Noisy Classical Field Theories with Two Coupled Fields: Dependence of Escape Rates on Relative Field Stiffnesses

Exit times for stochastic Ginzburg-Landau classical field theories with two or more coupled classical fields depend on the interval length on which the fields are defined, the potential in which the fields deterministically evolve, and the relative stiffness of the fields themselves. The latter is o...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Gong, Lan, Stein, D L
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 28.06.2011
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.1106.5545

Cover

Abstract Exit times for stochastic Ginzburg-Landau classical field theories with two or more coupled classical fields depend on the interval length on which the fields are defined, the potential in which the fields deterministically evolve, and the relative stiffness of the fields themselves. The latter is of particular importance in that physical applications will generally require different relative stiffnesses, but the effect of varying field stiffnesses has not heretofore been studied. In this paper, we explore the complete phase diagram of escape times as they depend on the various problem parameters. In addition to finding a transition in escape rates as the relative stiffness varies, we also observe a critical slowing down of the string method algorithm as criticality is approached.
AbstractList Exit times for stochastic Ginzburg-Landau classical field theories with two or more coupled classical fields depend on the interval length on which the fields are defined, the potential in which the fields deterministically evolve, and the relative stiffness of the fields themselves. The latter is of particular importance in that physical applications will generally require different relative stiffnesses, but the effect of varying field stiffnesses has not heretofore been studied. In this paper, we explore the complete phase diagram of escape times as they depend on the various problem parameters. In addition to finding a transition in escape rates as the relative stiffness varies, we also observe a critical slowing down of the string method algorithm as criticality is approached.
Exit times for stochastic Ginzburg-Landau classical field theories with two or more coupled classical fields depend on the interval length on which the fields are defined, the potential in which the fields deterministically evolve, and the relative stiffness of the fields themselves. The latter is of particular importance in that physical applications will generally require different relative stiffnesses, but the effect of varying field stiffnesses has not heretofore been studied. In this paper, we explore the complete phase diagram of escape times as they depend on the various problem parameters. In addition to finding a transition in escape rates as the relative stiffness varies, we also observe a critical slowing down of the string method algorithm as criticality is approached.
Author Stein, D L
Gong, Lan
Author_xml – sequence: 1
  givenname: Lan
  surname: Gong
  fullname: Gong, Lan
– sequence: 2
  givenname: D
  surname: Stein
  middlename: L
  fullname: Stein, D L
BackLink https://doi.org/10.48550/arXiv.1106.5545$$DView paper in arXiv
https://doi.org/10.1103/PhysRevE.84.031119$$DView published paper (Access to full text may be restricted)
BookMark eNotkL1PwzAUxC0EEqV0Z0KWmBP8EccuGwotIFUgleyR6zyrroId4rSl_z0p7XTDuzu9-92gSx88IHRHSZopIcij7n7dLqWU5KkQmbhAI8Y5TVTG2DWaxLghhLBcMiH4CLUfwcUDLhodozO6wXMHTY3LNYTOQcR7169xuQ-4CNu2gfp0j0_4BVrwNXgDOFg8i0a3gJe6HzLB4yU0unc7ONd99c5aDzFCvEVXVjcRJmcdo3I-K4u3ZPH5-l48LxIt6DSRmiortFXckExy4NkKciJ5TcXKSGlyqYSBYa4mPK-Nya0iU8mlImCJUISP0f2p9p9G1XbuW3eH6kilOlIZDA8nQ9uFny3EvtqEbeeHlypGFGNZxsSU_wERzmZD
ContentType Paper
Journal Article
Copyright 2011. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2011. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
GOX
DOI 10.48550/arxiv.1106.5545
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest One Academic
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 1106_5545
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
GOX
ID FETCH-LOGICAL-a519-7a18f5af83c0473e34be6073d15bc77c6785ce855a036dcc6f80973780ef05803
IEDL.DBID 8FG
IngestDate Tue Jul 22 23:14:18 EDT 2025
Mon Jun 30 09:21:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a519-7a18f5af83c0473e34be6073d15bc77c6785ce855a036dcc6f80973780ef05803
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2082244259?pq-origsite=%requestingapplication%
PQID 2082244259
PQPubID 2050157
ParticipantIDs arxiv_primary_1106_5545
proquest_journals_2082244259
PublicationCentury 2000
PublicationDate 20110628
PublicationDateYYYYMMDD 2011-06-28
PublicationDate_xml – month: 06
  year: 2011
  text: 20110628
  day: 28
PublicationDecade 2010
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2011
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.4646808
SecondaryResourceType preprint
Snippet Exit times for stochastic Ginzburg-Landau classical field theories with two or more coupled classical fields depend on the interval length on which the fields...
Exit times for stochastic Ginzburg-Landau classical field theories with two or more coupled classical fields depend on the interval length on which the fields...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Algorithms
Dependence
Phase diagrams
Physics - Statistical Mechanics
Stiffness
SummonAdditionalLinks – databaseName: arXiv.org
  dbid: GOX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3JTsMwEB21PXFBILZCAR-4GrLYicMNlVYVEkWCIvUWeZUqoaRq2gJ_zzhJuSCuiZ3D8_KenZk3ADcuNZFyLKAC2Yki42dU6MxSHUQZMy7FOeOTk5-nyeSdPc35vAPXu1wYufpabBt_YFXdITclt0h4vAtd1Ak-l_dl3vxsrJ242ua_zVBh1k_-bKw1W4wPYL-VeeShGZdD6NjiCJbTclF9k7oOpceGjH34GKnT4_HASvydKJl9lmRYbpYf1jTvq3vy2Faq1ZaUjowqH7REXr1KJGVBmni2rW0_97ZeOOc3MFsdw2w8mg0ntK14QCUqKZrKUDgunYh1wNLYxkzZBNegCbnSaaqRWLgvM8ol8o7ROnHCu-2kIrAu4CKIT6BXlIU9AxJYiQet0CTcIf8opiLpMhFykyWWx5L34bRGKl82pha5xzD3GPZhsMMub-dzlUfeGJ7h-s7O_-14AXvNhWtCIzGA3nq1sZfI2Gt1VY_bDxEpldg
  priority: 102
  providerName: Cornell University
Title Noisy Classical Field Theories with Two Coupled Fields: Dependence of Escape Rates on Relative Field Stiffnesses
URI https://www.proquest.com/docview/2082244259
https://arxiv.org/abs/1106.5545
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA66IXjzt9MpOXiNdm3Tpl4E534gbI45YbeSpgkMZK3rNvXi3-57aacHwUuhDfTwkrzvvZcv7yPkyoSpmxjfYQLQiQHiR0yoSDPluJGfmhDWDF5OHgyD_ov_OOXTquBWVLTKjU-0jjrNFNbIIUlHviOssOguf2OoGoWnq5WExjapA1BHuKpFt_dTY3GDECJmrzydtK27buTiY7ZG7ntwDUAKiFK3X_54Ygsv3T1SH8lcL_bJlp4fkB3LylTFIcmH2az4pFa4Eo1Ju8g3o_Y-PWS4FIuodPKe0Xa2yl91Wo4Xt_ShkrZVmmaGdgpkOdExhpU0m9OSALfW1e-elzNj0OPp4ohMup1Ju88qiQQmIfRioWwJw6URnnL80NOen-gANm3a4okKQwVIxFGXlEsAqlSpwAhszxMKRxuHC8c7JrV5NtenhDpaQmbWSgNuALASP3GliUSLp1GguSd5g5xYS8V52QUjRhvGaMMGaW5sF1cboIh_p-vs_-FzsluWaQPmiiapLRcrfQE4v0wu7WRekvp9Zzgaw1vvaQrPwVfnGxdJqrs
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB4BUUVvtLwCtN0DHBcc22uvkVClQqJQIEIQJG7Weh9SJBS7cXj9OP5bZ9ZOe6jUG1evtIeZ8Xwzs9_MAOy71ISFiwMuEZ04In7Gpc4s10GYxcalaDPUnHw1SoZ38c97cb8Eb4teGKJVLnyid9Sm1FQjxySd-I5oYdn36henrVH0urpYoaHa1QrmxI8Yaxs7LuzrM6Zw9cn5Ger7IAwH_fHpkLdbBrjC6IWnqiedUE5GOojTyEZxYRO0e9MThU5Tjc5c0GpPodDXG60TJ2nCTSoD6wIhgwivXYZOHMUZ5n6dH_3R9c2fIk-YpBiyR83zqJ8ddqRmL5MnIt8nh4jkCGkd_-UfKPD4NliDzrWq7OwTLNnpZ_jgaaG6XodqVE7qV-Y3Z5I22YAIb8w39GOKzaiKy8bPJTstH6sHa5rz-pidtbt1tWWlY_2aaFbshuJaVk5Zw8B7su11t_OJc-Rybb0B4_eQ3iasTMup3QYWWIWpYc8kwiFiFnERKpfJnjBZYkWkRBe2vKTyqhnDkZMMc5JhF_YWssvbP7DO_9rLzv-Pv8HqcHx1mV-ejy524WNTM054KPdgZT57tF8w6JgXX1vVMsjf2Zh-A3Ca6EI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noisy+Classical+Field+Theories+with+Two+Coupled+Fields%3A+Dependence+of+Escape+Rates+on+Relative+Field+Stiffnesses&rft.jtitle=arXiv.org&rft.au=Gong%2C+Lan&rft.au=Stein%2C+D+L&rft.date=2011-06-28&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.1106.5545