Convolutional neural networks for image-based sediment detection applied to a large terrestrial and airborne dataset

Image-based grain sizing has been used to measure grain size more efficiently compared with traditional methods (e.g., sieving and Wolman pebble count). However, current methods to automatically detect individual grains are largely based on detecting grain interstices from image intensity which not...

Full description

Saved in:
Bibliographic Details
Published inEarth surface dynamics Vol. 10; no. 2; pp. 349 - 366
Main Authors Chen, Xingyu, Hassan, Marwan A., Fu, Xudong
Format Journal Article
LanguageEnglish
Published Gottingen Copernicus GmbH 27.04.2022
Copernicus Publications
Subjects
Online AccessGet full text
ISSN2196-632X
2196-6311
2196-632X
DOI10.5194/esurf-10-349-2022

Cover

Abstract Image-based grain sizing has been used to measure grain size more efficiently compared with traditional methods (e.g., sieving and Wolman pebble count). However, current methods to automatically detect individual grains are largely based on detecting grain interstices from image intensity which not only require a significant level of expertise for parameter tuning but also underperform when they are applied to suboptimal environments (e.g., dense organic debris, various sediment lithology). We proposed a model (GrainID) based on convolutional neural networks to measure grain size in a diverse range of fluvial environments. A dataset of more than 125 000 grains from flume and field measurements were compiled to develop GrainID. Tests were performed to compare the predictive ability of GrainID with sieving, manual labeling, Wolman pebble counts (Wolman, 1954) and BASEGRAIN (Detert and Weitbrecht, 2012). When compared with the sieving results for a sandy-gravel bed, GrainID yielded high predictive accuracy (comparable to the performance of manual labeling) and outperformed BASEGRAIN and Wolman pebble counts (especially for small grains). For the entire evaluation dataset, GrainID once again showed fewer predictive errors and significantly lower variation in results in comparison with BASEGRAIN and Wolman pebble counts and maintained this advantage even in uncalibrated rivers with drone images. Moreover, the existence of vegetation and noise have little influence on the performance of GrainID. Analysis indicated that GrainID performed optimally when the image resolution is higher than 1.8 mm pixel−1, the image tile size is 512×512 pixels and the grain area truncation values (the area of smallest detectable grains) were equal to 18–25 pixels.
AbstractList Image-based grain sizing has been used to measure grain size more efficiently compared with traditional methods (e.g., sieving and Wolman pebble count). However, current methods to automatically detect individual grains are largely based on detecting grain interstices from image intensity which not only require a significant level of expertise for parameter tuning but also underperform when they are applied to suboptimal environments (e.g., dense organic debris, various sediment lithology). We proposed a model (GrainID) based on convolutional neural networks to measure grain size in a diverse range of fluvial environments. A dataset of more than 125 000 grains from flume and field measurements were compiled to develop GrainID. Tests were performed to compare the predictive ability of GrainID with sieving, manual labeling, Wolman pebble counts (Wolman, 1954) and BASEGRAIN (Detert and Weitbrecht, 2012). When compared with the sieving results for a sandy-gravel bed, GrainID yielded high predictive accuracy (comparable to the performance of manual labeling) and outperformed BASEGRAIN and Wolman pebble counts (especially for small grains). For the entire evaluation dataset, GrainID once again showed fewer predictive errors and significantly lower variation in results in comparison with BASEGRAIN and Wolman pebble counts and maintained this advantage even in uncalibrated rivers with drone images. Moreover, the existence of vegetation and noise have little influence on the performance of GrainID. Analysis indicated that GrainID performed optimally when the image resolution is higher than 1.8 mm pixel.sup.-1, the image tile size is 512x512 pixels and the grain area truncation values (the area of smallest detectable grains) were equal to 18-25 pixels.
Image-based grain sizing has been used to measure grain size more efficiently compared with traditional methods (e.g., sieving and Wolman pebble count). However, current methods to automatically detect individual grains are largely based on detecting grain interstices from image intensity which not only require a significant level of expertise for parameter tuning but also underperform when they are applied to suboptimal environments (e.g., dense organic debris, various sediment lithology). We proposed a model (GrainID) based on convolutional neural networks to measure grain size in a diverse range of fluvial environments. A dataset of more than 125 000 grains from flume and field measurements were compiled to develop GrainID. Tests were performed to compare the predictive ability of GrainID with sieving, manual labeling, Wolman pebble counts (Wolman, 1954) and BASEGRAIN (Detert and Weitbrecht, 2012). When compared with the sieving results for a sandy-gravel bed, GrainID yielded high predictive accuracy (comparable to the performance of manual labeling) and outperformed BASEGRAIN and Wolman pebble counts (especially for small grains). For the entire evaluation dataset, GrainID once again showed fewer predictive errors and significantly lower variation in results in comparison with BASEGRAIN and Wolman pebble counts and maintained this advantage even in uncalibrated rivers with drone images. Moreover, the existence of vegetation and noise have little influence on the performance of GrainID. Analysis indicated that GrainID performed optimally when the image resolution is higher than 1.8 mm pixel −1 , the image tile size is 512×512  pixels and the grain area truncation values (the area of smallest detectable grains) were equal to 18–25 pixels.
Image-based grain sizing has been used to measure grain size more efficiently compared with traditional methods (e.g., sieving and Wolman pebble count). However, current methods to automatically detect individual grains are largely based on detecting grain interstices from image intensity which not only require a significant level of expertise for parameter tuning but also underperform when they are applied to suboptimal environments (e.g., dense organic debris, various sediment lithology). We proposed a model (GrainID) based on convolutional neural networks to measure grain size in a diverse range of fluvial environments. A dataset of more than 125 000 grains from flume and field measurements were compiled to develop GrainID. Tests were performed to compare the predictive ability of GrainID with sieving, manual labeling, Wolman pebble counts (Wolman, 1954) and BASEGRAIN (Detert and Weitbrecht, 2012). When compared with the sieving results for a sandy-gravel bed, GrainID yielded high predictive accuracy (comparable to the performance of manual labeling) and outperformed BASEGRAIN and Wolman pebble counts (especially for small grains). For the entire evaluation dataset, GrainID once again showed fewer predictive errors and significantly lower variation in results in comparison with BASEGRAIN and Wolman pebble counts and maintained this advantage even in uncalibrated rivers with drone images. Moreover, the existence of vegetation and noise have little influence on the performance of GrainID. Analysis indicated that GrainID performed optimally when the image resolution is higher than 1.8 mm pixel-1, the image tile size is 512×512 pixels and the grain area truncation values (the area of smallest detectable grains) were equal to 18–25 pixels.
Image-based grain sizing has been used to measure grain size more efficiently compared with traditional methods (e.g., sieving and Wolman pebble count). However, current methods to automatically detect individual grains are largely based on detecting grain interstices from image intensity which not only require a significant level of expertise for parameter tuning but also underperform when they are applied to suboptimal environments (e.g., dense organic debris, various sediment lithology). We proposed a model (GrainID) based on convolutional neural networks to measure grain size in a diverse range of fluvial environments. A dataset of more than 125 000 grains from flume and field measurements were compiled to develop GrainID. Tests were performed to compare the predictive ability of GrainID with sieving, manual labeling, Wolman pebble counts (Wolman, 1954) and BASEGRAIN (Detert and Weitbrecht, 2012). When compared with the sieving results for a sandy-gravel bed, GrainID yielded high predictive accuracy (comparable to the performance of manual labeling) and outperformed BASEGRAIN and Wolman pebble counts (especially for small grains). For the entire evaluation dataset, GrainID once again showed fewer predictive errors and significantly lower variation in results in comparison with BASEGRAIN and Wolman pebble counts and maintained this advantage even in uncalibrated rivers with drone images. Moreover, the existence of vegetation and noise have little influence on the performance of GrainID. Analysis indicated that GrainID performed optimally when the image resolution is higher than 1.8 mm pixel−1, the image tile size is 512×512 pixels and the grain area truncation values (the area of smallest detectable grains) were equal to 18–25 pixels.
Audience Academic
Author Hassan, Marwan A.
Chen, Xingyu
Fu, Xudong
Author_xml – sequence: 1
  givenname: Xingyu
  orcidid: 0000-0001-5448-3560
  surname: Chen
  fullname: Chen, Xingyu
– sequence: 2
  givenname: Marwan A.
  orcidid: 0000-0001-6856-5989
  surname: Hassan
  fullname: Hassan, Marwan A.
– sequence: 3
  givenname: Xudong
  orcidid: 0000-0003-0744-0546
  surname: Fu
  fullname: Fu, Xudong
BookMark eNqFUtuKFDEQbWQF13U_wLeATz70mmtfHpfBy8CCsCr4FqqTypCxpzMmadf9e9MzojsiSgiVVM45SdXJ0-psChNW1XNGrxTr5StMc3Q1o7WQfc0p54-qc876pm4E_3z2YP2kukxpSyllgish-vMqr8L0LYxz9mGCkUw4x0PIdyF-ScSFSPwONlgPkNCSMv0Op0wsZjQLicB-P_pylAMBMkLcIMkYI6YcfZGCyRLwcQhxQmIhF5n8rHrsYEx4-TNeVJ_evP64elffvH-7Xl3f1KBok2sYHOXYgJOy5R0Kh1aA6xpAyppOqMEoB72jyjZC0maQpueFIwFbC6VEcVGtj7o2wFbvY6kk3usAXh8SIW40xOzNiNpw06uG9W7ojLRdN3TKWAQ1WONs39qixY9a87SH-zsYx1-CjOrFBn2wYdkVG_RiQyG9OJL2MXydS0v0NsyxNDpp3iglhWSK_UZtoLzETy7kCGbnk9HXLWVt10mqCurqL6gyLO68KR_C-ZI_Ibw8IRRMxu95A3NKev3h9hTbHrEmhpQiOm18hsXfcokf_1ki-4P5_7b8AHD32h8
CitedBy_id crossref_primary_10_1002_esp_5984
crossref_primary_10_1002_esp_5755
crossref_primary_10_3390_rs16234614
crossref_primary_10_1002_esp_5782
crossref_primary_10_1016_j_geomorph_2023_108857
crossref_primary_10_1016_j_powtec_2024_120122
crossref_primary_10_1029_2023WR035406
crossref_primary_10_5194_esurf_10_953_2022
crossref_primary_10_1007_s11440_024_02493_8
crossref_primary_10_1016_j_jhydrol_2024_131181
crossref_primary_10_1016_j_catena_2023_107199
crossref_primary_10_3390_rs16071264
crossref_primary_10_1590_1809_4430_eng_agric_v43n6e20230101_2023
crossref_primary_10_3389_fbioe_2022_944944
crossref_primary_10_2166_hydro_2023_079
crossref_primary_10_3390_s24154923
crossref_primary_10_1016_j_geomorph_2024_109533
crossref_primary_10_1016_j_geomorph_2024_109588
crossref_primary_10_1016_j_ijsrc_2024_05_002
Cites_doi 10.1029/2009JF001477
10.1577/1548-8659(2000)129<0262:ASSGQ>2.0.CO;2
10.1029/TR035i006p00951
10.1029/2008WR006940
10.1002/2013WR014529
10.5194/hess-25-2567-2021
10.1080/00221689809498626
10.1029/WR006i005p01357
10.1061/JYCEAJ.0005283
10.1111/j.1752-1688.2001.tb05528.x
10.1029/2020WR027079
10.1201/b22619-146
10.1201/b13250
10.5194/esurf-8-913-2020
10.1007/978-3-319-24574-4_28
10.1002/esp.4760
10.1306/052203740160
10.1029/2020WR029133
10.1201/b15374
10.1002/wrcr.20142
10.1680/iwame.2000.32790
10.1145/3065386
10.1016/j.geomorph.2018.09.008
10.1002/esp.3290110108
10.1002/esp.4726
10.1109/ICSSE.2019.8823532
10.5194/esurf-9-333-2021
10.1007/s11004-005-8745-x
10.1306/112102730630
10.1029/2004WR003868
10.1061/JYCEAJ.0003044
10.1109/CVPRW.2018.00101
10.1002/esp.4788
10.1109/CVPR.2016.90
10.1029/2003WR002759
ContentType Journal Article
Copyright COPYRIGHT 2022 Copernicus GmbH
2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 Copernicus GmbH
– notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7QH
7TN
7UA
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H96
HCIFZ
L.G
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.5194/esurf-10-349-2022
DatabaseName CrossRef
Science in Context
Aqualine
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
ProQuest Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2196-632X
EndPage 366
ExternalDocumentID oai_doaj_org_article_c2c95619fb8c4d88b85cdea5bdcfd97d
10.5194/esurf-10-349-2022
A701788405
10_5194_esurf_10_349_2022
GroupedDBID 5VS
8FE
8FH
AAFWJ
AAYXX
ABDBF
ACUHS
ADBBV
AEGXH
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHGZY
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
CITATION
GROUPED_DOAJ
H13
HCIFZ
IAO
IEA
ISR
ITC
KQ8
LK5
M7R
OK1
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PUEGO
RKB
ZBA
7QH
7TN
7UA
ABUWG
AZQEC
C1K
DWQXO
F1W
H96
L.G
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-a506t-abf02e6af44728e3fed3af86ae016835bc5fa9f05d63406b4c92abf4ae7da0133
IEDL.DBID BENPR
ISSN 2196-632X
2196-6311
IngestDate Fri Oct 03 12:50:29 EDT 2025
Sun Sep 07 11:17:07 EDT 2025
Mon Jun 30 16:59:04 EDT 2025
Tue Jun 17 21:26:26 EDT 2025
Mon Oct 20 16:49:25 EDT 2025
Fri Jun 27 03:37:28 EDT 2025
Wed Oct 01 02:33:23 EDT 2025
Thu Apr 24 22:59:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a506t-abf02e6af44728e3fed3af86ae016835bc5fa9f05d63406b4c92abf4ae7da0133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0744-0546
0000-0001-6856-5989
0000-0001-5448-3560
OpenAccessLink https://www.proquest.com/docview/2655434151?pq-origsite=%requestingapplication%&accountid=15518
PQID 2655434151
PQPubID 2037686
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_c2c95619fb8c4d88b85cdea5bdcfd97d
unpaywall_primary_10_5194_esurf_10_349_2022
proquest_journals_2655434151
gale_infotracmisc_A701788405
gale_infotracacademiconefile_A701788405
gale_incontextgauss_ISR_A701788405
crossref_citationtrail_10_5194_esurf_10_349_2022
crossref_primary_10_5194_esurf_10_349_2022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-27
PublicationDateYYYYMMDD 2022-04-27
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-27
  day: 27
PublicationDecade 2020
PublicationPlace Gottingen
PublicationPlace_xml – name: Gottingen
PublicationTitle Earth surface dynamics
PublicationYear 2022
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref46
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref6
  doi: 10.1029/2009JF001477
– ident: ref28
  doi: 10.1577/1548-8659(2000)129<0262:ASSGQ>2.0.CO;2
– ident: ref3
– ident: ref45
  doi: 10.1029/TR035i006p00951
– ident: ref19
  doi: 10.1029/2008WR006940
– ident: ref43
– ident: ref20
  doi: 10.1002/2013WR014529
– ident: ref30
  doi: 10.5194/hess-25-2567-2021
– ident: ref15
  doi: 10.1080/00221689809498626
– ident: ref27
– ident: ref31
  doi: 10.1029/WR006i005p01357
– ident: ref1
  doi: 10.1061/JYCEAJ.0005283
– ident: ref4
  doi: 10.1111/j.1752-1688.2001.tb05528.x
– ident: ref8
  doi: 10.1029/2020WR027079
– ident: ref9
– ident: ref14
  doi: 10.1201/b22619-146
– ident: ref12
  doi: 10.1201/b13250
– ident: ref23
  doi: 10.5194/esurf-8-913-2020
– ident: ref37
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref5
  doi: 10.1002/esp.4760
– ident: ref11
– ident: ref34
– ident: ref38
  doi: 10.1306/052203740160
– ident: ref44
  doi: 10.1029/2020WR029133
– ident: ref13
  doi: 10.1201/b15374
– ident: ref41
  doi: 10.1002/wrcr.20142
– ident: ref32
  doi: 10.1680/iwame.2000.32790
– ident: ref29
  doi: 10.1145/3065386
– ident: ref46
  doi: 10.1016/j.geomorph.2018.09.008
– ident: ref24
  doi: 10.1002/esp.3290110108
– ident: ref36
  doi: 10.1002/esp.4726
– ident: ref26
– ident: ref42
  doi: 10.1109/ICSSE.2019.8823532
– ident: ref2
  doi: 10.5194/esurf-9-333-2021
– ident: ref17
  doi: 10.1007/s11004-005-8745-x
– ident: ref40
  doi: 10.1306/112102730630
– ident: ref16
– ident: ref18
  doi: 10.1029/2004WR003868
– ident: ref25
  doi: 10.1061/JYCEAJ.0003044
– ident: ref39
  doi: 10.1109/CVPRW.2018.00101
– ident: ref10
– ident: ref21
  doi: 10.1002/esp.4788
– ident: ref22
  doi: 10.1109/CVPR.2016.90
– ident: ref35
– ident: ref33
– ident: ref7
  doi: 10.1029/2003WR002759
SSID ssj0001325339
Score 2.3768349
Snippet Image-based grain sizing has been used to measure grain size more efficiently compared with traditional methods (e.g., sieving and Wolman pebble count)....
Image-based grain sizing has been used to measure grain size more efficiently compared with traditional methods (e.g., sieving and Wolman pebble count)....
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 349
SubjectTerms Airborne sensing
Algorithms
Artificial neural networks
Automation
Comparative analysis
Datasets
Flumes
Geomorphology
Grain size
Gravel
Gravel beds
Image processing
Image resolution
Interstices
Labeling
Lithology
Methods
Neural networks
Noise
Particle size
Pebbles
Pixels
Rivers
Sediment
Sediment transport
Sediments (Geology)
Terrestrial environments
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SKOqD1C9cbSWIIChL97JJdvPYirUK-qAW-hYmX1K47pXbPaX_vTPZ7XGHYF98OI69m102M5PJL8nkN4y91lF74bQrAzSSVqtUaZqEl1Vylad1N0UHnL981adn8vO5Ot8o9UU5YSM98Ki4Qy88nb00ybVehrZ1rfIhgnLBp2CaQNG3as3GZCqvrtQCcQxhX-yRutT1bDZuaSJgkYexXy1TDkDSoJsIsTUoZe7-vyP0fXZ31V3B9W-YzzeGoJM99mDCjvxofOeH7E7sHrHdj7k27_VjRqWjf02ehGLEVJm_cp53zxGd8otLDB8ljVyB4ycz-_MQh5yP1XEYISkfFhz4nHLEOaqdqneQm3LoAoeLJXpNFzmllvZxeMLOTj78eH9aTkUVSlCVHkpwqRJRQ5KyEW2sUww1pFZDRPCHpnJeJTCpUkHXONg76Y3AeyTEJgDqtX7KdrpFF58xXjvvtAGRRAPS1zOXTJsCQgQ_88rFumDVjVatnxjHqfDF3OLMgwxhsyHoCg1hyRAFe7u-5Wqk2_iX8DGZai1ITNn5B_QfO_mPvc1_CvaKDG2JC6OjZJufsOp7--n7N3vUYLhqcQasCvZmEkoLbIGH6ewC6oHos7Yk97cksbP67b9v_MlOwaK3Qis64IvYq2Dv1j52e_uf_4_2v2D36Fm0QSaafbYzLFfxAHHW4F7mLvUHwB8oQA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA-yh-g9-C1XPSWIICg9e2mSto-reJ6Ch6gL61PIpxyu3WPbKudf70yaW25V_HhYut2dFjIzmfzazPyGkIfSS8uMNLnTFce3VSJvqgCnRTCFxfduAguc3xzJwxl_PRfzRBaNtTDn9u8BW_CnvhtWIcYK3oBFGUTbLSkAdk_I1uzo7fQjNo8DL8plGXvtpu9sPu5g_v4eG2tQpOr_NSBvk0tDe6JPv-nF4tyKc3B1zNXqIlEhJpp83ht6s2e__0Tj-E-DuUauJNxJp6OjXCcXfHuDXHwZ-_qe3iTYdvpr8kIQQ5bLeIg54h0FZEuPv0DoyXHVcxQ-sSsAdb6PuVwt1SOcpf2SarrA_HIKJsPOH-jiVLeO6uMVeFzrKaaldr6_RWYHLz48P8xTQ4Zci0L2uTahYF7qwHnFal8G70odaqk9AEcws7Ei6CYUwskSgILhtmFwDde-chrsXt4mk3bZ-h1CS2ONbDQLrNLclvsmNHVwAC_svhXGlxkpzkykbGIrx6YZCwVPLahMFZWJZ6BMhcrMyOP1JScjVcefhJ-h3deCyLIdfwB7qTRplWUW636bYGrLXV2bWljntTDOBtdULiMP0GsU8mi0mKjzSQ9dp169f6emFYS6Gp6eRUYeJaGwhBFYneoeQA9IvbUhubshCRPdbv595pwqBZpOMSmwOBhwW0aerB327-O_81_Sd8llPOAuGqt2yaRfDf4egLHe3E_T8AcjkjBv
  priority: 102
  providerName: Unpaywall
Title Convolutional neural networks for image-based sediment detection applied to a large terrestrial and airborne dataset
URI https://www.proquest.com/docview/2655434151
https://doi.org/10.5194/esurf-10-349-2022
https://doaj.org/article/c2c95619fb8c4d88b85cdea5bdcfd97d
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2196-632X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325339
  issn: 2196-632X
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2196-632X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325339
  issn: 2196-632X
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2196-632X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325339
  issn: 2196-632X
  databaseCode: ABDBF
  dateStart: 20140701
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2196-632X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325339
  issn: 2196-632X
  databaseCode: BENPR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3daxNBEF9qiqgP4lcxWssigqAcvezd7t09iKTSWgVDqQbq0zL7VQrpJc1dlP73zmwuqUGoDyFsMndwO7Ozv5ud-Q1jb5RXVhhlEgdFTtEqmVRFwGEaTGop7iapwPnbSB2P869n8myLjVa1MJRWufKJ0VG7qaUY-b5QkqogcYP6OLtKqGsUna6uWmhA11rBfYgUY3fYtiBmrB7bPjgcnZzeRF0ygfiGMDGuVJWobDBYHnUikMn3fbOYh-iY8grNR4iNzSpy-v_ruR-we4t6Bte_YTL5a2s6esQedpiSD5dG8Jht-foJu_s59uy9fsqopfSvzsJQjBgs41fM_244olZ-cYluJaEdzXH8RMZ_7nwb87RqDkuoytspBz6h3HGO6qCuHmS-HGrH4WKO1lR7TimnjW-fsfHR4Y9Px0nXbCEBmao2ARNS4RWEPC9E6bPgXQahVOARFKIKjZUBqpBKpzIEASa3lcBrcvCFA5zXbIf16mntnzOeGWtUBSKIAnKbDUyoyuAQOtiBlcZnfZauZlXbjomcGmJMNL6RkCJ0VASNUBGaFNFn79aXzJY0HLcJH5Cq1oLEoB1_mM7PdbcgtRWWanqrYEqbu7I0pbTOgzTOBlcVrs9ek6I1cWTUlIRzDoum0V--n-phgW6sxDdj2WdvO6EwxSew0NU04DwQrdaG5O6GJC5iu_n3yp5050QafWPyffZ-bWP_f_4Xt9_sJbtPUnQkJopd1mvnC_8KkVVr9rrlshcjEzgaj06GP_8Ar6smtA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJjR4QHyKwAALgZBA0VIndpKHCW2w0bKtQmOT9ub5c5pU0tKkTP3n-Nu4S92OCmk87SGK0p6j2He-O9t39yPkjXDCMC10bFWe4W4Vj8vcw2PidWJw341jgvNhX3RPsq-n_HSF_J7nwmBY5VwntoraDg3ukW8ywTELEgzUx9HPGFGj8HR1DqGhArSC3WpLjIXEjn03vYQlXL3V-wz8fsvY3u7xp24cUAZixRPRxEr7hDmhfJblrHCpdzZVvhDKgTcE364N96r0CbciBeunM1MyaJMpl1sFnUnhvbfIGnxbCYu_tZ3d_rejq12elIE_hT44aAYRi7TTmR2tguOUbbp6MvatIsxKEFfGloxjiyHwr6W4S9Yn1UhNL9Vg8Jcp3LtP7gUflm7PhO4BWXHVQ3L7S4sRPH1EEML6V5BoIMOKme2tjTevKXjJ9OIHqLEYLailcLUIA9S6po0Lq6iauca0GVJFBxirToH9iCKC04WqylJ1MQbprRzFENfaNY_JyY0M-xOyWg0r95TQVBstSsU8y1Vm0o72ZeEtuCqmY7h2aUSS-ahKEyqfIwDHQMIKCBkhW0bgEzBCIiMi8n7RZDQr-3Ed8Q6yakGIFbvbH4bjcxkUgDTMYA5x6XVhMlsUuuDGOsW1Nd6WuY3Ia2S0xJocFQb9nKtJXcve9yO5nYPaLGAlziPyLhD5IfTAqJBDAeOAZbyWKDeWKEFpmOW_5_Ikg9Kq5dUUi8iHhYz9v__Prn_ZK7LePT48kAe9_v5zcgdb4HEcyzfIajOeuBfg1TX6ZZg6lJzd9Gz9AyPCYoc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJr4eEJ-iMMBCICRQ1NSJneRhQhtbWRlU02DS3ow_p0klKU3K1H-Rv4q71O2okMbTHqoq7TmSfXe_O9v3Qcgr4YRhWujIqizF0yoeFZmHx9jr2OC5G8cE5y9DsX-cfjrhJ2vk9yIXBsMqF5jYArWtDJ6Rd5ngmAUJBqrrQ1jE4W7__fhnhB2k8KZ10U5DhTYLdqstNxaSPA7c7By2c_XWYBd4_5qx_t63D_tR6DgQKR6LJlLax8wJ5dM0Y7lLvLOJ8rlQDjwjmIc23KvCx9yKBCyhTk3BYEyqXGYVTCyB914jG3j5BSCxsbM3PDy6OPFJGPhW6I8DSohIJL3e_JoVnKi06-rpxLegmBYguoytGMq2n8C_VuM2uTktx2p2rkajv8xi_y65E_xZuj0XwHtkzZX3yfWPbb_g2QOC7ax_BekGMqye2X61sec1BY-Znv0ASIvQmloKn7bbALWuaWPESqrmbjJtKqroCOPWKYgCdhRB1aGqtFSdTUCSS0cx3LV2zUNyfCXL_oisl1XpHhOaaKNFoZhnmUpN0tO-yL0Ft8X0DNcu6ZB4sarShCro2IxjJGE3hIyQLSPwCRghkREd8nY5ZDwvAXIZ8Q6yakmI1bvbH6rJqQxgIA0zmE9ceJ2b1Oa5zrmxTnFtjbdFZjvkJTJaYn2OEiX9VE3rWg6-HsntDCA0h10575A3gchXMAOjQj4FrAOW9Fqh3FyhBAAxq38v5EkGAKvlhbp1yLuljP1__k8uf9kLcgO0Vn4eDA-ekls4AG_mWLZJ1pvJ1D0DB6_Rz4PmUPL9qpX1D3bSZrY
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA-yh-g9-C1XPSWIICg9e2mSto-reJ6Ch6gL61PIpxyu3WPbKudf70yaW25V_HhYut2dFjIzmfzazPyGkIfSS8uMNLnTFce3VSJvqgCnRTCFxfduAguc3xzJwxl_PRfzRBaNtTDn9u8BW_CnvhtWIcYK3oBFGUTbLSkAdk_I1uzo7fQjNo8DL8plGXvtpu9sPu5g_v4eG2tQpOr_NSBvk0tDe6JPv-nF4tyKc3B1zNXqIlEhJpp83ht6s2e__0Tj-E-DuUauJNxJp6OjXCcXfHuDXHwZ-_qe3iTYdvpr8kIQQ5bLeIg54h0FZEuPv0DoyXHVcxQ-sSsAdb6PuVwt1SOcpf2SarrA_HIKJsPOH-jiVLeO6uMVeFzrKaaldr6_RWYHLz48P8xTQ4Zci0L2uTahYF7qwHnFal8G70odaqk9AEcws7Ei6CYUwskSgILhtmFwDde-chrsXt4mk3bZ-h1CS2ONbDQLrNLclvsmNHVwAC_svhXGlxkpzkykbGIrx6YZCwVPLahMFZWJZ6BMhcrMyOP1JScjVcefhJ-h3deCyLIdfwB7qTRplWUW636bYGrLXV2bWljntTDOBtdULiMP0GsU8mi0mKjzSQ9dp169f6emFYS6Gp6eRUYeJaGwhBFYneoeQA9IvbUhubshCRPdbv595pwqBZpOMSmwOBhwW0aerB327-O_81_Sd8llPOAuGqt2yaRfDf4egLHe3E_T8AcjkjBv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+neural+networks+for+image-based+sediment+detection+applied+to+a+large+terrestrial+and+airborne+dataset&rft.jtitle=Earth+surface+dynamics&rft.au=Chen%2C+Xingyu&rft.au=Hassan%2C+Marwan+A.&rft.au=Fu%2C+Xudong&rft.date=2022-04-27&rft.issn=2196-632X&rft.eissn=2196-632X&rft.volume=10&rft.issue=2&rft.spage=349&rft.epage=366&rft_id=info:doi/10.5194%2Fesurf-10-349-2022&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_esurf_10_349_2022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-632X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-632X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-632X&client=summon