Quantitative Fragmentation Model for Bottom-Up Shotgun Lipidomics

Quantitative bottom-up shotgun lipidomics relies on molecular species-specific “signature” fragments consistently detectable in tandem mass spectra of analytes and standards. Molecular species of glycerophospholipids are typically quantified using carboxylate fragments of their fatty acid moieties p...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 91; no. 18; pp. 12085 - 12093
Main Authors Schuhmann, Kai, Moon, HongKee, Thomas, Henrik, Ackerman, Jacobo Miranda, Groessl, Michael, Wagner, Nicolai, Kellmann, Markus, Henry, Ian, Nadler, André, Shevchenko, Andrej
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 17.09.2019
Subjects
Online AccessGet full text
ISSN0003-2700
1520-6882
1520-6882
DOI10.1021/acs.analchem.9b03270

Cover

Abstract Quantitative bottom-up shotgun lipidomics relies on molecular species-specific “signature” fragments consistently detectable in tandem mass spectra of analytes and standards. Molecular species of glycerophospholipids are typically quantified using carboxylate fragments of their fatty acid moieties produced by higher-energy collisional dissociation of their molecular anions. However, employing standards whose fatty acids moieties are similar, yet not identical, to the target lipids could severely compromise their quantification. We developed a generic and portable fragmentation model implemented in the open-source LipidXte software that harmonizes the abundances of carboxylate anion fragments originating from fatty acid moieties having different sn-1/2 positions at the glycerol backbone, length of the hydrocarbon chain, and number and location of double bonds. The postacquisition adjustment enables unbiased absolute (molar) quantification of glycerophospholipid species independent of instrument settings, collision energy, and employed internal standards.
AbstractList Quantitative bottom-up shotgun lipidomics relies on molecular species-specific “signature” fragments consistently detectable in tandem mass spectra of analytes and standards. Molecular species of glycerophospholipids are typically quantified using carboxylate fragments of their fatty acid moieties produced by higher-energy collisional dissociation of their molecular anions. However, employing standards whose fatty acids moieties are similar, yet not identical, to the target lipids could severely compromise their quantification. We developed a generic and portable fragmentation model implemented in the open-source LipidXte software that harmonizes the abundances of carboxylate anion fragments originating from fatty acid moieties having different sn-1/2 positions at the glycerol backbone, length of the hydrocarbon chain, and number and location of double bonds. The postacquisition adjustment enables unbiased absolute (molar) quantification of glycerophospholipid species independent of instrument settings, collision energy, and employed internal standards.
Quantitative bottom-up shotgun lipidomics relies on molecular species-specific “signature” fragments consistently detectable in tandem mass spectra of analytes and standards. Molecular species of glycerophospholipids are typically quantified using carboxylate fragments of their fatty acid moieties produced by higher-energy collisional dissociation of their molecular anions. However, employing standards whose fatty acids moieties are similar, yet not identical, to the target lipids could severely compromise their quantification. We developed a generic and portable fragmentation model implemented in the open-source LipidXte software that harmonizes the abundances of carboxylate anion fragments originating from fatty acid moieties having different sn-1/2 positions at the glycerol backbone, length of the hydrocarbon chain, and number and location of double bonds. The postacquisition adjustment enables unbiased absolute (molar) quantification of glycerophospholipid species independent of instrument settings, collision energy, and employed internal standards.
Quantitative bottom-up shotgun lipidomics relies on molecular species-specific "signature" fragments consistently detectable in tandem mass spectra of analytes and standards. Molecular species of glycerophospholipids are typically quantified using carboxylate fragments of their fatty acid moieties produced by higher-energy collisional dissociation of their molecular anions. However, employing standards whose fatty acids moieties are similar, yet not identical, to the target lipids could severely compromise their quantification. We developed a generic and portable fragmentation model implemented in the open-source LipidXte software that harmonizes the abundances of carboxylate anion fragments originating from fatty acid moieties having different sn-1/2 positions at the glycerol backbone, length of the hydrocarbon chain, and number and location of double bonds. The postacquisition adjustment enables unbiased absolute (molar) quantification of glycerophospholipid species independent of instrument settings, collision energy, and employed internal standards.Quantitative bottom-up shotgun lipidomics relies on molecular species-specific "signature" fragments consistently detectable in tandem mass spectra of analytes and standards. Molecular species of glycerophospholipids are typically quantified using carboxylate fragments of their fatty acid moieties produced by higher-energy collisional dissociation of their molecular anions. However, employing standards whose fatty acids moieties are similar, yet not identical, to the target lipids could severely compromise their quantification. We developed a generic and portable fragmentation model implemented in the open-source LipidXte software that harmonizes the abundances of carboxylate anion fragments originating from fatty acid moieties having different sn-1/2 positions at the glycerol backbone, length of the hydrocarbon chain, and number and location of double bonds. The postacquisition adjustment enables unbiased absolute (molar) quantification of glycerophospholipid species independent of instrument settings, collision energy, and employed internal standards.
Author Wagner, Nicolai
Shevchenko, Andrej
Ackerman, Jacobo Miranda
Groessl, Michael
Nadler, André
Schuhmann, Kai
Moon, HongKee
Thomas, Henrik
Kellmann, Markus
Henry, Ian
AuthorAffiliation Department of Nephrology and Hypertension
Department for BioMedical Research
University of Bern
Thermo Fisher Scientific
AuthorAffiliation_xml – name: Thermo Fisher Scientific
– name: University of Bern
– name: Department for BioMedical Research
– name: Department of Nephrology and Hypertension
Author_xml – sequence: 1
  givenname: Kai
  surname: Schuhmann
  fullname: Schuhmann, Kai
– sequence: 2
  givenname: HongKee
  surname: Moon
  fullname: Moon, HongKee
– sequence: 3
  givenname: Henrik
  surname: Thomas
  fullname: Thomas, Henrik
– sequence: 4
  givenname: Jacobo Miranda
  surname: Ackerman
  fullname: Ackerman, Jacobo Miranda
– sequence: 5
  givenname: Michael
  surname: Groessl
  fullname: Groessl, Michael
  organization: University of Bern
– sequence: 6
  givenname: Nicolai
  surname: Wagner
  fullname: Wagner, Nicolai
– sequence: 7
  givenname: Markus
  surname: Kellmann
  fullname: Kellmann, Markus
  organization: Thermo Fisher Scientific
– sequence: 8
  givenname: Ian
  surname: Henry
  fullname: Henry, Ian
– sequence: 9
  givenname: André
  orcidid: 0000-0001-6329-3910
  surname: Nadler
  fullname: Nadler, André
– sequence: 10
  givenname: Andrej
  orcidid: 0000-0002-5079-1109
  surname: Shevchenko
  fullname: Shevchenko, Andrej
  email: shevchenko@mpi-cbg.de
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31441640$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v1DAQxS1URHcL3wChSL1wyTL-EyfhUGlbsVBpEULQszVOnF1Xib3YSSW-PV7tdkV7gJM1nt8bvZk3J2fOO0PIWwoLCox-wCYu0GHfbM2wqDVwVsILMqMFg1xWFTsjMwDgefqGczKP8R6AUqDyFTnnVAgqBczI8vuEbrQjjvbBZKuAm8G4feVd9tW3ps86H7JrP45-yO922Y-tHzeTy9Z2Z1s_2Ca-Ji877KN5c3wvyN3q08-bL_n62-fbm-U6x4KKMa-KmvPadNiVstZUtoYbpEJWXGoDtai56dIWlEEptEZBddXoDhnXkncaW35Brg5zd5MeTNskmwF7tQt2wPBbebTqacfZrdr4ByXLIh1FpAHvjwOC_zWZOKrBxsb0PTrjp6gYq2RNeSl5Qi-fofd-CunYe6ouBGOCQqLe_e3oZOXxugkQB6AJPsZguhNCQe1DVClE9RiiOoaYZB-fyRp7iCTtZfv_ieEg3ndPrv8p-QN1Ibej
CitedBy_id crossref_primary_10_1016_j_jcoa_2022_100066
crossref_primary_10_1016_j_jlr_2021_100138
crossref_primary_10_1021_acs_analchem_0c04698
crossref_primary_10_1016_j_jlr_2021_100022
crossref_primary_10_3389_fcell_2022_864716
crossref_primary_10_1016_j_aca_2025_343680
crossref_primary_10_3390_cells11101680
crossref_primary_10_1021_acs_analchem_3c02445
crossref_primary_10_3389_fimmu_2022_897873
crossref_primary_10_1007_s00216_021_03364_x
crossref_primary_10_1007_s11306_020_01657_3
crossref_primary_10_1038_s41467_020_15960_z
crossref_primary_10_1016_j_jlr_2024_100621
crossref_primary_10_1021_acs_jproteome_4c00688
crossref_primary_10_1007_s00216_022_04173_6
crossref_primary_10_1021_acs_analchem_1c03743
crossref_primary_10_1016_j_jlr_2022_100218
crossref_primary_10_1016_j_pharmthera_2022_108258
Cites_doi 10.1016/j.plipres.2015.12.002
10.1002/pmic.201100578
10.1021/ac102505f
10.1194/jlr.S087163
10.1002/0471250953.bi1412s43
10.1016/j.aca.2019.01.043
10.1016/j.jchromb.2009.02.033
10.1073/pnas.0811700106
10.1002/jms.2031
10.1039/C5AN00838G
10.1038/msb.2012.29
10.1002/mas.21492
10.1021/acs.analchem.7b04836
10.1194/jlr.M033506
10.1194/jlr.D300020-JLR200
10.1021/ac051605m
10.1021/acs.analchem.6b03353
10.1016/S1044-0305(00)00172-0
10.1021/jacs.7b06416
10.1186/gb-2011-12-1-r8
10.1194/jlr.M079012
10.1021/ac015655c
10.1021/ac2006119
10.1021/acs.analchem.7b00794
10.1194/jlr.M046995
10.1038/s41467-018-07963-8
10.1021/acs.analchem.7b04007
10.1038/srep27710
10.1016/j.trac.2018.10.013
10.1016/j.tibs.2016.08.010
10.1021/ac060545x
10.1016/j.trac.2019.03.031
ContentType Journal Article
Copyright Copyright American Chemical Society Sep 17, 2019
Copyright © 2019 American Chemical Society 2019 American Chemical Society
Copyright_xml – notice: Copyright American Chemical Society Sep 17, 2019
– notice: Copyright © 2019 American Chemical Society 2019 American Chemical Society
DBID AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1021/acs.analchem.9b03270
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-6882
EndPage 12093
ExternalDocumentID PMC6751524
31441640
10_1021_acs_analchem_9b03270
b028392216
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
1AW
23M
53G
53T
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABOCM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACNCT
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
D0L
DZ
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
P2P
PQEST
PQQKQ
ROL
RXW
TAE
TN5
UHB
UI2
UKR
VF5
VG9
VQA
W1F
WH7
X
X6Y
XFK
YZZ
---
-DZ
-~X
.DC
4.4
6J9
AAHBH
AAYXX
ABBLG
ABHFT
ABHMW
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ACKOT
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
KZ1
LMP
XSW
ZCA
~02
NPM
YIN
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
ID FETCH-LOGICAL-a514t-859339efaf769b16de3ea146836be09493ef9b012074bba41b8cbfa23b63fbad3
IEDL.DBID ACS
ISSN 0003-2700
1520-6882
IngestDate Thu Aug 21 14:04:14 EDT 2025
Fri Jul 11 01:51:36 EDT 2025
Mon Jun 30 08:40:45 EDT 2025
Wed Feb 19 02:29:46 EST 2025
Thu Apr 24 23:08:05 EDT 2025
Tue Jul 01 04:15:20 EDT 2025
Thu Aug 27 13:41:57 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html
This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a514t-859339efaf769b16de3ea146836be09493ef9b012074bba41b8cbfa23b63fbad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5079-1109
0000-0001-6329-3910
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6751524
PMID 31441640
PQID 2295422410
PQPubID 45400
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6751524
proquest_miscellaneous_2286913763
proquest_journals_2295422410
pubmed_primary_31441640
crossref_primary_10_1021_acs_analchem_9b03270
crossref_citationtrail_10_1021_acs_analchem_9b03270
acs_journals_10_1021_acs_analchem_9b03270
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-17
PublicationDateYYYYMMDD 2019-09-17
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-17
  day: 17
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Analytical chemistry (Washington)
PublicationTitleAlternate Anal. Chem
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref5/cit5
  doi: 10.1016/j.plipres.2015.12.002
– ident: ref25/cit25
  doi: 10.1002/pmic.201100578
– ident: ref12/cit12
  doi: 10.1021/ac102505f
– ident: ref20/cit20
  doi: 10.1194/jlr.S087163
– ident: ref24/cit24
  doi: 10.1002/0471250953.bi1412s43
– ident: ref4/cit4
  doi: 10.1016/j.aca.2019.01.043
– ident: ref18/cit18
  doi: 10.1016/j.jchromb.2009.02.033
– ident: ref9/cit9
  doi: 10.1073/pnas.0811700106
– ident: ref10/cit10
  doi: 10.1002/jms.2031
– ident: ref22/cit22
  doi: 10.1039/C5AN00838G
– ident: ref8/cit8
  doi: 10.1038/msb.2012.29
– ident: ref2/cit2
  doi: 10.1002/mas.21492
– ident: ref6/cit6
  doi: 10.1021/acs.analchem.7b04836
– ident: ref21/cit21
  doi: 10.1194/jlr.M033506
– ident: ref26/cit26
  doi: 10.1194/jlr.D300020-JLR200
– ident: ref11/cit11
  doi: 10.1021/ac051605m
– ident: ref30/cit30
  doi: 10.1021/acs.analchem.6b03353
– ident: ref17/cit17
  doi: 10.1016/S1044-0305(00)00172-0
– ident: ref31/cit31
  doi: 10.1021/jacs.7b06416
– ident: ref14/cit14
  doi: 10.1186/gb-2011-12-1-r8
– ident: ref19/cit19
  doi: 10.1194/jlr.M079012
– ident: ref15/cit15
  doi: 10.1021/ac015655c
– ident: ref16/cit16
  doi: 10.1021/ac2006119
– ident: ref23/cit23
  doi: 10.1021/acs.analchem.7b00794
– ident: ref27/cit27
  doi: 10.1194/jlr.M046995
– ident: ref29/cit29
  doi: 10.1038/s41467-018-07963-8
– ident: ref28/cit28
  doi: 10.1021/acs.analchem.7b04007
– ident: ref7/cit7
  doi: 10.1038/srep27710
– ident: ref1/cit1
  doi: 10.1016/j.trac.2018.10.013
– ident: ref3/cit3
  doi: 10.1016/j.tibs.2016.08.010
– ident: ref13/cit13
  doi: 10.1021/ac060545x
– ident: ref32/cit32
  doi: 10.1016/j.trac.2019.03.031
SSID ssj0011016
Score 2.4232595
Snippet Quantitative bottom-up shotgun lipidomics relies on molecular species-specific “signature” fragments consistently detectable in tandem mass spectra of analytes...
Quantitative bottom-up shotgun lipidomics relies on molecular species-specific "signature" fragments consistently detectable in tandem mass spectra of analytes...
Quantitative bottom-up shotgun lipidomics relies on molecular species-specific “signature” fragments consistently detectable in tandem mass spectra of analytes...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12085
SubjectTerms Analytical chemistry
Anions
Chemistry
Energy of dissociation
Fatty acids
Fragmentation
Fragments
Glycerol
Ions
Lipids
Mass spectra
Molecular chains
Shotguns
Source code
Species
Title Quantitative Fragmentation Model for Bottom-Up Shotgun Lipidomics
URI http://dx.doi.org/10.1021/acs.analchem.9b03270
https://www.ncbi.nlm.nih.gov/pubmed/31441640
https://www.proquest.com/docview/2295422410
https://www.proquest.com/docview/2286913763
https://pubmed.ncbi.nlm.nih.gov/PMC6751524
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI4QHIAD78d4qUhcOHSsSZY2R5hACAkQgkncqrhNAAEdYu2FX4_dtYWBEHBtkjZxnORzHX9mbA-sAtcNtR9pcL6UNvG15coXIgXecR0Olv5Dnl-o0748u-3efhiKXz34PDgwybBtUKg4hue2ho7gIZroU1zhUUNQqHfdeA3IEq0z5JFDtQ6V--EtdCAlw_ED6RvK_HpZ8tPpczLPLusYntGlk8d2kUM7eftO6fjHgS2wuQqIeocjzVlkEzZbYtO9Ov_bEpv9RFW4zA6vCpOVAWm4PXoId--eq6ilzKN8ak8eol_vaJDnuOn2X7zr-0F-V2Qe5cZOKfJ5uML6J8c3vVO_Sr_gG0RRuU9MaEJbZ1yoNAQqtcIaitQSCixahVpYh90OOKIQACMDiBJwhgtQwoFJxSqbzAaZXWdeaLTsplFH6ZKPDoxyCFycjBKhExXJFttHacTV8hnGpWecBzE9rEUUVyJqMVHPV5xUPOaUTuPpl1Z-0-plxOPxS_2tWhU-ukWpzyVhHizebYpxWsjJYjI7KKhOpHRA23aLrY00p_mgIOtVSWwdjulUU4G4vsdLsof7kvMb7TpEWnLjH4LaZDOI7soLcUG4xSbz18JuI4LKYadcNu9XRxkU
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9RAEJ8QfEAeVFDwFKUmvvjQ89rdbruP50VyIJAYOMNbs9PuAgF6xLYv_vXO9NrCYQzhdb-6O_v1m87ObwA-o1Xoolj7iUbnS2kzX9tQ-ULkGI7cKETL_yGPjtV0Jg_OorMViDpfGOpESS2VjRH_jl0g-MpphmRLQ7kZahyJMCZN_VmkpOKIDePJSW88YIW0C5THdtXOY-4_rfC9lJXL99I_YPPhm8l7l9DeS_jVd795e3I1rCscZn8eMDs-eXyv4EULS73xYh1twIotNmFt0kWD24T1e8SFr2H8szZF455Gh6VH4Pf8pvVhKjyOrnbtERb2vs2rio7g2a13cjGvzuvC40jZOftBl29gtvf9dDL122AMviFMVfnMiya0dcbFSmOgciusYb8todCSjqiFddTtICRMgmhkgEmGzoQClXBocrEFq8W8sG_Bi42WUZ6MlG7Y6dAoRzDGySQTOlOJHMAXkkbabqYybezkYZByYieitBXRAEQ3bWnWsppzcI3rR2r5fa3bBavHI-V3uhVx1y0OhC4ZAVH2pz6bpoVNLqaw85rLJEoHfIgPYHuxgPoPCtZllaTa8dLS6gsw8_dyTnF50TCAk5ZHuEu-e4KgdmFtenp0mB7uH_94D88J9zVP5YJ4B1ar37X9QNiqwo_NTvoL6p0hdg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5NQxrsgbEBo2xAkHjhIaWJXSd-7ArV-DWBRqWJl8iX2BtiSyuSvPDX7y5NsnZomsZrbKf2xT--6_m-D-ANWoVuGGk_1uh8KW3qaxsqX4gMw4EbhGj5f8ivR-pwKj-dDE-WpL6oEwW9qaiD-Lyq55lrGAaCd_zckH1pOBd9jQMRRuSt3yNMErBqw2h83AUQ2CltxfI4ttpmzd3wFj6b0mL1bPoHcF6_N7l0EE224Gc3hPr-ye9-VWI__XuN3fG_xvgIHjbw1Bst5tM2rNl8B-6PW1W4HdhcIjB8DKPvlcnrNDXaND0CwacXTS5T7rHK2rlHmNg7mJUlbcXTuXd8NitPq9xjxeyM86GLJzCdfPgxPvQbUQbfELYqfeZHE9o64yKlMVCZFdZw_pZQaMlX1MI66nYQEjZBNDLAOEVnQoFKODSZeArr-Sy3z8CLjJbDLB4oXbPUoVGO4IyTcSp0qmLZg7dkjaRZVEVSx8vDIOGHrYmSxkQ9EO2nS9KG3ZxFNs5vaeV3reYLdo9b6u-3s-KqWyyILhkJUfHrrpg-C4deTG5nFdeJlQ54M-_B7mISdT8o2KdVklpHK9Orq8AM4Ksl-a-zmgmcvD3CX_L5HQz1Cja-vZ8kXz4efd6DBwT_6htzQbQP6-Wfyr4giFXiy3oxXQIBwiPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+Fragmentation+Model+for+Bottom-Up+Shotgun+Lipidomics&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Schuhmann%2C+Kai&rft.au=Moon%2C+HongKee&rft.au=Thomas%2C+Henrik&rft.au=Ackerman%2C+Jacobo+Miranda&rft.date=2019-09-17&rft.pub=American+Chemical+Society&rft.issn=0003-2700&rft.eissn=1520-6882&rft.volume=91&rft.issue=18&rft.spage=12085&rft_id=info:doi/10.1021%2Facs.analchem.9b03270&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon