052-8
10.2136/sssaj2005.0072
10.1016/j.still.2004.05.007
10.1016/S1002-0160(10)60006-9
10.1007/s100219900091
10.1016/j.catena.2009.05.012
10.1007/s002540100350
ContentType Journal Article
Copyright Copyright © 2011 John Wiley & Sons, Ltd.
Copyright © 2013 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2011 John Wiley & Sons, Ltd.
– notice: Copyright © 2013 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7ST
8FD
C1K
FR3
KR7
SOI
7QH
7UA
F1W
H97
L.G
7S9
L.6
DOI 10.1002/ldr.1128
DatabaseName Istex
CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
Aqualine
Water Resources Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
AGRICOLA
Technology Research Database
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1099-145X
EndPage 304
ExternalDocumentID 2988623481
10_1002_ldr_1128
LDR1128
ark_67375_WNG_VZV06DS7_G
Genre article
GeographicLocations China, People's Rep., Loess Plateau
China, People's Rep
China
GeographicLocations_xml – name: China, People's Rep., Loess Plateau
– name: China, People's Rep
– name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 41071156
– fundername: ‘Innovative Team’ program of the Chinese Ministry of Education
  funderid: IRT0749
– fundername: Knowledge Innovation Project of the Chinese Academy of Sciences
  funderid: KZCX2‐XB2‐13
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABOGM
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGHSJ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
ECGQY
EDH
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
W8V
W99
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WUPDE
WXSBR
WYISQ
XG1
XPP
XV2
Y6R
ZZTAW
~IA
~KM
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
WRC
AAYXX
CITATION
7ST
8FD
C1K
FR3
KR7
SOI
7QH
7UA
F1W
H97
L.G
7S9
L.6
ID FETCH-LOGICAL-a5198-2e9502f352e949223a9f3bfd2959ae5e5aa9461c05b36b0b06587e0cde7293153
IEDL.DBID DR2
ISSN 1085-3278
IngestDate Fri Jul 11 18:28:26 EDT 2025
Fri Jul 11 04:34:46 EDT 2025
Fri Jul 11 05:22:17 EDT 2025
Fri Jul 25 10:36:52 EDT 2025
Tue Jul 01 00:36:39 EDT 2025
Thu Apr 24 23:06:56 EDT 2025
Wed Jan 22 16:24:12 EST 2025
Sun Sep 21 06:17:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a5198-2e9502f352e949223a9f3bfd2959ae5e5aa9461c05b36b0b06587e0cde7293153
Notes ark:/67375/WNG-VZV06DS7-G
National Natural Science Foundation of China - No. 41071156
'Innovative Team' program of the Chinese Ministry of Education - No. IRT0749
ArticleID:LDR1128
Knowledge Innovation Project of the Chinese Academy of Sciences - No. KZCX2-XB2-13
istex:AC95BCD60415F6ECFF5304D5CAC4B6D2E8F3C802
ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-2
content type line 23
PQID 1364992866
PQPubID 1016359
PageCount 9
ParticipantIDs proquest_miscellaneous_2551933712
proquest_miscellaneous_1642258564
proquest_miscellaneous_1439727265
proquest_journals_1364992866
crossref_primary_10_1002_ldr_1128
crossref_citationtrail_10_1002_ldr_1128
wiley_primary_10_1002_ldr_1128_LDR1128
istex_primary_ark_67375_WNG_VZV06DS7_G
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May/June 2013
PublicationDateYYYYMMDD 2013-05-01
PublicationDate_xml – month: 05
  year: 2013
  text: May/June 2013
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle Land degradation & development
PublicationTitleAlternate Land Degrad. Develop
PublicationYear 2013
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References Gonzalez OJ, Zak DR. 1994. Geostatistical Analysis of Soil Properties in a Secondary Tropical Dry Forest, St-Lucia, West-Indies. Plant and Soil 163: 45-54.
Osunbitan JA, Oyedele DJ, Adekalu KO. 2005. Tillage effects on bulk density, hydraulic conductivity and strength of a loamy sand soil in southwestern Nigeria. Soil and Tillage Research 82: 57-64.
Shi H, Shao MG. 2000. Soil and water loss from the Loess Plateau in China. Journal of Arid Environments 45: 9-20.
Wang J, Fu BJ, Qiu Y, Chen LD, Wang Z. 2001. Geostatistical analysis of soil moisture variability on Da Nangou catchment of the loess plateau, China. Environmental Geology 41: 113-120.
Cambardella CA, Moorman TB, Novak JM, Parkin TB, Karlen DL, Turco RF, Konopka AE. 1994. Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal 58: 1501-1511.
Burrough P. 1983. Multiscale sources of spatial variation in soil. I. The application of fractal concepts to nested levels of soil variation. European Journal of Soil Science 34: 577-597.
Bi HX, Li XY, Liu X, Guo MX, Li J. 2009. A case study of spatial heterogeneity of soil moisture in the Loess Plateau, western China: A geostatistical approach. International Journal of Sediment Research 24: 63-73.
Moreno F, Pelegrin F, Fernandez JE, Murillo JM. 1997. Soil physical properties, water depletion and crop development under traditional and conservation tillage in southern Spain. Soil and Tillage Research 41: 25-42.
Shukla MK, Slater BK, Lal R, Cepuder P. 2004. Spatial variability of soil properties and potential management classification of a chernozemic field in lower Austria. Soil Science 169: 852-860.
Cliff AD, Ord JK. 1973. Spatial Autocorrelation. Pion: London.
Duffera M, White JG, Weisz R. 2007. Spatial variability of southeastern US Coastal Plain soil physical properties: Implications for site-specific management. Geoderma 137: 327-339.
Li YY, Shao MA. 2006. Change of soil physical properties under long-term natural vegetation restoration in the Loess Plateau of China. Journal of Arid Environments 64: 77-96.
Sobieraj JA, Elsenbeer H, Cameron G. 2004. Scale dependency in spatial patterns of saturated hydraulic conductivity. Catena 55: 49-77.
Zeleke TB, Si BC. 2005. Scaling relationships between saturated hydraulic conductivity and soil physical properties. Soil Science Society of America Journal 69: 1691-1702.
Zhao PP, Shao MA, Wang TJ. 2010. Spatial distributions of soil surface-layer saturated hydraulic conductivity and controlling factors on dam farmlands. Water Resources Management 24: 2247-2266.
Han FP, Hu W, Zheng JY, Du F, Zhang XC. 2010. Estimating soil organic carbon storage and distribution in a catchment of Loess Plateau, China. Geoderma 154: 261-266.
Burrough P. 1981. Fractal dimensions of landscapes and other environmental data. Nature 294: 240-242.
Li JW, Richter DD, Mendoza A, Heine P. 2010. Effects of land-use history on soil spatial heterogeneity of macro- and trace elements in the Southern Piedmont USA. Geoderma 156: 60-73.
Bartoli F, Burtin G, Royer JJ, Gury M, Gomendy V, Philippy R, Leviandier T, Gafrej R. 1995. Spatial variability of topsoil characteristics within one silty soil type-Effects on clay migration. Geoderma 68: 279-300.
Wang YQ, Shao MA, Gao L. 2010. Spatial variability of soil particle size distribution and fractal features in water-wind erosion crisscross region on the Loess Plateau of China. Soil Science 175: 579-585.
Shaver TM, Peterson GA, Ahuja LR, Westfall DG, Sherrod LA, Dunn G. 2002. Surface soil physical properties after twelve years of dryland no-till management. Soil Science Society of America Journal 66: 1296-1303.
Wu J, Norvell WA, Welch RM. 2006. Kriging on highly skewed data for DTPA-extractable soil Zn with auxiliary information for pH and organic carbon. Geoderma 134: 187-199.
Burke IC, Lauenroth WK, Riggle R, Brannen P, Madigan B, Beard S. 1999. Spatial variability of soil properties in the shortgrass steppe: The relative importance of topography, grazing, microsite, and plant species in controlling spatial patterns. Ecosystems 2: 422-438.
Fu XL, Shao MA, Wei XR, Horton R. 2010. Soil organic carbon and total nitrogen as affected by vegetation types in Northern Loess Plateau of China. Geoderma 155: 31-35.
Peng L, Wang JZ, Yu CZ. 1995. Nutrient losses in soils on Loess Plateau. Pedosphere 5: 83-92.
Falleiros MC, Portezan O, Oliveira JCM, Bacchi OOS, Reichardt K. 1998. Spatial and temporal variability of soil hydraulic conductivity in relation to soil water distribution, using an exponential model. Soil and Tillage Research 45: 279-285.
Mandelbrot BB, Van Ness JW. 1968. Fractional Brownian motions, fractional noises and applications. SIAM Review 10: 422-437.
Zhao PP, Shao MA. 2010. Soil water spatial distribution in dam farmland on the Loess Plateau, China. Acta Agriculturae Scandinavica. Section B: Soil and Plant Science 60: 117-125.
Krasa J, Dostal T, Vrana K, Plocek J. 2010. Predicting spatial patterns of sediment delivery and Impacts of land-use scenarios on sediment transport in Czech Catchments. Land Degradation and Development 21: 367-375.
Buttle JM, House DA. 1997. Spatial variability of saturated hydraulic conductivity in shallow macroporous soils in a forested basin. Journal of Hydrology 203: 127-142.
Hu W, Shao MA, Wang QJ, Reichardt K. 2009a. Time stability of soil water storage measured by neutron probe and the effects of calibration procedures in a small watershed. Catena 79: 72-82.
Moran PA. 1950. Notes on continuous stochastic phenomena. Biometrika 37: 17-23.
Lopez-Granados F, Jurado-Exposito M, Atenciano S, Garcia-Ferrer A, de la Orden MS, Garcia-Torres L. 2002. Spatial variability of agricultural soil parameters in southern Spain. Plant and Soil 246: 97-105.
Tang KL. 2004. Soil and water conservation in China. Science Press: Beijing (in Chinese).
Gallardo A, Paramá R. 2007. Spatial variability of soil elements in two plant communities of NW Spain. Geoderma 139: 199-208.
Sobieraj JA, Elsenbeer H, Coelho RM, Newton B. 2002. Spatial variability of soil hydraulic conductivity along a tropical rainforest catena. Geoderma 108: 79-90.
Wang YQ, Zhang XC, Huang CQ. 2009b. Spatial variability of soil total nitrogen and soil total phosphorus under different land uses in a small watershed on the Loess Plateau, China. Geoderma 150: 141-149.
Weindorf DC, Zhu Y. 2010. Spatial variability of soil properties at Capulin Volcano, New Mexico, USA: Implications for sampling strategy. Pedosphere 20: 185-197.
Hu W, Shao MG, Wang QJ, Fan J, Horton R. 2009b. Temporal changes of soil hydraulic properties under different land uses. Geoderma 149: 355-366.
Iqbal J, Thomasson JA, Jenkins JN, Owens PR, Whisler FD. 2005. Spatial variability analysis of soil physical properties of alluvial soils. Soil Science Society of America Journal 69: 1338-1350.
Sauer TJ, Clothier BE, Daniel TC. 1990. Surface measurements of the hydraulic properties of a tilled and untilled soil. Soil and Tillage Research 15: 359-369.
Jia XH, Li XR, Zhang JG, Zhang ZS. 2009. Analysis of spatial variability of the fractal dimension of soil particle size in Ammopiptanthus mongolicus' desert habitat. Environmental Geology 58: 953-962.
Nyamadzawo G, Shukla MK, Lal R. 2008. Spatial variability of total soil carbon and nitrogen stocks for some reclaimed minesoils of Southeastern Ohio. Land Degradation and Development 19: 275-288.
Zhao Y, Peth S, Krummelbein J, Horn R, Wang ZY, Steffens M, Hoffmann C, Peng XH. 2007. Spatial variability of soil properties affected by grazing intensity in Inner Mongolia grassland. Ecological Modelling 205: 241-254.
Price K, Jackson CR, Parker AJ. 2010. Variation of surficial soil hydraulic properties across land uses in the southern Blue Ridge Mountains, North Carolina, USA. Journal of Hydrology 383: 256-268.
Wang HJ, Shi XZ, Yu DS, Weindorf DC, Huang B, Sun WX, Ritsema CJ, Milne E. 2009a. Factors determining soil nutrient distribution in a small-scaled watershed in the purple soil region of Sichuan Province, China. Soil and Tillage Research 105: 300-306.
Mallants D, Mohanty BP, Vervoort A, Feyen J. 1997. Spatial analysis of saturated hydraulic conductivity in a soil with macropores. Soil Technology 10: 115-131.
2004; 169
1990; 15
2000; 45
1997; 41
2010; 383
1973
2009a; 79
1998; 45
2006; 134
2001; 41
2005; 69
2010; 60
2007; 137
1950; 37
2009; 58
2010; 21
2010; 20
2006; 64
2007; 139
2010; 24
2001
1997; 10
2009a; 105
1995; 68
2010; 156
2010; 154
1986
2010; 155
1985
2002; 108
1968; 10
2009b; 150
2009; 24
2009b; 149
2007; 205
2008; 19
2004
1999; 2
2005; 82
2003
1991
1995; 5
1983; 34
1999
2004; 55
1981; 294
1997; 203
1994; 163
2002; 246
2002; 66
1994; 58
2010; 175
e_1_2_6_51_1
e_1_2_6_53_1
Cliff AD (e_1_2_6_9_1) 1973
e_1_2_6_32_1
e_1_2_6_30_1
Nielsen DR (e_1_2_6_33_1) 1985
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
Lal R (e_1_2_6_25_1) 2001
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Klute A (e_1_2_6_23_1) 1986
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
Peng L (e_1_2_6_36_1) 1995; 5
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_48_1
e_1_2_6_2_1
Tang KL (e_1_2_6_45_1) 2004
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – reference: Shukla MK, Slater BK, Lal R, Cepuder P. 2004. Spatial variability of soil properties and potential management classification of a chernozemic field in lower Austria. Soil Science 169: 852-860.
– reference: Peng L, Wang JZ, Yu CZ. 1995. Nutrient losses in soils on Loess Plateau. Pedosphere 5: 83-92.
– reference: Cambardella CA, Moorman TB, Novak JM, Parkin TB, Karlen DL, Turco RF, Konopka AE. 1994. Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal 58: 1501-1511.
– reference: Tang KL. 2004. Soil and water conservation in China. Science Press: Beijing (in Chinese).
– reference: Wang J, Fu BJ, Qiu Y, Chen LD, Wang Z. 2001. Geostatistical analysis of soil moisture variability on Da Nangou catchment of the loess plateau, China. Environmental Geology 41: 113-120.
– reference: Jia XH, Li XR, Zhang JG, Zhang ZS. 2009. Analysis of spatial variability of the fractal dimension of soil particle size in Ammopiptanthus mongolicus' desert habitat. Environmental Geology 58: 953-962.
– reference: Sobieraj JA, Elsenbeer H, Coelho RM, Newton B. 2002. Spatial variability of soil hydraulic conductivity along a tropical rainforest catena. Geoderma 108: 79-90.
– reference: Mallants D, Mohanty BP, Vervoort A, Feyen J. 1997. Spatial analysis of saturated hydraulic conductivity in a soil with macropores. Soil Technology 10: 115-131.
– reference: Bartoli F, Burtin G, Royer JJ, Gury M, Gomendy V, Philippy R, Leviandier T, Gafrej R. 1995. Spatial variability of topsoil characteristics within one silty soil type-Effects on clay migration. Geoderma 68: 279-300.
– reference: Moran PA. 1950. Notes on continuous stochastic phenomena. Biometrika 37: 17-23.
– reference: Zeleke TB, Si BC. 2005. Scaling relationships between saturated hydraulic conductivity and soil physical properties. Soil Science Society of America Journal 69: 1691-1702.
– reference: Bi HX, Li XY, Liu X, Guo MX, Li J. 2009. A case study of spatial heterogeneity of soil moisture in the Loess Plateau, western China: A geostatistical approach. International Journal of Sediment Research 24: 63-73.
– reference: Krasa J, Dostal T, Vrana K, Plocek J. 2010. Predicting spatial patterns of sediment delivery and Impacts of land-use scenarios on sediment transport in Czech Catchments. Land Degradation and Development 21: 367-375.
– reference: Zhao Y, Peth S, Krummelbein J, Horn R, Wang ZY, Steffens M, Hoffmann C, Peng XH. 2007. Spatial variability of soil properties affected by grazing intensity in Inner Mongolia grassland. Ecological Modelling 205: 241-254.
– reference: Wang HJ, Shi XZ, Yu DS, Weindorf DC, Huang B, Sun WX, Ritsema CJ, Milne E. 2009a. Factors determining soil nutrient distribution in a small-scaled watershed in the purple soil region of Sichuan Province, China. Soil and Tillage Research 105: 300-306.
– reference: Wang YQ, Zhang XC, Huang CQ. 2009b. Spatial variability of soil total nitrogen and soil total phosphorus under different land uses in a small watershed on the Loess Plateau, China. Geoderma 150: 141-149.
– reference: Zhao PP, Shao MA, Wang TJ. 2010. Spatial distributions of soil surface-layer saturated hydraulic conductivity and controlling factors on dam farmlands. Water Resources Management 24: 2247-2266.
– reference: Buttle JM, House DA. 1997. Spatial variability of saturated hydraulic conductivity in shallow macroporous soils in a forested basin. Journal of Hydrology 203: 127-142.
– reference: Shaver TM, Peterson GA, Ahuja LR, Westfall DG, Sherrod LA, Dunn G. 2002. Surface soil physical properties after twelve years of dryland no-till management. Soil Science Society of America Journal 66: 1296-1303.
– reference: Gallardo A, Paramá R. 2007. Spatial variability of soil elements in two plant communities of NW Spain. Geoderma 139: 199-208.
– reference: Hu W, Shao MG, Wang QJ, Fan J, Horton R. 2009b. Temporal changes of soil hydraulic properties under different land uses. Geoderma 149: 355-366.
– reference: Duffera M, White JG, Weisz R. 2007. Spatial variability of southeastern US Coastal Plain soil physical properties: Implications for site-specific management. Geoderma 137: 327-339.
– reference: Hu W, Shao MA, Wang QJ, Reichardt K. 2009a. Time stability of soil water storage measured by neutron probe and the effects of calibration procedures in a small watershed. Catena 79: 72-82.
– reference: Sobieraj JA, Elsenbeer H, Cameron G. 2004. Scale dependency in spatial patterns of saturated hydraulic conductivity. Catena 55: 49-77.
– reference: Mandelbrot BB, Van Ness JW. 1968. Fractional Brownian motions, fractional noises and applications. SIAM Review 10: 422-437.
– reference: Price K, Jackson CR, Parker AJ. 2010. Variation of surficial soil hydraulic properties across land uses in the southern Blue Ridge Mountains, North Carolina, USA. Journal of Hydrology 383: 256-268.
– reference: Burke IC, Lauenroth WK, Riggle R, Brannen P, Madigan B, Beard S. 1999. Spatial variability of soil properties in the shortgrass steppe: The relative importance of topography, grazing, microsite, and plant species in controlling spatial patterns. Ecosystems 2: 422-438.
– reference: Lopez-Granados F, Jurado-Exposito M, Atenciano S, Garcia-Ferrer A, de la Orden MS, Garcia-Torres L. 2002. Spatial variability of agricultural soil parameters in southern Spain. Plant and Soil 246: 97-105.
– reference: Osunbitan JA, Oyedele DJ, Adekalu KO. 2005. Tillage effects on bulk density, hydraulic conductivity and strength of a loamy sand soil in southwestern Nigeria. Soil and Tillage Research 82: 57-64.
– reference: Nyamadzawo G, Shukla MK, Lal R. 2008. Spatial variability of total soil carbon and nitrogen stocks for some reclaimed minesoils of Southeastern Ohio. Land Degradation and Development 19: 275-288.
– reference: Weindorf DC, Zhu Y. 2010. Spatial variability of soil properties at Capulin Volcano, New Mexico, USA: Implications for sampling strategy. Pedosphere 20: 185-197.
– reference: Li JW, Richter DD, Mendoza A, Heine P. 2010. Effects of land-use history on soil spatial heterogeneity of macro- and trace elements in the Southern Piedmont USA. Geoderma 156: 60-73.
– reference: Shi H, Shao MG. 2000. Soil and water loss from the Loess Plateau in China. Journal of Arid Environments 45: 9-20.
– reference: Wang YQ, Shao MA, Gao L. 2010. Spatial variability of soil particle size distribution and fractal features in water-wind erosion crisscross region on the Loess Plateau of China. Soil Science 175: 579-585.
– reference: Gonzalez OJ, Zak DR. 1994. Geostatistical Analysis of Soil Properties in a Secondary Tropical Dry Forest, St-Lucia, West-Indies. Plant and Soil 163: 45-54.
– reference: Burrough P. 1981. Fractal dimensions of landscapes and other environmental data. Nature 294: 240-242.
– reference: Moreno F, Pelegrin F, Fernandez JE, Murillo JM. 1997. Soil physical properties, water depletion and crop development under traditional and conservation tillage in southern Spain. Soil and Tillage Research 41: 25-42.
– reference: Fu XL, Shao MA, Wei XR, Horton R. 2010. Soil organic carbon and total nitrogen as affected by vegetation types in Northern Loess Plateau of China. Geoderma 155: 31-35.
– reference: Wu J, Norvell WA, Welch RM. 2006. Kriging on highly skewed data for DTPA-extractable soil Zn with auxiliary information for pH and organic carbon. Geoderma 134: 187-199.
– reference: Han FP, Hu W, Zheng JY, Du F, Zhang XC. 2010. Estimating soil organic carbon storage and distribution in a catchment of Loess Plateau, China. Geoderma 154: 261-266.
– reference: Iqbal J, Thomasson JA, Jenkins JN, Owens PR, Whisler FD. 2005. Spatial variability analysis of soil physical properties of alluvial soils. Soil Science Society of America Journal 69: 1338-1350.
– reference: Cliff AD, Ord JK. 1973. Spatial Autocorrelation. Pion: London.
– reference: Li YY, Shao MA. 2006. Change of soil physical properties under long-term natural vegetation restoration in the Loess Plateau of China. Journal of Arid Environments 64: 77-96.
– reference: Falleiros MC, Portezan O, Oliveira JCM, Bacchi OOS, Reichardt K. 1998. Spatial and temporal variability of soil hydraulic conductivity in relation to soil water distribution, using an exponential model. Soil and Tillage Research 45: 279-285.
– reference: Burrough P. 1983. Multiscale sources of spatial variation in soil. I. The application of fractal concepts to nested levels of soil variation. European Journal of Soil Science 34: 577-597.
– reference: Sauer TJ, Clothier BE, Daniel TC. 1990. Surface measurements of the hydraulic properties of a tilled and untilled soil. Soil and Tillage Research 15: 359-369.
– reference: Zhao PP, Shao MA. 2010. Soil water spatial distribution in dam farmland on the Loess Plateau, China. Acta Agriculturae Scandinavica. Section B: Soil and Plant Science 60: 117-125.
– volume: 82
  start-page: 57
  year: 2005
  end-page: 64
  article-title: Tillage effects on bulk density, hydraulic conductivity and strength of a loamy sand soil in southwestern Nigeria
  publication-title: Soil and Tillage Research
– volume: 21
  start-page: 367
  year: 2010
  end-page: 375
  article-title: Predicting spatial patterns of sediment delivery and Impacts of land‐use scenarios on sediment transport in Czech Catchments
  publication-title: Land Degradation and Development
– volume: 79
  start-page: 72
  year: 2009a
  end-page: 82
  article-title: Time stability of soil water storage measured by neutron probe and the effects of calibration procedures in a small watershed
  publication-title: Catena
– volume: 108
  start-page: 79
  year: 2002
  end-page: 90
  article-title: Spatial variability of soil hydraulic conductivity along a tropical rainforest catena
  publication-title: Geoderma
– volume: 64
  start-page: 77
  year: 2006
  end-page: 96
  article-title: Change of soil physical properties under long‐term natural vegetation restoration in the Loess Plateau of China
  publication-title: Journal of Arid Environments
– volume: 203
  start-page: 127
  year: 1997
  end-page: 142
  article-title: Spatial variability of saturated hydraulic conductivity in shallow macroporous soils in a forested basin
  publication-title: Journal of Hydrology
– volume: 139
  start-page: 199
  year: 2007
  end-page: 208
  article-title: Spatial variability of soil elements in two plant communities of NW Spain
  publication-title: Geoderma
– start-page: 443
  year: 1986
  end-page: 461
– start-page: 687
  year: 1986
  end-page: 734
– volume: 19
  start-page: 275
  year: 2008
  end-page: 288
  article-title: Spatial variability of total soil carbon and nitrogen stocks for some reclaimed minesoils of Southeastern Ohio
  publication-title: Land Degradation and Development
– volume: 58
  start-page: 1501
  year: 1994
  end-page: 1511
  article-title: Field‐scale variability of soil properties in central Iowa soils
  publication-title: Soil Science Society of America Journal
– volume: 34
  start-page: 577
  year: 1983
  end-page: 597
  article-title: Multiscale sources of spatial variation in soil. I. The application of fractal concepts to nested levels of soil variation
  publication-title: European Journal of Soil Science
– volume: 41
  start-page: 25
  year: 1997
  end-page: 42
  article-title: Soil physical properties, water depletion and crop development under traditional and conservation tillage in southern Spain
  publication-title: Soil and Tillage Research
– volume: 15
  start-page: 359
  year: 1990
  end-page: 369
  article-title: Surface measurements of the hydraulic properties of a tilled and untilled soil
  publication-title: Soil and Tillage Research
– volume: 163
  start-page: 45
  year: 1994
  end-page: 54
  article-title: Geostatistical Analysis of Soil Properties in a Secondary Tropical Dry Forest, St‐Lucia, West‐Indies
  publication-title: Plant and Soil
– volume: 156
  start-page: 60
  year: 2010
  end-page: 73
  article-title: Effects of land‐use history on soil spatial heterogeneity of macro‐ and trace elements in the Southern Piedmont USA
  publication-title: Geoderma
– volume: 2
  start-page: 422
  year: 1999
  end-page: 438
  article-title: Spatial variability of soil properties in the shortgrass steppe: The relative importance of topography, grazing, microsite, and plant species in controlling spatial patterns
  publication-title: Ecosystems
– volume: 68
  start-page: 279
  year: 1995
  end-page: 300
  article-title: Spatial variability of topsoil characteristics within one silty soil type—Effects on clay migration
  publication-title: Geoderma
– year: 2004
– volume: 20
  start-page: 185
  year: 2010
  end-page: 197
  article-title: Spatial variability of soil properties at Capulin Volcano, New Mexico, USA: Implications for sampling strategy
  publication-title: Pedosphere
– volume: 66
  start-page: 1296
  year: 2002
  end-page: 1303
  article-title: Surface soil physical properties after twelve years of dryland no‐till management
  publication-title: Soil Science Society of America Journal
– volume: 55
  start-page: 49
  year: 2004
  end-page: 77
  article-title: Scale dependency in spatial patterns of saturated hydraulic conductivity
  publication-title: Catena
– volume: 105
  start-page: 300
  year: 2009a
  end-page: 306
  article-title: Factors determining soil nutrient distribution in a small‐scaled watershed in the purple soil region of Sichuan Province, China
  publication-title: Soil and Tillage Research
– volume: 24
  start-page: 63
  year: 2009
  end-page: 73
  article-title: A case study of spatial heterogeneity of soil moisture in the Loess Plateau, western China: A geostatistical approach
  publication-title: International Journal of Sediment Research
– volume: 41
  start-page: 113
  year: 2001
  end-page: 120
  article-title: Geostatistical analysis of soil moisture variability on Da Nangou catchment of the loess plateau, China
  publication-title: Environmental Geology
– volume: 294
  start-page: 240
  year: 1981
  end-page: 242
  article-title: Fractal dimensions of landscapes and other environmental data
  publication-title: Nature
– volume: 155
  start-page: 31
  year: 2010
  end-page: 35
  article-title: Soil organic carbon and total nitrogen as affected by vegetation types in Northern Loess Plateau of China
  publication-title: Geoderma
– volume: 37
  start-page: 17
  year: 1950
  end-page: 23
  article-title: Notes on continuous stochastic phenomena
  publication-title: Biometrika
– volume: 45
  start-page: 9
  year: 2000
  end-page: 20
  article-title: Soil and water loss from the Loess Plateau in China
  publication-title: Journal of Arid Environments
– volume: 69
  start-page: 1691
  year: 2005
  end-page: 1702
  article-title: Scaling relationships between saturated hydraulic conductivity and soil physical properties
  publication-title: Soil Science Society of America Journal
– year: 2003
– year: 1973
– start-page: 243
  year: 1985
– volume: 383
  start-page: 256
  year: 2010
  end-page: 268
  article-title: Variation of surficial soil hydraulic properties across land uses in the southern Blue Ridge Mountains, North Carolina, USA
  publication-title: Journal of Hydrology
– volume: 205
  start-page: 241
  year: 2007
  end-page: 254
  article-title: Spatial variability of soil properties affected by grazing intensity in Inner Mongolia grassland
  publication-title: Ecological Modelling
– volume: 175
  start-page: 579
  year: 2010
  end-page: 585
  article-title: Spatial variability of soil particle size distribution and fractal features in water–wind erosion crisscross region on the Loess Plateau of China
  publication-title: Soil Science
– volume: 60
  start-page: 117
  year: 2010
  end-page: 125
  article-title: Soil water spatial distribution in dam farmland on the Loess Plateau, China
  publication-title: Acta Agriculturae Scandinavica. Section B: Soil and Plant Science
– start-page: 541
  year: 1999
  end-page: 551
– volume: 154
  start-page: 261
  year: 2010
  end-page: 266
  article-title: Estimating soil organic carbon storage and distribution in a catchment of Loess Plateau, China
  publication-title: Geoderma
– volume: 134
  start-page: 187
  year: 2006
  end-page: 199
  article-title: Kriging on highly skewed data for DTPA‐extractable soil Zn with auxiliary information for pH and organic carbon
  publication-title: Geoderma
– volume: 58
  start-page: 953
  year: 2009
  end-page: 962
  article-title: Analysis of spatial variability of the fractal dimension of soil particle size in ' desert habitat
  publication-title: Environmental Geology
– volume: 69
  start-page: 1338
  year: 2005
  end-page: 1350
  article-title: Spatial variability analysis of soil physical properties of alluvial soils
  publication-title: Soil Science Society of America Journal
– volume: 150
  start-page: 141
  year: 2009b
  end-page: 149
  article-title: Spatial variability of soil total nitrogen and soil total phosphorus under different land uses in a small watershed on the Loess Plateau, China
  publication-title: Geoderma
– volume: 10
  start-page: 422
  year: 1968
  end-page: 437
  article-title: Fractional Brownian motions, fractional noises and applications
  publication-title: SIAM Review
– start-page: 31
  year: 2001
  end-page: 44
– volume: 45
  start-page: 279
  year: 1998
  end-page: 285
  article-title: Spatial and temporal variability of soil hydraulic conductivity in relation to soil water distribution, using an exponential model
  publication-title: Soil and Tillage Research
– volume: 5
  start-page: 83
  year: 1995
  end-page: 92
  article-title: Nutrient losses in soils on Loess Plateau
  publication-title: Pedosphere
– volume: 24
  start-page: 2247
  year: 2010
  end-page: 2266
  article-title: Spatial distributions of soil surface‐layer saturated hydraulic conductivity and controlling factors on dam farmlands
  publication-title: Water Resources Management
– volume: 246
  start-page: 97
  year: 2002
  end-page: 105
  article-title: Spatial variability of agricultural soil parameters in southern Spain
  publication-title: Plant and Soil
– volume: 137
  start-page: 327
  year: 2007
  end-page: 339
  article-title: Spatial variability of southeastern US Coastal Plain soil physical properties: Implications for site‐specific management
  publication-title: Geoderma
– year: 1991
– volume: 169
  start-page: 852
  year: 2004
  end-page: 860
  article-title: Spatial variability of soil properties and potential management classification of a chernozemic field in lower Austria
  publication-title: Soil Science
– volume: 149
  start-page: 355
  year: 2009b
  end-page: 366
  article-title: Temporal changes of soil hydraulic properties under different land uses
  publication-title: Geoderma
– volume: 10
  start-page: 115
  year: 1997
  end-page: 131
  article-title: Spatial analysis of saturated hydraulic conductivity in a soil with macropores
  publication-title: Soil Technology
– ident: e_1_2_6_16_1
  doi: 10.1007/BF00033939
– ident: e_1_2_6_15_1
  doi: 10.1016/j.geoderma.2007.01.022
– ident: e_1_2_6_38_1
  doi: 10.1016/0167-1987(90)90109-Q
– ident: e_1_2_6_26_1
  doi: 10.1016/j.jaridenv.2005.04.005
– ident: e_1_2_6_3_1
  doi: 10.1016/S1001-6279(09)60016-0
– ident: e_1_2_6_32_1
  doi: 10.1016/S0167-1987(96)01083-5
– ident: e_1_2_6_55_1
  doi: 10.1007/s11269-009-9550-y
– ident: e_1_2_6_7_1
  doi: 10.1016/S0022-1694(97)00095-4
– ident: e_1_2_6_41_1
  doi: 10.1097/00010694-200412000-00004
– ident: e_1_2_6_34_1
  doi: 10.1002/ldr.841
– ident: e_1_2_6_44_1
– ident: e_1_2_6_18_1
  doi: 10.1016/j.geoderma.2009.10.011
– ident: e_1_2_6_22_1
  doi: 10.1007/s00254-008-1575-7
– ident: e_1_2_6_54_1
  doi: 10.1016/j.ecolmodel.2007.02.019
– volume-title: Soil and water conservation in China
  year: 2004
  ident: e_1_2_6_45_1
– ident: e_1_2_6_14_1
  doi: 10.1016/j.geoderma.2009.11.020
– ident: e_1_2_6_30_1
  doi: 10.1137/1010093
– ident: e_1_2_6_29_1
  doi: 10.1016/S0933-3630(96)00093-1
– ident: e_1_2_6_31_1
  doi: 10.1093/biomet/37.1-2.17
– ident: e_1_2_6_21_1
  doi: 10.2136/sssaj2004.0154
– ident: e_1_2_6_40_1
  doi: 10.1006/jare.1999.0618
– ident: e_1_2_6_20_1
  doi: 10.1016/j.geoderma.2008.12.016
– ident: e_1_2_6_48_1
  doi: 10.1016/j.geoderma.2009.01.021
– ident: e_1_2_6_42_1
  doi: 10.1016/S0016-7061(02)00122-2
– ident: e_1_2_6_12_1
– ident: e_1_2_6_8_1
  doi: 10.2136/sssaj1994.03615995005800050033x
– ident: e_1_2_6_24_1
  doi: 10.1002/ldr.959
– ident: e_1_2_6_10_1
  doi: 10.2136/sssabookser5.1.2ed.c18
– ident: e_1_2_6_49_1
  doi: 10.1097/SS.0b013e3181fda413
– ident: e_1_2_6_47_1
  doi: 10.1016/j.still.2008.08.010
– ident: e_1_2_6_5_1
  doi: 10.1038/294240a0
– ident: e_1_2_6_13_1
  doi: 10.1016/S0933-3630(97)00021-4
– ident: e_1_2_6_11_1
  doi: 10.1016/j.geoderma.2006.08.018
– ident: e_1_2_6_53_1
  doi: 10.1080/09064710802676377
– ident: e_1_2_6_37_1
  doi: 10.1016/j.jhydrol.2009.12.041
– ident: e_1_2_6_17_1
– ident: e_1_2_6_6_1
  doi: 10.1111/j.1365-2389.1983.tb01057.x
– ident: e_1_2_6_27_1
  doi: 10.1016/j.geoderma.2010.01.008
– ident: e_1_2_6_51_1
  doi: 10.1016/j.geoderma.2005.11.002
– start-page: 687
  volume-title: Hydraulic Conductivity and Diffusivity: Laboratory Methods
  year: 1986
  ident: e_1_2_6_23_1
– volume-title: Spatial Autocorrelation
  year: 1973
  ident: e_1_2_6_9_1
– ident: e_1_2_6_43_1
  doi: 10.1016/S0341-8162(03)00090-0
– ident: e_1_2_6_28_1
  doi: 10.1023/A:1021568415380
– ident: e_1_2_6_39_1
  doi: 10.2136/sssaj2002.1296
– start-page: 31
  volume-title: Advances in Soil Science: Assessment Methods for Soil Carbon
  year: 2001
  ident: e_1_2_6_25_1
– ident: e_1_2_6_2_1
  doi: 10.1016/0016-7061(95)00052-8
– ident: e_1_2_6_52_1
  doi: 10.2136/sssaj2005.0072
– ident: e_1_2_6_35_1
  doi: 10.1016/j.still.2004.05.007
– start-page: 243
  volume-title: Proceedings of a Workshop of the ISSS and the SSSA
  year: 1985
  ident: e_1_2_6_33_1
– ident: e_1_2_6_50_1
  doi: 10.1016/S1002-0160(10)60006-9
– ident: e_1_2_6_4_1
  doi: 10.1007/s100219900091
– ident: e_1_2_6_19_1
  doi: 10.1016/j.catena.2009.05.012
– volume: 5
  start-page: 83
  year: 1995
  ident: e_1_2_6_36_1
  article-title: Nutrient losses in soils on Loess Plateau
  publication-title: Pedosphere
– ident: e_1_2_6_46_1
  doi: 10.1007/s002540100350
SSID ssj0001747
Score 2.3844926
Snippet ABSTRACT The analysis of the spatial variability of soil properties is important for land management and construction of an ecological environment. The...
The analysis of the spatial variability of soil properties is important for land management and construction of an ecological environment. The objectives of...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 296
SubjectTerms Agricultural land
Agricultural practices
bulk density
China
Environmental management
fractal dimensions
geostatistic analysis
Geostatistics
Grasslands
Land
land degradation
Land management
Land use
Loess
Mathematical models
ordinary kriging
Physical properties
Porosity
PR China
precision agriculture
Precision farming
saturated hydraulic conductivity
semivariogram
shrublands
Soil (material)
Soil physical properties
Spatial analysis
spatial structure
Statistical analysis
summer
Topsoil
water erosion
Watersheds
Wind erosion
Woodlands
Title SPATIAL VARIABILITY OF SOIL PHYSICAL PROPERTIES IN A REGION OF THE LOESS PLATEAU OF PR CHINA SUBJECT TO WIND AND WATER EROSION
URI https://api.istex.fr/ark:/67375/WNG-VZV06DS7-G/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fldr.1128
https://www.proquest.com/docview/1364992866
https://www.proquest.com/docview/1439727265
https://www.proquest.com/docview/1642258564
https://www.proquest.com/docview/2551933712
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1085-3278
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-145X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001747
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6hcoEDb0RoQYuE4OTWWb-yx6VxYiNjW46TtHCwdu01h1ZplSYS4sBvZ8aPlCKKEIfIUvxFWe_sjL-xZ78h5C3a3AZabMDpyrDtihuYNhsKKxQUr0uz6dbwKXaDuf3xxDnpqipxL0yrD7F74Iae0cRrdHCpro6uRUPPqzXuf8F9vkPLad7QZtfKUUC0vb623mLeqNedNdlR_8Mbd6K7OKnfbtDMX8lqc7eZPCRf-nG2RSZnh9uNOiy__ybh-H8X8og86EgoFe2qeUzu6NUTcl98XXdCHPop-TFLRR6KiC5EFooPYRTmpzSZ0FkSRjQNTmeoo0BTLAPMcqCUNIypoJk_hdiMuDzwaZSAdWkaidwXc_wyzehxEMaCdm1WaJ7QZRiPqYDPEmAZ9bMEw_szMp_4-XFgdL0aDAkcEJxNc8dkNdA5zW0OnEPy2lJ1xbjDpXa0IyW33SGYXlmuMhUyH0-bZaWB3VsQdp-TvdXFSr8gFHK6ypRlyUZaQbJqSaYh6-N1XTsK4pM1IO97uxVlJ2SO_TTOi1aCmRUwowXO6IC82SEvW_GOP2DeNabfAeT6DIvdPKdYxtNi8XlhuuOZV0wH5KBfG0Xn51fF0HIhZWQj14X_2p0GD8XXLnKlL7aAQc7HPOY6f8FAGsggc3Pt2zGQ_AHbtrwhgzE3C-rWiyqicYbHl_8K3Cf3WNPnAys5D8jeZr3Vr4BtbdTrxq9-An7BGic
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db5RAEN_U9kH74HfT06prYvSJllu-jvi09rgDpUA47q41JhsWFh_aXM15lxgf_Nud4eNqjTXGB0ICPwLs7Ay_geE3hLxCm5tAizXYXWqmWboaps2axAoF6VaFXndrOIlsf2q-P7VOt8jb7l-YRh9i88INPaOO1-jg-EL66Eo19KJc4g8wg1tkBz_PoVcO0yvtKKDaTlddbzBn0CnP6uyoO_Las2gHh_XbNaL5K12tnzeje-RTd6VNmcn54XolD4vvv4k4_uet3Cd3Wx5KeTNxHpAttXhIdvnnZavFoR6RH5OEZwEP6YynAX8XhEF2RuMRncRBSBP_bIJSCjTBSsA0A1ZJg4hymnpjCM-Iy3yPhjEYmCYhzzw-xY1JSo_9IOK07bRCs5jOg2hIOSxzgKXUS2OM8I_JdORlx77WtmvQcqCB4G_KtXRWAaNTrukC7cjdypBVyVzLzZWlrDx3TbsP1peGLXWJ5MdRelEqIPgGRN49sr24XKh9QiGtK_W8KNhASchXjZwpSPzcqqosCSHK6JE3neFE0WqZY0uNC9GoMDMBIypwRHvk5Qb5pdHv-APmdW37DSBfnmO9m2OJeTQWs48z3R5OHDHukYNucojW1b-KvmFD1sgGtg3n2uwGJ8UvL_lCXa4Bg7SPOcy2_oKBTJBB8mabN2Mg_wPCbTh9Btdcz6gbb0qEwxTXT_4V-ILc9rOTUIRB9OEpucPqth9Y2HlAtlfLtXoG5Gsln9dO9hM4ch5D
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fj5NAEN7oXWL0wd_G6qlrYvSJO7rAUh7XKy0oUkJpe3c-bFhYfLhL71LbxPjg3-4MP3qe8YzxgZDAEGBnZ_g-GL4h5A363AZYbMDu0rDt0jOQNhsKKxSUVxVm3a3hU8yDmf3hyDlqqyrxX5hGH2L7wg0jo87XGOAXZXVwKRp6Vq7w_5fBTbJrcyBXCIjSS-koQNpuV1xvMXfQCc-a7KA78sqjaBdH9dsVnPkrWq0fN6N75HN3oU2Vyen-Zq32i--_aTj-353cJ3dbFEpFM20ekBt6-ZDcEV9WrRKHfkR-TBORhSKic5GG4n0YhdkxnYzodBJGNAmOpyikQBOsA0wzwJQ0jKmgqT-G5Ix2WeDTaALupUkkMl_McGOS0sMgjAVt-6zQbEIXYTykApYFmKXUTyeY3x-T2cjPDgOjbdZg5AACIdq055isAjynPdsD0JF7laWqknmOl2tHO3nu2bwPvlcWV6ZC6ONqsyg1wHsL8u4TsrM8X-qnhAKpK828KNhAK2CrVs400D6vqipHQYKyeuRd5zdZtErm2FDjTDYazEzCiEoc0R55vbW8aNQ7_mDztnb91iBfnWK1m-vIRTyW85O5yYdTV457ZK-bG7IN9K-yb3HgjGzAOZxruxtCFL-75Et9vgEbBH3MZdz5iw3wQAbUjdvX2wD7A7htuX0G11xPqGtvSkbDFNfP_tXwFbmVDEcyCuOPz8ltVvf8wKrOPbKzXm30C0Bea_WyDrGfpzwc8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SPATIAL+VARIABILITY+OF+SOIL+PHYSICAL+PROPERTIES+IN+A+REGION+OF+THE+LOESS+PLATEAU+OF+PR+CHINA+SUBJECT+TO+WIND+AND+WATER+EROSION&rft.jtitle=Land+degradation+%26+development&rft.au=Wang%2C+Y.+Q.&rft.au=Shao%2C+M.+A.&rft.date=2013-05-01&rft.issn=1085-3278&rft.eissn=1099-145X&rft.volume=24&rft.issue=3&rft.spage=296&rft.epage=304&rft_id=info:doi/10.1002%2Fldr.1128&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ldr_1128
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1085-3278&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1085-3278&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1085-3278&client=summon