Global Carbon Benefits of Material Substitution in Passenger Cars until 2050 and the Impact on the Steel and Aluminum Industries

Light-weighting of passenger cars using high-strength steel or aluminum is a common emissions mitigation strategy. We provide a first estimate of the global impact of light-weighting by material substitution on GHG emissions from passenger cars and the steel and aluminum industries until 2050. We de...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 48; no. 18; pp. 10776 - 10784
Main Authors Modaresi, Roja, Pauliuk, Stefan, Løvik, Amund N, Müller, Daniel B
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 16.09.2014
Subjects
Online AccessGet full text
ISSN0013-936X
1520-5851
1520-5851
DOI10.1021/es502930w

Cover

Abstract Light-weighting of passenger cars using high-strength steel or aluminum is a common emissions mitigation strategy. We provide a first estimate of the global impact of light-weighting by material substitution on GHG emissions from passenger cars and the steel and aluminum industries until 2050. We develop a dynamic stock model of the global car fleet and combine it with a dynamic MFA of the associated steel, aluminum, and energy supply industries. We propose four scenarios for substitution of conventional steel with high-strength steel and aluminum at different rates over the period 2010–2050. We show that light-weighting of passenger cars can become a “gigaton solution”: Between 2010 and 2050, persistent light-weighting of passenger cars can, under optimal conditions, lead to cumulative GHG emissions savings of 9–18 gigatons CO2-eq compared to development business-as-usual. Annual savings can be up to 1 gigaton per year. After 2030, enhanced material recycling can lead to further reductions: closed-loop metal recycling in the automotive sector may reduce cumulative emissions by another 4–6 gigatons CO2-eq. The effectiveness of emissions mitigation by material substitution significantly depends on how the recycling system evolves. At present, policies focusing on tailpipe emissions and life cycle assessments of individual cars do not consider this important effect.
AbstractList Light-weighting of passenger cars using high-strength steel or aluminum is a common emissions mitigation strategy. We provide a first estimate of the global impact of light-weighting by material substitution on GHG emissions from passenger cars and the steel and aluminum industries until 2050. We develop a dynamic stock model of the global car fleet and combine it with a dynamic MFA of the associated steel, aluminum, and energy supply industries. We propose four scenarios for substitution of conventional steel with high-strength steel and aluminum at different rates over the period 2010-2050. We show that light-weighting of passenger cars can become a "gigaton solution": Between 2010 and 2050, persistent light-weighting of passenger cars can, under optimal conditions, lead to cumulative GHG emissions savings of 9-18 gigatons CO2-eq compared to development business-as-usual. Annual savings can be up to 1 gigaton per year. After 2030, enhanced material recycling can lead to further reductions: closed-loop metal recycling in the automotive sector may reduce cumulative emissions by another 4-6 gigatons CO2-eq. The effectiveness of emissions mitigation by material substitution significantly depends on how the recycling system evolves. At present, policies focusing on tailpipe emissions and life cycle assessments of individual cars do not consider this important effect.
Light-weighting of passenger cars using high-strength steel or aluminum is a common emissions mitigation strategy. We provide a first estimate of the global impact of light-weighting by material substitution on GHG emissions from passenger cars and the steel and aluminum industries until 2050. We develop a dynamic stock model of the global car fleet and combine it with a dynamic MFA of the associated steel, aluminum, and energy supply industries. We propose four scenarios for substitution of conventional steel with high-strength steel and aluminum at different rates over the period 2010-2050. We show that light-weighting of passenger cars can become a "gigaton solution": Between 2010 and 2050, persistent light-weighting of passenger cars can, under optimal conditions, lead to cumulative GHG emissions savings of 9-18 gigatons CO2-eq compared to development business-as-usual. Annual savings can be up to 1 gigaton per year. After 2030, enhanced material recycling can lead to further reductions: closed-loop metal recycling in the automotive sector may reduce cumulative emissions by another 4-6 gigatons CO2-eq. The effectiveness of emissions mitigation by material substitution significantly depends on how the recycling system evolves. At present, policies focusing on tailpipe emissions and life cycle assessments of individual cars do not consider this important effect.Light-weighting of passenger cars using high-strength steel or aluminum is a common emissions mitigation strategy. We provide a first estimate of the global impact of light-weighting by material substitution on GHG emissions from passenger cars and the steel and aluminum industries until 2050. We develop a dynamic stock model of the global car fleet and combine it with a dynamic MFA of the associated steel, aluminum, and energy supply industries. We propose four scenarios for substitution of conventional steel with high-strength steel and aluminum at different rates over the period 2010-2050. We show that light-weighting of passenger cars can become a "gigaton solution": Between 2010 and 2050, persistent light-weighting of passenger cars can, under optimal conditions, lead to cumulative GHG emissions savings of 9-18 gigatons CO2-eq compared to development business-as-usual. Annual savings can be up to 1 gigaton per year. After 2030, enhanced material recycling can lead to further reductions: closed-loop metal recycling in the automotive sector may reduce cumulative emissions by another 4-6 gigatons CO2-eq. The effectiveness of emissions mitigation by material substitution significantly depends on how the recycling system evolves. At present, policies focusing on tailpipe emissions and life cycle assessments of individual cars do not consider this important effect.
Light-weighting of passenger cars using high-strength steel or aluminum is a common emissions mitigation strategy. We provide a first estimate of the global impact of lightweighting by material substitution on GHG emissions from passenger cars and the steel and aluminum industries until 2050. We develop a dynamic stock model of the global car fleet and combine it with a dynamic MFA of the associated steel, aluminum, and energy supply industries. We propose four scenarios for substitution of conventional steel with high-strength steel and aluminum at different rates over the period 2010-2050. We show that light-weighting of passenger cars can become a "gigaton solution": Between 2010 and 2050, persistent lightweighting of passenger cars can, under optimal conditions, lead to cumulative GHG emissions savings of 9-18 gigatons CO^sub 2^-eq compared to development business-as-usual. Annual savings can be up to 1 gigaton per year. After 2030, enhanced material recycling can lead to further reductions: closed-loop metal recycling in the automotive sector may reduce cumulative emissions by another 4-6 gigatons CO^sub 2^-eq. The effectiveness of emissions mitigation by material substitution significantly depends on how the recycling system evolves. At present, policies focusing on tailpipe emissions and life cycle assessments of individual cars do not consider this important effect.
Light-weighting of passenger cars using high-strength steel or aluminum is a common emissions mitigation strategy. We provide a first estimate of the global impact of light-weighting by material substitution on GHG emissions from passenger cars and the steel and aluminum industries until 2050. We develop a dynamic stock model of the global car fleet and combine it with a dynamic MFA of the associated steel, aluminum, and energy supply industries. We propose four scenarios for substitution of conventional steel with high-strength steel and aluminum at different rates over the period 2010–2050. We show that light-weighting of passenger cars can become a “gigaton solution”: Between 2010 and 2050, persistent light-weighting of passenger cars can, under optimal conditions, lead to cumulative GHG emissions savings of 9–18 gigatons CO₂-eq compared to development business-as-usual. Annual savings can be up to 1 gigaton per year. After 2030, enhanced material recycling can lead to further reductions: closed-loop metal recycling in the automotive sector may reduce cumulative emissions by another 4–6 gigatons CO₂-eq. The effectiveness of emissions mitigation by material substitution significantly depends on how the recycling system evolves. At present, policies focusing on tailpipe emissions and life cycle assessments of individual cars do not consider this important effect.
Author Modaresi, Roja
Pauliuk, Stefan
Müller, Daniel B
Løvik, Amund N
AuthorAffiliation Norwegian University of Science and Technology
Industrial Ecology Programme (IndEcol), Department of Energy and Process EngineeringEPT
AuthorAffiliation_xml – name: Norwegian University of Science and Technology
– name: Industrial Ecology Programme (IndEcol), Department of Energy and Process EngineeringEPT
Author_xml – sequence: 1
  givenname: Roja
  surname: Modaresi
  fullname: Modaresi, Roja
  email: roja.modaresi@ntnu.no
– sequence: 2
  givenname: Stefan
  surname: Pauliuk
  fullname: Pauliuk, Stefan
  email: Stefan.pauliuk@ntnu.no
– sequence: 3
  givenname: Amund N
  surname: Løvik
  fullname: Løvik, Amund N
– sequence: 4
  givenname: Daniel B
  surname: Müller
  fullname: Müller, Daniel B
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25111289$$D View this record in MEDLINE/PubMed
BookMark eNqN0s1rFTEQAPAgFftaPfgPSEAEPazNJJt0c6wPrQ8qClXwtszum9WU3ewzH4g3_3SzvlakCnoKYX4z-Zg5Ygd-9sTYQxDPQUg4oaiFtEp8vcNWoKWodKPhgK2EAFVZZT4esqMYr4QQUonmHjuUGgBkY1fs-_k4dzjyNYZu9vwFeRpcinwe-BtMFFyJXeYuJpdyckU4z99hjOQ_UViyIs8-uZFLoQVHv-XpM_HNtMM-8cKX3WUiGn_GzsY8OZ8nvvHbHFNwFO-zuwOOkR5cr8fsw6uX79evq4u355v12UWFGkSqao1gqd8aI6yRfXeqRIe2BrJmOyCiqLGnpiM0SkpV11ibQSmFoGEAZa06Zk_3dXdh_pIppnZysadxRE9zjq0sv6NAGQv_pKCNafRp09T_Q6UxYKUo9PEtejXn4MubF1WX40vRoh5dq9xNtG13wU0YvrU3HSvgZA_6MMcYaGh7l3BpTQroxhZEu8xE-2smSsazWxk3Rf9mn-wt9vG3-_3hfgAVS8AG
CODEN ESTHAG
CitedBy_id crossref_primary_10_1021_acs_est_1c07875
crossref_primary_10_1111_jiec_13067
crossref_primary_10_1016_j_resconrec_2018_05_022
crossref_primary_10_1016_j_resconrec_2020_105319
crossref_primary_10_1016_j_resconrec_2021_105558
crossref_primary_10_1016_j_resourpol_2024_104934
crossref_primary_10_1016_j_jclepro_2015_06_085
crossref_primary_10_1021_acs_est_5b03192
crossref_primary_10_3390_ma16072742
crossref_primary_10_1016_j_jclepro_2016_09_050
crossref_primary_10_3390_ma14041010
crossref_primary_10_1016_j_jclepro_2022_132014
crossref_primary_10_3390_machines8030051
crossref_primary_10_1021_acs_est_5b05012
crossref_primary_10_1016_j_chemosphere_2020_128831
crossref_primary_10_1016_j_eiar_2018_12_001
crossref_primary_10_1016_j_trd_2017_08_010
crossref_primary_10_1016_j_spc_2022_01_010
crossref_primary_10_1177_0892705718815530
crossref_primary_10_1016_j_trd_2020_102614
crossref_primary_10_1016_j_resconrec_2020_105208
crossref_primary_10_1016_j_jclepro_2018_11_153
crossref_primary_10_1016_j_resconrec_2017_10_034
crossref_primary_10_1016_j_jclepro_2019_119805
crossref_primary_10_1016_j_matdes_2018_04_021
crossref_primary_10_1134_S0020168521030079
crossref_primary_10_1111_jiec_13321
crossref_primary_10_1007_s40309_015_0065_x
crossref_primary_10_3390_su12135243
crossref_primary_10_1016_j_resconrec_2022_106827
crossref_primary_10_1016_j_resconrec_2021_105979
crossref_primary_10_1016_j_procir_2019_01_003
crossref_primary_10_1016_j_ecolecon_2016_02_017
crossref_primary_10_1134_S0010508223050052
crossref_primary_10_3390_met9090949
crossref_primary_10_1007_s11661_019_05388_6
crossref_primary_10_1007_s00170_016_9225_9
crossref_primary_10_3390_su12145713
crossref_primary_10_1016_j_msea_2022_143708
crossref_primary_10_3390_polym16192737
crossref_primary_10_1016_j_jclepro_2022_130544
crossref_primary_10_1016_j_resconrec_2015_06_008
crossref_primary_10_3390_resources7010009
crossref_primary_10_1016_j_jclepro_2019_119120
crossref_primary_10_1007_s11367_017_1433_5
crossref_primary_10_1016_j_resconrec_2019_104497
crossref_primary_10_1016_j_trd_2021_102807
crossref_primary_10_1111_jiec_13023
crossref_primary_10_2139_ssrn_2779451
crossref_primary_10_1016_j_jclepro_2016_05_073
crossref_primary_10_1016_j_jclepro_2018_05_075
crossref_primary_10_1016_j_oneear_2022_07_005
crossref_primary_10_1021_acs_est_9b00648
crossref_primary_10_1088_1748_9326_11_5_054010
crossref_primary_10_1016_j_resconrec_2017_10_019
crossref_primary_10_1016_j_jmatprotec_2023_118032
crossref_primary_10_1021_acs_est_6b02837
crossref_primary_10_1007_s12239_024_00080_0
crossref_primary_10_1007_s41745_021_00285_7
crossref_primary_10_1007_s10669_016_9622_5
crossref_primary_10_1016_j_jclepro_2021_128085
crossref_primary_10_1016_j_resconrec_2020_105118
crossref_primary_10_1007_s11367_020_01774_0
crossref_primary_10_1021_acs_est_8b04249
crossref_primary_10_2139_ssrn_3664564
crossref_primary_10_1016_j_procir_2017_11_021
crossref_primary_10_1016_j_spc_2024_09_011
crossref_primary_10_1111_jiec_13531
crossref_primary_10_1155_2022_2870005
crossref_primary_10_1016_j_ecolecon_2015_08_012
crossref_primary_10_1021_acs_est_1c00816
crossref_primary_10_1038_s43017_023_00449_2
crossref_primary_10_3390_en12193612
crossref_primary_10_1016_j_procir_2023_09_079
crossref_primary_10_1007_s41247_019_0056_9
crossref_primary_10_1016_j_wear_2023_204743
crossref_primary_10_1080_20964129_2019_1598780
crossref_primary_10_1007_s00170_017_1565_6
crossref_primary_10_1088_1748_9326_ab0fe3
crossref_primary_10_3390_recycling4010005
crossref_primary_10_1007_s13632_020_00660_3
crossref_primary_10_3390_jcs8040155
crossref_primary_10_1016_j_resconrec_2016_07_004
crossref_primary_10_1016_j_jclepro_2018_11_006
crossref_primary_10_1016_j_jclepro_2020_122237
crossref_primary_10_1111_jiec_12316
crossref_primary_10_1021_acssuschemeng_8b05588
crossref_primary_10_2351_7_0000353
crossref_primary_10_1007_s00170_022_10623_3
crossref_primary_10_3390_su9071049
crossref_primary_10_1098_rsta_2016_0364
crossref_primary_10_1016_j_resconrec_2016_09_029
crossref_primary_10_1016_j_cirp_2021_05_002
crossref_primary_10_1007_s11367_020_01775_z
crossref_primary_10_1088_2515_7620_ad82b3
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121231
crossref_primary_10_1111_jiec_13112
crossref_primary_10_3389_frsus_2021_738890
crossref_primary_10_1016_j_cirp_2018_05_008
crossref_primary_10_1016_j_resconrec_2020_104925
crossref_primary_10_1016_j_spc_2022_07_007
crossref_primary_10_1111_jiec_12702
crossref_primary_10_1088_1742_6596_1622_1_012127
crossref_primary_10_1007_s10668_024_04762_8
crossref_primary_10_1007_s00170_021_08122_y
crossref_primary_10_1002_wcc_881
crossref_primary_10_5781_JWJ_2018_36_3_2
crossref_primary_10_1021_acs_est_5b01860
Cites_doi 10.1021/es3031424
10.1016/j.ecolecon.2005.09.025
10.1016/j.apenergy.2014.03.023
10.1111/j.1530-9290.2012.00532.x
10.1016/j.energy.2011.12.033
10.1016/j.resconrec.2004.07.003
10.1007/s11367-008-0058-0
10.1021/es9038769
10.1038/nclimate1698
10.1021/es800314w
10.1021/es302433p
10.1021/es3013529
10.1021/es201904c
10.1021/es1034552
10.1021/es405604g
10.1021/es303149z
10.1016/S0892-6875(02)00080-8
10.1021/es903306e
10.1021/es300648w
10.4271/2013-01-0655
10.1162/108819800569816
10.1021/es304256s
10.1021/es3042115
10.1111/j.1530-9290.2011.00342.x
10.4271/2014-01-1004
10.1007/s12053-008-9032-8
10.1021/es500820h
10.1557/mrs.2012.52
10.1021/es202938m
ContentType Journal Article
Copyright Copyright © 2014 American Chemical Society
Copyright American Chemical Society Sep 16, 2014
Copyright_xml – notice: Copyright © 2014 American Chemical Society
– notice: Copyright American Chemical Society Sep 16, 2014
DBID N~.
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7TV
7S9
L.6
DOI 10.1021/es502930w
DatabaseName American Chemical Society (ACS) Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
Pollution Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
Pollution Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Biotechnology Research Abstracts

AGRICOLA
Pollution Abstracts
Database_xml – sequence: 1
  dbid: N~.
  name: American Chemical Society (ACS) Open Access
  url: https://pubs.acs.org
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
EndPage 10784
ExternalDocumentID 3438693531
25111289
10_1021_es502930w
a263435125
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID -
.K2
1AW
3R3
4.4
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
N~.
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
6TJ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
ADUKH
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
MS~
MW2
XSW
ZCA
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
7TV
7S9
L.6
ID FETCH-LOGICAL-a510t-45a19ecd660962cb730ba941e96dfaaa04ace8bea6322344a46f333a151f13993
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Fri Jul 11 07:12:33 EDT 2025
Fri Jul 11 07:14:17 EDT 2025
Fri Jul 11 14:45:37 EDT 2025
Sun Jun 29 15:07:14 EDT 2025
Thu Apr 03 07:04:15 EDT 2025
Thu Apr 24 22:51:16 EDT 2025
Tue Jul 01 04:28:49 EDT 2025
Thu Aug 27 13:42:38 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License http://pubs.acs.org/page/policy/authorchoice_termsofuse.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a510t-45a19ecd660962cb730ba941e96dfaaa04ace8bea6322344a46f333a151f13993
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=http://dx.doi.org/10.1021/es502930w
PMID 25111289
PQID 1564000685
PQPubID 45412
PageCount 9
ParticipantIDs proquest_miscellaneous_2000313691
proquest_miscellaneous_1566857884
proquest_miscellaneous_1562661920
proquest_journals_1564000685
pubmed_primary_25111289
crossref_citationtrail_10_1021_es502930w
crossref_primary_10_1021_es502930w
acs_journals_10_1021_es502930w
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
N~.
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-16
PublicationDateYYYYMMDD 2014-09-16
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref3/cit3
Worrell E. (ref38/cit38) 2009; 2
Liu G. (ref32/cit32) 2013; 3
Bertram M. (ref101/ref101_1) 2009; 14
ref52/cit52
Milford R. L. (ref34/cit34) 2013; 47
ref23/cit23
Müller D. B. (ref28/cit28) 2006; 59
ref2/cit2
Geyer R. (ref14/cit14) 2008; 42
Hawkins T. R. (ref4/cit4) 2013; 17
Pauliuk S. (ref37/cit37) 2013; 47
ref48/cit48
Kim H.-J. (ref16/cit16) 2010; 15
Das S. (ref25/cit25) 2005; 43
ref17/cit17
Cullen J. M. (ref33/cit33) 2012; 46
ref10/cit10
Field F. (ref24/cit24) 2000; 4
Joyce Dargay D. G. a. M. S. (ref31/cit31) 2007
ref35/cit35
ref53/cit53
ref19/cit19
Kagawa S. (ref20/cit20) 2011; 45
Helms H. (ref100/ref100_1) 2006; 12
Bastani P. (ref27/cit27) 2012; 46
ref46/cit46
ref49/cit49
Nakajima K. (ref57/cit57) 2010; 44
Lewis A. M. (ref18/cit18) 2014; 126
ref50/cit50
Kim H.-J. (ref12/cit12) 2010; 14
Xu M. (ref55/cit55) 2010; 44
ref6/cit6
ref36/cit36
ref11/cit11
ref29/cit29
Nakamura S. (ref42/cit42) 2014; 48
Nakamura S. (ref41/cit41) 2012; 46
Pauliuk S. (ref44/cit44) 2011; 46
ref39/cit39
ref5/cit5
ref51/cit51
ref43/cit43
van Schaik A. (ref56/cit56) 2002; 15
Mayyas A. T. (ref15/cit15) 2012; 39
Løvik A. N. (ref59/cit59) 2014; 48
Cullen J. M. (ref60/cit60) 2013; 47
ref26/cit26
Modaresi R. (ref21/cit21) 2012; 46
Gesing A. (ref40/cit40) 2004; 56
Keoleian G. A. (ref13/cit13) 2012; 37
Kim H. C. (ref8/cit8) 2013; 47
Graedel T. E. (ref58/cit58) 2011; 15
Alonso E. (ref54/cit54) 2012; 46
ref30/cit30
ref47/cit47
ref1/cit1
ref7/cit7
Johannaber M. E. (ref9/cit9) 2007
Pauliuk S. (ref22/cit22) 2012; 46
References_xml – volume: 12
  start-page: 58
  issue: 1
  year: 2006
  ident: ref100/ref100_1
  publication-title: Int. J. Life Cycle Assess.
– volume: 14
  issue: 6
  year: 2010
  ident: ref12/cit12
  publication-title: J. Ind. Ecol.
– volume: 15
  issue: 1
  year: 2010
  ident: ref16/cit16
  publication-title: J. Ind. Ecol.
– volume: 47
  start-page: 3455
  issue: 7
  year: 2013
  ident: ref34/cit34
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es3031424
– volume: 46
  start-page: 517
  issue: 3
  year: 2012
  ident: ref27/cit27
  publication-title: Trans. Res. A: Policy Practice
– volume: 59
  start-page: 152
  year: 2006
  ident: ref28/cit28
  publication-title: Ecol. Econ.
  doi: 10.1016/j.ecolecon.2005.09.025
– volume: 126
  start-page: 13
  issue: 0
  year: 2014
  ident: ref18/cit18
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.03.023
– ident: ref36/cit36
– ident: ref50/cit50
– ident: ref47/cit47
– volume: 17
  start-page: 53
  issue: 1
  year: 2013
  ident: ref4/cit4
  publication-title: J. Ind. Ecol.
  doi: 10.1111/j.1530-9290.2012.00532.x
– ident: ref11/cit11
– volume: 39
  start-page: 412
  issue: 1
  year: 2012
  ident: ref15/cit15
  publication-title: Energy
  doi: 10.1016/j.energy.2011.12.033
– ident: ref19/cit19
– volume: 43
  start-page: 375
  issue: 4
  year: 2005
  ident: ref25/cit25
  publication-title: Resour., Conserv. Recyc.
  doi: 10.1016/j.resconrec.2004.07.003
– volume: 14
  start-page: 62
  issue: 1
  year: 2009
  ident: ref101/ref101_1
  publication-title: Int. J. Life Cycle Assess.
  doi: 10.1007/s11367-008-0058-0
– volume: 44
  start-page: 5594
  issue: 14
  year: 2010
  ident: ref57/cit57
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9038769
– volume: 3
  start-page: 338
  issue: 4
  year: 2013
  ident: ref32/cit32
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate1698
– ident: ref23/cit23
– volume: 42
  start-page: 6973
  issue: 18
  year: 2008
  ident: ref14/cit14
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es800314w
– ident: ref29/cit29
– volume: 46
  start-page: 13048
  issue: 24
  year: 2012
  ident: ref33/cit33
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es302433p
– volume: 46
  start-page: 9266
  issue: 17
  year: 2012
  ident: ref41/cit41
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es3013529
– volume: 46
  start-page: 7
  issue: 1
  year: 2012
  ident: ref22/cit22
  publication-title: Environ. Sci. Technol.
– volume: 46
  start-page: 148
  issue: 1
  year: 2011
  ident: ref44/cit44
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es201904c
– ident: ref5/cit5
– volume-title: Jörg Leyers Determination of Weight Elasticity of Fuel Economy for Conventional ICE Vehicles, Hybrid Vehicles and Fuel Cell Vehicles
  year: 2007
  ident: ref9/cit9
– volume: 45
  start-page: 1184
  issue: 4
  year: 2011
  ident: ref20/cit20
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es1034552
– volume-title: Vehicle Ownership and Income Growth, Worldwide: 1960–2030
  year: 2007
  ident: ref31/cit31
– ident: ref49/cit49
– ident: ref53/cit53
– volume: 48
  start-page: 4257
  issue: 8
  year: 2014
  ident: ref59/cit59
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es405604g
– volume: 47
  start-page: 3448
  issue: 7
  year: 2013
  ident: ref37/cit37
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es303149z
– ident: ref43/cit43
– ident: ref48/cit48
– ident: ref2/cit2
– volume: 15
  start-page: 1001
  issue: 11
  year: 2002
  ident: ref56/cit56
  publication-title: Miner. Eng.
  doi: 10.1016/S0892-6875(02)00080-8
– ident: ref26/cit26
– volume: 44
  start-page: 4037
  issue: 11
  year: 2010
  ident: ref55/cit55
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es903306e
– volume: 46
  start-page: 8587
  issue: 16
  year: 2012
  ident: ref21/cit21
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es300648w
– ident: ref10/cit10
– ident: ref6/cit6
– ident: ref35/cit35
– ident: ref51/cit51
  doi: 10.4271/2013-01-0655
– volume: 4
  start-page: 71
  issue: 2
  year: 2000
  ident: ref24/cit24
  publication-title: J. Ind. Ecol.
  doi: 10.1162/108819800569816
– ident: ref45/cit45
– ident: ref46/cit46
– volume: 56
  start-page: 18
  issue: 8
  year: 2004
  ident: ref40/cit40
  publication-title: J. Miner.
– volume: 47
  start-page: 3057
  issue: 7
  year: 2013
  ident: ref60/cit60
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es304256s
– ident: ref1/cit1
– volume: 47
  start-page: 6089
  issue: 12
  year: 2013
  ident: ref8/cit8
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es3042115
– volume: 15
  start-page: 355
  issue: 3
  year: 2011
  ident: ref58/cit58
  publication-title: J. Ind. Ecol.
  doi: 10.1111/j.1530-9290.2011.00342.x
– ident: ref17/cit17
  doi: 10.4271/2014-01-1004
– ident: ref3/cit3
– ident: ref39/cit39
– volume: 2
  start-page: 109
  issue: 2
  year: 2009
  ident: ref38/cit38
  publication-title: Energy Efficiency
  doi: 10.1007/s12053-008-9032-8
– volume: 48
  start-page: 7207
  issue: 13
  year: 2014
  ident: ref42/cit42
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es500820h
– volume: 37
  year: 2012
  ident: ref13/cit13
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2012.52
– ident: ref52/cit52
– volume: 46
  start-page: 2893
  issue: 5
  year: 2012
  ident: ref54/cit54
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es202938m
– ident: ref7/cit7
– ident: ref30/cit30
SSID ssj0002308
Score 2.4911833
Snippet Light-weighting of passenger cars using high-strength steel or aluminum is a common emissions mitigation strategy. We provide a first estimate of the global...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10776
SubjectTerms Air Pollutants - analysis
Aluminum
Aluminum industry
Automobiles
carbon
Carbon - analysis
Carbon cycle
Carbon Footprint
Emissions
energy
Gasoline - analysis
Greenhouse Effect
greenhouse gas emissions
Greenhouse gases
High strength steel
Industry
Internationality
issues and policy
life cycle assessment
Models, Theoretical
Recycling
Steel
Steel industry
Title Global Carbon Benefits of Material Substitution in Passenger Cars until 2050 and the Impact on the Steel and Aluminum Industries
URI http://dx.doi.org/10.1021/es502930w
https://www.ncbi.nlm.nih.gov/pubmed/25111289
https://www.proquest.com/docview/1564000685
https://www.proquest.com/docview/1562661920
https://www.proquest.com/docview/1566857884
https://www.proquest.com/docview/2000313691
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3Lb9MwGP80xgUOPAYbhW0yjwOXFNtx3Pg4yqaBxIQ0JvVW2bEtVXTp1KSaxAHxp_PZeVC0dVwSWf6cWPb3-Fn-HgDvvMgzo4xOrAolzDh1Sa4FxabCd2Y90zHb55k8vRBfJtlkC95uuMHn7IOrMoo2iV7fg_tcon0J-Gd83qtbxNB5V6ZApXLSpQ9aHxpMT1H9a3o24MloV04ew6cuOqdxJ_kxXNVmWPy8mazxrik_gUctriRHDSM8hS1X7sDDtWyDO7B7_DeoDUlbqa6ewe8m8T8Z66VZlOQjqj8_qyuy8OSrriOLkqBgolcB7iOZleQbgu7gELsMoyoSCk7MCacZJbq0BFEl-RzjLwmSh9Z57dw89h2hOpyVq0vSVQ1x1XO4ODn-Pj5N2soMiUYZrhORaaZcYaXEExAvDKoJo5VgTknrtdZU6MLlxmmJ-iIVQgvp0zTVCC88C5BoF7bLReleAMHj5choR6m1COa8z3HwiNpRobhNjeQDOMStm7aSVU3jpTln036NB_C-29Vp0eY1D-U15reRvulJr5pkHrcR7XessfbXTIpg2fNsAK_7bpTEcL2iS7dYRZqAdhSnd9LgN0Z5LjbThOCplKVSsQHsNazZzzYcCBFRqJf_W5VX8AChnQieLUzuw3a9XLkDhE-1OYzig8-zX8M_SDAUag
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLdgHIADg8GgbAyDOHDJZieOGx-7alMH24S0Teoteo5tqaKkqEmFxIk_nWfnY2XagFNk-dmx7Pfxs2y_HyEfnMhSrTRERnkKs5jZKAPBsKjwmxrHIWT7PJeTK_Fpmk7bNDn-LQwOosKeqnCIf51dgB_YKmUYmtiP--RBKoX0NA2j8UXvdRFKZx1bgUrktMsitN7UR6Ci-jMC3QErQ3g53mx4isLAwq2Sr_urWu8XP2_kbPy_kT8lT1qUSUeNWjwj92y5RR6v5R7cIttH10_cULS18eo5-dXQANAxLPWipIfoDN2srujC0TOog8JS727CHQNcVTor6ReE4P567NK3qqinn5jTmKWMQmkoYkx6El5jUhT3pYva2nmoG6FznJWrb7TjELHVC3J1fHQ5nkQtT0MEaNF1JFLgyhZGStwPxYVGp6FBCW6VNA4AmIDCZtqCRO-RCAFCuiRJAMGG4x4gbZONclHaV4TiZnOowTJmDEI75zJsPGRmWKjYJFrGA7KHU5y3dlbl4Qg95nk_xwPysVvcvGiznHuyjfltou970e9Nao_bhHY7DVn7Kyqgj_NZOiDv-mq0S3_YAqVdrIKMxz4qZn-VwT6GWSbulvFPqRKeSMUH5GWjof1o_fYQ8YV6_a9ZeUseTi7PTvPTk_PPO-QRgj7h77xwuUs26uXKvkFgVeu9YFG_ARX0G7E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BkBA88DEYFMYwiAdestmJ48aPpaza-BiTxqS-RXZsSxUlnepUSDzxp3N2k1DQBjxFls_Oyfbd_U4-3wG8crzItdQqMTKUMEupTQrFKTYlfnPjmIrZPk_E0Tl_N82nraMY3sIgEx5n8vESP0j1hXFthgF2YH1O0TzRb9fhBgIRFko1jMZnveZFOF10FQtkJqZdJqHNocEKVf53K3QFtIwmZnIXPvXMxciSL_urRu9X3__I2_j_3N-DOy3aJKP18bgP12y9Dbc3chBuw87hr6duSNrKun8AP9blAMhYLfWiJm9QKbpZ48nCkY-qiQeXBLUTYw1wd8msJqcIxUOY7DKM8iSUoZiTlOaUqNoQxJrkOL7KJEgeWmeNtfPYN0IlOatXX0lXS8T6h3A-Ofw8Pkraeg2Jwr1oEp4rJm1lhEC_KK00Kg-tJGdWCuOUUpSryhbaKoFaJONcceGyLFMIOhwLQGkHtupFbR8DQadzqJWl1BiEeM4VOHhIzbCSqcm0SAewh8tctvLmy3iVnrKyX-MBvO42uKzabOeh6Mb8MtKXPenFOsXHZUS73SnZ-GsueLD3RT6AF303yme4dFG1XawiTcBAMqV_pcE5hkXBr6YJT6oylgnJBvBofUp7boObiDhDPvnXqjyHm6dvJ-WH45P3T-EWYj8eQl-Y2IWtZrmyzxBfNXovCtVPKIkeKw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+carbon+benefits+of+material+substitution+in+passenger+cars+until+2050+and+the+impact+on+the+steel+and+aluminum+industries&rft.jtitle=Environmental+science+%26+technology&rft.au=Modaresi%2C+Roja&rft.au=Pauliuk%2C+Stefan&rft.au=L%C3%B8vik%2C+Amund+N&rft.au=M%C3%BCller%2C+Daniel+B&rft.date=2014-09-16&rft.issn=1520-5851&rft.eissn=1520-5851&rft.volume=48&rft.issue=18&rft.spage=10776&rft_id=info:doi/10.1021%2Fes502930w&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon