Convolutional neural networks for image-based sediment detection applied to a large terrestrial and airborne dataset
Image-based grain sizing has been used to measure grain size more efficiently compared with traditional methods (e.g., sieving and Wolman pebble count). However, current methods to automatically detect individual grains are largely based on detecting grain interstices from image intensity which not...
        Saved in:
      
    
          | Published in | Earth surface dynamics Vol. 10; no. 2; pp. 349 - 366 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Gottingen
          Copernicus GmbH
    
        27.04.2022
     Copernicus Publications  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2196-632X 2196-6311 2196-632X  | 
| DOI | 10.5194/esurf-10-349-2022 | 
Cover
| Abstract | Image-based grain sizing has been used to measure grain size more
efficiently compared with traditional methods (e.g., sieving and Wolman pebble
count). However, current methods to automatically detect individual grains
are largely based on detecting grain interstices from image intensity which
not only require a significant level of expertise for parameter tuning but
also underperform when they are applied to suboptimal environments (e.g.,
dense organic debris, various sediment lithology). We proposed a model
(GrainID) based on convolutional neural networks to measure grain size in a
diverse range of fluvial environments. A dataset of more than 125 000
grains from flume and field measurements were compiled to develop GrainID.
Tests were performed to compare the predictive ability of GrainID with
sieving, manual labeling, Wolman pebble counts (Wolman, 1954) and
BASEGRAIN (Detert and Weitbrecht, 2012). When compared with the sieving
results for a sandy-gravel bed, GrainID yielded high predictive accuracy
(comparable to the performance of manual labeling) and outperformed
BASEGRAIN and Wolman pebble counts (especially for small grains). For the
entire evaluation dataset, GrainID once again showed fewer predictive errors
and significantly lower variation in results in comparison with BASEGRAIN and
Wolman pebble counts and maintained this advantage even in uncalibrated
rivers with drone images. Moreover, the existence of vegetation and noise
have little influence on the performance of GrainID. Analysis indicated that
GrainID performed optimally when the image resolution is higher than 1.8 mm pixel−1, the image tile size is 512×512 pixels and the grain area
truncation values (the area of smallest detectable grains) were equal to 18–25 pixels. | 
    
|---|---|
| AbstractList | Image-based grain sizing has been used to measure grain size more efficiently compared with traditional methods (e.g., sieving and Wolman pebble count). However, current methods to automatically detect individual grains are largely based on detecting grain interstices from image intensity which not only require a significant level of expertise for parameter tuning but also underperform when they are applied to suboptimal environments (e.g., dense organic debris, various sediment lithology). We proposed a model (GrainID) based on convolutional neural networks to measure grain size in a diverse range of fluvial environments. A dataset of more than 125 000 grains from flume and field measurements were compiled to develop GrainID. Tests were performed to compare the predictive ability of GrainID with sieving, manual labeling, Wolman pebble counts (Wolman, 1954) and BASEGRAIN (Detert and Weitbrecht, 2012). When compared with the sieving results for a sandy-gravel bed, GrainID yielded high predictive accuracy (comparable to the performance of manual labeling) and outperformed BASEGRAIN and Wolman pebble counts (especially for small grains). For the entire evaluation dataset, GrainID once again showed fewer predictive errors and significantly lower variation in results in comparison with BASEGRAIN and Wolman pebble counts and maintained this advantage even in uncalibrated rivers with drone images. Moreover, the existence of vegetation and noise have little influence on the performance of GrainID. Analysis indicated that GrainID performed optimally when the image resolution is higher than 1.8 mm pixel.sup.-1, the image tile size is 512x512 pixels and the grain area truncation values (the area of smallest detectable grains) were equal to 18-25 pixels. Image-based grain sizing has been used to measure grain size more efficiently compared with traditional methods (e.g., sieving and Wolman pebble count). However, current methods to automatically detect individual grains are largely based on detecting grain interstices from image intensity which not only require a significant level of expertise for parameter tuning but also underperform when they are applied to suboptimal environments (e.g., dense organic debris, various sediment lithology). We proposed a model (GrainID) based on convolutional neural networks to measure grain size in a diverse range of fluvial environments. A dataset of more than 125 000 grains from flume and field measurements were compiled to develop GrainID. Tests were performed to compare the predictive ability of GrainID with sieving, manual labeling, Wolman pebble counts (Wolman, 1954) and BASEGRAIN (Detert and Weitbrecht, 2012). When compared with the sieving results for a sandy-gravel bed, GrainID yielded high predictive accuracy (comparable to the performance of manual labeling) and outperformed BASEGRAIN and Wolman pebble counts (especially for small grains). For the entire evaluation dataset, GrainID once again showed fewer predictive errors and significantly lower variation in results in comparison with BASEGRAIN and Wolman pebble counts and maintained this advantage even in uncalibrated rivers with drone images. Moreover, the existence of vegetation and noise have little influence on the performance of GrainID. Analysis indicated that GrainID performed optimally when the image resolution is higher than 1.8 mm pixel −1 , the image tile size is 512×512 pixels and the grain area truncation values (the area of smallest detectable grains) were equal to 18–25 pixels. Image-based grain sizing has been used to measure grain size more efficiently compared with traditional methods (e.g., sieving and Wolman pebble count). However, current methods to automatically detect individual grains are largely based on detecting grain interstices from image intensity which not only require a significant level of expertise for parameter tuning but also underperform when they are applied to suboptimal environments (e.g., dense organic debris, various sediment lithology). We proposed a model (GrainID) based on convolutional neural networks to measure grain size in a diverse range of fluvial environments. A dataset of more than 125 000 grains from flume and field measurements were compiled to develop GrainID. Tests were performed to compare the predictive ability of GrainID with sieving, manual labeling, Wolman pebble counts (Wolman, 1954) and BASEGRAIN (Detert and Weitbrecht, 2012). When compared with the sieving results for a sandy-gravel bed, GrainID yielded high predictive accuracy (comparable to the performance of manual labeling) and outperformed BASEGRAIN and Wolman pebble counts (especially for small grains). For the entire evaluation dataset, GrainID once again showed fewer predictive errors and significantly lower variation in results in comparison with BASEGRAIN and Wolman pebble counts and maintained this advantage even in uncalibrated rivers with drone images. Moreover, the existence of vegetation and noise have little influence on the performance of GrainID. Analysis indicated that GrainID performed optimally when the image resolution is higher than 1.8 mm pixel-1, the image tile size is 512×512 pixels and the grain area truncation values (the area of smallest detectable grains) were equal to 18–25 pixels. Image-based grain sizing has been used to measure grain size more efficiently compared with traditional methods (e.g., sieving and Wolman pebble count). However, current methods to automatically detect individual grains are largely based on detecting grain interstices from image intensity which not only require a significant level of expertise for parameter tuning but also underperform when they are applied to suboptimal environments (e.g., dense organic debris, various sediment lithology). We proposed a model (GrainID) based on convolutional neural networks to measure grain size in a diverse range of fluvial environments. A dataset of more than 125 000 grains from flume and field measurements were compiled to develop GrainID. Tests were performed to compare the predictive ability of GrainID with sieving, manual labeling, Wolman pebble counts (Wolman, 1954) and BASEGRAIN (Detert and Weitbrecht, 2012). When compared with the sieving results for a sandy-gravel bed, GrainID yielded high predictive accuracy (comparable to the performance of manual labeling) and outperformed BASEGRAIN and Wolman pebble counts (especially for small grains). For the entire evaluation dataset, GrainID once again showed fewer predictive errors and significantly lower variation in results in comparison with BASEGRAIN and Wolman pebble counts and maintained this advantage even in uncalibrated rivers with drone images. Moreover, the existence of vegetation and noise have little influence on the performance of GrainID. Analysis indicated that GrainID performed optimally when the image resolution is higher than 1.8 mm pixel−1, the image tile size is 512×512 pixels and the grain area truncation values (the area of smallest detectable grains) were equal to 18–25 pixels.  | 
    
| Audience | Academic | 
    
| Author | Hassan, Marwan A. Chen, Xingyu Fu, Xudong  | 
    
| Author_xml | – sequence: 1 givenname: Xingyu orcidid: 0000-0001-5448-3560 surname: Chen fullname: Chen, Xingyu – sequence: 2 givenname: Marwan A. orcidid: 0000-0001-6856-5989 surname: Hassan fullname: Hassan, Marwan A. – sequence: 3 givenname: Xudong orcidid: 0000-0003-0744-0546 surname: Fu fullname: Fu, Xudong  | 
    
| BookMark | eNqFUtuKFDEQbWQF13U_wLeATz70mmtfHpfBy8CCsCr4FqqTypCxpzMmadf9e9MzojsiSgiVVM45SdXJ0-psChNW1XNGrxTr5StMc3Q1o7WQfc0p54-qc876pm4E_3z2YP2kukxpSyllgish-vMqr8L0LYxz9mGCkUw4x0PIdyF-ScSFSPwONlgPkNCSMv0Op0wsZjQLicB-P_pylAMBMkLcIMkYI6YcfZGCyRLwcQhxQmIhF5n8rHrsYEx4-TNeVJ_evP64elffvH-7Xl3f1KBok2sYHOXYgJOy5R0Kh1aA6xpAyppOqMEoB72jyjZC0maQpueFIwFbC6VEcVGtj7o2wFbvY6kk3usAXh8SIW40xOzNiNpw06uG9W7ojLRdN3TKWAQ1WONs39qixY9a87SH-zsYx1-CjOrFBn2wYdkVG_RiQyG9OJL2MXydS0v0NsyxNDpp3iglhWSK_UZtoLzETy7kCGbnk9HXLWVt10mqCurqL6gyLO68KR_C-ZI_Ibw8IRRMxu95A3NKev3h9hTbHrEmhpQiOm18hsXfcokf_1ki-4P5_7b8AHD32h8 | 
    
| CitedBy_id | crossref_primary_10_1002_esp_5984 crossref_primary_10_1002_esp_5755 crossref_primary_10_3390_rs16234614 crossref_primary_10_1002_esp_5782 crossref_primary_10_1016_j_geomorph_2023_108857 crossref_primary_10_1016_j_powtec_2024_120122 crossref_primary_10_1029_2023WR035406 crossref_primary_10_5194_esurf_10_953_2022 crossref_primary_10_1007_s11440_024_02493_8 crossref_primary_10_1016_j_jhydrol_2024_131181 crossref_primary_10_1016_j_catena_2023_107199 crossref_primary_10_3390_rs16071264 crossref_primary_10_1590_1809_4430_eng_agric_v43n6e20230101_2023 crossref_primary_10_3389_fbioe_2022_944944 crossref_primary_10_2166_hydro_2023_079 crossref_primary_10_3390_s24154923 crossref_primary_10_1016_j_geomorph_2024_109533 crossref_primary_10_1016_j_geomorph_2024_109588 crossref_primary_10_1016_j_ijsrc_2024_05_002  | 
    
| Cites_doi | 10.1029/2009JF001477 10.1577/1548-8659(2000)129<0262:ASSGQ>2.0.CO;2 10.1029/TR035i006p00951 10.1029/2008WR006940 10.1002/2013WR014529 10.5194/hess-25-2567-2021 10.1080/00221689809498626 10.1029/WR006i005p01357 10.1061/JYCEAJ.0005283 10.1111/j.1752-1688.2001.tb05528.x 10.1029/2020WR027079 10.1201/b22619-146 10.1201/b13250 10.5194/esurf-8-913-2020 10.1007/978-3-319-24574-4_28 10.1002/esp.4760 10.1306/052203740160 10.1029/2020WR029133 10.1201/b15374 10.1002/wrcr.20142 10.1680/iwame.2000.32790 10.1145/3065386 10.1016/j.geomorph.2018.09.008 10.1002/esp.3290110108 10.1002/esp.4726 10.1109/ICSSE.2019.8823532 10.5194/esurf-9-333-2021 10.1007/s11004-005-8745-x 10.1306/112102730630 10.1029/2004WR003868 10.1061/JYCEAJ.0003044 10.1109/CVPRW.2018.00101 10.1002/esp.4788 10.1109/CVPR.2016.90 10.1029/2003WR002759  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2022 Copernicus GmbH 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: COPYRIGHT 2022 Copernicus GmbH – notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | AAYXX CITATION ISR 7QH 7TN 7UA ABUWG AEUYN AFKRA AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W H96 HCIFZ L.G PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY DOA  | 
    
| DOI | 10.5194/esurf-10-349-2022 | 
    
| DatabaseName | CrossRef Science in Context Aqualine Oceanic Abstracts Water Resources Abstracts ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central ProQuest Central Essentials ProQuest Central Natural Science Collection ProQuest Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geology | 
    
| EISSN | 2196-632X | 
    
| EndPage | 366 | 
    
| ExternalDocumentID | oai_doaj_org_article_c2c95619fb8c4d88b85cdea5bdcfd97d 10.5194/esurf-10-349-2022 A701788405 10_5194_esurf_10_349_2022  | 
    
| GroupedDBID | 5VS 8FE 8FH AAFWJ AAYXX ABDBF ACUHS ADBBV AEGXH AENEX AEUYN AFKRA AFPKN AFRAH AHGZY ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BHPHI BKSAR CCPQU CITATION GROUPED_DOAJ H13 HCIFZ IAO IEA ISR ITC KQ8 LK5 M7R OK1 PCBAR PHGZM PHGZT PIMPY PROAC PUEGO RKB ZBA 7QH 7TN 7UA ABUWG AZQEC C1K DWQXO F1W H96 L.G PKEHL PQEST PQQKQ PQUKI PRINS ADTOC IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-a506t-abf02e6af44728e3fed3af86ae016835bc5fa9f05d63406b4c92abf4ae7da0133 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 2196-632X 2196-6311  | 
    
| IngestDate | Fri Oct 03 12:50:29 EDT 2025 Sun Sep 07 11:17:07 EDT 2025 Mon Jun 30 16:59:04 EDT 2025 Tue Jun 17 21:26:26 EDT 2025 Mon Oct 20 16:49:25 EDT 2025 Fri Jun 27 03:37:28 EDT 2025 Wed Oct 01 02:33:23 EDT 2025 Thu Apr 24 22:59:31 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by/4.0 cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-a506t-abf02e6af44728e3fed3af86ae016835bc5fa9f05d63406b4c92abf4ae7da0133 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-0744-0546 0000-0001-6856-5989 0000-0001-5448-3560  | 
    
| OpenAccessLink | https://www.proquest.com/docview/2655434151?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PQID | 2655434151 | 
    
| PQPubID | 2037686 | 
    
| PageCount | 18 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c2c95619fb8c4d88b85cdea5bdcfd97d unpaywall_primary_10_5194_esurf_10_349_2022 proquest_journals_2655434151 gale_infotracmisc_A701788405 gale_infotracacademiconefile_A701788405 gale_incontextgauss_ISR_A701788405 crossref_citationtrail_10_5194_esurf_10_349_2022 crossref_primary_10_5194_esurf_10_349_2022  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-04-27 | 
    
| PublicationDateYYYYMMDD | 2022-04-27 | 
    
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-27 day: 27  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Gottingen | 
    
| PublicationPlace_xml | – name: Gottingen | 
    
| PublicationTitle | Earth surface dynamics | 
    
| PublicationYear | 2022 | 
    
| Publisher | Copernicus GmbH Copernicus Publications  | 
    
| Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications  | 
    
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref46 ref23 ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40  | 
    
| References_xml | – ident: ref6 doi: 10.1029/2009JF001477 – ident: ref28 doi: 10.1577/1548-8659(2000)129<0262:ASSGQ>2.0.CO;2 – ident: ref3 – ident: ref45 doi: 10.1029/TR035i006p00951 – ident: ref19 doi: 10.1029/2008WR006940 – ident: ref43 – ident: ref20 doi: 10.1002/2013WR014529 – ident: ref30 doi: 10.5194/hess-25-2567-2021 – ident: ref15 doi: 10.1080/00221689809498626 – ident: ref27 – ident: ref31 doi: 10.1029/WR006i005p01357 – ident: ref1 doi: 10.1061/JYCEAJ.0005283 – ident: ref4 doi: 10.1111/j.1752-1688.2001.tb05528.x – ident: ref8 doi: 10.1029/2020WR027079 – ident: ref9 – ident: ref14 doi: 10.1201/b22619-146 – ident: ref12 doi: 10.1201/b13250 – ident: ref23 doi: 10.5194/esurf-8-913-2020 – ident: ref37 doi: 10.1007/978-3-319-24574-4_28 – ident: ref5 doi: 10.1002/esp.4760 – ident: ref11 – ident: ref34 – ident: ref38 doi: 10.1306/052203740160 – ident: ref44 doi: 10.1029/2020WR029133 – ident: ref13 doi: 10.1201/b15374 – ident: ref41 doi: 10.1002/wrcr.20142 – ident: ref32 doi: 10.1680/iwame.2000.32790 – ident: ref29 doi: 10.1145/3065386 – ident: ref46 doi: 10.1016/j.geomorph.2018.09.008 – ident: ref24 doi: 10.1002/esp.3290110108 – ident: ref36 doi: 10.1002/esp.4726 – ident: ref26 – ident: ref42 doi: 10.1109/ICSSE.2019.8823532 – ident: ref2 doi: 10.5194/esurf-9-333-2021 – ident: ref17 doi: 10.1007/s11004-005-8745-x – ident: ref40 doi: 10.1306/112102730630 – ident: ref16 – ident: ref18 doi: 10.1029/2004WR003868 – ident: ref25 doi: 10.1061/JYCEAJ.0003044 – ident: ref39 doi: 10.1109/CVPRW.2018.00101 – ident: ref10 – ident: ref21 doi: 10.1002/esp.4788 – ident: ref22 doi: 10.1109/CVPR.2016.90 – ident: ref35 – ident: ref33 – ident: ref7 doi: 10.1029/2003WR002759  | 
    
| SSID | ssj0001325339 | 
    
| Score | 2.3768349 | 
    
| Snippet | Image-based grain sizing has been used to measure grain size more
efficiently compared with traditional methods (e.g., sieving and Wolman pebble
count).... Image-based grain sizing has been used to measure grain size more efficiently compared with traditional methods (e.g., sieving and Wolman pebble count)....  | 
    
| SourceID | doaj unpaywall proquest gale crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 349 | 
    
| SubjectTerms | Airborne sensing Algorithms Artificial neural networks Automation Comparative analysis Datasets Flumes Geomorphology Grain size Gravel Gravel beds Image processing Image resolution Interstices Labeling Lithology Methods Neural networks Noise Particle size Pebbles Pixels Rivers Sediment Sediment transport Sediments (Geology) Terrestrial environments  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SKOqD1C9cbSWIIChL97JJdvPYirUK-qAW-hYmX1K47pXbPaX_vTPZ7XGHYF98OI69m102M5PJL8nkN4y91lF74bQrAzSSVqtUaZqEl1Vylad1N0UHnL981adn8vO5Ot8o9UU5YSM98Ki4Qy88nb00ybVehrZ1rfIhgnLBp2CaQNG3as3GZCqvrtQCcQxhX-yRutT1bDZuaSJgkYexXy1TDkDSoJsIsTUoZe7-vyP0fXZ31V3B9W-YzzeGoJM99mDCjvxofOeH7E7sHrHdj7k27_VjRqWjf02ehGLEVJm_cp53zxGd8otLDB8ljVyB4ycz-_MQh5yP1XEYISkfFhz4nHLEOaqdqneQm3LoAoeLJXpNFzmllvZxeMLOTj78eH9aTkUVSlCVHkpwqRJRQ5KyEW2sUww1pFZDRPCHpnJeJTCpUkHXONg76Y3AeyTEJgDqtX7KdrpFF58xXjvvtAGRRAPS1zOXTJsCQgQ_88rFumDVjVatnxjHqfDF3OLMgwxhsyHoCg1hyRAFe7u-5Wqk2_iX8DGZai1ITNn5B_QfO_mPvc1_CvaKDG2JC6OjZJufsOp7--n7N3vUYLhqcQasCvZmEkoLbIGH6ewC6oHos7Yk97cksbP67b9v_MlOwaK3Qis64IvYq2Dv1j52e_uf_4_2v2D36Fm0QSaafbYzLFfxAHHW4F7mLvUHwB8oQA priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA-yh-g9-C1XPSWIICg9e2mSto-reJ6Ch6gL61PIpxyu3WPbKudf70yaW25V_HhYut2dFjIzmfzazPyGkIfSS8uMNLnTFce3VSJvqgCnRTCFxfduAguc3xzJwxl_PRfzRBaNtTDn9u8BW_CnvhtWIcYK3oBFGUTbLSkAdk_I1uzo7fQjNo8DL8plGXvtpu9sPu5g_v4eG2tQpOr_NSBvk0tDe6JPv-nF4tyKc3B1zNXqIlEhJpp83ht6s2e__0Tj-E-DuUauJNxJp6OjXCcXfHuDXHwZ-_qe3iTYdvpr8kIQQ5bLeIg54h0FZEuPv0DoyXHVcxQ-sSsAdb6PuVwt1SOcpf2SarrA_HIKJsPOH-jiVLeO6uMVeFzrKaaldr6_RWYHLz48P8xTQ4Zci0L2uTahYF7qwHnFal8G70odaqk9AEcws7Ei6CYUwskSgILhtmFwDde-chrsXt4mk3bZ-h1CS2ONbDQLrNLclvsmNHVwAC_svhXGlxkpzkykbGIrx6YZCwVPLahMFZWJZ6BMhcrMyOP1JScjVcefhJ-h3deCyLIdfwB7qTRplWUW636bYGrLXV2bWljntTDOBtdULiMP0GsU8mi0mKjzSQ9dp169f6emFYS6Gp6eRUYeJaGwhBFYneoeQA9IvbUhubshCRPdbv595pwqBZpOMSmwOBhwW0aerB327-O_81_Sd8llPOAuGqt2yaRfDf4egLHe3E_T8AcjkjBv priority: 102 providerName: Unpaywall  | 
    
| Title | Convolutional neural networks for image-based sediment detection applied to a large terrestrial and airborne dataset | 
    
| URI | https://www.proquest.com/docview/2655434151 https://doi.org/10.5194/esurf-10-349-2022 https://doaj.org/article/c2c95619fb8c4d88b85cdea5bdcfd97d  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 10 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2196-632X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325339 issn: 2196-632X databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2196-632X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325339 issn: 2196-632X databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2196-632X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325339 issn: 2196-632X databaseCode: ABDBF dateStart: 20140701 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2196-632X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325339 issn: 2196-632X databaseCode: BENPR dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3daxNBEF9qiqgP4lcxWssigqAcvezd7t09iKTSWgVDqQbq0zL7VQrpJc1dlP73zmwuqUGoDyFsMndwO7Ozv5ud-Q1jb5RXVhhlEgdFTtEqmVRFwGEaTGop7iapwPnbSB2P869n8myLjVa1MJRWufKJ0VG7qaUY-b5QkqogcYP6OLtKqGsUna6uWmhA11rBfYgUY3fYtiBmrB7bPjgcnZzeRF0ygfiGMDGuVJWobDBYHnUikMn3fbOYh-iY8grNR4iNzSpy-v_ruR-we4t6Bte_YTL5a2s6esQedpiSD5dG8Jht-foJu_s59uy9fsqopfSvzsJQjBgs41fM_244olZ-cYluJaEdzXH8RMZ_7nwb87RqDkuoytspBz6h3HGO6qCuHmS-HGrH4WKO1lR7TimnjW-fsfHR4Y9Px0nXbCEBmao2ARNS4RWEPC9E6bPgXQahVOARFKIKjZUBqpBKpzIEASa3lcBrcvCFA5zXbIf16mntnzOeGWtUBSKIAnKbDUyoyuAQOtiBlcZnfZauZlXbjomcGmJMNL6RkCJ0VASNUBGaFNFn79aXzJY0HLcJH5Cq1oLEoB1_mM7PdbcgtRWWanqrYEqbu7I0pbTOgzTOBlcVrs9ek6I1cWTUlIRzDoum0V--n-phgW6sxDdj2WdvO6EwxSew0NU04DwQrdaG5O6GJC5iu_n3yp5050QafWPyffZ-bWP_f_4Xt9_sJbtPUnQkJopd1mvnC_8KkVVr9rrlshcjEzgaj06GP_8Ar6smtA | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJjR4QHyKwAALgZBA0VIndpKHCW2w0bKtQmOT9ub5c5pU0tKkTP3n-Nu4S92OCmk87SGK0p6j2He-O9t39yPkjXDCMC10bFWe4W4Vj8vcw2PidWJw341jgvNhX3RPsq-n_HSF_J7nwmBY5VwntoraDg3ukW8ywTELEgzUx9HPGFGj8HR1DqGhArSC3WpLjIXEjn03vYQlXL3V-wz8fsvY3u7xp24cUAZixRPRxEr7hDmhfJblrHCpdzZVvhDKgTcE364N96r0CbciBeunM1MyaJMpl1sFnUnhvbfIGnxbCYu_tZ3d_rejq12elIE_hT44aAYRi7TTmR2tguOUbbp6MvatIsxKEFfGloxjiyHwr6W4S9Yn1UhNL9Vg8Jcp3LtP7gUflm7PhO4BWXHVQ3L7S4sRPH1EEML6V5BoIMOKme2tjTevKXjJ9OIHqLEYLailcLUIA9S6po0Lq6iauca0GVJFBxirToH9iCKC04WqylJ1MQbprRzFENfaNY_JyY0M-xOyWg0r95TQVBstSsU8y1Vm0o72ZeEtuCqmY7h2aUSS-ahKEyqfIwDHQMIKCBkhW0bgEzBCIiMi8n7RZDQr-3Ed8Q6yakGIFbvbH4bjcxkUgDTMYA5x6XVhMlsUuuDGOsW1Nd6WuY3Ia2S0xJocFQb9nKtJXcve9yO5nYPaLGAlziPyLhD5IfTAqJBDAeOAZbyWKDeWKEFpmOW_5_Ikg9Kq5dUUi8iHhYz9v__Prn_ZK7LePT48kAe9_v5zcgdb4HEcyzfIajOeuBfg1TX6ZZg6lJzd9Gz9AyPCYoc | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJr4eEJ-iMMBCICRQ1NSJneRhQhtbWRlU02DS3ow_p0klKU3K1H-Rv4q71O2okMbTHqoq7TmSfXe_O9v3Qcgr4YRhWujIqizF0yoeFZmHx9jr2OC5G8cE5y9DsX-cfjrhJ2vk9yIXBsMqF5jYArWtDJ6Rd5ngmAUJBqrrQ1jE4W7__fhnhB2k8KZ10U5DhTYLdqstNxaSPA7c7By2c_XWYBd4_5qx_t63D_tR6DgQKR6LJlLax8wJ5dM0Y7lLvLOJ8rlQDjwjmIc23KvCx9yKBCyhTk3BYEyqXGYVTCyB914jG3j5BSCxsbM3PDy6OPFJGPhW6I8DSohIJL3e_JoVnKi06-rpxLegmBYguoytGMq2n8C_VuM2uTktx2p2rkajv8xi_y65E_xZuj0XwHtkzZX3yfWPbb_g2QOC7ax_BekGMqye2X61sec1BY-Znv0ASIvQmloKn7bbALWuaWPESqrmbjJtKqroCOPWKYgCdhRB1aGqtFSdTUCSS0cx3LV2zUNyfCXL_oisl1XpHhOaaKNFoZhnmUpN0tO-yL0Ft8X0DNcu6ZB4sarShCro2IxjJGE3hIyQLSPwCRghkREd8nY5ZDwvAXIZ8Q6yakmI1bvbH6rJqQxgIA0zmE9ceJ2b1Oa5zrmxTnFtjbdFZjvkJTJaYn2OEiX9VE3rWg6-HsntDCA0h10575A3gchXMAOjQj4FrAOW9Fqh3FyhBAAxq38v5EkGAKvlhbp1yLuljP1__k8uf9kLcgO0Vn4eDA-ekls4AG_mWLZJ1pvJ1D0DB6_Rz4PmUPL9qpX1D3bSZrY | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA-yh-g9-C1XPSWIICg9e2mSto-reJ6Ch6gL61PIpxyu3WPbKudf70yaW25V_HhYut2dFjIzmfzazPyGkIfSS8uMNLnTFce3VSJvqgCnRTCFxfduAguc3xzJwxl_PRfzRBaNtTDn9u8BW_CnvhtWIcYK3oBFGUTbLSkAdk_I1uzo7fQjNo8DL8plGXvtpu9sPu5g_v4eG2tQpOr_NSBvk0tDe6JPv-nF4tyKc3B1zNXqIlEhJpp83ht6s2e__0Tj-E-DuUauJNxJp6OjXCcXfHuDXHwZ-_qe3iTYdvpr8kIQQ5bLeIg54h0FZEuPv0DoyXHVcxQ-sSsAdb6PuVwt1SOcpf2SarrA_HIKJsPOH-jiVLeO6uMVeFzrKaaldr6_RWYHLz48P8xTQ4Zci0L2uTahYF7qwHnFal8G70odaqk9AEcws7Ei6CYUwskSgILhtmFwDde-chrsXt4mk3bZ-h1CS2ONbDQLrNLclvsmNHVwAC_svhXGlxkpzkykbGIrx6YZCwVPLahMFZWJZ6BMhcrMyOP1JScjVcefhJ-h3deCyLIdfwB7qTRplWUW636bYGrLXV2bWljntTDOBtdULiMP0GsU8mi0mKjzSQ9dp169f6emFYS6Gp6eRUYeJaGwhBFYneoeQA9IvbUhubshCRPdbv595pwqBZpOMSmwOBhwW0aerB327-O_81_Sd8llPOAuGqt2yaRfDf4egLHe3E_T8AcjkjBv | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+neural+networks+for+image-based+sediment+detection+applied+to+a+large+terrestrial+and+airborne+dataset&rft.jtitle=Earth+surface+dynamics&rft.au=Chen%2C+Xingyu&rft.au=Hassan%2C+Marwan+A.&rft.au=Fu%2C+Xudong&rft.date=2022-04-27&rft.issn=2196-632X&rft.eissn=2196-632X&rft.volume=10&rft.issue=2&rft.spage=349&rft.epage=366&rft_id=info:doi/10.5194%2Fesurf-10-349-2022&rft.externalDBID=n%2Fa&rft.externalDocID=10_5194_esurf_10_349_2022 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-632X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-632X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-632X&client=summon |