Global Carbon Benefits of Material Substitution in Passenger Cars until 2050 and the Impact on the Steel and Aluminum Industries
Light-weighting of passenger cars using high-strength steel or aluminum is a common emissions mitigation strategy. We provide a first estimate of the global impact of light-weighting by material substitution on GHG emissions from passenger cars and the steel and aluminum industries until 2050. We de...
Saved in:
Published in | Environmental science & technology Vol. 48; no. 18; pp. 10776 - 10784 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
16.09.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0013-936X 1520-5851 1520-5851 |
DOI | 10.1021/es502930w |
Cover
Abstract | Light-weighting of passenger cars using high-strength steel or aluminum is a common emissions mitigation strategy. We provide a first estimate of the global impact of light-weighting by material substitution on GHG emissions from passenger cars and the steel and aluminum industries until 2050. We develop a dynamic stock model of the global car fleet and combine it with a dynamic MFA of the associated steel, aluminum, and energy supply industries. We propose four scenarios for substitution of conventional steel with high-strength steel and aluminum at different rates over the period 2010–2050. We show that light-weighting of passenger cars can become a “gigaton solution”: Between 2010 and 2050, persistent light-weighting of passenger cars can, under optimal conditions, lead to cumulative GHG emissions savings of 9–18 gigatons CO2-eq compared to development business-as-usual. Annual savings can be up to 1 gigaton per year. After 2030, enhanced material recycling can lead to further reductions: closed-loop metal recycling in the automotive sector may reduce cumulative emissions by another 4–6 gigatons CO2-eq. The effectiveness of emissions mitigation by material substitution significantly depends on how the recycling system evolves. At present, policies focusing on tailpipe emissions and life cycle assessments of individual cars do not consider this important effect. |
---|---|
AbstractList | Light-weighting of passenger cars using high-strength steel or aluminum is a common emissions mitigation strategy. We provide a first estimate of the global impact of light-weighting by material substitution on GHG emissions from passenger cars and the steel and aluminum industries until 2050. We develop a dynamic stock model of the global car fleet and combine it with a dynamic MFA of the associated steel, aluminum, and energy supply industries. We propose four scenarios for substitution of conventional steel with high-strength steel and aluminum at different rates over the period 2010-2050. We show that light-weighting of passenger cars can become a "gigaton solution": Between 2010 and 2050, persistent light-weighting of passenger cars can, under optimal conditions, lead to cumulative GHG emissions savings of 9-18 gigatons CO2-eq compared to development business-as-usual. Annual savings can be up to 1 gigaton per year. After 2030, enhanced material recycling can lead to further reductions: closed-loop metal recycling in the automotive sector may reduce cumulative emissions by another 4-6 gigatons CO2-eq. The effectiveness of emissions mitigation by material substitution significantly depends on how the recycling system evolves. At present, policies focusing on tailpipe emissions and life cycle assessments of individual cars do not consider this important effect. Light-weighting of passenger cars using high-strength steel or aluminum is a common emissions mitigation strategy. We provide a first estimate of the global impact of light-weighting by material substitution on GHG emissions from passenger cars and the steel and aluminum industries until 2050. We develop a dynamic stock model of the global car fleet and combine it with a dynamic MFA of the associated steel, aluminum, and energy supply industries. We propose four scenarios for substitution of conventional steel with high-strength steel and aluminum at different rates over the period 2010-2050. We show that light-weighting of passenger cars can become a "gigaton solution": Between 2010 and 2050, persistent light-weighting of passenger cars can, under optimal conditions, lead to cumulative GHG emissions savings of 9-18 gigatons CO2-eq compared to development business-as-usual. Annual savings can be up to 1 gigaton per year. After 2030, enhanced material recycling can lead to further reductions: closed-loop metal recycling in the automotive sector may reduce cumulative emissions by another 4-6 gigatons CO2-eq. The effectiveness of emissions mitigation by material substitution significantly depends on how the recycling system evolves. At present, policies focusing on tailpipe emissions and life cycle assessments of individual cars do not consider this important effect.Light-weighting of passenger cars using high-strength steel or aluminum is a common emissions mitigation strategy. We provide a first estimate of the global impact of light-weighting by material substitution on GHG emissions from passenger cars and the steel and aluminum industries until 2050. We develop a dynamic stock model of the global car fleet and combine it with a dynamic MFA of the associated steel, aluminum, and energy supply industries. We propose four scenarios for substitution of conventional steel with high-strength steel and aluminum at different rates over the period 2010-2050. We show that light-weighting of passenger cars can become a "gigaton solution": Between 2010 and 2050, persistent light-weighting of passenger cars can, under optimal conditions, lead to cumulative GHG emissions savings of 9-18 gigatons CO2-eq compared to development business-as-usual. Annual savings can be up to 1 gigaton per year. After 2030, enhanced material recycling can lead to further reductions: closed-loop metal recycling in the automotive sector may reduce cumulative emissions by another 4-6 gigatons CO2-eq. The effectiveness of emissions mitigation by material substitution significantly depends on how the recycling system evolves. At present, policies focusing on tailpipe emissions and life cycle assessments of individual cars do not consider this important effect. Light-weighting of passenger cars using high-strength steel or aluminum is a common emissions mitigation strategy. We provide a first estimate of the global impact of lightweighting by material substitution on GHG emissions from passenger cars and the steel and aluminum industries until 2050. We develop a dynamic stock model of the global car fleet and combine it with a dynamic MFA of the associated steel, aluminum, and energy supply industries. We propose four scenarios for substitution of conventional steel with high-strength steel and aluminum at different rates over the period 2010-2050. We show that light-weighting of passenger cars can become a "gigaton solution": Between 2010 and 2050, persistent lightweighting of passenger cars can, under optimal conditions, lead to cumulative GHG emissions savings of 9-18 gigatons CO^sub 2^-eq compared to development business-as-usual. Annual savings can be up to 1 gigaton per year. After 2030, enhanced material recycling can lead to further reductions: closed-loop metal recycling in the automotive sector may reduce cumulative emissions by another 4-6 gigatons CO^sub 2^-eq. The effectiveness of emissions mitigation by material substitution significantly depends on how the recycling system evolves. At present, policies focusing on tailpipe emissions and life cycle assessments of individual cars do not consider this important effect. Light-weighting of passenger cars using high-strength steel or aluminum is a common emissions mitigation strategy. We provide a first estimate of the global impact of light-weighting by material substitution on GHG emissions from passenger cars and the steel and aluminum industries until 2050. We develop a dynamic stock model of the global car fleet and combine it with a dynamic MFA of the associated steel, aluminum, and energy supply industries. We propose four scenarios for substitution of conventional steel with high-strength steel and aluminum at different rates over the period 2010–2050. We show that light-weighting of passenger cars can become a “gigaton solution”: Between 2010 and 2050, persistent light-weighting of passenger cars can, under optimal conditions, lead to cumulative GHG emissions savings of 9–18 gigatons CO₂-eq compared to development business-as-usual. Annual savings can be up to 1 gigaton per year. After 2030, enhanced material recycling can lead to further reductions: closed-loop metal recycling in the automotive sector may reduce cumulative emissions by another 4–6 gigatons CO₂-eq. The effectiveness of emissions mitigation by material substitution significantly depends on how the recycling system evolves. At present, policies focusing on tailpipe emissions and life cycle assessments of individual cars do not consider this important effect. |
Author | Modaresi, Roja Pauliuk, Stefan Müller, Daniel B Løvik, Amund N |
AuthorAffiliation | Norwegian University of Science and Technology Industrial Ecology Programme (IndEcol), Department of Energy and Process EngineeringEPT |
AuthorAffiliation_xml | – name: Norwegian University of Science and Technology – name: Industrial Ecology Programme (IndEcol), Department of Energy and Process EngineeringEPT |
Author_xml | – sequence: 1 givenname: Roja surname: Modaresi fullname: Modaresi, Roja email: roja.modaresi@ntnu.no – sequence: 2 givenname: Stefan surname: Pauliuk fullname: Pauliuk, Stefan email: Stefan.pauliuk@ntnu.no – sequence: 3 givenname: Amund N surname: Løvik fullname: Løvik, Amund N – sequence: 4 givenname: Daniel B surname: Müller fullname: Müller, Daniel B |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25111289$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0s1rFTEQAPAgFftaPfgPSEAEPazNJJt0c6wPrQ8qClXwtszum9WU3ewzH4g3_3SzvlakCnoKYX4z-Zg5Ygd-9sTYQxDPQUg4oaiFtEp8vcNWoKWodKPhgK2EAFVZZT4esqMYr4QQUonmHjuUGgBkY1fs-_k4dzjyNYZu9vwFeRpcinwe-BtMFFyJXeYuJpdyckU4z99hjOQ_UViyIs8-uZFLoQVHv-XpM_HNtMM-8cKX3WUiGn_GzsY8OZ8nvvHbHFNwFO-zuwOOkR5cr8fsw6uX79evq4u355v12UWFGkSqao1gqd8aI6yRfXeqRIe2BrJmOyCiqLGnpiM0SkpV11ibQSmFoGEAZa06Zk_3dXdh_pIppnZysadxRE9zjq0sv6NAGQv_pKCNafRp09T_Q6UxYKUo9PEtejXn4MubF1WX40vRoh5dq9xNtG13wU0YvrU3HSvgZA_6MMcYaGh7l3BpTQroxhZEu8xE-2smSsazWxk3Rf9mn-wt9vG3-_3hfgAVS8AG |
CODEN | ESTHAG |
CitedBy_id | crossref_primary_10_1021_acs_est_1c07875 crossref_primary_10_1111_jiec_13067 crossref_primary_10_1016_j_resconrec_2018_05_022 crossref_primary_10_1016_j_resconrec_2020_105319 crossref_primary_10_1016_j_resconrec_2021_105558 crossref_primary_10_1016_j_resourpol_2024_104934 crossref_primary_10_1016_j_jclepro_2015_06_085 crossref_primary_10_1021_acs_est_5b03192 crossref_primary_10_3390_ma16072742 crossref_primary_10_1016_j_jclepro_2016_09_050 crossref_primary_10_3390_ma14041010 crossref_primary_10_1016_j_jclepro_2022_132014 crossref_primary_10_3390_machines8030051 crossref_primary_10_1021_acs_est_5b05012 crossref_primary_10_1016_j_chemosphere_2020_128831 crossref_primary_10_1016_j_eiar_2018_12_001 crossref_primary_10_1016_j_trd_2017_08_010 crossref_primary_10_1016_j_spc_2022_01_010 crossref_primary_10_1177_0892705718815530 crossref_primary_10_1016_j_trd_2020_102614 crossref_primary_10_1016_j_resconrec_2020_105208 crossref_primary_10_1016_j_jclepro_2018_11_153 crossref_primary_10_1016_j_resconrec_2017_10_034 crossref_primary_10_1016_j_jclepro_2019_119805 crossref_primary_10_1016_j_matdes_2018_04_021 crossref_primary_10_1134_S0020168521030079 crossref_primary_10_1111_jiec_13321 crossref_primary_10_1007_s40309_015_0065_x crossref_primary_10_3390_su12135243 crossref_primary_10_1016_j_resconrec_2022_106827 crossref_primary_10_1016_j_resconrec_2021_105979 crossref_primary_10_1016_j_procir_2019_01_003 crossref_primary_10_1016_j_ecolecon_2016_02_017 crossref_primary_10_1134_S0010508223050052 crossref_primary_10_3390_met9090949 crossref_primary_10_1007_s11661_019_05388_6 crossref_primary_10_1007_s00170_016_9225_9 crossref_primary_10_3390_su12145713 crossref_primary_10_1016_j_msea_2022_143708 crossref_primary_10_3390_polym16192737 crossref_primary_10_1016_j_jclepro_2022_130544 crossref_primary_10_1016_j_resconrec_2015_06_008 crossref_primary_10_3390_resources7010009 crossref_primary_10_1016_j_jclepro_2019_119120 crossref_primary_10_1007_s11367_017_1433_5 crossref_primary_10_1016_j_resconrec_2019_104497 crossref_primary_10_1016_j_trd_2021_102807 crossref_primary_10_1111_jiec_13023 crossref_primary_10_2139_ssrn_2779451 crossref_primary_10_1016_j_jclepro_2016_05_073 crossref_primary_10_1016_j_jclepro_2018_05_075 crossref_primary_10_1016_j_oneear_2022_07_005 crossref_primary_10_1021_acs_est_9b00648 crossref_primary_10_1088_1748_9326_11_5_054010 crossref_primary_10_1016_j_resconrec_2017_10_019 crossref_primary_10_1016_j_jmatprotec_2023_118032 crossref_primary_10_1021_acs_est_6b02837 crossref_primary_10_1007_s12239_024_00080_0 crossref_primary_10_1007_s41745_021_00285_7 crossref_primary_10_1007_s10669_016_9622_5 crossref_primary_10_1016_j_jclepro_2021_128085 crossref_primary_10_1016_j_resconrec_2020_105118 crossref_primary_10_1007_s11367_020_01774_0 crossref_primary_10_1021_acs_est_8b04249 crossref_primary_10_2139_ssrn_3664564 crossref_primary_10_1016_j_procir_2017_11_021 crossref_primary_10_1016_j_spc_2024_09_011 crossref_primary_10_1111_jiec_13531 crossref_primary_10_1155_2022_2870005 crossref_primary_10_1016_j_ecolecon_2015_08_012 crossref_primary_10_1021_acs_est_1c00816 crossref_primary_10_1038_s43017_023_00449_2 crossref_primary_10_3390_en12193612 crossref_primary_10_1016_j_procir_2023_09_079 crossref_primary_10_1007_s41247_019_0056_9 crossref_primary_10_1016_j_wear_2023_204743 crossref_primary_10_1080_20964129_2019_1598780 crossref_primary_10_1007_s00170_017_1565_6 crossref_primary_10_1088_1748_9326_ab0fe3 crossref_primary_10_3390_recycling4010005 crossref_primary_10_1007_s13632_020_00660_3 crossref_primary_10_3390_jcs8040155 crossref_primary_10_1016_j_resconrec_2016_07_004 crossref_primary_10_1016_j_jclepro_2018_11_006 crossref_primary_10_1016_j_jclepro_2020_122237 crossref_primary_10_1111_jiec_12316 crossref_primary_10_1021_acssuschemeng_8b05588 crossref_primary_10_2351_7_0000353 crossref_primary_10_1007_s00170_022_10623_3 crossref_primary_10_3390_su9071049 crossref_primary_10_1098_rsta_2016_0364 crossref_primary_10_1016_j_resconrec_2016_09_029 crossref_primary_10_1016_j_cirp_2021_05_002 crossref_primary_10_1007_s11367_020_01775_z crossref_primary_10_1088_2515_7620_ad82b3 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121231 crossref_primary_10_1111_jiec_13112 crossref_primary_10_3389_frsus_2021_738890 crossref_primary_10_1016_j_cirp_2018_05_008 crossref_primary_10_1016_j_resconrec_2020_104925 crossref_primary_10_1016_j_spc_2022_07_007 crossref_primary_10_1111_jiec_12702 crossref_primary_10_1088_1742_6596_1622_1_012127 crossref_primary_10_1007_s10668_024_04762_8 crossref_primary_10_1007_s00170_021_08122_y crossref_primary_10_1002_wcc_881 crossref_primary_10_5781_JWJ_2018_36_3_2 crossref_primary_10_1021_acs_est_5b01860 |
Cites_doi | 10.1021/es3031424 10.1016/j.ecolecon.2005.09.025 10.1016/j.apenergy.2014.03.023 10.1111/j.1530-9290.2012.00532.x 10.1016/j.energy.2011.12.033 10.1016/j.resconrec.2004.07.003 10.1007/s11367-008-0058-0 10.1021/es9038769 10.1038/nclimate1698 10.1021/es800314w 10.1021/es302433p 10.1021/es3013529 10.1021/es201904c 10.1021/es1034552 10.1021/es405604g 10.1021/es303149z 10.1016/S0892-6875(02)00080-8 10.1021/es903306e 10.1021/es300648w 10.4271/2013-01-0655 10.1162/108819800569816 10.1021/es304256s 10.1021/es3042115 10.1111/j.1530-9290.2011.00342.x 10.4271/2014-01-1004 10.1007/s12053-008-9032-8 10.1021/es500820h 10.1557/mrs.2012.52 10.1021/es202938m |
ContentType | Journal Article |
Copyright | Copyright © 2014 American Chemical Society Copyright American Chemical Society Sep 16, 2014 |
Copyright_xml | – notice: Copyright © 2014 American Chemical Society – notice: Copyright American Chemical Society Sep 16, 2014 |
DBID | N~. AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7TV 7S9 L.6 |
DOI | 10.1021/es502930w |
DatabaseName | American Chemical Society (ACS) Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic Pollution Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic Pollution Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Biotechnology Research Abstracts AGRICOLA Pollution Abstracts |
Database_xml | – sequence: 1 dbid: N~. name: American Chemical Society (ACS) Open Access url: https://pubs.acs.org sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1520-5851 |
EndPage | 10784 |
ExternalDocumentID | 3438693531 25111289 10_1021_es502930w a263435125 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | - .K2 1AW 3R3 4.4 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS N~. PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 6TJ AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADUKH AGXLV AHGAQ CITATION CUPRZ GGK MS~ MW2 XSW ZCA CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7TV 7S9 L.6 |
ID | FETCH-LOGICAL-a510t-45a19ecd660962cb730ba941e96dfaaa04ace8bea6322344a46f333a151f13993 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Fri Jul 11 07:12:33 EDT 2025 Fri Jul 11 07:14:17 EDT 2025 Fri Jul 11 14:45:37 EDT 2025 Sun Jun 29 15:07:14 EDT 2025 Thu Apr 03 07:04:15 EDT 2025 Thu Apr 24 22:51:16 EDT 2025 Tue Jul 01 04:28:49 EDT 2025 Thu Aug 27 13:42:38 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_termsofuse.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a510t-45a19ecd660962cb730ba941e96dfaaa04ace8bea6322344a46f333a151f13993 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=http://dx.doi.org/10.1021/es502930w |
PMID | 25111289 |
PQID | 1564000685 |
PQPubID | 45412 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2000313691 proquest_miscellaneous_1566857884 proquest_miscellaneous_1562661920 proquest_journals_1564000685 pubmed_primary_25111289 crossref_citationtrail_10_1021_es502930w crossref_primary_10_1021_es502930w acs_journals_10_1021_es502930w |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ N~. UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-09-16 |
PublicationDateYYYYMMDD | 2014-09-16 |
PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref3/cit3 Worrell E. (ref38/cit38) 2009; 2 Liu G. (ref32/cit32) 2013; 3 Bertram M. (ref101/ref101_1) 2009; 14 ref52/cit52 Milford R. L. (ref34/cit34) 2013; 47 ref23/cit23 Müller D. B. (ref28/cit28) 2006; 59 ref2/cit2 Geyer R. (ref14/cit14) 2008; 42 Hawkins T. R. (ref4/cit4) 2013; 17 Pauliuk S. (ref37/cit37) 2013; 47 ref48/cit48 Kim H.-J. (ref16/cit16) 2010; 15 Das S. (ref25/cit25) 2005; 43 ref17/cit17 Cullen J. M. (ref33/cit33) 2012; 46 ref10/cit10 Field F. (ref24/cit24) 2000; 4 Joyce Dargay D. G. a. M. S. (ref31/cit31) 2007 ref35/cit35 ref53/cit53 ref19/cit19 Kagawa S. (ref20/cit20) 2011; 45 Helms H. (ref100/ref100_1) 2006; 12 Bastani P. (ref27/cit27) 2012; 46 ref46/cit46 ref49/cit49 Nakajima K. (ref57/cit57) 2010; 44 Lewis A. M. (ref18/cit18) 2014; 126 ref50/cit50 Kim H.-J. (ref12/cit12) 2010; 14 Xu M. (ref55/cit55) 2010; 44 ref6/cit6 ref36/cit36 ref11/cit11 ref29/cit29 Nakamura S. (ref42/cit42) 2014; 48 Nakamura S. (ref41/cit41) 2012; 46 Pauliuk S. (ref44/cit44) 2011; 46 ref39/cit39 ref5/cit5 ref51/cit51 ref43/cit43 van Schaik A. (ref56/cit56) 2002; 15 Mayyas A. T. (ref15/cit15) 2012; 39 Løvik A. N. (ref59/cit59) 2014; 48 Cullen J. M. (ref60/cit60) 2013; 47 ref26/cit26 Modaresi R. (ref21/cit21) 2012; 46 Gesing A. (ref40/cit40) 2004; 56 Keoleian G. A. (ref13/cit13) 2012; 37 Kim H. C. (ref8/cit8) 2013; 47 Graedel T. E. (ref58/cit58) 2011; 15 Alonso E. (ref54/cit54) 2012; 46 ref30/cit30 ref47/cit47 ref1/cit1 ref7/cit7 Johannaber M. E. (ref9/cit9) 2007 Pauliuk S. (ref22/cit22) 2012; 46 |
References_xml | – volume: 12 start-page: 58 issue: 1 year: 2006 ident: ref100/ref100_1 publication-title: Int. J. Life Cycle Assess. – volume: 14 issue: 6 year: 2010 ident: ref12/cit12 publication-title: J. Ind. Ecol. – volume: 15 issue: 1 year: 2010 ident: ref16/cit16 publication-title: J. Ind. Ecol. – volume: 47 start-page: 3455 issue: 7 year: 2013 ident: ref34/cit34 publication-title: Environ. Sci. Technol. doi: 10.1021/es3031424 – volume: 46 start-page: 517 issue: 3 year: 2012 ident: ref27/cit27 publication-title: Trans. Res. A: Policy Practice – volume: 59 start-page: 152 year: 2006 ident: ref28/cit28 publication-title: Ecol. Econ. doi: 10.1016/j.ecolecon.2005.09.025 – volume: 126 start-page: 13 issue: 0 year: 2014 ident: ref18/cit18 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.03.023 – ident: ref36/cit36 – ident: ref50/cit50 – ident: ref47/cit47 – volume: 17 start-page: 53 issue: 1 year: 2013 ident: ref4/cit4 publication-title: J. Ind. Ecol. doi: 10.1111/j.1530-9290.2012.00532.x – ident: ref11/cit11 – volume: 39 start-page: 412 issue: 1 year: 2012 ident: ref15/cit15 publication-title: Energy doi: 10.1016/j.energy.2011.12.033 – ident: ref19/cit19 – volume: 43 start-page: 375 issue: 4 year: 2005 ident: ref25/cit25 publication-title: Resour., Conserv. Recyc. doi: 10.1016/j.resconrec.2004.07.003 – volume: 14 start-page: 62 issue: 1 year: 2009 ident: ref101/ref101_1 publication-title: Int. J. Life Cycle Assess. doi: 10.1007/s11367-008-0058-0 – volume: 44 start-page: 5594 issue: 14 year: 2010 ident: ref57/cit57 publication-title: Environ. Sci. Technol. doi: 10.1021/es9038769 – volume: 3 start-page: 338 issue: 4 year: 2013 ident: ref32/cit32 publication-title: Nat. Clim. Change doi: 10.1038/nclimate1698 – ident: ref23/cit23 – volume: 42 start-page: 6973 issue: 18 year: 2008 ident: ref14/cit14 publication-title: Environ. Sci. Technol. doi: 10.1021/es800314w – ident: ref29/cit29 – volume: 46 start-page: 13048 issue: 24 year: 2012 ident: ref33/cit33 publication-title: Environ. Sci. Technol. doi: 10.1021/es302433p – volume: 46 start-page: 9266 issue: 17 year: 2012 ident: ref41/cit41 publication-title: Environ. Sci. Technol. doi: 10.1021/es3013529 – volume: 46 start-page: 7 issue: 1 year: 2012 ident: ref22/cit22 publication-title: Environ. Sci. Technol. – volume: 46 start-page: 148 issue: 1 year: 2011 ident: ref44/cit44 publication-title: Environ. Sci. Technol. doi: 10.1021/es201904c – ident: ref5/cit5 – volume-title: Jörg Leyers Determination of Weight Elasticity of Fuel Economy for Conventional ICE Vehicles, Hybrid Vehicles and Fuel Cell Vehicles year: 2007 ident: ref9/cit9 – volume: 45 start-page: 1184 issue: 4 year: 2011 ident: ref20/cit20 publication-title: Environ. Sci. Technol. doi: 10.1021/es1034552 – volume-title: Vehicle Ownership and Income Growth, Worldwide: 1960–2030 year: 2007 ident: ref31/cit31 – ident: ref49/cit49 – ident: ref53/cit53 – volume: 48 start-page: 4257 issue: 8 year: 2014 ident: ref59/cit59 publication-title: Environ. Sci. Technol. doi: 10.1021/es405604g – volume: 47 start-page: 3448 issue: 7 year: 2013 ident: ref37/cit37 publication-title: Environ. Sci. Technol. doi: 10.1021/es303149z – ident: ref43/cit43 – ident: ref48/cit48 – ident: ref2/cit2 – volume: 15 start-page: 1001 issue: 11 year: 2002 ident: ref56/cit56 publication-title: Miner. Eng. doi: 10.1016/S0892-6875(02)00080-8 – ident: ref26/cit26 – volume: 44 start-page: 4037 issue: 11 year: 2010 ident: ref55/cit55 publication-title: Environ. Sci. Technol. doi: 10.1021/es903306e – volume: 46 start-page: 8587 issue: 16 year: 2012 ident: ref21/cit21 publication-title: Environ. Sci. Technol. doi: 10.1021/es300648w – ident: ref10/cit10 – ident: ref6/cit6 – ident: ref35/cit35 – ident: ref51/cit51 doi: 10.4271/2013-01-0655 – volume: 4 start-page: 71 issue: 2 year: 2000 ident: ref24/cit24 publication-title: J. Ind. Ecol. doi: 10.1162/108819800569816 – ident: ref45/cit45 – ident: ref46/cit46 – volume: 56 start-page: 18 issue: 8 year: 2004 ident: ref40/cit40 publication-title: J. Miner. – volume: 47 start-page: 3057 issue: 7 year: 2013 ident: ref60/cit60 publication-title: Environ. Sci. Technol. doi: 10.1021/es304256s – ident: ref1/cit1 – volume: 47 start-page: 6089 issue: 12 year: 2013 ident: ref8/cit8 publication-title: Environ. Sci. Technol. doi: 10.1021/es3042115 – volume: 15 start-page: 355 issue: 3 year: 2011 ident: ref58/cit58 publication-title: J. Ind. Ecol. doi: 10.1111/j.1530-9290.2011.00342.x – ident: ref17/cit17 doi: 10.4271/2014-01-1004 – ident: ref3/cit3 – ident: ref39/cit39 – volume: 2 start-page: 109 issue: 2 year: 2009 ident: ref38/cit38 publication-title: Energy Efficiency doi: 10.1007/s12053-008-9032-8 – volume: 48 start-page: 7207 issue: 13 year: 2014 ident: ref42/cit42 publication-title: Environ. Sci. Technol. doi: 10.1021/es500820h – volume: 37 year: 2012 ident: ref13/cit13 publication-title: MRS Bull. doi: 10.1557/mrs.2012.52 – ident: ref52/cit52 – volume: 46 start-page: 2893 issue: 5 year: 2012 ident: ref54/cit54 publication-title: Environ. Sci. Technol. doi: 10.1021/es202938m – ident: ref7/cit7 – ident: ref30/cit30 |
SSID | ssj0002308 |
Score | 2.4911833 |
Snippet | Light-weighting of passenger cars using high-strength steel or aluminum is a common emissions mitigation strategy. We provide a first estimate of the global... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10776 |
SubjectTerms | Air Pollutants - analysis Aluminum Aluminum industry Automobiles carbon Carbon - analysis Carbon cycle Carbon Footprint Emissions energy Gasoline - analysis Greenhouse Effect greenhouse gas emissions Greenhouse gases High strength steel Industry Internationality issues and policy life cycle assessment Models, Theoretical Recycling Steel Steel industry |
Title | Global Carbon Benefits of Material Substitution in Passenger Cars until 2050 and the Impact on the Steel and Aluminum Industries |
URI | http://dx.doi.org/10.1021/es502930w https://www.ncbi.nlm.nih.gov/pubmed/25111289 https://www.proquest.com/docview/1564000685 https://www.proquest.com/docview/1562661920 https://www.proquest.com/docview/1566857884 https://www.proquest.com/docview/2000313691 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3Lb9MwGP80xgUOPAYbhW0yjwOXFNtx3Pg4yqaBxIQ0JvVW2bEtVXTp1KSaxAHxp_PZeVC0dVwSWf6cWPb3-Fn-HgDvvMgzo4xOrAolzDh1Sa4FxabCd2Y90zHb55k8vRBfJtlkC95uuMHn7IOrMoo2iV7fg_tcon0J-Gd83qtbxNB5V6ZApXLSpQ9aHxpMT1H9a3o24MloV04ew6cuOqdxJ_kxXNVmWPy8mazxrik_gUctriRHDSM8hS1X7sDDtWyDO7B7_DeoDUlbqa6ewe8m8T8Z66VZlOQjqj8_qyuy8OSrriOLkqBgolcB7iOZleQbgu7gELsMoyoSCk7MCacZJbq0BFEl-RzjLwmSh9Z57dw89h2hOpyVq0vSVQ1x1XO4ODn-Pj5N2soMiUYZrhORaaZcYaXEExAvDKoJo5VgTknrtdZU6MLlxmmJ-iIVQgvp0zTVCC88C5BoF7bLReleAMHj5choR6m1COa8z3HwiNpRobhNjeQDOMStm7aSVU3jpTln036NB_C-29Vp0eY1D-U15reRvulJr5pkHrcR7XessfbXTIpg2fNsAK_7bpTEcL2iS7dYRZqAdhSnd9LgN0Z5LjbThOCplKVSsQHsNazZzzYcCBFRqJf_W5VX8AChnQieLUzuw3a9XLkDhE-1OYzig8-zX8M_SDAUag |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLdgHIADg8GgbAyDOHDJZieOGx-7alMH24S0Teoteo5tqaKkqEmFxIk_nWfnY2XagFNk-dmx7Pfxs2y_HyEfnMhSrTRERnkKs5jZKAPBsKjwmxrHIWT7PJeTK_Fpmk7bNDn-LQwOosKeqnCIf51dgB_YKmUYmtiP--RBKoX0NA2j8UXvdRFKZx1bgUrktMsitN7UR6Ci-jMC3QErQ3g53mx4isLAwq2Sr_urWu8XP2_kbPy_kT8lT1qUSUeNWjwj92y5RR6v5R7cIttH10_cULS18eo5-dXQANAxLPWipIfoDN2srujC0TOog8JS727CHQNcVTor6ReE4P567NK3qqinn5jTmKWMQmkoYkx6El5jUhT3pYva2nmoG6FznJWrb7TjELHVC3J1fHQ5nkQtT0MEaNF1JFLgyhZGStwPxYVGp6FBCW6VNA4AmIDCZtqCRO-RCAFCuiRJAMGG4x4gbZONclHaV4TiZnOowTJmDEI75zJsPGRmWKjYJFrGA7KHU5y3dlbl4Qg95nk_xwPysVvcvGiznHuyjfltou970e9Nao_bhHY7DVn7Kyqgj_NZOiDv-mq0S3_YAqVdrIKMxz4qZn-VwT6GWSbulvFPqRKeSMUH5GWjof1o_fYQ8YV6_a9ZeUseTi7PTvPTk_PPO-QRgj7h77xwuUs26uXKvkFgVeu9YFG_ARX0G7E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BkBA88DEYFMYwiAdestmJ48aPpaza-BiTxqS-RXZsSxUlnepUSDzxp3N2k1DQBjxFls_Oyfbd_U4-3wG8crzItdQqMTKUMEupTQrFKTYlfnPjmIrZPk_E0Tl_N82nraMY3sIgEx5n8vESP0j1hXFthgF2YH1O0TzRb9fhBgIRFko1jMZnveZFOF10FQtkJqZdJqHNocEKVf53K3QFtIwmZnIXPvXMxciSL_urRu9X3__I2_j_3N-DOy3aJKP18bgP12y9Dbc3chBuw87hr6duSNrKun8AP9blAMhYLfWiJm9QKbpZ48nCkY-qiQeXBLUTYw1wd8msJqcIxUOY7DKM8iSUoZiTlOaUqNoQxJrkOL7KJEgeWmeNtfPYN0IlOatXX0lXS8T6h3A-Ofw8Pkraeg2Jwr1oEp4rJm1lhEC_KK00Kg-tJGdWCuOUUpSryhbaKoFaJONcceGyLFMIOhwLQGkHtupFbR8DQadzqJWl1BiEeM4VOHhIzbCSqcm0SAewh8tctvLmy3iVnrKyX-MBvO42uKzabOeh6Mb8MtKXPenFOsXHZUS73SnZ-GsueLD3RT6AF303yme4dFG1XawiTcBAMqV_pcE5hkXBr6YJT6oylgnJBvBofUp7boObiDhDPvnXqjyHm6dvJ-WH45P3T-EWYj8eQl-Y2IWtZrmyzxBfNXovCtVPKIkeKw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+carbon+benefits+of+material+substitution+in+passenger+cars+until+2050+and+the+impact+on+the+steel+and+aluminum+industries&rft.jtitle=Environmental+science+%26+technology&rft.au=Modaresi%2C+Roja&rft.au=Pauliuk%2C+Stefan&rft.au=L%C3%B8vik%2C+Amund+N&rft.au=M%C3%BCller%2C+Daniel+B&rft.date=2014-09-16&rft.issn=1520-5851&rft.eissn=1520-5851&rft.volume=48&rft.issue=18&rft.spage=10776&rft_id=info:doi/10.1021%2Fes502930w&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |