What could have caused pre-industrial biomass burning emissions to exceed current rates?
Recent studies based on trace gas mixing ratios in ice cores and charcoal data indicate that biomass burning emissions over the past millennium exceeded contemporary emissions by up to a factor of 4 for certain time periods. This is surprising because various sources of biomass burning are linked wi...
Saved in:
Published in | Climate of the past Vol. 9; no. 1; pp. 289 - 306 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
31.01.2013
Copernicus Publications |
Subjects | |
Online Access | Get full text |
ISSN | 1814-9332 1814-9324 1814-9332 |
DOI | 10.5194/cp-9-289-2013 |
Cover
Abstract | Recent studies based on trace gas mixing ratios in ice cores and charcoal data indicate that biomass burning emissions over the past millennium exceeded contemporary emissions by up to a factor of 4 for certain time periods. This is surprising because various sources of biomass burning are linked with population density, which has increased over the past centuries. We have analysed how emissions from several landscape biomass burning sources could have fluctuated to yield emissions that are in correspondence with recent results based on ice core mixing ratios of carbon monoxide (CO) and its isotopic signature measured at South Pole station (SPO). Based on estimates of contemporary landscape fire emissions and the TM5 chemical transport model driven by present-day atmospheric transport and OH concentrations, we found that CO mixing ratios at SPO are more sensitive to emissions from South America and Australia than from Africa, and are relatively insensitive to emissions from the Northern Hemisphere. We then explored how various landscape biomass burning sources may have varied over the past centuries and what the resulting emissions and corresponding CO mixing ratio at SPO would be, using population density variations to reconstruct sources driven by humans (e.g., fuelwood burning) and a new model to relate savanna emissions to changes in fire return times. We found that to match the observed ice core CO data, all savannas in the Southern Hemisphere had to burn annually, or bi-annually in combination with deforestation and slash and burn agriculture exceeding current levels, despite much lower population densities and lack of machinery to aid the deforestation process. While possible, these scenarios are unlikely and in conflict with current literature. However, we do show the large potential for increased emissions from savannas in a pre-industrial world. This is mainly because in the past, fuel beds were probably less fragmented compared to the current situation; satellite data indicates that the majority of savannas have not burned in the past 10 yr, even in Africa, which is considered "the burning continent". Although we have not considered increased charcoal burning or changes in OH concentrations as potential causes for the elevated CO concentrations found at SPO, it is unlikely they can explain the large increase found in the CO concentrations in ice core data. Confirmation of the CO ice core data would therefore call for radical new thinking about causes of variable global fire rates over recent centuries. |
---|---|
AbstractList | Recent studies based on trace gas mixing ratios in ice cores and charcoal data indicate that biomass burning emissions over the past millennium exceeded contemporary emissions by up to a factor of 4 for certain time periods. This is surprising because various sources of biomass burning are linked with population density, which has increased over the past centuries. We have analysed how emissions from several landscape biomass burning sources could have fluctuated to yield emissions that are in correspondence with recent results based on ice core mixing ratios of carbon monoxide (CO) and its isotopic signature measured at South Pole station (SPO). Based on estimates of contemporary landscape fire emissions and the TM5 chemical transport model driven by present-day atmospheric transport and OH concentrations, we found that CO mixing ratios at SPO are more sensitive to emissions from South America and Australia than from Africa, and are relatively insensitive to emissions from the Northern Hemisphere. We then explored how various landscape biomass burning sources may have varied over the past centuries and what the resulting emissions and corresponding CO mixing ratio at SPO would be, using population density variations to reconstruct sources driven by humans (e.g., fuelwood burning) and a new model to relate savanna emissions to changes in fire return times. We found that to match the observed ice core CO data, all savannas in the Southern Hemisphere had to burn annually, or bi-annually in combination with deforestation and slash and burn agriculture exceeding current levels, despite much lower population densities and lack of machinery to aid the deforestation process. While possible, these scenarios are unlikely and in conflict with current literature. However, we do show the large potential for increased emissions from savannas in a pre-industrial world. This is mainly because in the past, fuel beds were probably less fragmented compared to the current situation; satellite data indicates that the majority of savannas have not burned in the past 10 yr, even in Africa, which is considered "the burning continent". Although we have not considered increased charcoal burning or changes in OH concentrations as potential causes for the elevated CO concentrations found at SPO, it is unlikely they can explain the large increase found in the CO concentrations in ice core data. Confirmation of the CO ice core data would therefore call for radical new thinking about causes of variable global fire rates over recent centuries. Recent studies based on trace gas mixing ratios in ice cores and charcoal data indicate that biomass burning emissions over the past millennium exceeded contemporary emissions by up to a factor of 4 for certain time periods. This is surprising because various sources of biomass burning are linked with population density, which has increased over the past centuries. We have analysed how emissions from several landscape biomass burning sources could have fluctuated to yield emissions that are in correspondence with recent results based on ice core mixing ratios of carbon monoxide (CO) and its isotopic signature measured at South Pole station (SPO). Based on estimates of contemporary landscape fire emissions and the TM5 chemical transport model driven by present-day atmospheric transport and OH concentrations, we found that CO mixing ratios at SPO are more sensitive to emissions from South America and Australia than from Africa, and are relatively insensitive to emissions from the Northern Hemisphere. We then explored how various landscape biomass burning sources may have varied over the past centuries and what the resulting emissions and corresponding CO mixing ratio at SPO would be, using population density variations to reconstruct sources driven by humans (e.g., fuelwood burning) and a new model to relate savanna emissions to changes in fire return times. We found that to match the observed ice core CO data, all savannas in the Southern Hemisphere had to burn annually, or bi-annually in combination with deforestation and slash and burn agriculture exceeding current levels, despite much lower population densities and lack of machinery to aid the deforestation process. While possible, these scenarios are unlikely and in conflict with current literature. However, we do show the large potential for increased emissions from savannas in a pre-industrial world. This is mainly because in the past, fuel beds were probably less fragmented compared to the current situation; satellite data indicates that the majority of savannas have not burned in the past 10 yr, even in Africa, which is considered "the burning continent". Although we have not considered increased charcoal burning or changes in OH concentrations as potential causes for the elevated CO concentrations found at SPO, it is unlikely they can explain the large increase found in the CO concentrations in ice core data. Confirmation of the CO ice core data would therefore call for radical new thinking about causes of variable global fire rates over recent centuries |
Audience | Academic |
Author | Peters, W. van Leeuwen, T. T. van der Werf, G. R. Giglio, L. |
Author_xml | – sequence: 1 givenname: G. R. surname: van der Werf fullname: van der Werf, G. R. – sequence: 2 givenname: W. orcidid: 0000-0001-8166-2070 surname: Peters fullname: Peters, W. – sequence: 3 givenname: T. T. surname: van Leeuwen fullname: van Leeuwen, T. T. – sequence: 4 givenname: L. surname: Giglio fullname: Giglio, L. |
BookMark | eNp1ks2L1TAUxYuM4Mzo0n3BjS46Nk36ETcyDH48GBD8QHfhNrnt5NGX1CSdGf97b-eJ-gallITwO4fk3HOSHTnvMMuesvKsZlK81HMhi6qjv2T8QXbMOiYKyXl19Nf-UXYS47YsRcdkfZx9-3oFKdd-mUx-BdeYa1gimnwOWFhnlpiChSnvrd9BjHm_BGfdmOPOxmi9i3nyOd5qJIleQkCX8gAJ4-vH2cMBpohPfq2n2Ze3bz5fvC8uP7zbXJxfFlCXXSpEawz2Q1lXrIIGhmYYaMdqLRveMNl1fWewBehkq7XkWJXIy6E3UGMr-r7lp9lm72s8bNUc7A7CD-XBqrsDH0YFIVk9oaoQm7aDnrWmFi3rZSvFIBsNDAVKNOT1au91AyOu70SnHARt453hZPuwmt8sQblpXealj0oIUYuKxM_34jn47wvGpCgjjdMEDv0SFeMV71jNBCf02T106ylYiokoRlFwLtkfagS6vHWDTwH0aqrOaXqCN6Jc33_2D4o-QzPSVJDB0vmB4MWBgJiEt2mkuUe1-fTxkC32rA4-xoDD74BZqdbOKT0rqahzau0c8fwer22CREWhS9npP6qfF5zb6w |
CitedBy_id | crossref_primary_10_1039_D4VA00202D crossref_primary_10_1098_rstb_2015_0345 crossref_primary_10_5194_acp_20_10937_2020 crossref_primary_10_5194_cp_10_1905_2014 crossref_primary_10_5194_bg_13_267_2016 crossref_primary_10_1098_rstb_2015_0469 crossref_primary_10_5194_gmd_10_3329_2017 crossref_primary_10_5194_gmd_12_4681_2019 crossref_primary_10_1002_2017GB005787 crossref_primary_10_1007_s40641_016_0031_0 crossref_primary_10_1016_j_ecolind_2024_112394 crossref_primary_10_1016_j_quascirev_2018_10_005 crossref_primary_10_1002_2013GL058773 crossref_primary_10_1002_2015GL064259 crossref_primary_10_1126_sciadv_abc1379 crossref_primary_10_5194_esd_9_663_2018 crossref_primary_10_1038_nclimate2999 crossref_primary_10_5194_acp_15_7977_2015 crossref_primary_10_1016_j_rse_2018_08_005 crossref_primary_10_3390_f9020059 crossref_primary_10_5194_bg_11_1345_2014 crossref_primary_10_1016_j_quaint_2017_03_046 crossref_primary_10_1016_j_gloplacha_2018_01_002 crossref_primary_10_1016_j_quascirev_2015_11_012 crossref_primary_10_5194_acp_17_9223_2017 crossref_primary_10_1098_rstb_2015_0177 crossref_primary_10_1021_cr500446g crossref_primary_10_3390_en14041111 crossref_primary_10_5194_acp_14_3589_2014 crossref_primary_10_5194_bg_11_7305_2014 crossref_primary_10_1177_0959683613508159 crossref_primary_10_5194_acp_25_1105_2025 crossref_primary_10_5194_acp_19_12545_2019 crossref_primary_10_1073_pnas_2402868121 crossref_primary_10_1016_j_atmosenv_2014_03_003 crossref_primary_10_5194_acp_17_1557_2017 crossref_primary_10_1371_journal_pone_0222011 crossref_primary_10_1002_2013JG002532 crossref_primary_10_5194_bg_11_1085_2014 crossref_primary_10_1029_2020JD032932 crossref_primary_10_5194_cp_19_2287_2023 crossref_primary_10_1029_2019GL085101 crossref_primary_10_1038_s41467_018_05592_9 crossref_primary_10_5194_acp_24_533_2024 |
Cites_doi | 10.1073/pnas.0804042105 10.5194/acp-7-295-2007 10.1029/1999JD901006 10.1111/j.1466-8238.2010.00568.x 10.1126/science.1197257 10.1016/j.quascirev.2009.09.028 10.1177/0959683609356587 10.1126/science.1144856 10.1111/j.1365-2486.2008.01754.x 10.1038/nature11461 10.1007/BF00137988 10.1126/science.1163886 10.1029/2012JG002128 10.5194/acp-11-4039-2011 10.1007/0-387-21515-8_4 10.1126/science.1159769 10.1071/WF02042 10.5194/bg-7-1171-2010 10.3402/tellusb.v51i2.16276 10.1029/1999JD900835 10.1029/2002JD002272 10.1177/0959683612450196 10.3402/tellusb.v55i1.16354 10.1038/ngeo313 10.1029/2009GB003460 10.1016/j.atmosenv.2009.08.021 10.5194/acp-10-11707-2010 10.1038/nature01779 10.1111/j.1365-2486.2008.01786.x 10.3402/tellusb.v64i0.18196 10.1080/0143116031000070283 10.5194/bg-7-1877-2010 10.1126/science.1186925 10.1071/WF08016 10.1038/ngeo443 10.5194/acp-12-4365-2012 10.1073/pnas.1003669107 10.1046/j.1365-2699.2002.00677.x 10.1016/S0079-1946(97)81142-1 10.1111/j.1365-2699.2011.02595.x 10.5194/acp-10-7017-2010 10.5194/acp-11-3611-2011 10.1016/j.quascirev.2012.11.029 10.2307/1932179 10.1029/2005JD006338 10.1016/j.rse.2011.05.025 10.1038/440436a 10.1016/j.rse.2009.08.016 10.1016/j.gloplacha.2007.08.005 10.1029/1999GB900046 10.5194/gmd-3-445-2010 10.1073/pnas.0901970106 10.1073/pnas.0604090103 10.1016/j.quascirev.2010.10.010 10.1038/19066 10.1029/2007GB002961 10.1126/science.1115193 10.1029/2002GB001952 10.1111/j.1365-2486.2008.01655.x 10.1034/j.1600-0889.1999.00013.x 10.5194/acp-5-417-2005 10.1890/1051-0761(1999)009[0526:AYRAOC]2.0.CO;2 10.1126/science.227.4682.53 10.1029/2000GB001382 10.1111/j.1365-2486.2005.00920.x 10.1029/2007GB003122 10.1016/j.rse.2008.10.006 10.1890/100052 10.1071/9780643096493 10.1071/WF07011 10.1126/science.1086112 10.5194/acp-11-4705-2011 10.1126/science.1199809 10.1029/2009GL040000 10.1016/j.atmosenv.2010.01.011 10.1098/rstb.2006.1980 10.1007/s00382-007-0334-x 10.1034/j.1600-0889.1990.00009.x 10.1016/j.rse.2005.04.007 10.1029/2004GB002278 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2013 Copernicus GmbH Copyright Copernicus GmbH 2013 Wageningen University & Research |
Copyright_xml | – notice: COPYRIGHT 2013 Copernicus GmbH – notice: Copyright Copernicus GmbH 2013 – notice: Wageningen University & Research |
DBID | AAYXX CITATION ISR 7TG 7TN 7UA ABUWG AEUYN AFKRA AZQEC BENPR BFMQW BHPHI BKSAR C1K CCPQU DWQXO F1W H96 H97 HCIFZ KL. L.G PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7QH 7TV QVL DOA |
DOI | 10.5194/cp-9-289-2013 |
DatabaseName | CrossRef Gale In Context: Science Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Continental Europe Database Natural Science Collection ProQuest Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Aqualine Pollution Abstracts NARCIS:Publications DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Continental Europe Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Pollution Abstracts Aqualine |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 1814-9332 |
EndPage | 306 |
ExternalDocumentID | oai_doaj_org_article_2ee678ab17d5471b9794f96ca1e4e9ed oai_library_wur_nl_wurpubs_444542 2911121721 A481436407 10_5194_cp_9_289_2013 |
GeographicLocations | South America Australia Antarctica, South Pole Africa |
GeographicLocations_xml | – name: Antarctica, South Pole – name: South America – name: Africa – name: Australia |
GroupedDBID | 29B 2WC 2XV 4P2 5GY 5VS 8FE 8FH 8R4 8R5 AAFWJ AAYXX ABUWG ADBBV AENEX AEUYN AFKRA AFPKN AHGZY ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BFMQW BHPHI BKSAR BPHCQ CCPQU CITATION D1K E3Z EBS EDH EJD GROUPED_DOAJ H13 HCIFZ IAO IEA IEP IPNFZ ISR ITC K6- KQ8 LK5 M7R OK1 OVT P2P PCBAR PHGZM PHGZT PIMPY PQQKQ PROAC Q2X RIG RKB RNS TR2 ~02 BBORY PMFND 7TG 7TN 7UA AZQEC C1K DWQXO F1W H96 H97 KL. L.G PKEHL PQEST PQUKI PRINS 7QH 7TV PUEGO 02 3V. ADACO C1A M~E QVL |
ID | FETCH-LOGICAL-a508t-47ddebf05212a6af6ff21215c96361988b8de7aa897cc93e20e30fbda5e74bb73 |
IEDL.DBID | DOA |
ISSN | 1814-9332 1814-9324 |
IngestDate | Wed Aug 27 01:04:15 EDT 2025 Mon May 10 21:34:05 EDT 2021 Fri Sep 05 09:28:26 EDT 2025 Fri Jul 25 03:35:05 EDT 2025 Tue Jun 17 21:58:14 EDT 2025 Tue Jun 10 20:58:46 EDT 2025 Fri Jun 27 05:16:32 EDT 2025 Thu Apr 24 23:10:12 EDT 2025 Tue Jul 01 03:45:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/3.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a508t-47ddebf05212a6af6ff21215c96361988b8de7aa897cc93e20e30fbda5e74bb73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8166-2070 |
OpenAccessLink | https://doaj.org/article/2ee678ab17d5471b9794f96ca1e4e9ed |
PQID | 1315213391 |
PQPubID | 105735 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2ee678ab17d5471b9794f96ca1e4e9ed wageningen_narcis_oai_library_wur_nl_wurpubs_444542 proquest_miscellaneous_1323815143 proquest_journals_1315213391 gale_infotracmisc_A481436407 gale_infotracacademiconefile_A481436407 gale_incontextgauss_ISR_A481436407 crossref_primary_10_5194_cp_9_289_2013 crossref_citationtrail_10_5194_cp_9_289_2013 |
ProviderPackageCode | CITATION AAYXX QVL |
PublicationCentury | 2000 |
PublicationDate | 20130131 |
PublicationDateYYYYMMDD | 2013-01-31 |
PublicationDate_xml | – month: 01 year: 2013 text: 20130131 day: 31 |
PublicationDecade | 2010 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | Climate of the past |
PublicationYear | 2013 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref82 ref81 ref40 ref83 ref80 ref35 ref79 ref34 ref78 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref77 ref32 ref76 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref26 doi: 10.1073/pnas.0804042105 – ident: ref7 doi: 10.5194/acp-7-295-2007 – ident: ref71 doi: 10.1029/1999JD901006 – ident: ref5 doi: 10.1111/j.1466-8238.2010.00568.x – ident: ref81 doi: 10.1126/science.1197257 – ident: ref35 doi: 10.1016/j.quascirev.2009.09.028 – ident: ref38 doi: 10.1177/0959683609356587 – ident: ref48 doi: 10.1126/science.1144856 – ident: ref4 doi: 10.1111/j.1365-2486.2008.01754.x – ident: ref67 doi: 10.1038/nature11461 – ident: ref70 doi: 10.1007/BF00137988 – ident: ref9 doi: 10.1126/science.1163886 – ident: ref64 doi: 10.1029/2012JG002128 – ident: ref1 doi: 10.5194/acp-11-4039-2011 – ident: ref15 doi: 10.1007/0-387-21515-8_4 – ident: ref28 doi: 10.1126/science.1159769 – ident: ref18 doi: 10.1071/WF02042 – ident: ref24 doi: 10.5194/bg-7-1171-2010 – ident: ref76 – ident: ref75 doi: 10.3402/tellusb.v51i2.16276 – ident: ref25 doi: 10.1029/1999JD900835 – ident: ref45 doi: 10.1029/2002JD002272 – ident: ref60 doi: 10.1177/0959683612450196 – ident: ref40 doi: 10.3402/tellusb.v55i1.16354 – ident: ref46 doi: 10.1038/ngeo313 – ident: ref50 doi: 10.1029/2009GB003460 – ident: ref52 doi: 10.1016/j.atmosenv.2009.08.021 – ident: ref78 doi: 10.5194/acp-10-11707-2010 – ident: ref13 doi: 10.1038/nature01779 – ident: ref14 doi: 10.1111/j.1365-2486.2008.01786.x – ident: ref36 doi: 10.3402/tellusb.v64i0.18196 – ident: ref22 doi: 10.1080/0143116031000070283 – ident: ref39 doi: 10.5194/bg-7-1877-2010 – ident: ref3 doi: 10.1126/science.1186925 – ident: ref73 doi: 10.1071/WF08016 – ident: ref20 doi: 10.1038/ngeo443 – ident: ref82 doi: 10.5194/acp-12-4365-2012 – ident: ref58 doi: 10.1073/pnas.1003669107 – ident: ref61 doi: 10.1046/j.1365-2699.2002.00677.x – ident: ref34 doi: 10.1016/S0079-1946(97)81142-1 – ident: ref10 doi: 10.1111/j.1365-2699.2011.02595.x – ident: ref43 doi: 10.5194/acp-10-7017-2010 – ident: ref79 doi: 10.5194/acp-11-3611-2011 – ident: ref47 doi: 10.1016/j.quascirev.2012.11.029 – ident: ref57 doi: 10.2307/1932179 – ident: ref72 doi: 10.1029/2005JD006338 – ident: ref6 doi: 10.1016/j.rse.2011.05.025 – ident: ref51 doi: 10.1038/440436a – ident: ref21 doi: 10.1016/j.rse.2009.08.016 – ident: ref16 doi: 10.1016/j.gloplacha.2007.08.005 – ident: ref63 doi: 10.1029/1999GB900046 – ident: ref33 doi: 10.5194/gmd-3-445-2010 – ident: ref37 doi: 10.1073/pnas.0901970106 – ident: ref69 doi: 10.1073/pnas.0604090103 – ident: ref53 doi: 10.1016/j.quascirev.2010.10.010 – ident: ref55 doi: 10.1038/19066 – ident: ref31 doi: 10.1029/2007GB002961 – ident: ref19 doi: 10.1126/science.1115193 – ident: ref80 – ident: ref83 doi: 10.1029/2002GB001952 – ident: ref8 doi: 10.1111/j.1365-2486.2008.01655.x – ident: ref30 doi: 10.1034/j.1600-0889.1999.00013.x – ident: ref41 doi: 10.5194/acp-5-417-2005 – ident: ref42 doi: 10.1890/1051-0761(1999)009[0526:AYRAOC]2.0.CO;2 – ident: ref66 doi: 10.1126/science.227.4682.53 – ident: ref2 doi: 10.1029/2000GB001382 – ident: ref54 doi: 10.1111/j.1365-2486.2005.00920.x – ident: ref77 doi: 10.1029/2007GB003122 – ident: ref23 doi: 10.1016/j.rse.2008.10.006 – ident: ref17 doi: 10.1890/100052 – ident: ref56 – ident: ref12 doi: 10.1071/9780643096493 – ident: ref68 doi: 10.1071/WF07011 – ident: ref27 doi: 10.1126/science.1086112 – ident: ref29 doi: 10.5194/acp-11-4705-2011 – ident: ref62 doi: 10.1126/science.1199809 – ident: ref32 doi: 10.1029/2009GL040000 – ident: ref49 doi: 10.1016/j.atmosenv.2010.01.011 – ident: ref11 doi: 10.1098/rstb.2006.1980 – ident: ref59 doi: 10.1007/s00382-007-0334-x – ident: ref44 doi: 10.1034/j.1600-0889.1990.00009.x – ident: ref65 doi: 10.1016/j.rse.2005.04.007 – ident: ref74 doi: 10.1029/2004GB002278 |
SSID | ssj0048195 |
Score | 2.2030773 |
Snippet | Recent studies based on trace gas mixing ratios in ice cores and charcoal data indicate that biomass burning emissions over the past millennium exceeded... |
SourceID | doaj wageningen proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 289 |
SubjectTerms | 20th-century amazonian forests carbon climate land-use model tm5 past 2 millennia rain-forest fires southern africa trace gases |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-N7mU8ID5F2EAGofFCtCR2PvyApm3aNJBWocGkvlm244xJVVKaduPP5851OioET1Wbq5Kc7bufz3e_A3hfOy25NDZGfN_ECKkt2kEKwxWZqRJXV4mk4uSLcXF-Jb5M8skWjIdaGEqrHGyiN9R1ZylGfpBy8jScy_Rw9jOmrlF0ujq00NChtUL9yVOMPYBtNMl5MoLt49Px18vBNgs6NaItWJWKGJGLWLFuIooRB3YWyzijnJ8k5RteypP5_22yH8LOHa751hdB_eGUzh7Do4Am2dFq-J_AlmufQnSBQLib-3g522cn0xtEpf7bM5gQVTez1Nea_dC3jlm97F3NKBnkZt3Fg1FRPqJqhhqnGzNqCkdhtZ4tOuZ-kctjdsXsxIhroj98Dldnp99PzuPQXCHWiMkWsSjRsJnG1-7qQjdF02TENGFxReKmqqpMVbtS60qW1krussTxpDG1zl0pjCn5Cxi1XeteAjOuMMQDr51GsFBJnSVNKRphMmNSnhcRfByUqWxgHqcGGFOFOxDSvbIzJRXqXpHuI9hfi89WlBv_EjymkVkLEVO2_6GbX6uw8FTmHPpjbdKyztERG4kGqJGF1akTTro6gnc0roq4MFpKtrlGvffq87dLdYTTRXA66YzgQxBqOnxyq0PtAr4_0WdtSO5tSOLw2M3Lw_RRwVj06n5qR_B2fZn-SQlwreuWJEPYitBtBPx-2qmWOk71_tVD2E_dLeeqndIHruheCSFykb36_413YSfzfT5SdMp7MFrMl-41oq2FeROW0G8a5SpB priority: 102 providerName: ProQuest |
Title | What could have caused pre-industrial biomass burning emissions to exceed current rates? |
URI | https://www.proquest.com/docview/1315213391 https://www.proquest.com/docview/1323815143 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F444542 https://doaj.org/article/2ee678ab17d5471b9794f96ca1e4e9ed |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KekkPpU_qNg1qKemlJrYlP3QqSUhICwklbWBvQpJHaWCxl_Vukp_fGdu7zVJKLz0Z22Msj0ajT_LMNwAfarRaaudjwvchJkjtyQ_yNlyRuSrBuko0JyefnRenl-rrJJ_cK_XFMWEDPfCguP0MkfypdWlZ5-RInSYDCrrwNkWFGmv2volOVoupwQcr_jvES60qVTEhFDWwaxJaUft-Fus449ieJJUbs1FP2v-na34E27c0tps-2ene5HPyBB6PqFEcDK19Cg-weQbRGQHedt7vi4s9cTS9JvTZnz2HCVNyC8_1q8VPe4PC22WHteCgj-t1tQ7ByfeEngVpll8suPgbb591YtEKvOOpTfiBwUkwp0T3-QVcnhz_ODqNxyIKsSXstYhVSQ7MhT5H1xY2FCFkzCjhaeTR4qmqXFVjaW2lS--1xCxBmQRX2xxL5VwpX8JW0zb4CoTDwjHfu0VLoKDSNktCqYJymXOpzIsIPq2UafzIMM6FLqaGVhqse-NnRhvSvWHdR7C3Fp8N1Bp_EzzknlkLMSN2f4HsxIx2Yv5lJxG85341zHnRcFDNFem9M1--X5gDMhcl-Y9mBB9HodBSy70dcxTo-5kma0NyZ0OSusdv3l6ZjxmdQmdSyWBJSp1G8G59m5_kQLcG2yXLMIZiFBuB_G12puHKUl3_6eP2nrldzk0z5QON3M4opXKVvf4funoD21lf9SOlKXoHthbzJb4l7LVwu_Dw8Pj828VuP9x-AQqeLpA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6V9kA58EYYCiwIygW3fmxs7wGhthAltKkEtCK3ZXe9LhWRHcUJAf4Kf4Ufx4wfKQHBrRKnKPEkzq6_nf1md_YbgMepVSIU2rjI7zMXKbVBP0jLcFGgE8-miSfocPLgMOod89fDznAFvrdnYSitsvWJlaNOC0Nr5Nt-SDNNGAq_yaDct1_nGJ-Vz_sv8WE-CYLuq6O9ntuUEHAVMo-py2McvjqrTqiqSGVRlgWkp2AQdxg6JIlOUhsrlYjYGBHawLOhl-lUdWzMtY5D_N0LsIag9nEQre12B2_et46e0xYUxXOJz12kQbyW8ERKxLfN2BVuQAlEnh8uTXlVZYA__f8lWJ-jA8mrE1W_zHDdK_Cj7Zs6seXT1myqt8y332Qj_9POuwqXG2bNduqhcA1WbH4dnAEGBcWk2jtgm2xvdIoMvXp3A4YkW84M1fhmH9Vny4yalTZllBhzuqhowkigACMMhuijfmNUII-WGEs2LZj9QtM_M7XKFSPdjfLFTTg-l4begtW8yO1tYNpGmjTxlVVInBKhAi-LecZ1oLUfdiIHnrVYkKZRYadiICOJ0RhBR5qxFBKhIwk6DmwuzMe1_MjfDHcJWAsjUg2vPigmJ7JxQjKwFrmJ0n6cdpCUaIHOOBORUb7lVtjUgUcES0m6IDklHp1gv5ey_-6t3EG085B2fR142hhlBf5zo5pzHNh-khJbstxYssTHY5Yvt2CVjeMs5RlSHXi4uEzfpGTA3BYzsiGeSUzfgfBs1Micqm-VVdObJVA5n01kPqIX9G6l5Jx3eHDn3zd-ABd7R4MDedA_3L8L60FV_8RHsrIBq9PJzN5DFjrV9xtvwODDeY-hn4gyl0c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJqHxgLiKwACDYLwQNbHdJH6Ypt2qlbFqGkzqm7EdZ0yqktK0FP4iv4pzUqejQvC2p6rNadMcn8vny_kOIW9ypyWXxoaA74sQILWFOIjLcAkzWeTyLJJYnHw6SI4vxIdhd7hGfrW1MHisso2JTaDOK4tr5J2YY6bhXMadwh-LODvs7Y6_hdhBCnda23Ya2rdZyHcaujFf5HHifs5hOlfv9A9h7N8y1jv6fHAc-o4DoQagMg1FCt5uiqagVSe6SIqCIf2CBTOFmUaWmSx3qdaZTK2V3LHI8agwue66VBiTcvjdW2QjhawPE8GN_aPB2XmbFwTuWOH0L4tFCKhJLBg_AUGJjh2HMmR43iiK-UqGbBoJ_J0u7pDNOcSbsinA-iMh9u6Rux7J0r2F6d0na658QIJTAOHVpFmrp9v0YHQFiLh595AMkSacWuypTb_q745aPatdTvEgytWygwhFQgBA9BRGG29MsSEdLunVdFpR9wPTLbULVimKPBf17iNycSNqfkzWy6p0Twg1LjHIQa-dBqCSSc2iIhWFMMyYmHeTgLxvlamsZz3H5hsjBbMf1L2yYyUV6F6h7gOyvRQfL-g-_iW4jyOzFEKW7uaDanKpvNMr5hxgAW3iNO8CCDASgl8hE6tjJ5x0eUBe47gq5OEo0aIvQe-16n86V3tgLoLjLmtA3nmhooJ_brWvm4DnR-quFcmtFUkYHrt6uTUf5QNVra7dKiCvlpfxm3j4rnTVDGUQ1yGyDgi_NjtVYrerunl0v-So5rOJKkf4AtGkVkKIrmBP_3_jl-Q2eLL62B-cPCObrGk3EgM22CLr08nMPQfQNzUvvDdR8uWmHfg3GvZsYA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=What+could+have+caused+pre-industrial+biomass+burning+emissions+to+exceed+current+rates%3F&rft.jtitle=Climate+of+the+past&rft.au=van+der+Werf%2C+G.+R&rft.au=Peters%2C+W&rft.au=van+Leeuwen%2C+T.+T&rft.au=Giglio%2C+L&rft.date=2013-01-31&rft.pub=Copernicus+GmbH&rft.issn=1814-9332&rft.volume=9&rft.issue=1&rft.spage=289&rft_id=info:doi/10.5194%2Fcp-9-289-2013&rft.externalDBID=ISR&rft.externalDocID=A481436407 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1814-9332&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1814-9332&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1814-9332&client=summon |