Do Methodological Choices in Environmental Modeling Bias Rebound Effects? A Case Study on Electric Cars

Improvements in resource efficiency often underperform because of rebound effects. Calculations of the size of rebound effects are subject to various types of bias, among which methodological choices have received particular attention. Modellers have primarily focused on choices related to changes i...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 50; no. 20; pp. 11366 - 11376
Main Authors Font Vivanco, David, Tukker, Arnold, Kemp, René
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 18.10.2016
Subjects
Online AccessGet full text
ISSN0013-936X
1520-5851
1520-5851
DOI10.1021/acs.est.6b01871

Cover

Abstract Improvements in resource efficiency often underperform because of rebound effects. Calculations of the size of rebound effects are subject to various types of bias, among which methodological choices have received particular attention. Modellers have primarily focused on choices related to changes in demand, however, choices related to modeling the environmental burdens from such changes have received less attention. In this study, we analyze choices in the environmental assessment methods (life cycle assessment (LCA) and hybrid LCA) and environmental input–output databases (E3IOT, Exiobase and WIOD) used as a source of bias. The analysis is done for a case study on battery electric and hydrogen cars in Europe. The results describe moderate rebound effects for both technologies in the short term. Additionally, long-run scenarios are calculated by simulating the total cost of ownership, which describe notable rebound effect sizesfrom 26 to 59% and from 18 to 28%, respectively, depending on the methodological choiceswith favorable economic conditions. Relevant sources of bias are found to be related to incomplete background systems, technology assumptions and sectorial aggregation. These findings highlight the importance of the method setup and of sensitivity analyses of choices related to environmental modeling in rebound effect assessments.
AbstractList Improvements in resource efficiency often underperform because of rebound effects. Calculations of the size of rebound effects are subject to various types of bias, among which methodological choices have received particular attention. Modellers have primarily focused on choices related to changes in demand, however, choices related to modeling the environmental burdens from such changes have received less attention. In this study, we analyze choices in the environmental assessment methods (life cycle assessment (LCA) and hybrid LCA) and environmental input-output databases (E3IOT, Exiobase and WIOD) used as a source of bias. The analysis is done for a case study on battery electric and hydrogen cars in Europe. The results describe moderate rebound effects for both technologies in the short term. Additionally, long-run scenarios are calculated by simulating the total cost of ownership, which describe notable rebound effect sizes -- from 26 to 59% and from 18 to 28%, respectively, depending on the methodological choices -- with favorable economic conditions. Relevant sources of bias are found to be related to incomplete background systems, technology assumptions and sectorial aggregation. These findings highlight the importance of the method setup and of sensitivity analyses of choices related to environmental modeling in rebound effect assessments.
Improvements in resource efficiency often underperform because of rebound effects. Calculations of the size of rebound effects are subject to various types of bias, among which methodological choices have received particular attention. Modellers have primarily focused on choices related to changes in demand, however, choices related to modeling the environmental burdens from such changes have received less attention. In this study, we analyze choices in the environmental assessment methods (life cycle assessment (LCA) and hybrid LCA) and environmental input–output databases (E3IOT, Exiobase and WIOD) used as a source of bias. The analysis is done for a case study on battery electric and hydrogen cars in Europe. The results describe moderate rebound effects for both technologies in the short term. Additionally, long-run scenarios are calculated by simulating the total cost of ownership, which describe notable rebound effect sizesfrom 26 to 59% and from 18 to 28%, respectively, depending on the methodological choiceswith favorable economic conditions. Relevant sources of bias are found to be related to incomplete background systems, technology assumptions and sectorial aggregation. These findings highlight the importance of the method setup and of sensitivity analyses of choices related to environmental modeling in rebound effect assessments.
Improvements in resource efficiency often underperform because of rebound effects. Calculations of the size of rebound effects are subject to various types of bias, among which methodological choices have received particular attention. Modellers have primarily focused on choices related to changes in demand, however, choices related to modeling the environmental burdens from such changes have received less attention. In this study, we analyze choices in the environmental assessment methods (life cycle assessment (LCA) and hybrid LCA) and environmental input-output databases (E3IOT, Exiobase and WIOD) used as a source of bias. The analysis is done for a case study on battery electric and hydrogen cars in Europe. The results describe moderate rebound effects for both technologies in the short term. Additionally, long-run scenarios are calculated by simulating the total cost of ownership, which describe notable rebound effect sizes-from 26 to 59% and from 18 to 28%, respectively, depending on the methodological choices-with favorable economic conditions. Relevant sources of bias are found to be related to incomplete background systems, technology assumptions and sectorial aggregation. These findings highlight the importance of the method setup and of sensitivity analyses of choices related to environmental modeling in rebound effect assessments.Improvements in resource efficiency often underperform because of rebound effects. Calculations of the size of rebound effects are subject to various types of bias, among which methodological choices have received particular attention. Modellers have primarily focused on choices related to changes in demand, however, choices related to modeling the environmental burdens from such changes have received less attention. In this study, we analyze choices in the environmental assessment methods (life cycle assessment (LCA) and hybrid LCA) and environmental input-output databases (E3IOT, Exiobase and WIOD) used as a source of bias. The analysis is done for a case study on battery electric and hydrogen cars in Europe. The results describe moderate rebound effects for both technologies in the short term. Additionally, long-run scenarios are calculated by simulating the total cost of ownership, which describe notable rebound effect sizes-from 26 to 59% and from 18 to 28%, respectively, depending on the methodological choices-with favorable economic conditions. Relevant sources of bias are found to be related to incomplete background systems, technology assumptions and sectorial aggregation. These findings highlight the importance of the method setup and of sensitivity analyses of choices related to environmental modeling in rebound effect assessments.
Author Font Vivanco, David
Tukker, Arnold
Kemp, René
AuthorAffiliation ICIS and UNU-MERIT
Center for Industrial Ecology, School of Forestry and Environmental Studies
Institute of Environmental Sciences (CML)
Yale University
Leiden University
Maastricht University
AuthorAffiliation_xml – name: Institute of Environmental Sciences (CML)
– name: Leiden University
– name: ICIS and UNU-MERIT
– name: Center for Industrial Ecology, School of Forestry and Environmental Studies
– name: Yale University
– name: Maastricht University
Author_xml – sequence: 1
  givenname: David
  surname: Font Vivanco
  fullname: Font Vivanco, David
  email: david.fontvivanco@yale.edu, dfontv@gmail.com
– sequence: 2
  givenname: Arnold
  surname: Tukker
  fullname: Tukker, Arnold
– sequence: 3
  givenname: René
  surname: Kemp
  fullname: Kemp, René
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27626810$$D View this record in MEDLINE/PubMed
BookMark eNqNkdtrFDEUh4NU7Lb67JsEfBFktifJJJk8SV3XC7QIXsC3IZtktimzSZtkhP73ZthVoeDlKXDO9x1yzu8EHYUYHEJPCSwJUHKmTV66XJZiA6ST5AFaEE6h4R0nR2gBQFijmPh2jE5yvgYAyqB7hI6pFFR0BBZo-ybiS1euoo1j3HqjR7y6it64jH3A6_Ddpxh2LpTauIzWjT5s8WuvM_7kNnEKFq-HwZmSX-FzvNLZ4c9lsnc4Vnms9eRNLaf8GD0c9Jjdk8N7ir6-XX9ZvW8uPr77sDq_aDQnrDQtJYqRtqMOuDWEbpRQSksr6iqcA2eCK9FqzQfNaUcktZpZ6QbXWuiglewUvdjPvUnxdqqn6Xc-GzeOOrg45Z7OR-gkE_BPlHRMUsWY4v-D8pYDSFrR5_fQ6zilUHeeKaq44sAq9exATZuds_1N8jud7vqfwVTgbA-YFHNObviFEOjn6PsafT-PP0RfDX7PML7o4mMoSfvxL97LvTc3fv_1D_QPoe--4g
CODEN ESTHAG
CitedBy_id crossref_primary_10_4000_11x9t
crossref_primary_10_1016_j_apenergy_2021_117138
crossref_primary_10_1111_jiec_13295
crossref_primary_10_1021_acs_est_1c02052
crossref_primary_10_1016_j_clrc_2021_100032
crossref_primary_10_1016_j_atmosenv_2018_04_040
crossref_primary_10_1016_j_jclepro_2021_125996
crossref_primary_10_3390_su12051902
crossref_primary_10_1016_j_energy_2022_123570
crossref_primary_10_1111_jiec_13326
crossref_primary_10_1111_jiec_12825
crossref_primary_10_3390_su14063371
crossref_primary_10_1016_j_jclepro_2022_131136
crossref_primary_10_3390_su10062009
crossref_primary_10_1007_s11367_019_01687_7
crossref_primary_10_3389_fenrg_2018_00039
Cites_doi 10.1515/1538-0653.1467
10.1016/S0301-4215(00)00032-X
10.1007/978-1-4020-5737-3
10.1016/j.ecolecon.2007.08.013
10.1016/S0140-9883(02)00007-5
10.1016/S0301-4215(00)00022-7
10.1162/10881980052541981
10.1016/0165-0572(82)90012-3
10.1080/09535314.2014.939949
10.1162/108819899569449
10.1007/s11367-009-0112-6
10.1016/S0301-4215(00)00018-5
10.1162/1088198054084653
10.1016/j.ecolecon.2007.10.020
10.1016/j.jclepro.2003.04.001
10.1021/es404166f
10.1016/j.ecolecon.2011.05.001
10.1016/j.jclepro.2015.04.019
10.1016/j.eneco.2015.08.026
10.1016/j.apenergy.2012.03.021
10.1016/j.energy.2003.10.013
10.1016/j.eneco.2008.01.001
10.1016/j.ecolecon.2014.02.020
10.1007/s11367-014-0802-6
10.1021/es902673m
10.5547/ISSN0195-6574-EJ-Vol1-No4-2
10.1057/9780230583108
10.1016/j.enpol.2013.02.002
10.2307/1926294
10.1016/S0921-8009(00)00214-7
10.1093/oso/9780195376647.001.0001
10.1016/j.ecolecon.2007.07.022
10.1162/jiec.2006.10.3.129
10.1016/0301-4215(90)90145-T
10.1016/j.eneco.2005.09.003
10.1016/j.energy.2013.06.018
10.1111/j.1530-9290.2012.00532.x
10.1162/108819802320971632
10.1080/09535310903208344
10.1007/s12053-009-9046-x
10.1017/CBO9780511626982
10.1080/09535310120026256
10.1016/j.enpol.2012.12.008
10.1021/es2007287
10.1162/1088198042442351
10.1111/jiec.12207
10.1007/BF02994047
10.1016/j.enpol.2011.03.058
10.1021/es0263745
10.1080/09535314.2014.935298
10.1021/es5038063
10.1007/978-94-015-9900-9
10.1016/S0301-4215(98)00012-3
10.1065/lca2006.12.297
10.1016/j.ecolecon.2012.12.003
10.1016/j.rser.2011.07.025
10.1016/j.enpol.2012.11.025
10.1016/S0195-9255(02)00104-X
10.1016/j.jclepro.2005.05.010
10.1016/j.enbuild.2013.02.056
10.1016/j.ecolecon.2012.12.002
10.1080/09535314.2012.761952
10.5547/ISSN0195-6574-EJ-Vol9-No2-10
10.1016/j.eneco.2009.07.010
10.1016/j.ecolecon.2014.07.003
10.1111/roie.12178
ContentType Journal Article
Copyright Copyright © 2016 American Chemical Society
Copyright American Chemical Society Oct 18, 2016
Copyright_xml – notice: Copyright © 2016 American Chemical Society
– notice: Copyright American Chemical Society Oct 18, 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
DOI 10.1021/acs.est.6b01871
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Biotechnology Research Abstracts
AGRICOLA
MEDLINE

Environment Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
EndPage 11376
ExternalDocumentID 4230048601
27626810
10_1021_acs_est_6b01871
c646149621
Genre Research Support, Non-U.S. Gov't
Journal Article
Report
Feature
Case Study
GeographicLocations Europe
ANE, Europe
GeographicLocations_xml – name: Europe
– name: ANE, Europe
GroupedDBID -
.K2
1AW
3R3
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
4.4
6TJ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
ADUKH
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
MS~
MW2
XSW
ZCA
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-a513t-421931482e05dc12b9699a7d60015505365964aa5fa528172da3d7efe4d080473
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Fri Jul 11 09:21:31 EDT 2025
Fri Jul 11 04:48:36 EDT 2025
Thu Jul 10 18:53:40 EDT 2025
Sun Aug 10 13:10:50 EDT 2025
Thu Apr 03 07:11:39 EDT 2025
Thu Apr 24 23:08:34 EDT 2025
Tue Jul 01 04:29:10 EDT 2025
Thu Aug 27 13:41:58 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a513t-421931482e05dc12b9699a7d60015505365964aa5fa528172da3d7efe4d080473
Notes ObjectType-Case Study-3
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Report-2
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 27626810
PQID 1832959503
PQPubID 45412
PageCount 11
ParticipantIDs proquest_miscellaneous_2000287360
proquest_miscellaneous_1837293395
proquest_miscellaneous_1835450072
proquest_journals_1832959503
pubmed_primary_27626810
crossref_primary_10_1021_acs_est_6b01871
crossref_citationtrail_10_1021_acs_est_6b01871
acs_journals_10_1021_acs_est_6b01871
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-10-18
PublicationDateYYYYMMDD 2016-10-18
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-18
  day: 18
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2016
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
Suh S. (ref21/cit21) 2009
ref45/cit45
ref3/cit3
ref27/cit27
ref81/cit81
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref8/cit8
ref31/cit31
ref85/cit85
ref2/cit2
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
Kratena K. (ref36/cit36) 2010
ref48/cit48
ref74/cit74
ref88/cit88
ref17/cit17
ref82/cit82
ref35/cit35
M&C (ref49/cit49) 2010
ref89/cit89
ref53/cit53
ref19/cit19
de Jong G. (ref59/cit59) 2001; 35
Briceno T. (ref26/cit26) 2004
Chitnis M. (ref23/cit23) 2012
ref42/cit42
ref46/cit46
Heijungs R. (ref64/cit64) 2002
Deaton A. (ref60/cit60) 1980; 70
ref13/cit13
Girod B. V. (ref32/cit32) 2008
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
ref90/cit90
ref50/cit50
ref78/cit78
ref83/cit83
ref65/cit65
ref79/cit79
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref76/cit76
ref86/cit86
Guinée J. B. (ref20/cit20) 2002
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
Herring H. (ref6/cit6) 2009
ref51/cit51
ref43/cit43
ref80/cit80
Sperling D. (ref18/cit18) 2009
ref28/cit28
ref40/cit40
ref68/cit68
Miller R. E. (ref73/cit73) 2009
Chitnis M. (ref10/cit10) 2012
Hendrickson C. (ref41/cit41) 2006
ref55/cit55
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref58/cit58
ref22/cit22
Freire-González J. (ref54/cit54) 2011; 223
ref87/cit87
ref4/cit4
ref30/cit30
Nakamura M. (ref33/cit33) 2004; 17
ref47/cit47
ref84/cit84
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref79/cit79
  doi: 10.1515/1538-0653.1467
– ident: ref15/cit15
  doi: 10.1016/S0301-4215(00)00032-X
– volume-title: Handbook of Input-Output Economics in Industrial Ecology
  year: 2009
  ident: ref21/cit21
  doi: 10.1007/978-1-4020-5737-3
– ident: ref57/cit57
  doi: 10.1016/j.ecolecon.2007.08.013
– ident: ref24/cit24
  doi: 10.1016/S0140-9883(02)00007-5
– ident: ref56/cit56
  doi: 10.1016/S0301-4215(00)00022-7
– ident: ref69/cit69
  doi: 10.1162/10881980052541981
– ident: ref66/cit66
  doi: 10.1016/0165-0572(82)90012-3
– ident: ref89/cit89
  doi: 10.1080/09535314.2014.939949
– ident: ref65/cit65
  doi: 10.1162/108819899569449
– ident: ref90/cit90
  doi: 10.1007/s11367-009-0112-6
– ident: ref4/cit4
– ident: ref13/cit13
  doi: 10.1016/S0301-4215(00)00018-5
– ident: ref28/cit28
  doi: 10.1162/1088198054084653
– ident: ref37/cit37
  doi: 10.1016/j.ecolecon.2007.10.020
– ident: ref22/cit22
  doi: 10.1016/j.jclepro.2003.04.001
– ident: ref87/cit87
  doi: 10.1021/es404166f
– ident: ref61/cit61
– ident: ref58/cit58
– ident: ref38/cit38
  doi: 10.1016/j.ecolecon.2011.05.001
– ident: ref47/cit47
  doi: 10.1016/j.jclepro.2015.04.019
– ident: ref48/cit48
  doi: 10.1016/j.eneco.2015.08.026
– volume: 70
  start-page: 312
  issue: 3
  year: 1980
  ident: ref60/cit60
  publication-title: American Economic Review
– ident: ref72/cit72
– ident: ref51/cit51
  doi: 10.1016/j.apenergy.2012.03.021
– volume-title: Environmental Life Cycle Assessment of Goods and Services: An Input-Output Approach
  year: 2006
  ident: ref41/cit41
– ident: ref27/cit27
  doi: 10.1016/j.energy.2003.10.013
– ident: ref62/cit62
– ident: ref12/cit12
  doi: 10.1016/j.eneco.2008.01.001
– ident: ref88/cit88
  doi: 10.1016/j.ecolecon.2014.02.020
– ident: ref17/cit17
  doi: 10.1007/s11367-014-0802-6
– ident: ref84/cit84
  doi: 10.1021/es902673m
– ident: ref1/cit1
  doi: 10.5547/ISSN0195-6574-EJ-Vol1-No4-2
– ident: ref5/cit5
– volume-title: Energy Efficiency and Sustainable Consumption: The Rebound Effect
  year: 2009
  ident: ref6/cit6
  doi: 10.1057/9780230583108
– start-page: 01
  year: 2012
  ident: ref23/cit23
  publication-title: Sustainable Lifestyles Research Group: Working Paper
– ident: ref45/cit45
  doi: 10.1016/j.enpol.2013.02.002
– ident: ref74/cit74
  doi: 10.2307/1926294
– ident: ref3/cit3
  doi: 10.1016/S0921-8009(00)00214-7
– ident: ref16/cit16
– volume-title: Two Billion Cars: Driving toward Sustainability
  year: 2009
  ident: ref18/cit18
  doi: 10.1093/oso/9780195376647.001.0001
– ident: ref34/cit34
  doi: 10.1016/j.ecolecon.2007.07.022
– volume-title: The full impact of energy efficiency on household’s energy demand
  year: 2010
  ident: ref36/cit36
– ident: ref80/cit80
  doi: 10.1162/jiec.2006.10.3.129
– ident: ref2/cit2
  doi: 10.1016/0301-4215(90)90145-T
– ident: ref30/cit30
  doi: 10.1016/j.eneco.2005.09.003
– ident: ref46/cit46
  doi: 10.1016/j.energy.2013.06.018
– ident: ref50/cit50
  doi: 10.1111/j.1530-9290.2012.00532.x
– ident: ref29/cit29
  doi: 10.1162/108819802320971632
– start-page: 2008
  year: 2008
  ident: ref32/cit32
  publication-title: Environmental Impact of Swiss Household Consumption, And Estimated Income Rebound Effects
– ident: ref53/cit53
– ident: ref75/cit75
  doi: 10.1080/09535310903208344
– start-page: 2004
  year: 2004
  ident: ref26/cit26
  publication-title: Using Life Cycle Approaches to Evaluate Sustainable Consumption Programs: Car-Sharing
– ident: ref55/cit55
  doi: 10.1007/s12053-009-9046-x
– volume-title: Input-Output Analysis: Foundations and Extensions
  year: 2009
  ident: ref73/cit73
  doi: 10.1017/CBO9780511626982
– start-page: 2010
  year: 2010
  ident: ref49/cit49
  publication-title: A Portfolio of Power-Trains for Europe: A Fact-Based Analysis
– ident: ref67/cit67
  doi: 10.1080/09535310120026256
– ident: ref44/cit44
  doi: 10.1016/j.enpol.2012.12.008
– ident: ref85/cit85
  doi: 10.1021/es2007287
– volume-title: Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards
  year: 2002
  ident: ref20/cit20
– ident: ref68/cit68
  doi: 10.1162/1088198042442351
– ident: ref71/cit71
  doi: 10.1111/jiec.12207
– ident: ref86/cit86
  doi: 10.1007/BF02994047
– volume: 223
  start-page: 32
  volume-title: Ecological Modelling - Can We Break the Addiction to Fossil Energy? Special Issue, 7th Biennial International Workshop Advances in Energy Studies, Barcelona, Spain, 19–21 October 2010
  year: 2011
  ident: ref54/cit54
– ident: ref11/cit11
  doi: 10.1016/j.enpol.2011.03.058
– ident: ref35/cit35
– ident: ref70/cit70
  doi: 10.1021/es0263745
– volume: 35
  start-page: 137
  issue: 2
  year: 2001
  ident: ref59/cit59
  publication-title: Journal of Transport Economics and Policy
– ident: ref82/cit82
  doi: 10.1080/09535314.2014.935298
– ident: ref8/cit8
  doi: 10.1021/es5038063
– volume: 17
  start-page: 389
  issue: 5
  year: 2004
  ident: ref33/cit33
  publication-title: Environmental Science
– volume-title: The Computational Structure of Life Cycle Assessment
  year: 2002
  ident: ref64/cit64
  doi: 10.1007/978-94-015-9900-9
– ident: ref25/cit25
  doi: 10.1016/S0301-4215(98)00012-3
– ident: ref63/cit63
– ident: ref31/cit31
  doi: 10.1065/lca2006.12.297
– volume-title: The Rebound Effect: To What Extent Does It Vary with Income?
  year: 2012
  ident: ref10/cit10
– ident: ref40/cit40
  doi: 10.1016/j.ecolecon.2012.12.003
– ident: ref43/cit43
  doi: 10.1016/j.rser.2011.07.025
– ident: ref7/cit7
  doi: 10.1016/j.enpol.2012.11.025
– ident: ref39/cit39
  doi: 10.1016/S0195-9255(02)00104-X
– ident: ref19/cit19
  doi: 10.1016/j.jclepro.2005.05.010
– ident: ref42/cit42
  doi: 10.1016/j.enbuild.2013.02.056
– ident: ref83/cit83
  doi: 10.1016/j.ecolecon.2012.12.002
– ident: ref76/cit76
– ident: ref52/cit52
– ident: ref78/cit78
  doi: 10.1080/09535314.2012.761952
– ident: ref14/cit14
  doi: 10.5547/ISSN0195-6574-EJ-Vol9-No2-10
– ident: ref81/cit81
  doi: 10.1016/j.eneco.2009.07.010
– ident: ref9/cit9
  doi: 10.1016/j.ecolecon.2014.07.003
– ident: ref77/cit77
  doi: 10.1111/roie.12178
SSID ssj0002308
Score 2.3118443
Snippet Improvements in resource efficiency often underperform because of rebound effects. Calculations of the size of rebound effects are subject to various types of...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11366
SubjectTerms Automobiles
batteries
Bias
Case studies
Economic conditions
Electric vehicles
Electricity
Environment
Environmental assessment
Environmental impact
Environmental modeling
environmental models
Europe
hydrogen
Life cycle analysis
life cycle assessment
Life cycles
ownership
Resource efficiency
Risk assessment
Sensitivity analysis
Technology
Title Do Methodological Choices in Environmental Modeling Bias Rebound Effects? A Case Study on Electric Cars
URI http://dx.doi.org/10.1021/acs.est.6b01871
https://www.ncbi.nlm.nih.gov/pubmed/27626810
https://www.proquest.com/docview/1832959503
https://www.proquest.com/docview/1835450072
https://www.proquest.com/docview/1837293395
https://www.proquest.com/docview/2000287360
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1520-5851
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002308
  issn: 0013-936X
  databaseCode: ACS
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEF5VcGkPLdBSUihapBx6sZt9OntCIYBQpXBpkXKzNvtoo1Y2ipND--uZsR0DRSm9rmes0ezOax_fENKPPojImUusVLhbFU1iIgsJ95oPnGPKMXycPLnWVzfyy1RN78Gi_z7B5-yzdVUKDjLVM-wfB4XONtdDhnXWaPy1c7qQSQ_XzQqM0NMOxefJDzAMuepxGNqQW9Yx5vJNczurqqEJ8WrJz3S1nKXuz1PgxufF3yGv20yTjpqlsUtehGKPvHqAP7hH9i_un7kBaWvn1Vvy_bykk7q39No30vGPEn0KnRf0MRd2U8M37fRsbisK04WNmmiDilyd0hEdQ6CkeF_xNy2Bue67M3cwvKjekZvLi2_jq6RtyZBYxcQykeDgBEKHhoHyjvGZ0cbYzOu21hFaGS2tVdEqDrPEvRU-CzFID6mpzMQ-2SrKIhwQCplYjJnNWIhD6WUwXHtjJechmhAGokf6oLu8Nakqr0_LOctxEBSatwrtkXQ9kblrYc2xu8avzQyfOobbBtFjM-nRemU8kAN8oFFGoYQn3WcwSjxpsUUoVzUNZKaIyv5PGihshDBqMw2vdz8zoQc98r5ZmZ3MHMIYgsl9-D89HZKXkOtpDLtseES2lotV-Aj51HJ2XFvSHTOhGRU
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELaqcgAOPAotgQJG6oHLhvVz4xMqoVWAphKilXJbOX5ABNpF3eQAv54ZZ3fbgoLg6h1bs2N75vPrG0IOog8icuYyKxXuVkWTmchCxr3muXNMOYaPk6enenIu38_UbIvk3VsYUKKBlpp0iH_JLsBeYRn4yaGeYxo5WO_cSDwoCIbGn3rfC4B61OUsMELPejKfPxrAaOSa69FoA8RMoeb4LvnYK5lumHwdrpbzofv5G3_j__zFPXKnxZ30cD1Q7pOtUO2Q21fYCHfI7tHlozcQbWd984B8flvTaco03XlKOv5So4ehi4per4W51fCFO32zsA2FzsO0TXTNkdy8pod0DGGT4u3FH7SGyikLz8JB8UXzkJwfH52NJ1mboCGziollJsHdCSQSDbnyjvG50cbYwut25SO0Mlpaq6JVfARQyVvhixCD9ABUZSF2yXZVV-ERoYDLYixswUIcSS-D4dobKzkP0YSQiwE5ANuV7QRrynR2zlmJhWDQsjXogAy7_ixdS3KOuTa-ba7wsq_wfc3vsVl0vxsgV_QAj2iUUajhi_4zTFE8d7FVqFdJBnAqcrT_VQaWOUIYtVmGp73QQuh8QPbWA7TXmUNQQ2q5x_9mp-fk5uRselKevDv98ITcAhSoMSCz0T7ZXl6swlNAWsv5szS5fgE48iGA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELZQkRAcKBRaUgoYqQcuG-LnxidU0kbl0QoJIuW2cvyACLRbdZMD_HpmHGdpQUFw9Y5Xs17PzOfHfEPIYfRBRM5cYaXC3apoChNZKLjXfOAcU45hcvLZuT6dyLdTNc1JYZgLA0q08KY2HeKjVV_4mBkG2EtsB1_Z1zMsJQdrnpsKCeAQEI0-dv4XQPVwXbfACD3tCH3-eAFGJNdej0gbYGYKN-NtMukUTbdMvvaXi1nf_fiNw_F_v-QeuZvxJz1aTZj75Eaod8idK6yEO2T35FfyG4hm628fkM_HDT1LFafXHpOOvjToaei8ptd7YY01zHSnr-e2pfATsXwTXXElt6_oER1B-KR4i_E7baBzqsYzd9B82T4kk_HJp9FpkQs1FFYxsSgkuD2BhKJhoLxjfGa0Mbb0Oq-AhFZGS2tVtIoPATJ5K3wZYpAeAKssxS7Zqps6PCIU8FmMpS1ZiEPpZTBce2Ml5yGaEAaiRw5h7KpsaG2VztA5q7ARBrTKA9oj_fU_rVwmO8eaG982d3jRdbhY8XxsFj1YT5IreoBnNMoo1PB59xhMFc9fbB2aZZIBvIpc7X-VgeWOEEZtluFpT7QUetAje6tJ2unMIbghxdz-v43TM3Lrw_G4ev_m_N1jchvAoMa4zIYHZGtxuQxPAHAtZk-Tff0Ed7Yj-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Do+Methodological+Choices+in+Environmental+Modeling+Bias+Rebound+Effects%3F+A+Case+Study+on+Electric+Cars&rft.jtitle=Environmental+science+%26+technology&rft.au=Vivanco%2C+David+Font&rft.au=Tukker%2C+Arnold&rft.au=Kemp%2C+Ren%C3%A9&rft.date=2016-10-18&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.volume=50&rft.issue=20&rft.spage=11366&rft_id=info:doi/10.1021%2Facs.est.6b01871&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4230048601
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon