Do Methodological Choices in Environmental Modeling Bias Rebound Effects? A Case Study on Electric Cars
Improvements in resource efficiency often underperform because of rebound effects. Calculations of the size of rebound effects are subject to various types of bias, among which methodological choices have received particular attention. Modellers have primarily focused on choices related to changes i...
Saved in:
Published in | Environmental science & technology Vol. 50; no. 20; pp. 11366 - 11376 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
18.10.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0013-936X 1520-5851 1520-5851 |
DOI | 10.1021/acs.est.6b01871 |
Cover
Abstract | Improvements in resource efficiency often underperform because of rebound effects. Calculations of the size of rebound effects are subject to various types of bias, among which methodological choices have received particular attention. Modellers have primarily focused on choices related to changes in demand, however, choices related to modeling the environmental burdens from such changes have received less attention. In this study, we analyze choices in the environmental assessment methods (life cycle assessment (LCA) and hybrid LCA) and environmental input–output databases (E3IOT, Exiobase and WIOD) used as a source of bias. The analysis is done for a case study on battery electric and hydrogen cars in Europe. The results describe moderate rebound effects for both technologies in the short term. Additionally, long-run scenarios are calculated by simulating the total cost of ownership, which describe notable rebound effect sizesfrom 26 to 59% and from 18 to 28%, respectively, depending on the methodological choiceswith favorable economic conditions. Relevant sources of bias are found to be related to incomplete background systems, technology assumptions and sectorial aggregation. These findings highlight the importance of the method setup and of sensitivity analyses of choices related to environmental modeling in rebound effect assessments. |
---|---|
AbstractList | Improvements in resource efficiency often underperform because of rebound effects. Calculations of the size of rebound effects are subject to various types of bias, among which methodological choices have received particular attention. Modellers have primarily focused on choices related to changes in demand, however, choices related to modeling the environmental burdens from such changes have received less attention. In this study, we analyze choices in the environmental assessment methods (life cycle assessment (LCA) and hybrid LCA) and environmental input-output databases (E3IOT, Exiobase and WIOD) used as a source of bias. The analysis is done for a case study on battery electric and hydrogen cars in Europe. The results describe moderate rebound effects for both technologies in the short term. Additionally, long-run scenarios are calculated by simulating the total cost of ownership, which describe notable rebound effect sizes -- from 26 to 59% and from 18 to 28%, respectively, depending on the methodological choices -- with favorable economic conditions. Relevant sources of bias are found to be related to incomplete background systems, technology assumptions and sectorial aggregation. These findings highlight the importance of the method setup and of sensitivity analyses of choices related to environmental modeling in rebound effect assessments. Improvements in resource efficiency often underperform because of rebound effects. Calculations of the size of rebound effects are subject to various types of bias, among which methodological choices have received particular attention. Modellers have primarily focused on choices related to changes in demand, however, choices related to modeling the environmental burdens from such changes have received less attention. In this study, we analyze choices in the environmental assessment methods (life cycle assessment (LCA) and hybrid LCA) and environmental input–output databases (E3IOT, Exiobase and WIOD) used as a source of bias. The analysis is done for a case study on battery electric and hydrogen cars in Europe. The results describe moderate rebound effects for both technologies in the short term. Additionally, long-run scenarios are calculated by simulating the total cost of ownership, which describe notable rebound effect sizesfrom 26 to 59% and from 18 to 28%, respectively, depending on the methodological choiceswith favorable economic conditions. Relevant sources of bias are found to be related to incomplete background systems, technology assumptions and sectorial aggregation. These findings highlight the importance of the method setup and of sensitivity analyses of choices related to environmental modeling in rebound effect assessments. Improvements in resource efficiency often underperform because of rebound effects. Calculations of the size of rebound effects are subject to various types of bias, among which methodological choices have received particular attention. Modellers have primarily focused on choices related to changes in demand, however, choices related to modeling the environmental burdens from such changes have received less attention. In this study, we analyze choices in the environmental assessment methods (life cycle assessment (LCA) and hybrid LCA) and environmental input-output databases (E3IOT, Exiobase and WIOD) used as a source of bias. The analysis is done for a case study on battery electric and hydrogen cars in Europe. The results describe moderate rebound effects for both technologies in the short term. Additionally, long-run scenarios are calculated by simulating the total cost of ownership, which describe notable rebound effect sizes-from 26 to 59% and from 18 to 28%, respectively, depending on the methodological choices-with favorable economic conditions. Relevant sources of bias are found to be related to incomplete background systems, technology assumptions and sectorial aggregation. These findings highlight the importance of the method setup and of sensitivity analyses of choices related to environmental modeling in rebound effect assessments.Improvements in resource efficiency often underperform because of rebound effects. Calculations of the size of rebound effects are subject to various types of bias, among which methodological choices have received particular attention. Modellers have primarily focused on choices related to changes in demand, however, choices related to modeling the environmental burdens from such changes have received less attention. In this study, we analyze choices in the environmental assessment methods (life cycle assessment (LCA) and hybrid LCA) and environmental input-output databases (E3IOT, Exiobase and WIOD) used as a source of bias. The analysis is done for a case study on battery electric and hydrogen cars in Europe. The results describe moderate rebound effects for both technologies in the short term. Additionally, long-run scenarios are calculated by simulating the total cost of ownership, which describe notable rebound effect sizes-from 26 to 59% and from 18 to 28%, respectively, depending on the methodological choices-with favorable economic conditions. Relevant sources of bias are found to be related to incomplete background systems, technology assumptions and sectorial aggregation. These findings highlight the importance of the method setup and of sensitivity analyses of choices related to environmental modeling in rebound effect assessments. |
Author | Font Vivanco, David Tukker, Arnold Kemp, René |
AuthorAffiliation | ICIS and UNU-MERIT Center for Industrial Ecology, School of Forestry and Environmental Studies Institute of Environmental Sciences (CML) Yale University Leiden University Maastricht University |
AuthorAffiliation_xml | – name: Institute of Environmental Sciences (CML) – name: Leiden University – name: ICIS and UNU-MERIT – name: Center for Industrial Ecology, School of Forestry and Environmental Studies – name: Yale University – name: Maastricht University |
Author_xml | – sequence: 1 givenname: David surname: Font Vivanco fullname: Font Vivanco, David email: david.fontvivanco@yale.edu, dfontv@gmail.com – sequence: 2 givenname: Arnold surname: Tukker fullname: Tukker, Arnold – sequence: 3 givenname: René surname: Kemp fullname: Kemp, René |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27626810$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkdtrFDEUh4NU7Lb67JsEfBFktifJJJk8SV3XC7QIXsC3IZtktimzSZtkhP73ZthVoeDlKXDO9x1yzu8EHYUYHEJPCSwJUHKmTV66XJZiA6ST5AFaEE6h4R0nR2gBQFijmPh2jE5yvgYAyqB7hI6pFFR0BBZo-ybiS1euoo1j3HqjR7y6it64jH3A6_Ddpxh2LpTauIzWjT5s8WuvM_7kNnEKFq-HwZmSX-FzvNLZ4c9lsnc4Vnms9eRNLaf8GD0c9Jjdk8N7ir6-XX9ZvW8uPr77sDq_aDQnrDQtJYqRtqMOuDWEbpRQSksr6iqcA2eCK9FqzQfNaUcktZpZ6QbXWuiglewUvdjPvUnxdqqn6Xc-GzeOOrg45Z7OR-gkE_BPlHRMUsWY4v-D8pYDSFrR5_fQ6zilUHeeKaq44sAq9exATZuds_1N8jud7vqfwVTgbA-YFHNObviFEOjn6PsafT-PP0RfDX7PML7o4mMoSfvxL97LvTc3fv_1D_QPoe--4g |
CODEN | ESTHAG |
CitedBy_id | crossref_primary_10_4000_11x9t crossref_primary_10_1016_j_apenergy_2021_117138 crossref_primary_10_1111_jiec_13295 crossref_primary_10_1021_acs_est_1c02052 crossref_primary_10_1016_j_clrc_2021_100032 crossref_primary_10_1016_j_atmosenv_2018_04_040 crossref_primary_10_1016_j_jclepro_2021_125996 crossref_primary_10_3390_su12051902 crossref_primary_10_1016_j_energy_2022_123570 crossref_primary_10_1111_jiec_13326 crossref_primary_10_1111_jiec_12825 crossref_primary_10_3390_su14063371 crossref_primary_10_1016_j_jclepro_2022_131136 crossref_primary_10_3390_su10062009 crossref_primary_10_1007_s11367_019_01687_7 crossref_primary_10_3389_fenrg_2018_00039 |
Cites_doi | 10.1515/1538-0653.1467 10.1016/S0301-4215(00)00032-X 10.1007/978-1-4020-5737-3 10.1016/j.ecolecon.2007.08.013 10.1016/S0140-9883(02)00007-5 10.1016/S0301-4215(00)00022-7 10.1162/10881980052541981 10.1016/0165-0572(82)90012-3 10.1080/09535314.2014.939949 10.1162/108819899569449 10.1007/s11367-009-0112-6 10.1016/S0301-4215(00)00018-5 10.1162/1088198054084653 10.1016/j.ecolecon.2007.10.020 10.1016/j.jclepro.2003.04.001 10.1021/es404166f 10.1016/j.ecolecon.2011.05.001 10.1016/j.jclepro.2015.04.019 10.1016/j.eneco.2015.08.026 10.1016/j.apenergy.2012.03.021 10.1016/j.energy.2003.10.013 10.1016/j.eneco.2008.01.001 10.1016/j.ecolecon.2014.02.020 10.1007/s11367-014-0802-6 10.1021/es902673m 10.5547/ISSN0195-6574-EJ-Vol1-No4-2 10.1057/9780230583108 10.1016/j.enpol.2013.02.002 10.2307/1926294 10.1016/S0921-8009(00)00214-7 10.1093/oso/9780195376647.001.0001 10.1016/j.ecolecon.2007.07.022 10.1162/jiec.2006.10.3.129 10.1016/0301-4215(90)90145-T 10.1016/j.eneco.2005.09.003 10.1016/j.energy.2013.06.018 10.1111/j.1530-9290.2012.00532.x 10.1162/108819802320971632 10.1080/09535310903208344 10.1007/s12053-009-9046-x 10.1017/CBO9780511626982 10.1080/09535310120026256 10.1016/j.enpol.2012.12.008 10.1021/es2007287 10.1162/1088198042442351 10.1111/jiec.12207 10.1007/BF02994047 10.1016/j.enpol.2011.03.058 10.1021/es0263745 10.1080/09535314.2014.935298 10.1021/es5038063 10.1007/978-94-015-9900-9 10.1016/S0301-4215(98)00012-3 10.1065/lca2006.12.297 10.1016/j.ecolecon.2012.12.003 10.1016/j.rser.2011.07.025 10.1016/j.enpol.2012.11.025 10.1016/S0195-9255(02)00104-X 10.1016/j.jclepro.2005.05.010 10.1016/j.enbuild.2013.02.056 10.1016/j.ecolecon.2012.12.002 10.1080/09535314.2012.761952 10.5547/ISSN0195-6574-EJ-Vol9-No2-10 10.1016/j.eneco.2009.07.010 10.1016/j.ecolecon.2014.07.003 10.1111/roie.12178 |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Chemical Society Copyright American Chemical Society Oct 18, 2016 |
Copyright_xml | – notice: Copyright © 2016 American Chemical Society – notice: Copyright American Chemical Society Oct 18, 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
DOI | 10.1021/acs.est.6b01871 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Biotechnology Research Abstracts AGRICOLA MEDLINE Environment Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1520-5851 |
EndPage | 11376 |
ExternalDocumentID | 4230048601 27626810 10_1021_acs_est_6b01871 c646149621 |
Genre | Research Support, Non-U.S. Gov't Journal Article Report Feature Case Study |
GeographicLocations | Europe ANE, Europe |
GeographicLocations_xml | – name: Europe – name: ANE, Europe |
GroupedDBID | - .K2 1AW 3R3 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 4.4 6TJ AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADUKH AGXLV AHGAQ CITATION CUPRZ GGK MS~ MW2 XSW ZCA CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a513t-421931482e05dc12b9699a7d60015505365964aa5fa528172da3d7efe4d080473 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Fri Jul 11 09:21:31 EDT 2025 Fri Jul 11 04:48:36 EDT 2025 Thu Jul 10 18:53:40 EDT 2025 Sun Aug 10 13:10:50 EDT 2025 Thu Apr 03 07:11:39 EDT 2025 Thu Apr 24 23:08:34 EDT 2025 Tue Jul 01 04:29:10 EDT 2025 Thu Aug 27 13:41:58 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a513t-421931482e05dc12b9699a7d60015505365964aa5fa528172da3d7efe4d080473 |
Notes | ObjectType-Case Study-3 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Report-2 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 27626810 |
PQID | 1832959503 |
PQPubID | 45412 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2000287360 proquest_miscellaneous_1837293395 proquest_miscellaneous_1835450072 proquest_journals_1832959503 pubmed_primary_27626810 crossref_primary_10_1021_acs_est_6b01871 crossref_citationtrail_10_1021_acs_est_6b01871 acs_journals_10_1021_acs_est_6b01871 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-10-18 |
PublicationDateYYYYMMDD | 2016-10-18 |
PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2016 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 Suh S. (ref21/cit21) 2009 ref45/cit45 ref3/cit3 ref27/cit27 ref81/cit81 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref8/cit8 ref31/cit31 ref85/cit85 ref2/cit2 ref77/cit77 ref34/cit34 ref71/cit71 ref37/cit37 Kratena K. (ref36/cit36) 2010 ref48/cit48 ref74/cit74 ref88/cit88 ref17/cit17 ref82/cit82 ref35/cit35 M&C (ref49/cit49) 2010 ref89/cit89 ref53/cit53 ref19/cit19 de Jong G. (ref59/cit59) 2001; 35 Briceno T. (ref26/cit26) 2004 Chitnis M. (ref23/cit23) 2012 ref42/cit42 ref46/cit46 Heijungs R. (ref64/cit64) 2002 Deaton A. (ref60/cit60) 1980; 70 ref13/cit13 Girod B. V. (ref32/cit32) 2008 ref61/cit61 ref75/cit75 ref67/cit67 ref24/cit24 ref38/cit38 ref90/cit90 ref50/cit50 ref78/cit78 ref83/cit83 ref65/cit65 ref79/cit79 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref76/cit76 ref86/cit86 Guinée J. B. (ref20/cit20) 2002 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 Herring H. (ref6/cit6) 2009 ref51/cit51 ref43/cit43 ref80/cit80 Sperling D. (ref18/cit18) 2009 ref28/cit28 ref40/cit40 ref68/cit68 Miller R. E. (ref73/cit73) 2009 Chitnis M. (ref10/cit10) 2012 Hendrickson C. (ref41/cit41) 2006 ref55/cit55 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref58/cit58 ref22/cit22 Freire-González J. (ref54/cit54) 2011; 223 ref87/cit87 ref4/cit4 ref30/cit30 Nakamura M. (ref33/cit33) 2004; 17 ref47/cit47 ref84/cit84 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref79/cit79 doi: 10.1515/1538-0653.1467 – ident: ref15/cit15 doi: 10.1016/S0301-4215(00)00032-X – volume-title: Handbook of Input-Output Economics in Industrial Ecology year: 2009 ident: ref21/cit21 doi: 10.1007/978-1-4020-5737-3 – ident: ref57/cit57 doi: 10.1016/j.ecolecon.2007.08.013 – ident: ref24/cit24 doi: 10.1016/S0140-9883(02)00007-5 – ident: ref56/cit56 doi: 10.1016/S0301-4215(00)00022-7 – ident: ref69/cit69 doi: 10.1162/10881980052541981 – ident: ref66/cit66 doi: 10.1016/0165-0572(82)90012-3 – ident: ref89/cit89 doi: 10.1080/09535314.2014.939949 – ident: ref65/cit65 doi: 10.1162/108819899569449 – ident: ref90/cit90 doi: 10.1007/s11367-009-0112-6 – ident: ref4/cit4 – ident: ref13/cit13 doi: 10.1016/S0301-4215(00)00018-5 – ident: ref28/cit28 doi: 10.1162/1088198054084653 – ident: ref37/cit37 doi: 10.1016/j.ecolecon.2007.10.020 – ident: ref22/cit22 doi: 10.1016/j.jclepro.2003.04.001 – ident: ref87/cit87 doi: 10.1021/es404166f – ident: ref61/cit61 – ident: ref58/cit58 – ident: ref38/cit38 doi: 10.1016/j.ecolecon.2011.05.001 – ident: ref47/cit47 doi: 10.1016/j.jclepro.2015.04.019 – ident: ref48/cit48 doi: 10.1016/j.eneco.2015.08.026 – volume: 70 start-page: 312 issue: 3 year: 1980 ident: ref60/cit60 publication-title: American Economic Review – ident: ref72/cit72 – ident: ref51/cit51 doi: 10.1016/j.apenergy.2012.03.021 – volume-title: Environmental Life Cycle Assessment of Goods and Services: An Input-Output Approach year: 2006 ident: ref41/cit41 – ident: ref27/cit27 doi: 10.1016/j.energy.2003.10.013 – ident: ref62/cit62 – ident: ref12/cit12 doi: 10.1016/j.eneco.2008.01.001 – ident: ref88/cit88 doi: 10.1016/j.ecolecon.2014.02.020 – ident: ref17/cit17 doi: 10.1007/s11367-014-0802-6 – ident: ref84/cit84 doi: 10.1021/es902673m – ident: ref1/cit1 doi: 10.5547/ISSN0195-6574-EJ-Vol1-No4-2 – ident: ref5/cit5 – volume-title: Energy Efficiency and Sustainable Consumption: The Rebound Effect year: 2009 ident: ref6/cit6 doi: 10.1057/9780230583108 – start-page: 01 year: 2012 ident: ref23/cit23 publication-title: Sustainable Lifestyles Research Group: Working Paper – ident: ref45/cit45 doi: 10.1016/j.enpol.2013.02.002 – ident: ref74/cit74 doi: 10.2307/1926294 – ident: ref3/cit3 doi: 10.1016/S0921-8009(00)00214-7 – ident: ref16/cit16 – volume-title: Two Billion Cars: Driving toward Sustainability year: 2009 ident: ref18/cit18 doi: 10.1093/oso/9780195376647.001.0001 – ident: ref34/cit34 doi: 10.1016/j.ecolecon.2007.07.022 – volume-title: The full impact of energy efficiency on household’s energy demand year: 2010 ident: ref36/cit36 – ident: ref80/cit80 doi: 10.1162/jiec.2006.10.3.129 – ident: ref2/cit2 doi: 10.1016/0301-4215(90)90145-T – ident: ref30/cit30 doi: 10.1016/j.eneco.2005.09.003 – ident: ref46/cit46 doi: 10.1016/j.energy.2013.06.018 – ident: ref50/cit50 doi: 10.1111/j.1530-9290.2012.00532.x – ident: ref29/cit29 doi: 10.1162/108819802320971632 – start-page: 2008 year: 2008 ident: ref32/cit32 publication-title: Environmental Impact of Swiss Household Consumption, And Estimated Income Rebound Effects – ident: ref53/cit53 – ident: ref75/cit75 doi: 10.1080/09535310903208344 – start-page: 2004 year: 2004 ident: ref26/cit26 publication-title: Using Life Cycle Approaches to Evaluate Sustainable Consumption Programs: Car-Sharing – ident: ref55/cit55 doi: 10.1007/s12053-009-9046-x – volume-title: Input-Output Analysis: Foundations and Extensions year: 2009 ident: ref73/cit73 doi: 10.1017/CBO9780511626982 – start-page: 2010 year: 2010 ident: ref49/cit49 publication-title: A Portfolio of Power-Trains for Europe: A Fact-Based Analysis – ident: ref67/cit67 doi: 10.1080/09535310120026256 – ident: ref44/cit44 doi: 10.1016/j.enpol.2012.12.008 – ident: ref85/cit85 doi: 10.1021/es2007287 – volume-title: Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards year: 2002 ident: ref20/cit20 – ident: ref68/cit68 doi: 10.1162/1088198042442351 – ident: ref71/cit71 doi: 10.1111/jiec.12207 – ident: ref86/cit86 doi: 10.1007/BF02994047 – volume: 223 start-page: 32 volume-title: Ecological Modelling - Can We Break the Addiction to Fossil Energy? Special Issue, 7th Biennial International Workshop Advances in Energy Studies, Barcelona, Spain, 19–21 October 2010 year: 2011 ident: ref54/cit54 – ident: ref11/cit11 doi: 10.1016/j.enpol.2011.03.058 – ident: ref35/cit35 – ident: ref70/cit70 doi: 10.1021/es0263745 – volume: 35 start-page: 137 issue: 2 year: 2001 ident: ref59/cit59 publication-title: Journal of Transport Economics and Policy – ident: ref82/cit82 doi: 10.1080/09535314.2014.935298 – ident: ref8/cit8 doi: 10.1021/es5038063 – volume: 17 start-page: 389 issue: 5 year: 2004 ident: ref33/cit33 publication-title: Environmental Science – volume-title: The Computational Structure of Life Cycle Assessment year: 2002 ident: ref64/cit64 doi: 10.1007/978-94-015-9900-9 – ident: ref25/cit25 doi: 10.1016/S0301-4215(98)00012-3 – ident: ref63/cit63 – ident: ref31/cit31 doi: 10.1065/lca2006.12.297 – volume-title: The Rebound Effect: To What Extent Does It Vary with Income? year: 2012 ident: ref10/cit10 – ident: ref40/cit40 doi: 10.1016/j.ecolecon.2012.12.003 – ident: ref43/cit43 doi: 10.1016/j.rser.2011.07.025 – ident: ref7/cit7 doi: 10.1016/j.enpol.2012.11.025 – ident: ref39/cit39 doi: 10.1016/S0195-9255(02)00104-X – ident: ref19/cit19 doi: 10.1016/j.jclepro.2005.05.010 – ident: ref42/cit42 doi: 10.1016/j.enbuild.2013.02.056 – ident: ref83/cit83 doi: 10.1016/j.ecolecon.2012.12.002 – ident: ref76/cit76 – ident: ref52/cit52 – ident: ref78/cit78 doi: 10.1080/09535314.2012.761952 – ident: ref14/cit14 doi: 10.5547/ISSN0195-6574-EJ-Vol9-No2-10 – ident: ref81/cit81 doi: 10.1016/j.eneco.2009.07.010 – ident: ref9/cit9 doi: 10.1016/j.ecolecon.2014.07.003 – ident: ref77/cit77 doi: 10.1111/roie.12178 |
SSID | ssj0002308 |
Score | 2.3118443 |
Snippet | Improvements in resource efficiency often underperform because of rebound effects. Calculations of the size of rebound effects are subject to various types of... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11366 |
SubjectTerms | Automobiles batteries Bias Case studies Economic conditions Electric vehicles Electricity Environment Environmental assessment Environmental impact Environmental modeling environmental models Europe hydrogen Life cycle analysis life cycle assessment Life cycles ownership Resource efficiency Risk assessment Sensitivity analysis Technology |
Title | Do Methodological Choices in Environmental Modeling Bias Rebound Effects? A Case Study on Electric Cars |
URI | http://dx.doi.org/10.1021/acs.est.6b01871 https://www.ncbi.nlm.nih.gov/pubmed/27626810 https://www.proquest.com/docview/1832959503 https://www.proquest.com/docview/1835450072 https://www.proquest.com/docview/1837293395 https://www.proquest.com/docview/2000287360 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1520-5851 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002308 issn: 0013-936X databaseCode: ACS dateStart: 19670101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEF5VcGkPLdBSUihapBx6sZt9OntCIYBQpXBpkXKzNvtoo1Y2ipND--uZsR0DRSm9rmes0ezOax_fENKPPojImUusVLhbFU1iIgsJ95oPnGPKMXycPLnWVzfyy1RN78Gi_z7B5-yzdVUKDjLVM-wfB4XONtdDhnXWaPy1c7qQSQ_XzQqM0NMOxefJDzAMuepxGNqQW9Yx5vJNczurqqEJ8WrJz3S1nKXuz1PgxufF3yGv20yTjpqlsUtehGKPvHqAP7hH9i_un7kBaWvn1Vvy_bykk7q39No30vGPEn0KnRf0MRd2U8M37fRsbisK04WNmmiDilyd0hEdQ6CkeF_xNy2Bue67M3cwvKjekZvLi2_jq6RtyZBYxcQykeDgBEKHhoHyjvGZ0cbYzOu21hFaGS2tVdEqDrPEvRU-CzFID6mpzMQ-2SrKIhwQCplYjJnNWIhD6WUwXHtjJechmhAGokf6oLu8Nakqr0_LOctxEBSatwrtkXQ9kblrYc2xu8avzQyfOobbBtFjM-nRemU8kAN8oFFGoYQn3WcwSjxpsUUoVzUNZKaIyv5PGihshDBqMw2vdz8zoQc98r5ZmZ3MHMIYgsl9-D89HZKXkOtpDLtseES2lotV-Aj51HJ2XFvSHTOhGRU |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELaqcgAOPAotgQJG6oHLhvVz4xMqoVWAphKilXJbOX5ABNpF3eQAv54ZZ3fbgoLg6h1bs2N75vPrG0IOog8icuYyKxXuVkWTmchCxr3muXNMOYaPk6enenIu38_UbIvk3VsYUKKBlpp0iH_JLsBeYRn4yaGeYxo5WO_cSDwoCIbGn3rfC4B61OUsMELPejKfPxrAaOSa69FoA8RMoeb4LvnYK5lumHwdrpbzofv5G3_j__zFPXKnxZ30cD1Q7pOtUO2Q21fYCHfI7tHlozcQbWd984B8flvTaco03XlKOv5So4ehi4per4W51fCFO32zsA2FzsO0TXTNkdy8pod0DGGT4u3FH7SGyikLz8JB8UXzkJwfH52NJ1mboCGziollJsHdCSQSDbnyjvG50cbYwut25SO0Mlpaq6JVfARQyVvhixCD9ABUZSF2yXZVV-ERoYDLYixswUIcSS-D4dobKzkP0YSQiwE5ANuV7QRrynR2zlmJhWDQsjXogAy7_ixdS3KOuTa-ba7wsq_wfc3vsVl0vxsgV_QAj2iUUajhi_4zTFE8d7FVqFdJBnAqcrT_VQaWOUIYtVmGp73QQuh8QPbWA7TXmUNQQ2q5x_9mp-fk5uRselKevDv98ITcAhSoMSCz0T7ZXl6swlNAWsv5szS5fgE48iGA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELZQkRAcKBRaUgoYqQcuG-LnxidU0kbl0QoJIuW2cvyACLRbdZMD_HpmHGdpQUFw9Y5Xs17PzOfHfEPIYfRBRM5cYaXC3apoChNZKLjXfOAcU45hcvLZuT6dyLdTNc1JYZgLA0q08KY2HeKjVV_4mBkG2EtsB1_Z1zMsJQdrnpsKCeAQEI0-dv4XQPVwXbfACD3tCH3-eAFGJNdej0gbYGYKN-NtMukUTbdMvvaXi1nf_fiNw_F_v-QeuZvxJz1aTZj75Eaod8idK6yEO2T35FfyG4hm628fkM_HDT1LFafXHpOOvjToaei8ptd7YY01zHSnr-e2pfATsXwTXXElt6_oER1B-KR4i_E7baBzqsYzd9B82T4kk_HJp9FpkQs1FFYxsSgkuD2BhKJhoLxjfGa0Mbb0Oq-AhFZGS2tVtIoPATJ5K3wZYpAeAKssxS7Zqps6PCIU8FmMpS1ZiEPpZTBce2Ml5yGaEAaiRw5h7KpsaG2VztA5q7ARBrTKA9oj_fU_rVwmO8eaG982d3jRdbhY8XxsFj1YT5IreoBnNMoo1PB59xhMFc9fbB2aZZIBvIpc7X-VgeWOEEZtluFpT7QUetAje6tJ2unMIbghxdz-v43TM3Lrw_G4ev_m_N1jchvAoMa4zIYHZGtxuQxPAHAtZk-Tff0Ed7Yj-g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Do+Methodological+Choices+in+Environmental+Modeling+Bias+Rebound+Effects%3F+A+Case+Study+on+Electric+Cars&rft.jtitle=Environmental+science+%26+technology&rft.au=Vivanco%2C+David+Font&rft.au=Tukker%2C+Arnold&rft.au=Kemp%2C+Ren%C3%A9&rft.date=2016-10-18&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.volume=50&rft.issue=20&rft.spage=11366&rft_id=info:doi/10.1021%2Facs.est.6b01871&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4230048601 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |