Quantitative Fragmentation Model for Bottom-Up Shotgun Lipidomics
Quantitative bottom-up shotgun lipidomics relies on molecular species-specific “signature” fragments consistently detectable in tandem mass spectra of analytes and standards. Molecular species of glycerophospholipids are typically quantified using carboxylate fragments of their fatty acid moieties p...
Saved in:
Published in | Analytical chemistry (Washington) Vol. 91; no. 18; pp. 12085 - 12093 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
17.09.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0003-2700 1520-6882 1520-6882 |
DOI | 10.1021/acs.analchem.9b03270 |
Cover
Abstract | Quantitative bottom-up shotgun lipidomics relies on molecular species-specific “signature” fragments consistently detectable in tandem mass spectra of analytes and standards. Molecular species of glycerophospholipids are typically quantified using carboxylate fragments of their fatty acid moieties produced by higher-energy collisional dissociation of their molecular anions. However, employing standards whose fatty acids moieties are similar, yet not identical, to the target lipids could severely compromise their quantification. We developed a generic and portable fragmentation model implemented in the open-source LipidXte software that harmonizes the abundances of carboxylate anion fragments originating from fatty acid moieties having different sn-1/2 positions at the glycerol backbone, length of the hydrocarbon chain, and number and location of double bonds. The postacquisition adjustment enables unbiased absolute (molar) quantification of glycerophospholipid species independent of instrument settings, collision energy, and employed internal standards. |
---|---|
AbstractList | Quantitative bottom-up shotgun lipidomics relies on molecular species-specific “signature” fragments consistently detectable in tandem mass spectra of analytes and standards. Molecular species of glycerophospholipids are typically quantified using carboxylate fragments of their fatty acid moieties produced by higher-energy collisional dissociation of their molecular anions. However, employing standards whose fatty acids moieties are similar, yet not identical, to the target lipids could severely compromise their quantification. We developed a generic and portable fragmentation model implemented in the open-source LipidXte software that harmonizes the abundances of carboxylate anion fragments originating from fatty acid moieties having different sn-1/2 positions at the glycerol backbone, length of the hydrocarbon chain, and number and location of double bonds. The postacquisition adjustment enables unbiased absolute (molar) quantification of glycerophospholipid species independent of instrument settings, collision energy, and employed internal standards. Quantitative bottom-up shotgun lipidomics relies on molecular species-specific “signature” fragments consistently detectable in tandem mass spectra of analytes and standards. Molecular species of glycerophospholipids are typically quantified using carboxylate fragments of their fatty acid moieties produced by higher-energy collisional dissociation of their molecular anions. However, employing standards whose fatty acids moieties are similar, yet not identical, to the target lipids could severely compromise their quantification. We developed a generic and portable fragmentation model implemented in the open-source LipidXte software that harmonizes the abundances of carboxylate anion fragments originating from fatty acid moieties having different sn-1/2 positions at the glycerol backbone, length of the hydrocarbon chain, and number and location of double bonds. The postacquisition adjustment enables unbiased absolute (molar) quantification of glycerophospholipid species independent of instrument settings, collision energy, and employed internal standards. Quantitative bottom-up shotgun lipidomics relies on molecular species-specific "signature" fragments consistently detectable in tandem mass spectra of analytes and standards. Molecular species of glycerophospholipids are typically quantified using carboxylate fragments of their fatty acid moieties produced by higher-energy collisional dissociation of their molecular anions. However, employing standards whose fatty acids moieties are similar, yet not identical, to the target lipids could severely compromise their quantification. We developed a generic and portable fragmentation model implemented in the open-source LipidXte software that harmonizes the abundances of carboxylate anion fragments originating from fatty acid moieties having different sn-1/2 positions at the glycerol backbone, length of the hydrocarbon chain, and number and location of double bonds. The postacquisition adjustment enables unbiased absolute (molar) quantification of glycerophospholipid species independent of instrument settings, collision energy, and employed internal standards.Quantitative bottom-up shotgun lipidomics relies on molecular species-specific "signature" fragments consistently detectable in tandem mass spectra of analytes and standards. Molecular species of glycerophospholipids are typically quantified using carboxylate fragments of their fatty acid moieties produced by higher-energy collisional dissociation of their molecular anions. However, employing standards whose fatty acids moieties are similar, yet not identical, to the target lipids could severely compromise their quantification. We developed a generic and portable fragmentation model implemented in the open-source LipidXte software that harmonizes the abundances of carboxylate anion fragments originating from fatty acid moieties having different sn-1/2 positions at the glycerol backbone, length of the hydrocarbon chain, and number and location of double bonds. The postacquisition adjustment enables unbiased absolute (molar) quantification of glycerophospholipid species independent of instrument settings, collision energy, and employed internal standards. |
Author | Wagner, Nicolai Shevchenko, Andrej Ackerman, Jacobo Miranda Groessl, Michael Nadler, André Schuhmann, Kai Moon, HongKee Thomas, Henrik Kellmann, Markus Henry, Ian |
AuthorAffiliation | Department of Nephrology and Hypertension Department for BioMedical Research University of Bern Thermo Fisher Scientific |
AuthorAffiliation_xml | – name: Thermo Fisher Scientific – name: University of Bern – name: Department for BioMedical Research – name: Department of Nephrology and Hypertension |
Author_xml | – sequence: 1 givenname: Kai surname: Schuhmann fullname: Schuhmann, Kai – sequence: 2 givenname: HongKee surname: Moon fullname: Moon, HongKee – sequence: 3 givenname: Henrik surname: Thomas fullname: Thomas, Henrik – sequence: 4 givenname: Jacobo Miranda surname: Ackerman fullname: Ackerman, Jacobo Miranda – sequence: 5 givenname: Michael surname: Groessl fullname: Groessl, Michael organization: University of Bern – sequence: 6 givenname: Nicolai surname: Wagner fullname: Wagner, Nicolai – sequence: 7 givenname: Markus surname: Kellmann fullname: Kellmann, Markus organization: Thermo Fisher Scientific – sequence: 8 givenname: Ian surname: Henry fullname: Henry, Ian – sequence: 9 givenname: André orcidid: 0000-0001-6329-3910 surname: Nadler fullname: Nadler, André – sequence: 10 givenname: Andrej orcidid: 0000-0002-5079-1109 surname: Shevchenko fullname: Shevchenko, Andrej email: shevchenko@mpi-cbg.de |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31441640$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9v1DAQxS1URHcL3wChSL1wyTL-EyfhUGlbsVBpEULQszVOnF1Xib3YSSW-PV7tdkV7gJM1nt8bvZk3J2fOO0PIWwoLCox-wCYu0GHfbM2wqDVwVsILMqMFg1xWFTsjMwDgefqGczKP8R6AUqDyFTnnVAgqBczI8vuEbrQjjvbBZKuAm8G4feVd9tW3ps86H7JrP45-yO922Y-tHzeTy9Z2Z1s_2Ca-Ji877KN5c3wvyN3q08-bL_n62-fbm-U6x4KKMa-KmvPadNiVstZUtoYbpEJWXGoDtai56dIWlEEptEZBddXoDhnXkncaW35Brg5zd5MeTNskmwF7tQt2wPBbebTqacfZrdr4ByXLIh1FpAHvjwOC_zWZOKrBxsb0PTrjp6gYq2RNeSl5Qi-fofd-CunYe6ouBGOCQqLe_e3oZOXxugkQB6AJPsZguhNCQe1DVClE9RiiOoaYZB-fyRp7iCTtZfv_ieEg3ndPrv8p-QN1Ibej |
CitedBy_id | crossref_primary_10_1016_j_jcoa_2022_100066 crossref_primary_10_1016_j_jlr_2021_100138 crossref_primary_10_1021_acs_analchem_0c04698 crossref_primary_10_1016_j_jlr_2021_100022 crossref_primary_10_3389_fcell_2022_864716 crossref_primary_10_1016_j_aca_2025_343680 crossref_primary_10_3390_cells11101680 crossref_primary_10_1021_acs_analchem_3c02445 crossref_primary_10_3389_fimmu_2022_897873 crossref_primary_10_1007_s00216_021_03364_x crossref_primary_10_1007_s11306_020_01657_3 crossref_primary_10_1038_s41467_020_15960_z crossref_primary_10_1016_j_jlr_2024_100621 crossref_primary_10_1021_acs_jproteome_4c00688 crossref_primary_10_1007_s00216_022_04173_6 crossref_primary_10_1021_acs_analchem_1c03743 crossref_primary_10_1016_j_jlr_2022_100218 crossref_primary_10_1016_j_pharmthera_2022_108258 |
Cites_doi | 10.1016/j.plipres.2015.12.002 10.1002/pmic.201100578 10.1021/ac102505f 10.1194/jlr.S087163 10.1002/0471250953.bi1412s43 10.1016/j.aca.2019.01.043 10.1016/j.jchromb.2009.02.033 10.1073/pnas.0811700106 10.1002/jms.2031 10.1039/C5AN00838G 10.1038/msb.2012.29 10.1002/mas.21492 10.1021/acs.analchem.7b04836 10.1194/jlr.M033506 10.1194/jlr.D300020-JLR200 10.1021/ac051605m 10.1021/acs.analchem.6b03353 10.1016/S1044-0305(00)00172-0 10.1021/jacs.7b06416 10.1186/gb-2011-12-1-r8 10.1194/jlr.M079012 10.1021/ac015655c 10.1021/ac2006119 10.1021/acs.analchem.7b00794 10.1194/jlr.M046995 10.1038/s41467-018-07963-8 10.1021/acs.analchem.7b04007 10.1038/srep27710 10.1016/j.trac.2018.10.013 10.1016/j.tibs.2016.08.010 10.1021/ac060545x 10.1016/j.trac.2019.03.031 |
ContentType | Journal Article |
Copyright | Copyright American Chemical Society Sep 17, 2019 Copyright © 2019 American Chemical Society 2019 American Chemical Society |
Copyright_xml | – notice: Copyright American Chemical Society Sep 17, 2019 – notice: Copyright © 2019 American Chemical Society 2019 American Chemical Society |
DBID | AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
DOI | 10.1021/acs.analchem.9b03270 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-6882 |
EndPage | 12093 |
ExternalDocumentID | PMC6751524 31441640 10_1021_acs_analchem_9b03270 b028392216 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 1AW 23M 53G 53T 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABOCM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACNCT ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 D0L DZ EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 P2P PQEST PQQKQ ROL RXW TAE TN5 UHB UI2 UKR VF5 VG9 VQA W1F WH7 X X6Y XFK YZZ --- -DZ -~X .DC 4.4 6J9 AAHBH AAYXX ABBLG ABHFT ABHMW ABJNI ABLBI ABQRX ACBEA ACGFO ACKOT ADHLV AGXLV AHGAQ CITATION CUPRZ GGK KZ1 LMP XSW ZCA ~02 NPM YIN 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
ID | FETCH-LOGICAL-a514t-859339efaf769b16de3ea146836be09493ef9b012074bba41b8cbfa23b63fbad3 |
IEDL.DBID | ACS |
ISSN | 0003-2700 1520-6882 |
IngestDate | Thu Aug 21 14:04:14 EDT 2025 Fri Jul 11 01:51:36 EDT 2025 Mon Jun 30 08:40:45 EDT 2025 Wed Feb 19 02:29:46 EST 2025 Thu Apr 24 23:08:05 EDT 2025 Tue Jul 01 04:15:20 EDT 2025 Thu Aug 27 13:41:57 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a514t-859339efaf769b16de3ea146836be09493ef9b012074bba41b8cbfa23b63fbad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5079-1109 0000-0001-6329-3910 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6751524 |
PMID | 31441640 |
PQID | 2295422410 |
PQPubID | 45400 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6751524 proquest_miscellaneous_2286913763 proquest_journals_2295422410 pubmed_primary_31441640 crossref_primary_10_1021_acs_analchem_9b03270 crossref_citationtrail_10_1021_acs_analchem_9b03270 acs_journals_10_1021_acs_analchem_9b03270 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-17 |
PublicationDateYYYYMMDD | 2019-09-17 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-17 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Analytical chemistry (Washington) |
PublicationTitleAlternate | Anal. Chem |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref5/cit5 doi: 10.1016/j.plipres.2015.12.002 – ident: ref25/cit25 doi: 10.1002/pmic.201100578 – ident: ref12/cit12 doi: 10.1021/ac102505f – ident: ref20/cit20 doi: 10.1194/jlr.S087163 – ident: ref24/cit24 doi: 10.1002/0471250953.bi1412s43 – ident: ref4/cit4 doi: 10.1016/j.aca.2019.01.043 – ident: ref18/cit18 doi: 10.1016/j.jchromb.2009.02.033 – ident: ref9/cit9 doi: 10.1073/pnas.0811700106 – ident: ref10/cit10 doi: 10.1002/jms.2031 – ident: ref22/cit22 doi: 10.1039/C5AN00838G – ident: ref8/cit8 doi: 10.1038/msb.2012.29 – ident: ref2/cit2 doi: 10.1002/mas.21492 – ident: ref6/cit6 doi: 10.1021/acs.analchem.7b04836 – ident: ref21/cit21 doi: 10.1194/jlr.M033506 – ident: ref26/cit26 doi: 10.1194/jlr.D300020-JLR200 – ident: ref11/cit11 doi: 10.1021/ac051605m – ident: ref30/cit30 doi: 10.1021/acs.analchem.6b03353 – ident: ref17/cit17 doi: 10.1016/S1044-0305(00)00172-0 – ident: ref31/cit31 doi: 10.1021/jacs.7b06416 – ident: ref14/cit14 doi: 10.1186/gb-2011-12-1-r8 – ident: ref19/cit19 doi: 10.1194/jlr.M079012 – ident: ref15/cit15 doi: 10.1021/ac015655c – ident: ref16/cit16 doi: 10.1021/ac2006119 – ident: ref23/cit23 doi: 10.1021/acs.analchem.7b00794 – ident: ref27/cit27 doi: 10.1194/jlr.M046995 – ident: ref29/cit29 doi: 10.1038/s41467-018-07963-8 – ident: ref28/cit28 doi: 10.1021/acs.analchem.7b04007 – ident: ref7/cit7 doi: 10.1038/srep27710 – ident: ref1/cit1 doi: 10.1016/j.trac.2018.10.013 – ident: ref3/cit3 doi: 10.1016/j.tibs.2016.08.010 – ident: ref13/cit13 doi: 10.1021/ac060545x – ident: ref32/cit32 doi: 10.1016/j.trac.2019.03.031 |
SSID | ssj0011016 |
Score | 2.4232595 |
Snippet | Quantitative bottom-up shotgun lipidomics relies on molecular species-specific “signature” fragments consistently detectable in tandem mass spectra of analytes... Quantitative bottom-up shotgun lipidomics relies on molecular species-specific "signature" fragments consistently detectable in tandem mass spectra of analytes... Quantitative bottom-up shotgun lipidomics relies on molecular species-specific “signature” fragments consistently detectable in tandem mass spectra of analytes... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12085 |
SubjectTerms | Analytical chemistry Anions Chemistry Energy of dissociation Fatty acids Fragmentation Fragments Glycerol Ions Lipids Mass spectra Molecular chains Shotguns Source code Species |
Title | Quantitative Fragmentation Model for Bottom-Up Shotgun Lipidomics |
URI | http://dx.doi.org/10.1021/acs.analchem.9b03270 https://www.ncbi.nlm.nih.gov/pubmed/31441640 https://www.proquest.com/docview/2295422410 https://www.proquest.com/docview/2286913763 https://pubmed.ncbi.nlm.nih.gov/PMC6751524 |
Volume | 91 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI4QHIAD78d4qUhcOHSsSZY2R5hACAkQgkncqrhNAAEdYu2FX4_dtYWBEHBtkjZxnORzHX9mbA-sAtcNtR9pcL6UNvG15coXIgXecR0Olv5Dnl-o0748u-3efhiKXz34PDgwybBtUKg4hue2ho7gIZroU1zhUUNQqHfdeA3IEq0z5JFDtQ6V--EtdCAlw_ED6RvK_HpZ8tPpczLPLusYntGlk8d2kUM7eftO6fjHgS2wuQqIeocjzVlkEzZbYtO9Ov_bEpv9RFW4zA6vCpOVAWm4PXoId--eq6ilzKN8ak8eol_vaJDnuOn2X7zr-0F-V2Qe5cZOKfJ5uML6J8c3vVO_Sr_gG0RRuU9MaEJbZ1yoNAQqtcIaitQSCixahVpYh90OOKIQACMDiBJwhgtQwoFJxSqbzAaZXWdeaLTsplFH6ZKPDoxyCFycjBKhExXJFttHacTV8hnGpWecBzE9rEUUVyJqMVHPV5xUPOaUTuPpl1Z-0-plxOPxS_2tWhU-ukWpzyVhHizebYpxWsjJYjI7KKhOpHRA23aLrY00p_mgIOtVSWwdjulUU4G4vsdLsof7kvMb7TpEWnLjH4LaZDOI7soLcUG4xSbz18JuI4LKYadcNu9XRxkU |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9RAEJ8QfEAeVFDwFKUmvvjQ89rdbruP50VyIJAYOMNbs9PuAgF6xLYv_vXO9NrCYQzhdb-6O_v1m87ObwA-o1Xoolj7iUbnS2kzX9tQ-ULkGI7cKETL_yGPjtV0Jg_OorMViDpfGOpESS2VjRH_jl0g-MpphmRLQ7kZahyJMCZN_VmkpOKIDePJSW88YIW0C5THdtXOY-4_rfC9lJXL99I_YPPhm8l7l9DeS_jVd795e3I1rCscZn8eMDs-eXyv4EULS73xYh1twIotNmFt0kWD24T1e8SFr2H8szZF455Gh6VH4Pf8pvVhKjyOrnbtERb2vs2rio7g2a13cjGvzuvC40jZOftBl29gtvf9dDL122AMviFMVfnMiya0dcbFSmOgciusYb8todCSjqiFddTtICRMgmhkgEmGzoQClXBocrEFq8W8sG_Bi42WUZ6MlG7Y6dAoRzDGySQTOlOJHMAXkkbabqYybezkYZByYieitBXRAEQ3bWnWsppzcI3rR2r5fa3bBavHI-V3uhVx1y0OhC4ZAVH2pz6bpoVNLqaw85rLJEoHfIgPYHuxgPoPCtZllaTa8dLS6gsw8_dyTnF50TCAk5ZHuEu-e4KgdmFtenp0mB7uH_94D88J9zVP5YJ4B1ar37X9QNiqwo_NTvoL6p0hdg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5NQxrsgbEBo2xAkHjhIaWJXSd-7ArV-DWBRqWJl8iX2BtiSyuSvPDX7y5NsnZomsZrbKf2xT--6_m-D-ANWoVuGGk_1uh8KW3qaxsqX4gMw4EbhGj5f8ivR-pwKj-dDE-WpL6oEwW9qaiD-Lyq55lrGAaCd_zckH1pOBd9jQMRRuSt3yNMErBqw2h83AUQ2CltxfI4ttpmzd3wFj6b0mL1bPoHcF6_N7l0EE224Gc3hPr-ye9-VWI__XuN3fG_xvgIHjbw1Bst5tM2rNl8B-6PW1W4HdhcIjB8DKPvlcnrNDXaND0CwacXTS5T7rHK2rlHmNg7mJUlbcXTuXd8NitPq9xjxeyM86GLJzCdfPgxPvQbUQbfELYqfeZHE9o64yKlMVCZFdZw_pZQaMlX1MI66nYQEjZBNDLAOEVnQoFKODSZeArr-Sy3z8CLjJbDLB4oXbPUoVGO4IyTcSp0qmLZg7dkjaRZVEVSx8vDIOGHrYmSxkQ9EO2nS9KG3ZxFNs5vaeV3reYLdo9b6u-3s-KqWyyILhkJUfHrrpg-C4deTG5nFdeJlQ54M-_B7mISdT8o2KdVklpHK9Orq8AM4Ksl-a-zmgmcvD3CX_L5HQz1Cja-vZ8kXz4efd6DBwT_6htzQbQP6-Wfyr4giFXiy3oxXQIBwiPw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+Fragmentation+Model+for+Bottom-Up+Shotgun+Lipidomics&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Schuhmann%2C+Kai&rft.au=Moon%2C+HongKee&rft.au=Thomas%2C+Henrik&rft.au=Ackerman%2C+Jacobo+Miranda&rft.date=2019-09-17&rft.pub=American+Chemical+Society&rft.issn=0003-2700&rft.eissn=1520-6882&rft.volume=91&rft.issue=18&rft.spage=12085&rft_id=info:doi/10.1021%2Facs.analchem.9b03270&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon |