Machine Learning Force Fields
In recent years, the use of machine learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational complexity of traditional electronic-structure methods. One of the most promising applications is the construction of ML-based force fields (FFs...
Saved in:
Published in | Chemical reviews Vol. 121; no. 16; pp. 10142 - 10186 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
25.08.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0009-2665 1520-6890 1520-6890 |
DOI | 10.1021/acs.chemrev.0c01111 |
Cover
Abstract | In recent years, the use of machine learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational complexity of traditional electronic-structure methods. One of the most promising applications is the construction of ML-based force fields (FFs), with the aim to narrow the gap between the accuracy of ab initio methods and the efficiency of classical FFs. The key idea is to learn the statistical relation between chemical structure and potential energy without relying on a preconceived notion of fixed chemical bonds or knowledge about the relevant interactions. Such universal ML approximations are in principle only limited by the quality and quantity of the reference data used to train them. This review gives an overview of applications of ML-FFs and the chemical insights that can be obtained from them. The core concepts underlying ML-FFs are described in detail, and a step-by-step guide for constructing and testing them from scratch is given. The text concludes with a discussion of the challenges that remain to be overcome by the next generation of ML-FFs. |
---|---|
AbstractList | In recent years, the use of machine learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational complexity of traditional electronic-structure methods. One of the most promising applications is the construction of ML-based force fields (FFs), with the aim to narrow the gap between the accuracy of ab initio methods and the efficiency of classical FFs. The key idea is to learn the statistical relation between chemical structure and potential energy without relying on a preconceived notion of fixed chemical bonds or knowledge about the relevant interactions. Such universal ML approximations are in principle only limited by the quality and quantity of the reference data used to train them. This review gives an overview of applications of ML-FFs and the chemical insights that can be obtained from them. The core concepts underlying ML-FFs are described in detail, and a step-by-step guide for constructing and testing them from scratch is given. The text concludes with a discussion of the challenges that remain to be overcome by the next generation of ML-FFs.In recent years, the use of machine learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational complexity of traditional electronic-structure methods. One of the most promising applications is the construction of ML-based force fields (FFs), with the aim to narrow the gap between the accuracy of ab initio methods and the efficiency of classical FFs. The key idea is to learn the statistical relation between chemical structure and potential energy without relying on a preconceived notion of fixed chemical bonds or knowledge about the relevant interactions. Such universal ML approximations are in principle only limited by the quality and quantity of the reference data used to train them. This review gives an overview of applications of ML-FFs and the chemical insights that can be obtained from them. The core concepts underlying ML-FFs are described in detail, and a step-by-step guide for constructing and testing them from scratch is given. The text concludes with a discussion of the challenges that remain to be overcome by the next generation of ML-FFs. In recent years, the use of machine learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational complexity of traditional electronic-structure methods. One of the most promising applications is the construction of ML-based force fields (FFs), with the aim to narrow the gap between the accuracy of ab initio methods and the efficiency of classical FFs. The key idea is to learn the statistical relation between chemical structure and potential energy without relying on a preconceived notion of fixed chemical bonds or knowledge about the relevant interactions. Such universal ML approximations are in principle only limited by the quality and quantity of the reference data used to train them. This review gives an overview of applications of ML-FFs and the chemical insights that can be obtained from them. The core concepts underlying ML-FFs are described in detail, and a step-by-step guide for constructing and testing them from scratch is given. The text concludes with a discussion of the challenges that remain to be overcome by the next generation of ML-FFs. In recent years, the use of machine learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational complexity of traditional electronic-structure methods. One of the most promising applications is the construction of ML-based force fields (FFs), with the aim to narrow the gap between the accuracy of ab initio methods and the efficiency of classical FFs. The key idea is to learn the statistical relation between chemical structure and potential energy without relying on a preconceived notion of fixed chemical bonds or knowledge about the relevant interactions. Such universal ML approximations are in principle only limited by the quality and quantity of the reference data used to train them. This review gives an overview of applications of ML-FFs and the chemical insights that can be obtained from them. The core concepts underlying ML-FFs are described in detail, and a step-by-step guide for constructing and testing them from scratch is given. The text concludes with a discussion of the challenges that remain to be overcome by the next generation of ML-FFs. In recent years, the use of machine learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational complexity of traditional electronic-structure methods. One of the most promising applications is the construction of ML-based force fields (FFs), with the aim to narrow the gap between the accuracy of methods and the efficiency of classical FFs. The key idea is to learn the statistical relation between chemical structure and potential energy without relying on a preconceived notion of fixed chemical bonds or knowledge about the relevant interactions. Such universal ML approximations are in principle only limited by the quality and quantity of the reference data used to train them. This review gives an overview of applications of ML-FFs and the chemical insights that can be obtained from them. The core concepts underlying ML-FFs are described in detail, and a step-by-step guide for constructing and testing them from scratch is given. The text concludes with a discussion of the challenges that remain to be overcome by the next generation of ML-FFs. |
Author | Sauceda, Huziel E Poltavsky, Igor Müller, Klaus-Robert Unke, Oliver T Gastegger, Michael Tkatchenko, Alexandre Chmiela, Stefan Schütt, Kristof T |
AuthorAffiliation | Department of Artificial Intelligence Korea University Machine Learning Group Max Planck Institute for Informatics, Stuhlsatzenhausweg Department of Physics and Materials Science BASLEARN, BASF-TU Joint Lab Google Research, Brain Team BIFOLD−Berlin Institute for the Foundations of Learning and Data DFG Cluster of Excellence “Unifying Systems in Catalysis” (UniSysCat) |
AuthorAffiliation_xml | – name: Department of Artificial Intelligence – name: Korea University – name: BIFOLD−Berlin Institute for the Foundations of Learning and Data – name: DFG Cluster of Excellence “Unifying Systems in Catalysis” (UniSysCat) – name: Department of Physics and Materials Science – name: Google Research, Brain Team – name: Machine Learning Group – name: Max Planck Institute for Informatics, Stuhlsatzenhausweg – name: BASLEARN, BASF-TU Joint Lab |
Author_xml | – sequence: 1 givenname: Oliver T orcidid: 0000-0001-7503-406X surname: Unke fullname: Unke, Oliver T organization: DFG Cluster of Excellence “Unifying Systems in Catalysis” (UniSysCat) – sequence: 2 givenname: Stefan surname: Chmiela fullname: Chmiela, Stefan organization: Machine Learning Group – sequence: 3 givenname: Huziel E orcidid: 0000-0001-6091-3408 surname: Sauceda fullname: Sauceda, Huziel E organization: BASLEARN, BASF-TU Joint Lab – sequence: 4 givenname: Michael surname: Gastegger fullname: Gastegger, Michael organization: BASLEARN, BASF-TU Joint Lab – sequence: 5 givenname: Igor orcidid: 0000-0002-3188-7017 surname: Poltavsky fullname: Poltavsky, Igor organization: Department of Physics and Materials Science – sequence: 6 givenname: Kristof T orcidid: 0000-0001-8342-0964 surname: Schütt fullname: Schütt, Kristof T organization: Machine Learning Group – sequence: 7 givenname: Alexandre orcidid: 0000-0002-1012-4854 surname: Tkatchenko fullname: Tkatchenko, Alexandre email: alexandre.tkatchenko@uni.lu organization: Department of Physics and Materials Science – sequence: 8 givenname: Klaus-Robert orcidid: 0000-0002-3861-7685 surname: Müller fullname: Müller, Klaus-Robert email: klaus-robert.mueller@tu-berlin.de organization: Google Research, Brain Team |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33705118$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtLAzEUhYNU7EN_gSgFN26mzWOSmWwEKVaFihtdh0yaaVOmSU2mBf-9KZ0W7aJmE8L9zuHkni5oWWc1ANcIDhDEaChVGKi5Xnq9GUAFUTxnoIMohgnLOWyBDoSQJ5gx2gbdEBbxSSnOLkCbkAxShPIOuHmTam6s7k-09NbYWX_svNL9sdHVNFyC81JWQV81dw98jp8-Ri_J5P35dfQ4SSSFrE6YlpRmrEB4Oi1VoXJMlKQ851nKueRFkZZK4xQjLguOUYEzmuqpynKCESGkJD3wsPNdrYtlnGhbe1mJlTdL6b-Fk0b8nVgzFzO3ETnhiLM0Gtw3Bt59rXWoxdIEpatKWu3WQWBGWA55ytH_KIUIs5RxGtG7I3Th1t7GTUSK5XGHKeWRuv0d_pB6v-QI8B2gvAvB61IoU8vauO1fTCUQFNtCRSxUNIWKptCoJUfavf1p1XCn2g4PmU8pfgC5JLVg |
CitedBy_id | crossref_primary_10_1021_acs_jctc_2c00731 crossref_primary_10_1021_acs_jpca_3c02887 crossref_primary_10_1063_5_0252566 crossref_primary_10_1063_5_0047760 crossref_primary_10_1021_acs_jpclett_4c02376 crossref_primary_10_1039_D3NR05966A crossref_primary_10_1021_acs_jpclett_4c03474 crossref_primary_10_1007_s11426_023_1908_9 crossref_primary_10_1038_s41467_024_48609_2 crossref_primary_10_1088_1361_6463_ad365c crossref_primary_10_1021_acs_jctc_2c00984 crossref_primary_10_1039_D4TA08189G crossref_primary_10_1021_acs_jpca_4c06669 crossref_primary_10_1002_anie_202219170 crossref_primary_10_1038_s41467_023_37115_6 crossref_primary_10_1021_acs_chemrev_1c00904 crossref_primary_10_1039_D1CP05928A crossref_primary_10_1021_acs_jcim_1c00503 crossref_primary_10_1002_pol_20230126 crossref_primary_10_1021_acsanm_4c01765 crossref_primary_10_1021_acscentsci_4c00578 crossref_primary_10_1016_j_ailsci_2022_100041 crossref_primary_10_1021_acs_jpca_2c07229 crossref_primary_10_1088_2515_7639_ada996 crossref_primary_10_1021_acs_jpclett_3c01618 crossref_primary_10_3389_fbinf_2022_885983 crossref_primary_10_1002_jcc_27366 crossref_primary_10_1021_acs_jpclett_4c01030 crossref_primary_10_1016_j_sbi_2022_102502 crossref_primary_10_1002_ange_202410088 crossref_primary_10_1021_acscatal_3c01945 crossref_primary_10_1063_1674_0068_cjcp2109159 crossref_primary_10_1021_acs_chemrev_2c00586 crossref_primary_10_1038_s41467_022_31093_x crossref_primary_10_1039_D1DD00017A crossref_primary_10_1029_2024GC011951 crossref_primary_10_1039_D1CP04393E crossref_primary_10_1039_D4CP00017J crossref_primary_10_1088_2632_2153_ad612b crossref_primary_10_1039_D4MH01415D crossref_primary_10_1021_acs_jctc_3c01203 crossref_primary_10_1039_D3CP05865D crossref_primary_10_1142_S0218126623500998 crossref_primary_10_1063_5_0106617 crossref_primary_10_1021_acs_jpcc_3c07110 crossref_primary_10_1021_acs_jpcc_4c04504 crossref_primary_10_1021_acs_jpclett_1c01357 crossref_primary_10_1063_5_0160326 crossref_primary_10_1063_5_0165835 crossref_primary_10_1088_2632_2153_ace418 crossref_primary_10_1002_aenm_202203307 crossref_primary_10_1038_s41524_023_01073_w crossref_primary_10_1088_2632_2153_ad6120 crossref_primary_10_1360_TB_2023_0351 crossref_primary_10_1038_s41467_024_48453_4 crossref_primary_10_1098_rsta_2022_0239 crossref_primary_10_1063_5_0214495 crossref_primary_10_1063_5_0126475 crossref_primary_10_1063_5_0158075 crossref_primary_10_1016_j_compositesb_2024_111369 crossref_primary_10_1021_acs_jcim_4c00434 crossref_primary_10_1098_rsta_2022_0250 crossref_primary_10_1021_acs_jctc_2c00702 crossref_primary_10_1007_s11244_021_01521_1 crossref_primary_10_1073_pnas_2410910122 crossref_primary_10_1016_j_actamat_2023_118734 crossref_primary_10_1021_acs_jcim_2c01064 crossref_primary_10_3390_ph15070873 crossref_primary_10_1063_5_0204229 crossref_primary_10_1038_s41467_024_47997_9 crossref_primary_10_1002_eom2_12330 crossref_primary_10_1039_D3CP00571B crossref_primary_10_1021_acsami_4c22462 crossref_primary_10_1088_1361_648X_ada65b crossref_primary_10_1021_acs_chemrev_1c00981 crossref_primary_10_1002_ange_202216383 crossref_primary_10_1021_acs_macromol_3c01377 crossref_primary_10_1063_5_0080766 crossref_primary_10_1088_2632_2153_ad0ab5 crossref_primary_10_1016_S1872_2067_21_63852_4 crossref_primary_10_1002_ijch_202100106 crossref_primary_10_1017_qrd_2022_11 crossref_primary_10_1039_D2QO00188H crossref_primary_10_1063_5_0087165 crossref_primary_10_1088_2632_2153_ac568d crossref_primary_10_1021_acs_jctc_3c00174 crossref_primary_10_1016_j_inffus_2024_102923 crossref_primary_10_1103_PhysRevResearch_7_L012013 crossref_primary_10_1039_D3CP00112A crossref_primary_10_1002_smll_202409092 crossref_primary_10_1016_j_csbj_2022_10_038 crossref_primary_10_1007_s10118_024_3221_6 crossref_primary_10_1002_qua_27389 crossref_primary_10_1021_acs_molpharmaceut_4c00342 crossref_primary_10_1021_acs_jpcc_3c07398 crossref_primary_10_1063_5_0064075 crossref_primary_10_1126_sciadv_adn4397 crossref_primary_10_1063_5_0035530 crossref_primary_10_1021_acs_jctc_4c00821 crossref_primary_10_1063_5_0237101 crossref_primary_10_1002_sstr_202400268 crossref_primary_10_1039_D2DD00096B crossref_primary_10_1016_j_pecs_2025_101220 crossref_primary_10_1080_08927022_2022_2156561 crossref_primary_10_1039_D2DD00072E crossref_primary_10_1126_sciadv_adp9662 crossref_primary_10_1021_acsengineeringau_3c00021 crossref_primary_10_1021_acs_jpcb_4c07413 crossref_primary_10_1063_5_0150379 crossref_primary_10_1021_acs_jpclett_2c02905 crossref_primary_10_1021_jacs_4c17015 crossref_primary_10_1039_D4CP04484C crossref_primary_10_1063_5_0121805 crossref_primary_10_1103_PhysRevLett_127_156002 crossref_primary_10_1021_acs_cgd_4c00905 crossref_primary_10_1063_5_0187892 crossref_primary_10_1021_acs_energyfuels_3c00502 crossref_primary_10_1002_qua_26870 crossref_primary_10_1063_5_0155600 crossref_primary_10_1021_acs_jpcc_4c04575 crossref_primary_10_1039_D4DD00099D crossref_primary_10_1002_adfm_202411171 crossref_primary_10_1021_acsaenm_4c00280 crossref_primary_10_3390_nano14151272 crossref_primary_10_1103_PhysRevB_104_104309 crossref_primary_10_1002_cphc_202400254 crossref_primary_10_1038_s42004_025_01471_9 crossref_primary_10_1103_PhysRevMaterials_6_013804 crossref_primary_10_1038_s41467_024_47999_7 crossref_primary_10_1038_s41467_022_30530_1 crossref_primary_10_1103_PhysRevMaterials_8_043805 crossref_primary_10_1038_s43588_022_00270_9 crossref_primary_10_1126_science_abj6511 crossref_primary_10_1021_acs_jpclett_4c03293 crossref_primary_10_1063_5_0154710 crossref_primary_10_1063_5_0234287 crossref_primary_10_3390_catal11091129 crossref_primary_10_1021_acs_jpca_3c00095 crossref_primary_10_1021_acs_jpcc_2c03156 crossref_primary_10_1002_jcc_27527 crossref_primary_10_1016_j_cplett_2021_138853 crossref_primary_10_1007_s12312_024_01337_6 crossref_primary_10_1088_2632_2153_ada248 crossref_primary_10_1039_D3CP03515H crossref_primary_10_1021_acs_joc_4c01763 crossref_primary_10_1016_j_cej_2024_151492 crossref_primary_10_1021_acs_jctc_3c01051 crossref_primary_10_1038_s41467_024_54554_x crossref_primary_10_1039_D2CP02864F crossref_primary_10_1021_acs_chemmater_1c04252 crossref_primary_10_1063_5_0187867 crossref_primary_10_1039_D4CP02989E crossref_primary_10_1103_PhysRevB_105_L060102 crossref_primary_10_1021_acs_chemrev_3c00624 crossref_primary_10_1080_08927022_2021_1980215 crossref_primary_10_1007_s00292_024_01308_7 crossref_primary_10_1063_5_0220091 crossref_primary_10_1063_5_0151033 crossref_primary_10_1021_acs_jpcb_4c04100 crossref_primary_10_1021_acsmaterialsau_3c00071 crossref_primary_10_1063_5_0067176 crossref_primary_10_1039_D3CP03845A crossref_primary_10_1016_j_cossms_2025_101214 crossref_primary_10_1021_acs_jctc_5c00089 crossref_primary_10_1021_accountsmr_2c00184 crossref_primary_10_1063_5_0141233 crossref_primary_10_1140_epjp_s13360_024_05348_z crossref_primary_10_1088_2632_2153_acb314 crossref_primary_10_1016_j_ces_2025_121494 crossref_primary_10_1021_acs_jpcc_2c08429 crossref_primary_10_1016_j_ensm_2023_103023 crossref_primary_10_1002_wcms_1730 crossref_primary_10_1039_D4DD00140K crossref_primary_10_1002_adma_202402369 crossref_primary_10_1038_s41524_023_00996_8 crossref_primary_10_1016_j_mattod_2023_05_029 crossref_primary_10_1016_j_aichem_2024_100050 crossref_primary_10_1021_acs_macromol_4c02036 crossref_primary_10_1016_j_aichem_2024_100051 crossref_primary_10_1107_S2053273323000268 crossref_primary_10_1038_s41524_024_01451_y crossref_primary_10_1021_acs_jced_3c00553 crossref_primary_10_1002_ange_202305964 crossref_primary_10_1016_j_aichem_2024_100059 crossref_primary_10_1039_D4DD00295D crossref_primary_10_1088_2632_2153_aca005 crossref_primary_10_1039_D4RA01861C crossref_primary_10_1021_acs_jctc_4c01086 crossref_primary_10_1063_5_0155621 crossref_primary_10_1063_5_0151266 crossref_primary_10_1063_5_0175455 crossref_primary_10_1103_PhysRevA_109_022227 crossref_primary_10_1002_jcc_27313 crossref_primary_10_1039_D4CP01529K crossref_primary_10_1063_5_0155618 crossref_primary_10_1021_acsnano_3c10201 crossref_primary_10_1103_PhysRevA_111_012806 crossref_primary_10_1080_23746149_2024_2358196 crossref_primary_10_1088_2515_7655_ac4ac3 crossref_primary_10_1021_acs_inorgchem_4c05218 crossref_primary_10_1021_acsmaterialsau_3c00064 crossref_primary_10_1063_5_0030764 crossref_primary_10_1107_S2052520624007492 crossref_primary_10_1039_D2CP02883B crossref_primary_10_1088_1361_648X_ac9d7d crossref_primary_10_3390_bioengineering9030090 crossref_primary_10_1038_s41524_022_00863_y crossref_primary_10_1103_PhysRevMaterials_8_073602 crossref_primary_10_1021_acs_jpclett_5c00172 crossref_primary_10_1109_MSP_2022_3153277 crossref_primary_10_1002_adma_202204272 crossref_primary_10_1021_acs_jctc_2c01275 crossref_primary_10_1063_5_0083060 crossref_primary_10_1038_s41524_023_01049_w crossref_primary_10_1021_acs_jctc_2c01038 crossref_primary_10_1038_s41597_023_02369_8 crossref_primary_10_1021_jacs_3c07628 crossref_primary_10_1021_acs_jcim_3c00242 crossref_primary_10_1021_acs_jpclett_4c02949 crossref_primary_10_1016_j_cplett_2025_141964 crossref_primary_10_1021_acsnano_4c01787 crossref_primary_10_1016_j_jpowsour_2022_232350 crossref_primary_10_1016_j_commatsci_2021_110939 crossref_primary_10_1038_s41586_023_06587_3 crossref_primary_10_1063_5_0250837 crossref_primary_10_1103_PhysRevB_105_165141 crossref_primary_10_1002_smll_202404274 crossref_primary_10_1073_pnas_2313023120 crossref_primary_10_1002_wcms_1656 crossref_primary_10_1038_s41524_023_01123_3 crossref_primary_10_3390_polym14091642 crossref_primary_10_1016_j_egyai_2024_100454 crossref_primary_10_1021_acs_chemrev_1c00107 crossref_primary_10_1063_5_0202647 crossref_primary_10_1088_1361_648X_ad6bdb crossref_primary_10_1016_j_nucengdes_2023_112566 crossref_primary_10_1021_acs_jcim_3c00472 crossref_primary_10_1063_5_0146812 crossref_primary_10_3390_molecules27041277 crossref_primary_10_47134_physics_v1i2_480 crossref_primary_10_1016_j_patter_2022_100588 crossref_primary_10_1016_j_jms_2023_111774 crossref_primary_10_1021_acs_jctc_4c00334 crossref_primary_10_1021_acs_jctc_4c01424 crossref_primary_10_1021_acs_jctc_2c01290 crossref_primary_10_1038_s43588_023_00571_7 crossref_primary_10_1021_acs_jpclett_4c00746 crossref_primary_10_1038_s41467_023_39214_w crossref_primary_10_1088_2752_5724_ac681d crossref_primary_10_1007_s10462_024_10731_4 crossref_primary_10_3390_en16135003 crossref_primary_10_1038_s41570_023_00516_8 crossref_primary_10_1021_acs_jpca_4c04703 crossref_primary_10_1016_j_isci_2023_106549 crossref_primary_10_1016_j_jechem_2025_02_051 crossref_primary_10_1038_s41560_023_01417_2 crossref_primary_10_1021_acs_jctc_4c00345 crossref_primary_10_1021_acs_jctc_4c00587 crossref_primary_10_1002_wcms_1679 crossref_primary_10_3389_fmolb_2022_899805 crossref_primary_10_1088_2515_7655_acfe9b crossref_primary_10_1021_acs_jpca_4c00750 crossref_primary_10_1016_j_aichem_2023_100033 crossref_primary_10_1016_j_commatsci_2024_112996 crossref_primary_10_1016_j_apcata_2024_119969 crossref_primary_10_1021_acs_jctc_3c00984 crossref_primary_10_1021_acs_jctc_3c00985 crossref_primary_10_1146_annurev_matsci_080921_085947 crossref_primary_10_1021_acscatal_2c00594 crossref_primary_10_1063_5_0212867 crossref_primary_10_1063_5_0142280 crossref_primary_10_1002_mgea_4 crossref_primary_10_3390_pr11092769 crossref_primary_10_1063_5_0180541 crossref_primary_10_1039_D1CE01564H crossref_primary_10_1016_j_aichem_2023_100037 crossref_primary_10_1063_5_0230060 crossref_primary_10_1002_anie_202216383 crossref_primary_10_1021_acs_macromol_4c00488 crossref_primary_10_1063_5_0170972 crossref_primary_10_1021_acs_jpclett_4c00322 crossref_primary_10_3389_fmats_2024_1466793 crossref_primary_10_1103_PhysRevLett_130_078001 crossref_primary_10_1021_acs_jctc_4c00173 crossref_primary_10_1039_D4TC03403A crossref_primary_10_1021_acs_jpcb_0c09898 crossref_primary_10_1021_acs_jctc_4c01012 crossref_primary_10_1016_j_chempr_2024_07_031 crossref_primary_10_1016_j_cpc_2023_108883 crossref_primary_10_1021_acs_jpcb_2c06354 crossref_primary_10_1088_2632_2153_ac3845 crossref_primary_10_1088_1674_1056_ac5d2d crossref_primary_10_3390_molecules28114477 crossref_primary_10_1038_s41467_022_33783_y crossref_primary_10_1063_5_0253919 crossref_primary_10_1021_acs_chemrev_4c00380 crossref_primary_10_1007_s11426_022_1506_1 crossref_primary_10_1021_acs_jcim_2c01510 crossref_primary_10_1042_BST20210499 crossref_primary_10_1103_PhysRevMaterials_7_123804 crossref_primary_10_2472_jsms_73_645 crossref_primary_10_1063_5_0187154 crossref_primary_10_1021_acs_jctc_3c00955 crossref_primary_10_1021_acs_jctc_1c00978 crossref_primary_10_1088_1402_4896_ad37ab crossref_primary_10_1021_acs_jpcc_3c03229 crossref_primary_10_1021_acs_jctc_4c01475 crossref_primary_10_1088_2632_2153_ad360e crossref_primary_10_1016_j_heliyon_2024_e28124 crossref_primary_10_1021_acs_jpca_1c09719 crossref_primary_10_1039_D4SC01109K crossref_primary_10_1038_s44287_024_00076_z crossref_primary_10_1016_j_commt_2024_100003 crossref_primary_10_1038_s41524_024_01227_4 crossref_primary_10_3390_biom12091246 crossref_primary_10_1002_med_22008 crossref_primary_10_1038_s41570_022_00424_3 crossref_primary_10_1002_chem_202401148 crossref_primary_10_1021_acs_jpcb_4c02882 crossref_primary_10_1021_acs_jctc_4c01604 crossref_primary_10_1063_5_0085081 crossref_primary_10_1021_acs_jpclett_3c03405 crossref_primary_10_1088_2516_1083_ad7220 crossref_primary_10_1016_j_scitotenv_2023_161871 crossref_primary_10_21105_joss_06264 crossref_primary_10_1039_D3CP00603D crossref_primary_10_3390_catal11040493 crossref_primary_10_1021_acs_jctc_1c00363 crossref_primary_10_1039_D3FD00153A crossref_primary_10_1038_s41524_023_00969_x crossref_primary_10_1021_acs_chemrev_3c00169 crossref_primary_10_1021_acs_jpca_3c02949 crossref_primary_10_1021_acsphyschemau_4c00003 crossref_primary_10_1063_5_0210866 crossref_primary_10_1080_00268976_2024_2381617 crossref_primary_10_1016_j_trechm_2021_04_003 crossref_primary_10_1039_D2CP04155C crossref_primary_10_1039_D3NR01045G crossref_primary_10_1088_2632_2153_ad652c crossref_primary_10_1016_j_nanoen_2023_108695 crossref_primary_10_1021_acs_jctc_1c01241 crossref_primary_10_1021_acs_jctc_2c01216 crossref_primary_10_1063_5_0087255 crossref_primary_10_1063_5_0099469 crossref_primary_10_1126_sciadv_adf0873 crossref_primary_10_1021_acs_nanolett_4c00890 crossref_primary_10_1021_acs_chemrev_3c00189 crossref_primary_10_1039_D2CP00834C crossref_primary_10_1039_D4MD00869C crossref_primary_10_1016_j_enconman_2023_117366 crossref_primary_10_1021_acs_jpca_4c04039 crossref_primary_10_1021_acs_jpcb_1c08383 crossref_primary_10_1021_acs_jpcb_4c01987 crossref_primary_10_1038_s41529_024_00478_2 crossref_primary_10_1016_j_jmb_2023_168358 crossref_primary_10_1002_aesr_202300112 crossref_primary_10_1021_acs_jpcc_3c04950 crossref_primary_10_1038_s43588_022_00369_z crossref_primary_10_1063_5_0134009 crossref_primary_10_1103_PhysRevMaterials_5_103803 crossref_primary_10_3389_fddsv_2022_908870 crossref_primary_10_1063_5_0156290 crossref_primary_10_1007_s10825_023_02062_4 crossref_primary_10_1021_acs_iecr_2c02333 crossref_primary_10_1371_journal_pone_0297502 crossref_primary_10_3389_fenrg_2021_695902 crossref_primary_10_1021_acs_jpclett_4c02586 crossref_primary_10_1146_annurev_physchem_062123_024417 crossref_primary_10_1002_qua_27087 crossref_primary_10_1021_acs_jctc_3c01421 crossref_primary_10_1039_D2NR05918E crossref_primary_10_1016_j_gsf_2023_101735 crossref_primary_10_1063_5_0151833 crossref_primary_10_1073_pnas_2309884120 crossref_primary_10_1021_acs_jpcb_2c00212 crossref_primary_10_1021_acsphyschemau_3c00080 crossref_primary_10_1021_acs_jpcb_3c08166 crossref_primary_10_1002_adma_202305758 crossref_primary_10_1039_D2DD00034B crossref_primary_10_1021_acs_jctc_2c00555 crossref_primary_10_1021_acs_jctc_3c00568 crossref_primary_10_1063_5_0259061 crossref_primary_10_1016_j_jechem_2022_01_018 crossref_primary_10_1063_5_0179149 crossref_primary_10_1039_D2CP05793J crossref_primary_10_1021_acs_jpcc_2c03630 crossref_primary_10_1063_5_0169343 crossref_primary_10_1021_acs_jpca_3c07129 crossref_primary_10_1088_1361_651X_acda50 crossref_primary_10_1039_D1SC02574K crossref_primary_10_1016_j_heliyon_2023_e17575 crossref_primary_10_3389_fmats_2023_1128954 crossref_primary_10_1002_advs_202409009 crossref_primary_10_1038_s41467_021_27504_0 crossref_primary_10_1002_qute_202200131 crossref_primary_10_1140_epjb_s10051_021_00234_4 crossref_primary_10_1021_acs_chemmater_4c00979 crossref_primary_10_1021_acs_jctc_4c00788 crossref_primary_10_1016_j_matdes_2023_112012 crossref_primary_10_1016_j_commatsci_2024_113486 crossref_primary_10_1021_acs_jpclett_2c03288 crossref_primary_10_1021_acscatal_4c06717 crossref_primary_10_1088_2516_1075_adbf5a crossref_primary_10_1021_acs_est_1c05970 crossref_primary_10_1063_5_0197986 crossref_primary_10_1021_acs_jctc_3c00271 crossref_primary_10_1039_D3MH00125C crossref_primary_10_1021_acs_jpclett_1c01204 crossref_primary_10_1088_1361_648X_ad9f09 crossref_primary_10_1016_j_jmps_2024_105927 crossref_primary_10_1021_acs_jpclett_3c00671 crossref_primary_10_1088_2515_7655_ad0d00 crossref_primary_10_1021_acsami_4c03815 crossref_primary_10_1063_5_0139611 crossref_primary_10_1021_acs_jpclett_1c03884 crossref_primary_10_1038_s41467_022_28526_y crossref_primary_10_1021_jacsau_4c00488 crossref_primary_10_1038_s43588_023_00424_3 crossref_primary_10_1016_j_cartre_2023_100257 crossref_primary_10_1021_acs_jctc_3c01343 crossref_primary_10_1142_S2737416521420072 crossref_primary_10_1088_2516_1075_ad48ec crossref_primary_10_1021_acsomega_4c08854 crossref_primary_10_1021_acs_jpcb_4c08471 crossref_primary_10_3390_ijms25158530 crossref_primary_10_1007_s11837_022_05306_z crossref_primary_10_1038_s41524_024_01332_4 crossref_primary_10_1002_jcc_70081 crossref_primary_10_1021_acs_jctc_2c00874 crossref_primary_10_1038_s41597_025_04720_7 crossref_primary_10_1021_acs_jpclett_4c03323 crossref_primary_10_1088_2632_2153_ad3ee6 crossref_primary_10_1038_s41570_022_00416_3 crossref_primary_10_1021_acs_jctc_3c00491 crossref_primary_10_1002_jcc_27006 crossref_primary_10_1021_acs_jcim_1c00651 crossref_primary_10_1002_ange_202208681 crossref_primary_10_1021_acs_jpclett_1c02316 crossref_primary_10_1021_acs_jpclett_4c03332 crossref_primary_10_1002_jcc_70071 crossref_primary_10_1093_nsr_nwad335 crossref_primary_10_1021_acs_jctc_4c00907 crossref_primary_10_1021_acs_jctc_2c00645 crossref_primary_10_1021_acspolymersau_1c00027 crossref_primary_10_5802_crchim_315 crossref_primary_10_1016_j_isci_2024_109673 crossref_primary_10_1021_acs_jctc_2c00643 crossref_primary_10_1021_acs_jpclett_3c01723 crossref_primary_10_1038_s41524_024_01441_0 crossref_primary_10_1039_D3DD00051F crossref_primary_10_1021_acs_jpcc_4c00028 crossref_primary_10_1063_5_0079483 crossref_primary_10_1039_D4NR00589A crossref_primary_10_1039_D3CY01160G crossref_primary_10_1093_nsr_nwad321 crossref_primary_10_1039_D2SC06696C crossref_primary_10_1039_D3SC02482B crossref_primary_10_1016_j_jallcom_2024_175751 crossref_primary_10_1021_acs_chemrev_2c00479 crossref_primary_10_1016_j_commatsci_2024_113484 crossref_primary_10_1021_acs_chemrev_1c00800 crossref_primary_10_1073_pnas_2212250120 crossref_primary_10_1039_D4NR00017J crossref_primary_10_1063_5_0174669 crossref_primary_10_1016_j_bpj_2022_08_045 crossref_primary_10_1103_PhysRevB_108_L100302 crossref_primary_10_1021_acs_jpclett_1c01645 crossref_primary_10_1016_j_scitotenv_2023_167028 crossref_primary_10_1109_TPAMI_2023_3339980 crossref_primary_10_1021_acs_jpcb_2c01954 crossref_primary_10_1021_acs_jpcb_2c09059 crossref_primary_10_1209_0295_5075_acf33f crossref_primary_10_1002_chem_202402036 crossref_primary_10_1063_5_0128774 crossref_primary_10_1088_2632_2153_ac9955 crossref_primary_10_1002_aisy_202200073 crossref_primary_10_1063_5_0142843 crossref_primary_10_1016_j_pmatsci_2025_101474 crossref_primary_10_1021_acs_jctc_2c00827 crossref_primary_10_1021_acs_jpca_4c06989 crossref_primary_10_1103_PhysRevLett_129_226001 crossref_primary_10_1016_j_jece_2024_113732 crossref_primary_10_1103_PhysRevE_111_034303 crossref_primary_10_1063_5_0129613 crossref_primary_10_1002_kin_21759 crossref_primary_10_1039_D2CP04421H crossref_primary_10_1021_acs_langmuir_3c03401 crossref_primary_10_1021_acs_jpclett_1c01895 crossref_primary_10_1021_acsnano_4c03094 crossref_primary_10_1016_j_apcatb_2025_125192 crossref_primary_10_2174_1874471015666220831091403 crossref_primary_10_1021_acs_jctc_3c00289 crossref_primary_10_1038_s42254_024_00791_4 crossref_primary_10_1063_5_0157078 crossref_primary_10_1146_annurev_pathmechdis_051222_113147 crossref_primary_10_1021_acs_jctc_3c00050 crossref_primary_10_1039_D3RA08650J crossref_primary_10_1021_acs_jcim_4c01847 crossref_primary_10_1063_5_0206974 crossref_primary_10_1039_D2SC04056E crossref_primary_10_1016_j_fuel_2023_129909 crossref_primary_10_1002_adfm_202400773 crossref_primary_10_1021_acs_jctc_3c00279 crossref_primary_10_1039_D2DD00102K crossref_primary_10_1039_D4DD00134F crossref_primary_10_21105_joss_04467 crossref_primary_10_1038_s41467_024_53028_4 crossref_primary_10_1021_acs_jpcb_4c06231 crossref_primary_10_1088_1367_2630_ac3261 crossref_primary_10_1038_s41467_022_33414_6 crossref_primary_10_1021_acs_jcim_1c00448 crossref_primary_10_1103_PhysRevB_110_054109 crossref_primary_10_1002_anie_202410088 crossref_primary_10_1021_acs_jpcc_1c05137 crossref_primary_10_1063_5_0226314 crossref_primary_10_1021_jacsau_4c01160 crossref_primary_10_1038_s41524_022_00843_2 crossref_primary_10_1021_jacs_4c18223 crossref_primary_10_1063_5_0143724 crossref_primary_10_1021_acspolymersau_2c00049 crossref_primary_10_1039_D1SC02742E crossref_primary_10_1063_5_0197592 crossref_primary_10_1063_5_0203682 crossref_primary_10_1021_acs_jpcc_4c06615 crossref_primary_10_1063_1674_0068_cjcp2110218 crossref_primary_10_1021_acs_macromol_2c02272 crossref_primary_10_1063_5_0138367 crossref_primary_10_1038_s41598_023_50978_5 crossref_primary_10_1021_acs_chemrestox_3c00032 crossref_primary_10_1016_j_scib_2024_08_039 crossref_primary_10_1021_acs_jpca_1c05105 crossref_primary_10_1016_j_cbpa_2022_102175 crossref_primary_10_1063_5_0176641 crossref_primary_10_1002_admi_202101734 crossref_primary_10_1021_accountsmr_3c00223 crossref_primary_10_1021_acs_jctc_4c01176 crossref_primary_10_1021_acsami_4c01480 crossref_primary_10_1016_j_sbi_2023_102533 crossref_primary_10_1002_ange_202219170 crossref_primary_10_1007_s12274_024_6983_9 crossref_primary_10_1021_acs_jctc_1c00821 crossref_primary_10_1039_D2DD00082B crossref_primary_10_1021_acs_chemrev_4c00572 crossref_primary_10_1021_acs_jctc_4c01151 crossref_primary_10_1021_acs_jctc_4c01393 crossref_primary_10_1063_5_0139245 crossref_primary_10_1016_j_cpc_2024_109446 crossref_primary_10_1016_j_sbi_2024_102821 crossref_primary_10_1063_5_0201241 crossref_primary_10_1021_acs_jpcb_3c05369 crossref_primary_10_1039_D3SC04317G crossref_primary_10_1088_2516_1075_ac59ca crossref_primary_10_1002_adts_202200206 crossref_primary_10_1021_acs_jctc_1c00813 crossref_primary_10_1002_adma_202417516 crossref_primary_10_1016_j_tibs_2022_05_003 crossref_primary_10_1021_acs_chemrev_3c00735 crossref_primary_10_1038_s41524_023_01092_7 crossref_primary_10_1063_5_0173351 crossref_primary_10_1016_j_chemphys_2022_111518 crossref_primary_10_1021_acscatal_3c06201 crossref_primary_10_1063_5_0211053 crossref_primary_10_1021_acsmaterialsau_4c00095 crossref_primary_10_1039_D2CP05976B crossref_primary_10_1063_5_0052857 crossref_primary_10_1021_acs_jctc_5c00178 crossref_primary_10_1021_acs_jcim_4c01473 crossref_primary_10_1039_D3CP04729F crossref_primary_10_1126_sciadv_adj1719 crossref_primary_10_1038_s41467_023_42148_y crossref_primary_10_1063_5_0155992 crossref_primary_10_1038_s42256_021_00418_8 crossref_primary_10_1021_acs_jpcc_4c03394 crossref_primary_10_1063_5_0215869 crossref_primary_10_1016_j_mtcomm_2024_110628 crossref_primary_10_1038_s41598_025_93874_w crossref_primary_10_1039_D4SC03523B crossref_primary_10_1038_s42256_024_00818_6 crossref_primary_10_1016_j_sbi_2024_102847 crossref_primary_10_1088_2632_2153_ad1626 crossref_primary_10_1109_TPAMI_2021_3115452 crossref_primary_10_1038_s41524_024_01278_7 crossref_primary_10_1021_acs_jctc_2c01078 crossref_primary_10_1039_D4CC00010B crossref_primary_10_1063_5_0146803 crossref_primary_10_1063_5_0226764 crossref_primary_10_1063_5_0155760 crossref_primary_10_1016_j_cplett_2024_141223 crossref_primary_10_1063_5_0139010 crossref_primary_10_1021_acs_jpcc_3c07646 crossref_primary_10_1063_5_0244175 crossref_primary_10_1103_PhysRevFluids_8_064004 crossref_primary_10_1038_s41597_022_01870_w crossref_primary_10_1088_1361_651X_ac4002 crossref_primary_10_1063_5_0196232 crossref_primary_10_1021_acs_jpclett_1c01810 crossref_primary_10_1186_s13321_024_00914_0 crossref_primary_10_1088_1361_6528_ac46d7 crossref_primary_10_1063_5_0235460 crossref_primary_10_1039_D4SC06529H crossref_primary_10_1088_2632_2153_ac8e4f crossref_primary_10_1063_5_0227821 crossref_primary_10_3390_met15010048 crossref_primary_10_1002_wcms_1645 crossref_primary_10_1063_5_0214754 crossref_primary_10_1103_PhysRevB_107_184111 crossref_primary_10_1007_s12033_023_00726_x crossref_primary_10_1088_1361_648X_ac462b crossref_primary_10_1016_j_nocx_2022_100115 crossref_primary_10_1088_2632_2153_ac7d3c crossref_primary_10_1088_1361_648X_ada710 crossref_primary_10_1038_s41524_024_01254_1 crossref_primary_10_1002_jcc_70016 crossref_primary_10_1073_pnas_2403497121 crossref_primary_10_1021_acs_jcim_2c01127 crossref_primary_10_1021_acs_jpca_2c00255 crossref_primary_10_1021_acs_jctc_4c01570 crossref_primary_10_1039_D2CS00203E crossref_primary_10_1039_D3QI02410E crossref_primary_10_1039_D3CP01416A crossref_primary_10_1088_2632_2153_ad5f11 crossref_primary_10_1038_s41467_024_50620_6 crossref_primary_10_1360_SSPMA_2024_0030 crossref_primary_10_1021_jacs_3c07506 crossref_primary_10_1063_5_0041548 crossref_primary_10_1098_rsta_2020_0382 crossref_primary_10_1146_annurev_physchem_082720_034254 crossref_primary_10_1002_minf_202400361 crossref_primary_10_1088_1361_6463_acd1fd crossref_primary_10_1088_2632_2153_aca1f7 crossref_primary_10_1021_acs_jctc_4c01333 crossref_primary_10_1021_acs_jctc_4c00008 crossref_primary_10_1021_acs_jpclett_2c03943 crossref_primary_10_1021_acs_jpclett_3c03131 crossref_primary_10_1021_acs_jpca_2c05962 crossref_primary_10_1016_j_surfin_2024_105689 crossref_primary_10_1021_acs_jpca_4c01546 crossref_primary_10_1021_acs_chemrev_1c00021 crossref_primary_10_1021_acs_chemrev_1c00022 crossref_primary_10_1021_acscatal_4c01920 crossref_primary_10_1088_1361_6463_ac6f97 crossref_primary_10_1016_j_jcp_2023_112180 crossref_primary_10_1021_acsnano_3c13099 crossref_primary_10_1063_5_0132573 crossref_primary_10_1021_acs_jpclett_4c01942 crossref_primary_10_1039_D4SC04164J crossref_primary_10_1039_D4DD00209A crossref_primary_10_1016_j_bbagen_2023_130534 crossref_primary_10_1039_D4CP01801J crossref_primary_10_1038_s41586_025_08628_5 crossref_primary_10_2142_biophysico_bppb_v19_0027 crossref_primary_10_3389_fchem_2023_1286257 crossref_primary_10_1039_D4FD00025K crossref_primary_10_1103_PhysRevResearch_5_L012028 crossref_primary_10_1115_1_4062966 crossref_primary_10_1021_acs_jpclett_4c00860 crossref_primary_10_1021_acs_jpcc_3c04639 crossref_primary_10_1007_s00214_023_02997_8 crossref_primary_10_1021_acs_jctc_4c00463 crossref_primary_10_1038_s43588_024_00636_1 crossref_primary_10_1039_D2CP01211A crossref_primary_10_1016_j_matdes_2025_113865 crossref_primary_10_1021_acs_jpclett_2c00654 crossref_primary_10_1063_5_0222798 crossref_primary_10_1063_5_0251833 crossref_primary_10_1039_D3DD00216K crossref_primary_10_1063_5_0222557 crossref_primary_10_1021_acs_jpclett_1c04004 crossref_primary_10_1039_D1CP03594K crossref_primary_10_1021_acs_jcim_4c02042 crossref_primary_10_1021_acs_jpcc_3c05522 crossref_primary_10_1016_j_bpj_2024_02_029 crossref_primary_10_1021_acs_jcim_2c00760 crossref_primary_10_1002_adfm_202313420 crossref_primary_10_3390_molecules28041715 crossref_primary_10_1021_acs_chemrev_1c00033 crossref_primary_10_1021_acs_jctc_1c00832 crossref_primary_10_1002_aenm_202400564 crossref_primary_10_1021_acs_jcim_2c01617 crossref_primary_10_1021_acs_jctc_4c01382 crossref_primary_10_1039_D3CP05201J crossref_primary_10_1021_acs_jpcb_4c04750 crossref_primary_10_1063_5_0231265 crossref_primary_10_3390_ph17020158 crossref_primary_10_1116_6_0004288 crossref_primary_10_1038_s41467_024_54631_1 crossref_primary_10_1039_D2CP03893E crossref_primary_10_1038_s43588_022_00228_x crossref_primary_10_1016_j_rser_2025_115358 crossref_primary_10_1002_smll_202405299 crossref_primary_10_1021_accountsmr_1c00238 crossref_primary_10_1016_j_patter_2022_100663 crossref_primary_10_1021_acs_jctc_4c00497 crossref_primary_10_1021_acs_chemrev_2c00704 crossref_primary_10_1021_acs_jctc_4c00498 crossref_primary_10_1021_acs_jctc_4c01108 crossref_primary_10_1039_D4TA00452C crossref_primary_10_1021_acs_jctc_2c01130 crossref_primary_10_1146_annurev_chembioeng_092220_025342 crossref_primary_10_1088_1361_648X_adbb9c crossref_primary_10_1021_jacs_1c12932 crossref_primary_10_1038_s43588_023_00406_5 crossref_primary_10_1002_adma_202301449 crossref_primary_10_1002_advs_202204684 crossref_primary_10_1021_acs_jpclett_4c01751 crossref_primary_10_1038_s41524_024_01481_6 crossref_primary_10_1038_s41524_025_01547_z crossref_primary_10_1002_adma_202416901 crossref_primary_10_1038_s41578_023_00537_1 crossref_primary_10_1038_s41524_025_01523_7 crossref_primary_10_1021_acs_jpca_3c07872 crossref_primary_10_1063_5_0120386 crossref_primary_10_1039_D2FD00107A crossref_primary_10_1021_acs_jpclett_2c02632 crossref_primary_10_1063_5_0222779 crossref_primary_10_1088_2632_2153_ac6ec6 crossref_primary_10_1021_acs_accounts_1c00503 crossref_primary_10_1021_acs_jctc_2c00290 crossref_primary_10_3390_ijms232314699 crossref_primary_10_1021_acs_jctc_2c01304 crossref_primary_10_1038_s41597_023_01998_3 crossref_primary_10_1021_acs_jctc_2c00693 crossref_primary_10_1021_acs_jctc_3c00427 crossref_primary_10_1016_j_cej_2024_148779 crossref_primary_10_1016_j_commatsci_2023_112715 crossref_primary_10_1063_5_0080506 crossref_primary_10_1039_D3CP01922E crossref_primary_10_1088_1361_648X_ad64a2 crossref_primary_10_1103_PhysRevLett_131_228001 crossref_primary_10_1063_5_0070931 crossref_primary_10_1016_j_mtcomm_2023_107526 crossref_primary_10_1063_5_0209545 crossref_primary_10_1038_s41524_025_01550_4 crossref_primary_10_1038_s41467_025_57101_4 crossref_primary_10_1016_j_scriptamat_2025_116568 crossref_primary_10_1088_2632_2153_ad9709 crossref_primary_10_1021_acs_jpcc_4c00886 crossref_primary_10_1039_D4CC05117C crossref_primary_10_1021_acs_jpcb_4c00104 crossref_primary_10_1002_anie_202208681 crossref_primary_10_1021_acs_jpclett_4c02430 crossref_primary_10_1007_s11426_024_2072_4 crossref_primary_10_1063_5_0134317 crossref_primary_10_1063_5_0120169 crossref_primary_10_1063_5_0245615 crossref_primary_10_1021_acs_jpclett_3c01592 crossref_primary_10_1021_acs_jpclett_4c03727 crossref_primary_10_1021_acs_jpcc_4c01988 crossref_primary_10_1021_acs_jctc_3c00641 crossref_primary_10_1063_5_0156343 crossref_primary_10_1038_s41467_025_57134_9 crossref_primary_10_1021_acs_jcim_3c00999 crossref_primary_10_1039_D2MA00673A crossref_primary_10_1021_acs_jcim_3c00989 crossref_primary_10_1038_s41597_022_01185_w crossref_primary_10_1039_D4CP01497A crossref_primary_10_1021_acs_jpcc_3c00451 crossref_primary_10_1088_2632_2153_ad27e1 crossref_primary_10_1016_j_commatsci_2024_113072 crossref_primary_10_1021_acs_jctc_4c00618 crossref_primary_10_1021_jacs_2c06833 crossref_primary_10_1021_acs_jctc_4c00858 crossref_primary_10_1021_acs_jctc_3c00873 crossref_primary_10_1021_acsnano_3c13001 crossref_primary_10_1039_D3DD00011G crossref_primary_10_1039_D4FD00041B crossref_primary_10_1088_1367_2630_acf2bb crossref_primary_10_1063_5_0123698 crossref_primary_10_3390_agriengineering5040106 crossref_primary_10_1021_acs_cgd_3c00375 crossref_primary_10_1088_2632_2153_abfd96 crossref_primary_10_1021_acs_jctc_4c00869 crossref_primary_10_1039_D1SC03564A crossref_primary_10_7498_aps_73_20231618 crossref_primary_10_1021_acs_jctc_3c00469 crossref_primary_10_1016_j_polymer_2024_127416 crossref_primary_10_1007_s10910_022_01334_x crossref_primary_10_1021_acs_jpcc_3c05908 crossref_primary_10_1088_2632_2153_acf115 crossref_primary_10_1021_acs_jctc_2c00661 crossref_primary_10_1038_s41524_024_01339_x crossref_primary_10_1039_D1DD00050K crossref_primary_10_1039_D4NR02114B crossref_primary_10_1063_5_0204064 crossref_primary_10_1038_s41524_023_01053_0 crossref_primary_10_1021_acscatal_4c01364 crossref_primary_10_1063_5_0242304 crossref_primary_10_1186_s41313_021_00027_3 crossref_primary_10_1088_1361_648X_ad9657 crossref_primary_10_1021_acsnano_4c18956 crossref_primary_10_1063_5_0219764 crossref_primary_10_1103_PhysRevB_109_014310 crossref_primary_10_1021_acs_jpcc_4c08188 crossref_primary_10_3390_ijms25031448 crossref_primary_10_1103_PhysRevB_108_094102 crossref_primary_10_1016_j_gsf_2024_101925 crossref_primary_10_1021_acs_jpcb_3c07187 crossref_primary_10_1063_5_0205123 crossref_primary_10_1093_bib_bbad008 crossref_primary_10_1021_acs_jctc_4c01503 crossref_primary_10_1038_s41467_024_47422_1 crossref_primary_10_1016_j_xinn_2021_100179 crossref_primary_10_1021_acs_jctc_2c00440 crossref_primary_10_1039_D3CP05643K crossref_primary_10_1021_acs_jctc_4c00660 crossref_primary_10_1021_acsami_4c00618 crossref_primary_10_1002_anie_202305964 crossref_primary_10_1103_PhysRevB_110_035204 crossref_primary_10_1103_PhysRevB_110_184106 |
Cites_doi | 10.1126/science.aaw1147 10.1021/ja00457a004 10.1162/089976698300017467 10.1145/1364782.1364802 10.1017/S0305004100030401 10.1007/978-3-030-40245-7_12 10.1063/1.5082885 10.1126/sciadv.1603015 10.1021/acs.jpcc.7b12064 10.1021/ct4003702 10.1088/2632-2153/ab5922 10.1016/j.str.2005.11.014 10.1002/anie.201703114 10.1063/1.5092521 10.1039/C4CP05192K 10.1063/1.5019779 10.1016/0893-6080(91)90009-T 10.1007/978-3-319-21233-3_6 10.1103/PhysRevLett.117.135502 10.1063/1.5022469 10.1155/2015/183918 10.1103/PhysRevB.92.045131 10.1021/acscentsci.8b00913 10.1016/S0893-6080(98)00116-6 10.1063/1.5100267 10.1021/acs.jpclett.9b02173 10.1007/978-3-642-35289-8_3 10.1016/0893-6080(88)90020-2 10.1016/S0167-7322(02)00094-6 10.1063/1.465188 10.1080/00048402.2014.992447 10.1063/1.5011399 10.1126/science.aag2302 10.1021/acs.jpcb.8b06433 10.1038/nature12162 10.1016/j.cpc.2018.09.020 10.1002/adma.201902765 10.1021/acs.jpclett.0c01307 10.1063/1.5114981 10.1021/acs.chemrev.6b00446 10.1093/imaiai/iaw009 10.1021/acs.jpcb.6b07814 10.1038/s41467-020-20427-2 10.1007/978-1-4757-2440-0 10.1109/72.914517 10.2174/157340911795677602 10.1007/978-3-540-28650-9_4 10.1021/acs.chemrev.0c00749 10.1021/ct400953f 10.1109/34.6778 10.1137/16M1075454 10.1038/nature14539 10.1162/neco.1992.4.1.1 10.5281/zenodo.2605341 10.1002/qua.24890 10.1007/978-1-62703-017-5_8 10.1038/sdata.2014.22 10.1007/3-540-49430-8_3 10.1016/S0959-440X(00)00196-2 10.1093/bioinformatics/btx431 10.1103/PhysRevLett.77.3865 10.1063/1.4909549 10.1103/PhysRevB.89.205118 10.1007/978-0-387-84858-7 10.1038/s41467-020-19093-1 10.1145/130385.130417 10.1039/C9SC06017K 10.1063/1.5006596 10.1021/jp401225b 10.1039/C7SC04934J 10.1021/cr200137a 10.1039/C9SC05116C 10.1063/5.0007276 10.1063/1.5019667 10.1103/PhysRevLett.120.143001 10.1039/C9SC01742A 10.1063/1.469597 10.1039/C9CS00786E 10.1073/pnas.1602375113 10.1063/1.478522 10.1038/s41557-020-0527-z 10.1021/acs.jctc.8b00705 10.1016/j.jphotochemrev.2013.10.004 10.1088/2516-1075/ab1edb 10.1063/1.5097385 10.1063/1.441588 10.1063/1.3682557 10.1021/acs.jpcb.8b11905 10.1021/ct700127w 10.1038/s41524-018-0112-9 10.1088/1367-2630/ab81b5 10.1039/C6CP00415F 10.31635/ccschem.020.202000195 10.1039/D0CP01893G 10.1103/PhysRevB.87.184115 10.1103/PhysRevLett.104.136403 10.1073/pnas.1816132116 10.1063/1.3124802 10.1021/acs.jpclett.8b03026 10.1021/acs.jctc.8b00873 10.1007/978-3-030-40245-7 10.1063/1.4986489 10.1039/C7CP05036D 10.1007/BFb0104276 10.1063/1.2746846 10.1021/acs.jpclett.5b00831 10.1137/1.9781611970128 10.1038/ncomms13890 10.1016/j.cpc.2018.03.016 10.1063/1.5126701 10.1016/j.neunet.2014.09.003 10.1002/anie.200802019 10.1103/PhysRevLett.102.073005 10.1016/j.cpc.2016.05.010 10.1021/ja00540a008 10.1021/ja902302h 10.1103/PhysRev.159.98 10.1007/BF00549096 10.1051/sfn/201112009 10.1103/PhysRevLett.120.036002 10.1146/annurev-physchem-040412-110122 10.1007/978-3-030-40245-7_14 10.1063/1.4951697 10.1063/1.5020710 10.1039/C5RA16956A 10.1021/acs.jpclett.0c00527 10.1007/BFb0020283 10.1016/j.cpc.2019.02.007 10.1021/acs.chemrev.0c00665 10.1063/5.0023005 10.1038/s41570-017-0109 10.1021/cr040426m 10.1146/annurev-physchem-042018-052331 10.1063/1.5024317 10.1016/S0893-6080(98)00032-X 10.1038/s41570-020-0189-9 10.1063/1.5053562 10.1016/0263-7855(95)00087-9 10.1063/1.5017898 10.1021/acs.jpcb.7b06985 10.1021/ci300415d 10.1098/rspa.1924.0082 10.1103/PhysRevLett.121.265701 10.1021/jacs.8b12471 10.1039/D0CP00668H 10.1103/PhysRevLett.98.146401 10.1126/sciadv.1701816 10.1103/PhysRev.28.1049 10.1021/acs.jpcb.9b05578 10.1021/acs.jcim.7b00090 10.1016/S0009-2614(97)00448-X 10.1039/C7SC02267K 10.1021/acs.jpclett.9b02037 10.1021/acs.jpclett.8b00902 10.1063/1.5100131 10.1002/pssb.200844219 10.1016/j.neuroimage.2010.11.004 10.1038/s41467-017-00839-3 10.1021/ct400781b 10.2172/10176421 10.1073/pnas.0408036102 10.1080/10408437308244871 10.1088/1367-2630/ab4509 10.1007/978-3-642-61659-4_30 10.1073/pnas.1707745115 10.1007/978-3-030-40245-7_6 10.1038/s41467-019-12875-2 10.1063/1.4993424 10.1038/s41467-017-02388-1 10.1002/andp.19273892002 10.1088/2632-2153/abba6f 10.1098/rspa.1929.0094 10.1115/1.1752925 10.1063/1.5078687 10.1063/1.5011181 10.1016/j.sbi.2019.12.005 10.1002/qua.21278 10.1021/acs.jctc.0c00580 10.1021/acs.jctc.9b00181 10.1038/267585a0 10.1063/1.2336223 10.1063/1.472596 10.1063/1.464814 10.1007/978-3-662-09438-9 10.1214/009053607000000677 10.1101/2020.06.27.175430 10.1038/s41467-020-20212-1 10.1103/PhysRev.56.340 10.1063/5.0008223 10.1021/acs.jpcc.6b10908 10.1088/1361-648X/aa680e 10.1063/1.456153 10.1007/978-3-642-35289-8 10.1103/PhysRev.46.618 10.1007/BF00994018 10.1038/s41557-020-0544-y 10.1021/ct400195d 10.1063/1.3382344 10.1063/1.4964627 10.1103/PhysRevB.96.014112 10.1021/acs.jctc.5b00743 10.1162/neco.1996.8.7.1341 10.1142/S0218339094000179 10.1088/1367-2630/15/9/095003 10.1007/978-3-030-40245-7_15 10.1021/acs.jctc.8b00908 10.1016/j.cpc.2019.106949 10.1063/1.3553717 10.1038/nsb0902-646 10.1109/JRPROC.1949.232969 10.1016/j.cpc.2009.06.022 10.1007/978-1-4612-4380-9_35 10.1002/qua.24927 10.1063/1.5024797 10.1038/s41586-019-1923-7 10.1063/1.5023802 10.1109/72.788641 10.1039/C5SC03443D 10.1002/wcms.31 10.1103/PhysRevLett.108.058301 10.1063/1.5003074 10.1109/TNN.2008.2005605 10.1039/C9SC01928F 10.1039/C6SC05720A 10.1103/PhysRevLett.114.096405 10.1007/BFb0020217 10.1007/978-3-030-28954-6_17 10.1016/B978-044451719-7/50084-6 10.1021/jp004368u 10.1021/ct900292r 10.1063/5.0012911 10.1063/1.5020067 10.1103/PhysRevLett.56.2656 10.1038/s41467-019-08987-4 10.1093/oso/9780198538493.001.0001 10.1016/S0009-2614(98)00207-3 10.1145/130385.130401 10.1021/acs.jctc.8b00187 10.1007/3-540-44581-1_27 10.1007/s10822-016-9938-8 10.1007/BF02551274 10.1002/qua.24917 10.1103/PhysRevLett.108.253002 10.1063/1.1290491 10.1038/s41467-018-06169-2 10.1103/PhysRevLett.93.175503 10.1007/BF02478259 10.1063/1.5018409 10.1103/PhysRevX.8.041048 10.1103/PhysRevB.95.094203 |
ContentType | Journal Article |
Copyright | 2021 The Authors. Published
by American
Chemical Society Copyright American Chemical Society Aug 25, 2021 2021 The Authors. Published by American Chemical Society 2021 The Authors |
Copyright_xml | – notice: 2021 The Authors. Published by American Chemical Society – notice: Copyright American Chemical Society Aug 25, 2021 – notice: 2021 The Authors. Published by American Chemical Society 2021 The Authors |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 7S9 L.6 5PM |
DOI | 10.1021/acs.chemrev.0c01111 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-6890 |
EndPage | 10186 |
ExternalDocumentID | PMC8391964 33705118 10_1021_acs_chemrev_0c01111 a574410784 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; grantid: 031L0207D – fundername: ; grantid: EXC 2046/1 – fundername: ; grantid: 019-0-00079 – fundername: ; grantid: 01GQ0850 – fundername: ; grantid: 01IS14013A-E – fundername: ; grantid: NA – fundername: ; grantid: 01IS18037A – fundername: ; grantid: Math+ – fundername: ; grantid: 2017-0-00451 – fundername: ; grantid: 01IS18025A |
GroupedDBID | - .K2 02 1AW 29B 4.4 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABFRP ABMVS ABPPZ ABPTK ABUCX ACGFS ACGOD ACIWK ACJ ACNCT ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 D0L DU5 DZ EBS ED ED~ F5P GGK GNL IH9 IHE JG JG~ K2 LG6 P2P PQEST PQQKQ ROL RWL TAE TN5 UI2 UKR UNM UPT VF5 VG9 VQA W1F WH7 X YZZ --- -DZ -~X .DC 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AFXLT AGXLV CITATION CUPRZ XSW ~02 NPM 7SR 8BQ 8FD JG9 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-a506t-6ea5576b12ddfcbc823ca59897499a9bb4fce24219ab921b2754edc78321333f3 |
IEDL.DBID | ACS |
ISSN | 0009-2665 1520-6890 |
IngestDate | Thu Aug 21 17:59:47 EDT 2025 Thu Jul 10 17:56:06 EDT 2025 Fri Jul 11 12:05:19 EDT 2025 Mon Jun 30 10:20:45 EDT 2025 Thu Apr 03 07:05:59 EDT 2025 Thu Apr 24 22:51:45 EDT 2025 Tue Jul 01 03:16:20 EDT 2025 Fri Aug 27 15:31:21 EDT 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a506t-6ea5576b12ddfcbc823ca59897499a9bb4fce24219ab921b2754edc78321333f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7503-406X 0000-0002-3861-7685 0000-0001-6091-3408 0000-0002-3188-7017 0000-0001-8342-0964 0000-0002-1012-4854 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8391964 |
PMID | 33705118 |
PQID | 2568705459 |
PQPubID | 45407 |
PageCount | 45 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8391964 proquest_miscellaneous_2636809491 proquest_miscellaneous_2501264695 proquest_journals_2568705459 pubmed_primary_33705118 crossref_citationtrail_10_1021_acs_chemrev_0c01111 crossref_primary_10_1021_acs_chemrev_0c01111 acs_journals_10_1021_acs_chemrev_0c01111 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 GGK W1F ABFRP ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-25 |
PublicationDateYYYYMMDD | 2021-08-25 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Chemical reviews |
PublicationTitleAlternate | Chem. Rev |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Zhang L. (ref113/cit113) 2018 ref99/cit99 ref81/cit81 Phillips D. (ref3/cit3) 1981 Köhler J. (ref34/cit34) 2020; 119 Gebauer N. (ref64/cit64) 2019 Duvenaud D. K. (ref196/cit196) 2015 Zubatyuk T. (ref315/cit315) 2019 ref16/cit16 Hoffmann M. (ref65/cit65) 2019 Rudi A. (ref139/cit139) 2017 ref185/cit185 ref23/cit23 ref115/cit115 ref259/cit259 ref187/cit187 ref181/cit181 ref327/cit327 ref111/cit111 ref255/cit255 ref183/cit183 ref257/cit257 ref117/cit117 ref48/cit48 ref74/cit74 ref189/cit189 ref119/cit119 Jia W. (ref216/cit216) 2020 ref10/cit10 ref35/cit35 ref93/cit93 ref251/cit251 ref253/cit253 ref42/cit42 ref321/cit321 ref120/cit120 ref178/cit178 Zeiler M. D. (ref235/cit235) 2012 ref61/cit61 ref176/cit176 ref54/cit54 Hellman H. (ref163/cit163) 1937; 0 Bergstra J. (ref243/cit243) 2012; 13 Snoek J. (ref158/cit158) 2012; 25 ref310/cit310 ref318/cit318 ref11/cit11 ref29/cit29 ref314/cit314 Cutajar K. (ref142/cit142) 2016 Lu Z. (ref156/cit156) 2017; 30 ref244/cit244 ref271/cit271 ref5/cit5 Goodfellow I. (ref323/cit323) 2016 ref43/cit43 ref80/cit80 ref28/cit28 ref279/cit279 ref275/cit275 ref233/cit233 ref307/cit307 ref55/cit55 ref144/cit144 ref303/cit303 ref218/cit218 Kingma D. P. (ref237/cit237) 2015 Gebauer N. W. (ref63/cit63) 2018 ref167/cit167 Telgarsky M. (ref155/cit155) 2016 Nesterov Y. E. (ref232/cit232) 1983 ref66/cit66 ref264/cit264 Murphy K. P. (ref128/cit128) 2012 ref22/cit22 Sugiyama M. (ref230/cit230) 2007; 8 ref260/cit260 ref87/cit87 Vapnik V. (ref325/cit325) 1995 ref106/cit106 ref190/cit190 ref214/cit214 Schütt K. T. (ref27/cit27) 2020 ref194/cit194 ref210/cit210 ref268/cit268 Ripley B. D. (ref148/cit148) 2007 ref297/cit297 ref227/cit227 ref222/cit222 ref150/cit150 ref294/cit294 ref295/cit295 ref56/cit56 Montavon G. (ref169/cit169) 2012 ref229/cit229 Hastie T. (ref159/cit159) 2009 ref8/cit8 ref59/cit59 ref85/cit85 Schölkopf B. (ref126/cit126) 2002 ref37/cit37 ref221/cit221 ref292/cit292 ref60/cit60 ref17/cit17 ref219/cit219 ref82/cit82 ref147/cit147 ref306/cit306 Anderson B. (ref202/cit202) 2019 Boltzmann L. (ref256/cit256) 1898 ref145/cit145 ref304/cit304 ref238/cit238 ref21/cit21 ref166/cit166 Chmiela S. (ref240/cit240) 2019 ref164/cit164 Cohen N. (ref154/cit154) 2016 Theodoridis S. (ref98/cit98) 2020 Gastegger M. (ref317/cit317) 2020 ref213/cit213 ref284/cit284 ref286/cit286 Srivastava N. (ref223/cit223) 2014; 15 Barron J. T. (ref239/cit239) 2019 ref78/cit78 ref211/cit211 ref312/cit312 ref36/cit36 ref83/cit83 ref79/cit79 ref246/cit246 ref270/cit270 ref14/cit14 ref57/cit57 ref278/cit278 ref40/cit40 ref273/cit273 ref131/cit131 ref205/cit205 ref161/cit161 ref301/cit301 ref289/cit289 Moore E. H. (ref140/cit140) 1920; 26 ref15/cit15 ref180/cit180 ref309/cit309 ref62/cit62 ref41/cit41 Kriege N. M. (ref173/cit173) 2016 ref58/cit58 Lee J. (ref101/cit101) 2017 Williams C. K. (ref135/cit135) 2001 ref262/cit262 ref177/cit177 Feynman R. P. (ref1/cit1) 1963; 1 ref84/cit84 Vinyals O. (ref208/cit208) 2015 ref123/cit123 ref281/cit281 ref7/cit7 ref45/cit45 Theodoridis S. (ref97/cit97) 2008 Noether E. (ref86/cit86) 1918; 1918 ref52/cit52 ref184/cit184 Ruder S. (ref236/cit236) 2016 ref114/cit114 ref258/cit258 ref186/cit186 ref116/cit116 Pachauri D. (ref175/cit175) 2013 ref110/cit110 ref254/cit254 ref182/cit182 ref2/cit2 ref112/cit112 ref77/cit77 ref71/cit71 ref188/cit188 ref20/cit20 ref118/cit118 Böselt L. (ref319/cit319) 2020 ref89/cit89 ref19/cit19 Raykar V. C. (ref134/cit134) 2007 Bishop C. M. (ref94/cit94) 1995 ref96/cit96 ref107/cit107 ref191/cit191 ref265/cit265 ref13/cit13 ref193/cit193 ref105/cit105 ref261/cit261 ref263/cit263 Nilsson N. J. (ref320/cit320) 1982 ref197/cit197 ref38/cit38 ref199/cit199 ref90/cit90 ref267/cit267 ref195/cit195 ref269/cit269 ref311/cit311 Kondor R. I. (ref207/cit207) 2002 ref6/cit6 Matthews A. G. d. G. (ref102/cit102) 2018 ref18/cit18 Braun M. L. (ref103/cit103) 2008; 9 Nair V. (ref204/cit204) 2010 ref171/cit171 ref245/cit245 ref241/cit241 ref76/cit76 ref32/cit32 ref39/cit39 ref272/cit272 ref168/cit168 ref206/cit206 ref132/cit132 ref276/cit276 ref91/cit91 Simm G. N. (ref67/cit67) 2020 Rahimi A. (ref138/cit138) 2008 ref287/cit287 ref252/cit252 ref12/cit12 ref326/cit326 ref322/cit322 ref179/cit179 ref33/cit33 ref249/cit249 Berlinet A. (ref125/cit125) 2011 Tikhonov A. N. (ref143/cit143) 1977; 14 ref283/cit283 Abadi M. (ref250/cit250) 2016 ref129/cit129 ref44/cit44 ref70/cit70 ref9/cit9 ref152/cit152 ref225/cit225 ref296/cit296 ref226/cit226 ref298/cit298 ref228/cit228 ref299/cit299 ref293/cit293 ref151/cit151 ref92/cit92 Quiñonero-Candela J. (ref136/cit136) 2005; 6 Schütt K. (ref109/cit109) 2017 Eldan R. (ref153/cit153) 2016 ref31/cit31 ref290/cit290 ref220/cit220 ref291/cit291 Micchelli C. A. (ref130/cit130) 2006; 7 ref88/cit88 Schütt K. T. (ref200/cit200) 2019 ref160/cit160 Vert J. (ref174/cit174) 2008 ref302/cit302 ref217/cit217 ref288/cit288 ref53/cit53 ref162/cit162 ref308/cit308 Golub G. H. (ref133/cit133) 2012; 3 Huo H. (ref170/cit170) 2017 ref49/cit49 ref75/cit75 ref24/cit24 ref141/cit141 Gal Y. (ref224/cit224) 2016 ref300/cit300 ref215/cit215 ref280/cit280 ref50/cit50 Wahba G. (ref122/cit122) 1990; 59 ref282/cit282 Paszke A. (ref248/cit248) 2019 ref313/cit313 ref209/cit209 ref100/cit100 Montavon G. (ref157/cit157) 2012; 2 ref25/cit25 ref247/cit247 ref72/cit72 ref242/cit242 ref316/cit316 ref201/cit201 Haykin S. S. (ref149/cit149) 2009; 3 ref51/cit51 Musil F. (ref121/cit121) 2021 ref277/cit277 ref68/cit68 ref274/cit274 ref146/cit146 ref305/cit305 ref26/cit26 ref73/cit73 ref231/cit231 ref69/cit69 ref165/cit165 ref324/cit324 Gilmer J. (ref198/cit198) 2017 Montavon G. (ref104/cit104) 2011 ref95/cit95 ref108/cit108 Argyriou A. (ref124/cit124) 2009; 10 Snelson E. (ref137/cit137) 2006 ref192/cit192 Weiler M. (ref203/cit203) 2018 ref266/cit266 Wu H. (ref46/cit46) 2018 ref4/cit4 ref30/cit30 ref212/cit212 ref47/cit47 ref127/cit127 ref285/cit285 Duchi J. (ref234/cit234) 2011 Eickenberg M. (ref172/cit172) 2017 |
References_xml | – ident: ref33/cit33 doi: 10.1126/science.aaw1147 – start-page: 1177 year: 2008 ident: ref138/cit138 publication-title: Adv. Neural. Inf. Process. Syst. – ident: ref309/cit309 doi: 10.1021/ja00457a004 – ident: ref92/cit92 doi: 10.1162/089976698300017467 – volume: 119 start-page: 5361 year: 2020 ident: ref34/cit34 publication-title: Proceedings of the 37th International Conference on Machine Learning – volume-title: Vorlesungen über Gastheorie: 2. Teil year: 1898 ident: ref256/cit256 – ident: ref5/cit5 doi: 10.1145/1364782.1364802 – ident: ref141/cit141 doi: 10.1017/S0305004100030401 – ident: ref226/cit226 doi: 10.1007/978-3-030-40245-7_12 – ident: ref285/cit285 doi: 10.1063/1.5082885 – volume: 8 start-page: 985 year: 2007 ident: ref230/cit230 publication-title: J. Mach. Learn. Res. – volume: 3 volume-title: Matrix Computations year: 2012 ident: ref133/cit133 – ident: ref105/cit105 doi: 10.1126/sciadv.1603015 – start-page: 1050 year: 2016 ident: ref224/cit224 publication-title: International Conference on Machine Learning. – ident: ref273/cit273 doi: 10.1021/acs.jpcc.7b12064 – ident: ref18/cit18 doi: 10.1021/ct4003702 – start-page: 1257 year: 2006 ident: ref137/cit137 publication-title: Adv. Neural. Inf. Process. Syst. – ident: ref13/cit13 doi: 10.1088/2632-2153/ab5922 – ident: ref6/cit6 doi: 10.1016/j.str.2005.11.014 – ident: ref258/cit258 doi: 10.1002/anie.201703114 – ident: ref47/cit47 doi: 10.1063/1.5092521 – ident: ref287/cit287 doi: 10.1039/C4CP05192K – ident: ref274/cit274 doi: 10.1063/1.5019779 – ident: ref152/cit152 doi: 10.1016/0893-6080(91)90009-T – start-page: 1 year: 2015 ident: ref237/cit237 publication-title: International Conference on Learning Representations. – ident: ref38/cit38 doi: 10.1007/978-3-319-21233-3_6 – ident: ref120/cit120 doi: 10.1103/PhysRevLett.117.135502 – ident: ref40/cit40 doi: 10.1063/1.5022469 – ident: ref77/cit77 doi: 10.1155/2015/183918 – start-page: 2529 year: 2016 ident: ref142/cit142 publication-title: International Conference on Machine Learning. – ident: ref305/cit305 doi: 10.1103/PhysRevB.92.045131 – ident: ref51/cit51 doi: 10.1021/acscentsci.8b00913 – ident: ref233/cit233 doi: 10.1016/S0893-6080(98)00116-6 – ident: ref48/cit48 doi: 10.1063/1.5100267 – year: 2016 ident: ref236/cit236 publication-title: arXiv preprint arXiv:1609.04747 – ident: ref35/cit35 doi: 10.1021/acs.jpclett.9b02173 – ident: ref150/cit150 doi: 10.1007/978-3-642-35289-8_3 – ident: ref145/cit145 doi: 10.1016/0893-6080(88)90020-2 – ident: ref282/cit282 doi: 10.1016/S0167-7322(02)00094-6 – volume-title: Deep Learning year: 2016 ident: ref323/cit323 – volume-title: Machine Learning: A Bayesian And Optimization Perspective year: 2020 ident: ref98/cit98 – ident: ref81/cit81 doi: 10.1063/1.465188 – ident: ref88/cit88 doi: 10.1080/00048402.2014.992447 – ident: ref45/cit45 doi: 10.1063/1.5011399 – ident: ref62/cit62 doi: 10.1126/science.aag2302 – ident: ref275/cit275 doi: 10.1021/acs.jpcb.8b06433 – ident: ref7/cit7 doi: 10.1038/nature12162 – start-page: 315 year: 2002 ident: ref207/cit207 publication-title: Proceedings of the 19th International Conference on Machine Learning. – ident: ref247/cit247 doi: 10.1016/j.cpc.2018.09.020 – ident: ref259/cit259 doi: 10.1002/adma.201902765 – ident: ref57/cit57 doi: 10.1021/acs.jpclett.0c01307 – ident: ref272/cit272 doi: 10.1063/1.5114981 – ident: ref281/cit281 doi: 10.1021/acs.chemrev.6b00446 – year: 2019 ident: ref65/cit65 publication-title: arXiv preprint arXiv:1910.03131 – ident: ref162/cit162 doi: 10.1093/imaiai/iaw009 – ident: ref26/cit26 doi: 10.1021/acs.jpcb.6b07814 – volume: 6 start-page: 1939 year: 2005 ident: ref136/cit136 publication-title: J. Mach. Learn. Res. – ident: ref306/cit306 doi: 10.1038/s41467-020-20427-2 – volume-title: The Nature Of Statistical Learning Theory year: 1995 ident: ref325/cit325 doi: 10.1007/978-1-4757-2440-0 – ident: ref90/cit90 doi: 10.1109/72.914517 – ident: ref80/cit80 doi: 10.2174/157340911795677602 – ident: ref127/cit127 doi: 10.1007/978-3-540-28650-9_4 – ident: ref302/cit302 doi: 10.1021/acs.chemrev.0c00749 – ident: ref24/cit24 doi: 10.1021/ct400953f – ident: ref178/cit178 doi: 10.1109/34.6778 – ident: ref171/cit171 doi: 10.1137/16M1075454 – ident: ref321/cit321 doi: 10.1038/nature14539 – ident: ref89/cit89 doi: 10.1162/neco.1992.4.1.1 – start-page: 14537 year: 2019 ident: ref202/cit202 publication-title: Adv. Neural. Inf. Process. Syst. – ident: ref210/cit210 doi: 10.5281/zenodo.2605341 – ident: ref205/cit205 doi: 10.1002/qua.24890 – start-page: 682 year: 2001 ident: ref135/cit135 publication-title: Adv. Neural. Inf. Process. Syst. – ident: ref211/cit211 doi: 10.1007/978-1-62703-017-5_8 – ident: ref249/cit249 doi: 10.1038/sdata.2014.22 – ident: ref244/cit244 doi: 10.1007/3-540-49430-8_3 – ident: ref16/cit16 doi: 10.1016/S0959-440X(00)00196-2 – ident: ref39/cit39 doi: 10.1093/bioinformatics/btx431 – volume-title: Pattern Recognition and Neural Networks year: 2007 ident: ref148/cit148 – year: 2021 ident: ref121/cit121 publication-title: arXiv preprint arXiv:2101.04673 – ident: ref167/cit167 doi: 10.1103/PhysRevLett.77.3865 – ident: ref15/cit15 doi: 10.1063/1.4909549 – ident: ref118/cit118 doi: 10.1103/PhysRevB.89.205118 – volume: 15 start-page: 1929 year: 2014 ident: ref223/cit223 publication-title: J. Mach. Learn. Res. – volume-title: The Elements Of Statistical Learning: Data Mining, Inference, and Prediction year: 2009 ident: ref159/cit159 doi: 10.1007/978-0-387-84858-7 – ident: ref60/cit60 doi: 10.1038/s41467-020-19093-1 – ident: ref220/cit220 doi: 10.1145/130385.130417 – ident: ref316/cit316 doi: 10.1039/C9SC06017K – start-page: 4436 year: 2018 ident: ref113/cit113 publication-title: Adv. Neural. Inf. Process. Syst. – ident: ref300/cit300 doi: 10.1063/1.5006596 – ident: ref312/cit312 doi: 10.1021/jp401225b – ident: ref195/cit195 doi: 10.1039/C7SC04934J – ident: ref215/cit215 doi: 10.1021/cr200137a – start-page: 12 year: 2011 ident: ref234/cit234 publication-title: J. Mach. Learn. Res. – ident: ref261/cit261 doi: 10.1039/C9SC05116C – ident: ref53/cit53 doi: 10.1063/5.0007276 – ident: ref206/cit206 doi: 10.1063/1.5019667 – ident: ref112/cit112 doi: 10.1103/PhysRevLett.120.143001 – ident: ref277/cit277 doi: 10.1039/C9SC01742A – ident: ref183/cit183 doi: 10.1063/1.469597 – year: 2018 ident: ref102/cit102 publication-title: arXiv preprint arXiv:1804.11271 – volume: 9 start-page: 1875 year: 2008 ident: ref103/cit103 publication-title: J. Mach. Learn. Res. – ident: ref68/cit68 doi: 10.1039/C9CS00786E – volume-title: Machine Learning: A Probabilistic Perspective year: 2012 ident: ref128/cit128 – ident: ref260/cit260 doi: 10.1073/pnas.1602375113 – year: 2020 ident: ref216/cit216 publication-title: arXiv preprint arXiv:2005.00223 – ident: ref166/cit166 doi: 10.1063/1.478522 – volume-title: Towards Exact Molecular Dynamics Simulations With Invariant Machine-learned Models year: 2019 ident: ref240/cit240 – ident: ref307/cit307 doi: 10.1038/s41557-020-0527-z – ident: ref290/cit290 doi: 10.1021/acs.jctc.8b00705 – ident: ref74/cit74 doi: 10.1016/j.jphotochemrev.2013.10.004 – ident: ref213/cit213 doi: 10.1088/2516-1075/ab1edb – ident: ref36/cit36 doi: 10.1063/1.5097385 – ident: ref82/cit82 doi: 10.1063/1.441588 – ident: ref221/cit221 doi: 10.1063/1.3682557 – ident: ref318/cit318 doi: 10.1021/acs.jpcb.8b11905 – ident: ref254/cit254 – ident: ref17/cit17 doi: 10.1021/ct700127w – ident: ref299/cit299 doi: 10.1038/s41524-018-0112-9 – ident: ref73/cit73 doi: 10.1088/1367-2630/ab81b5 – ident: ref177/cit177 doi: 10.1039/C6CP00415F – ident: ref269/cit269 doi: 10.31635/ccschem.020.202000195 – ident: ref280/cit280 doi: 10.1039/D0CP01893G – ident: ref117/cit117 doi: 10.1103/PhysRevB.87.184115 – ident: ref179/cit179 doi: 10.1103/PhysRevLett.104.136403 – ident: ref311/cit311 doi: 10.1073/pnas.1816132116 – ident: ref190/cit190 doi: 10.1063/1.3124802 – start-page: 1263 year: 2017 ident: ref198/cit198 publication-title: International Conference on Machine Learning. – ident: ref110/cit110 – ident: ref276/cit276 doi: 10.1021/acs.jpclett.8b03026 – ident: ref314/cit314 doi: 10.1021/acs.jctc.8b00873 – volume-title: Machine Learning Meets Quantum Physics year: 2020 ident: ref27/cit27 doi: 10.1007/978-3-030-40245-7 – ident: ref313/cit313 doi: 10.1063/1.4986489 – start-page: 1860 year: 2013 ident: ref175/cit175 publication-title: Adv. Neural. Inf. Process. Syst. – ident: ref268/cit268 doi: 10.1039/C7CP05036D – volume: 14 volume-title: Solutions of Ill-Posed Problems year: 1977 ident: ref143/cit143 – ident: ref147/cit147 doi: 10.1007/BFb0104276 – ident: ref189/cit189 doi: 10.1063/1.2746846 – ident: ref31/cit31 doi: 10.1021/acs.jpclett.5b00831 – volume: 59 volume-title: Spline Models For Observational Data year: 1990 ident: ref122/cit122 doi: 10.1137/1.9781611970128 – ident: ref160/cit160 doi: 10.1038/ncomms13890 – ident: ref252/cit252 doi: 10.1016/j.cpc.2018.03.016 – ident: ref107/cit107 doi: 10.1063/1.5126701 – ident: ref322/cit322 doi: 10.1016/j.neunet.2014.09.003 – ident: ref25/cit25 doi: 10.1002/anie.200802019 – ident: ref168/cit168 doi: 10.1103/PhysRevLett.102.073005 – ident: ref191/cit191 doi: 10.1016/j.cpc.2016.05.010 – ident: ref22/cit22 doi: 10.1021/ja00540a008 – volume-title: Pattern Recognition year: 2008 ident: ref97/cit97 – start-page: 7566 year: 2019 ident: ref64/cit64 publication-title: Adv. Neural. Inf. Process. Syst. – ident: ref303/cit303 doi: 10.1021/ja902302h – ident: ref85/cit85 doi: 10.1103/PhysRev.159.98 – start-page: 265 year: 2016 ident: ref250/cit250 publication-title: 12th USENIX symposium on operating systems design and implementation (OSDI 16) – year: 2007 ident: ref134/cit134 publication-title: Learning Workshop – start-page: 1517 year: 2016 ident: ref155/cit155 publication-title: Conference On Learning Theory. – ident: ref310/cit310 doi: 10.1007/BF00549096 – year: 2012 ident: ref235/cit235 publication-title: arXiv preprint arXiv:1212.5701 – ident: ref12/cit12 doi: 10.1051/sfn/201112009 – ident: ref181/cit181 doi: 10.1103/PhysRevLett.120.036002 – ident: ref83/cit83 doi: 10.1146/annurev-physchem-040412-110122 – year: 2010 ident: ref204/cit204 publication-title: Int. Conf. Mach. Learn. – ident: ref327/cit327 doi: 10.1007/978-3-030-40245-7_14 – year: 2019 ident: ref315/cit315 publication-title: arXiv preprint arXiv:1909.12963 – start-page: 3975 year: 2018 ident: ref46/cit46 publication-title: Adv. Neural. Inf. Process. Syst. – ident: ref267/cit267 doi: 10.1063/1.4951697 – ident: ref106/cit106 doi: 10.1063/1.5020710 – ident: ref296/cit296 doi: 10.1039/C5RA16956A – year: 2015 ident: ref208/cit208 publication-title: arXiv preprint arXiv:1511.06391 – ident: ref278/cit278 doi: 10.1021/acs.jpclett.0c00527 – ident: ref95/cit95 doi: 10.1007/BFb0020283 – ident: ref165/cit165 doi: 10.1016/j.cpc.2019.02.007 – ident: ref286/cit286 doi: 10.1021/acs.chemrev.0c00665 – start-page: 12 year: 2011 ident: ref104/cit104 publication-title: J. Mach. Learn. Res. – ident: ref214/cit214 doi: 10.1063/5.0023005 – ident: ref298/cit298 doi: 10.1038/s41570-017-0109 – year: 2018 ident: ref63/cit63 publication-title: NeurIPS 2018 Workshop on Machine Learning for Molecules and Materials – volume: 25 start-page: 2951 year: 2012 ident: ref158/cit158 publication-title: Adv. Neural. Inf. Process. Syst. – ident: ref76/cit76 doi: 10.1021/cr040426m – ident: ref54/cit54 doi: 10.1146/annurev-physchem-042018-052331 – ident: ref297/cit297 doi: 10.1063/1.5024317 – ident: ref129/cit129 doi: 10.1016/S0893-6080(98)00032-X – ident: ref32/cit32 doi: 10.1038/s41570-020-0189-9 – ident: ref72/cit72 doi: 10.1063/1.5053562 – ident: ref185/cit185 doi: 10.1016/0263-7855(95)00087-9 – ident: ref193/cit193 doi: 10.1063/1.5017898 – ident: ref288/cit288 doi: 10.1021/acs.jpcb.7b06985 – ident: ref304/cit304 doi: 10.1021/ci300415d – volume-title: Learning With Kernels: Support Vector Machines, Regularization, Optimization, And Beyond year: 2002 ident: ref126/cit126 – ident: ref14/cit14 doi: 10.1098/rspa.1924.0082 – start-page: 1623 year: 2016 ident: ref173/cit173 publication-title: Adv. Neural. Inf. Process. Syst. – ident: ref266/cit266 doi: 10.1103/PhysRevLett.121.265701 – ident: ref289/cit289 doi: 10.1021/jacs.8b12471 – ident: ref270/cit270 doi: 10.1039/D0CP00668H – ident: ref114/cit114 doi: 10.1103/PhysRevLett.98.146401 – ident: ref180/cit180 doi: 10.1126/sciadv.1701816 – ident: ref78/cit78 doi: 10.1103/PhysRev.28.1049 – volume: 3 volume-title: Neural Networks and Learning Machines year: 2009 ident: ref149/cit149 – start-page: 2224 year: 2015 ident: ref196/cit196 publication-title: Adv. Neural. Inf. Process. Syst. – ident: ref49/cit49 doi: 10.1021/acs.jpcb.9b05578 – ident: ref255/cit255 doi: 10.1021/acs.jcim.7b00090 – ident: ref186/cit186 doi: 10.1016/S0009-2614(97)00448-X – ident: ref71/cit71 doi: 10.1039/C7SC02267K – ident: ref111/cit111 doi: 10.1021/acs.jpclett.9b02037 – ident: ref265/cit265 doi: 10.1021/acs.jpclett.8b00902 – ident: ref52/cit52 doi: 10.1063/1.5100131 – ident: ref263/cit263 doi: 10.1002/pssb.200844219 – volume: 0 volume-title: Einführung In Die Quantenchemie year: 1937 ident: ref163/cit163 – ident: ref231/cit231 doi: 10.1016/j.neuroimage.2010.11.004 – ident: ref59/cit59 doi: 10.1038/s41467-017-00839-3 – ident: ref19/cit19 doi: 10.1021/ct400781b – volume: 30 start-page: 6231 year: 2017 ident: ref156/cit156 publication-title: Adv. Neural. Inf. Process. Syst. – start-page: 10381 year: 2018 ident: ref203/cit203 publication-title: Adv. Neural. Inf. Process. Syst. – ident: ref251/cit251 doi: 10.2172/10176421 – start-page: 907 year: 2016 ident: ref153/cit153 publication-title: Conference on Learning Theory. – ident: ref217/cit217 – ident: ref308/cit308 doi: 10.1038/s41557-020-0527-z – year: 2020 ident: ref319/cit319 publication-title: arXiv preprint arXiv:2010.11610 – ident: ref212/cit212 doi: 10.1073/pnas.0408036102 – ident: ref292/cit292 doi: 10.1080/10408437308244871 – ident: ref279/cit279 doi: 10.1088/1367-2630/ab4509 – ident: ref291/cit291 doi: 10.1007/978-3-642-61659-4_30 – ident: ref295/cit295 doi: 10.1073/pnas.1707745115 – ident: ref182/cit182 doi: 10.1007/978-3-030-40245-7_6 – ident: ref55/cit55 doi: 10.1038/s41467-019-12875-2 – volume-title: Biomolecular Stereodynamics year: 1981 ident: ref3/cit3 – ident: ref21/cit21 doi: 10.1063/1.4993424 – ident: ref44/cit44 doi: 10.1038/s41467-017-02388-1 – ident: ref79/cit79 doi: 10.1002/andp.19273892002 – ident: ref241/cit241 doi: 10.1088/2632-2153/abba6f – start-page: 8026 year: 2019 ident: ref248/cit248 publication-title: Adv. Neural. Inf. Process. Syst. – ident: ref10/cit10 doi: 10.1098/rspa.1929.0094 – ident: ref294/cit294 doi: 10.1115/1.1752925 – ident: ref70/cit70 doi: 10.1063/1.5078687 – year: 2020 ident: ref67/cit67 publication-title: arXiv preprint arXiv:2002.07717 – ident: ref115/cit115 doi: 10.1063/1.5011181 – ident: ref37/cit37 doi: 10.1016/j.sbi.2019.12.005 – ident: ref20/cit20 doi: 10.1002/qua.21278 – ident: ref242/cit242 doi: 10.1021/acs.jctc.0c00580 – ident: ref108/cit108 doi: 10.1021/acs.jctc.9b00181 – ident: ref2/cit2 doi: 10.1038/267585a0 – ident: ref188/cit188 doi: 10.1063/1.2336223 – start-page: 4331 year: 2019 ident: ref239/cit239 publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. – ident: ref184/cit184 doi: 10.1063/1.472596 – ident: ref301/cit301 doi: 10.1063/1.464814 – volume: 1918 start-page: 37 year: 1918 ident: ref86/cit86 publication-title: Gött. Nachr., mathematisch-physikalische Klasse – volume-title: Principles of Artificial Intelligence year: 1982 ident: ref320/cit320 doi: 10.1007/978-3-662-09438-9 – start-page: 3888 year: 2017 ident: ref139/cit139 publication-title: Adv. Neural. Inf. Process. Syst. – year: 2020 ident: ref317/cit317 publication-title: arXiv preprint arXiv:2010.14942 – ident: ref132/cit132 doi: 10.1214/009053607000000677 – ident: ref8/cit8 doi: 10.1101/2020.06.27.175430 – ident: ref161/cit161 doi: 10.1038/s41467-020-20212-1 – ident: ref164/cit164 doi: 10.1103/PhysRev.56.340 – ident: ref271/cit271 doi: 10.1063/5.0008223 – ident: ref257/cit257 doi: 10.1021/acs.jpcc.6b10908 – ident: ref246/cit246 doi: 10.1088/1361-648X/aa680e – ident: ref284/cit284 doi: 10.1063/1.456153 – volume: 2 volume-title: Neural Networks: Tricks Of The Trade year: 2012 ident: ref157/cit157 doi: 10.1007/978-3-642-35289-8 – year: 2017 ident: ref170/cit170 publication-title: arXiv preprint arXiv:1704.06439 – ident: ref283/cit283 doi: 10.1103/PhysRev.46.618 – ident: ref324/cit324 doi: 10.1007/BF00994018 – ident: ref61/cit61 doi: 10.1038/s41557-020-0544-y – ident: ref30/cit30 doi: 10.1021/ct400195d – ident: ref209/cit209 doi: 10.1063/1.3382344 – ident: ref131/cit131 doi: 10.1063/1.4964627 – ident: ref192/cit192 doi: 10.1103/PhysRevB.96.014112 – ident: ref43/cit43 doi: 10.1021/acs.jctc.5b00743 – ident: ref100/cit100 doi: 10.1162/neco.1996.8.7.1341 – ident: ref146/cit146 doi: 10.1142/S0218339094000179 – ident: ref29/cit29 doi: 10.1088/1367-2630/15/9/095003 – ident: ref227/cit227 doi: 10.1007/978-3-030-40245-7_15 – ident: ref245/cit245 doi: 10.1021/acs.jctc.8b00908 – ident: ref253/cit253 doi: 10.1016/j.cpc.2019.106949 – ident: ref116/cit116 doi: 10.1063/1.3553717 – ident: ref9/cit9 doi: 10.1038/nsb0902-646 – ident: ref87/cit87 doi: 10.1109/JRPROC.1949.232969 – ident: ref218/cit218 doi: 10.1016/j.cpc.2009.06.022 – ident: ref238/cit238 doi: 10.1007/978-1-4612-4380-9_35 – ident: ref176/cit176 doi: 10.1002/qua.24927 – start-page: 543 year: 1983 ident: ref232/cit232 publication-title: Proc. USSR Acad. Sci. – ident: ref201/cit201 doi: 10.1063/1.5024797 – ident: ref42/cit42 doi: 10.1038/s41586-019-1923-7 – ident: ref222/cit222 doi: 10.1063/1.5023802 – ident: ref93/cit93 doi: 10.1109/72.788641 – volume-title: Reproducing Kernel Hilbert Spaces in Probability and Statistics year: 2011 ident: ref125/cit125 – ident: ref84/cit84 doi: 10.1039/C5SC03443D – start-page: 991 year: 2017 ident: ref109/cit109 publication-title: Adv. Neural. Inf. Process. Syst. – volume: 7 start-page: 2651 year: 2006 ident: ref130/cit130 publication-title: J. Mach. Learn. Res. – ident: ref228/cit228 doi: 10.1002/wcms.31 – ident: ref28/cit28 doi: 10.1103/PhysRevLett.108.058301 – ident: ref99/cit99 doi: 10.1063/1.5003074 – ident: ref199/cit199 doi: 10.1109/TNN.2008.2005605 – ident: ref66/cit66 doi: 10.1039/C9SC01928F – ident: ref194/cit194 doi: 10.1039/C6SC05720A – ident: ref225/cit225 doi: 10.1103/PhysRevLett.114.096405 – ident: ref91/cit91 doi: 10.1007/BFb0020217 – start-page: 698 year: 2016 ident: ref154/cit154 publication-title: Conference On Learning Theory. – start-page: 311 volume-title: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning year: 2019 ident: ref200/cit200 doi: 10.1007/978-3-030-28954-6_17 – ident: ref11/cit11 doi: 10.1016/B978-044451719-7/50084-6 – ident: ref23/cit23 doi: 10.1021/jp004368u – ident: ref4/cit4 doi: 10.1021/ct900292r – year: 2017 ident: ref101/cit101 publication-title: arXiv preprint arXiv:1711.00165 – ident: ref56/cit56 doi: 10.1063/5.0012911 – start-page: 6540 year: 2017 ident: ref172/cit172 publication-title: Adv. Neural. Inf. Process. Syst. – ident: ref229/cit229 doi: 10.1063/1.5020067 – volume: 10 start-page: 2507 year: 2009 ident: ref124/cit124 publication-title: J. Mach. Learn. Res. – year: 2008 ident: ref174/cit174 publication-title: arXiv preprint arXiv:0801.4061 – ident: ref75/cit75 doi: 10.1103/PhysRevLett.56.2656 – ident: ref326/cit326 doi: 10.1038/s41467-019-08987-4 – volume-title: Neural Networks for Pattern Recognition year: 1995 ident: ref94/cit94 doi: 10.1093/oso/9780198538493.001.0001 – ident: ref187/cit187 doi: 10.1016/S0009-2614(98)00207-3 – ident: ref96/cit96 doi: 10.1145/130385.130401 – ident: ref50/cit50 doi: 10.1021/acs.jctc.8b00187 – ident: ref123/cit123 doi: 10.1007/3-540-44581-1_27 – ident: ref197/cit197 doi: 10.1007/s10822-016-9938-8 – ident: ref151/cit151 doi: 10.1007/BF02551274 – ident: ref119/cit119 doi: 10.1002/qua.24917 – volume: 26 start-page: 394 year: 1920 ident: ref140/cit140 publication-title: Bull. Am. Math. Soc. – ident: ref58/cit58 doi: 10.1103/PhysRevLett.108.253002 – start-page: 440 year: 2012 ident: ref169/cit169 publication-title: Adv. Neural. Inf. Process. Syst. – ident: ref293/cit293 doi: 10.1063/1.1290491 – ident: ref69/cit69 doi: 10.1038/s41467-018-06169-2 – ident: ref219/cit219 doi: 10.1103/PhysRevLett.93.175503 – ident: ref144/cit144 doi: 10.1007/BF02478259 – ident: ref41/cit41 doi: 10.1063/1.5018409 – ident: ref264/cit264 doi: 10.1103/PhysRevX.8.041048 – ident: ref262/cit262 doi: 10.1103/PhysRevB.95.094203 – volume: 13 start-page: 281 year: 2012 ident: ref243/cit243 publication-title: J. Mach. Learn. Res. – volume: 1 volume-title: The Feynman Lectures On Physics year: 1963 ident: ref1/cit1 |
SSID | ssj0005527 |
Score | 2.7496092 |
SecondaryResourceType | review_article |
Snippet | In recent years, the use of machine learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational... In recent years, the use of machine learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10142 |
SubjectTerms | artificial intelligence chemical bonding Chemical bonds chemical structure Computational chemistry Electronic structure forces Machine learning Potential energy Review |
Title | Machine Learning Force Fields |
URI | http://dx.doi.org/10.1021/acs.chemrev.0c01111 https://www.ncbi.nlm.nih.gov/pubmed/33705118 https://www.proquest.com/docview/2568705459 https://www.proquest.com/docview/2501264695 https://www.proquest.com/docview/2636809491 https://pubmed.ncbi.nlm.nih.gov/PMC8391964 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1520-6890 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005527 issn: 0009-2665 databaseCode: ACS dateStart: 19240401 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI7QOMCF96OwoSJx4EChTZq0OU4TE0KCC0ziViVpAgjo0B4Xfj12145toIljG6eJ3cTxJzs2IWexyTWLEaZSowJ4igLtHA8Sw1ge2tTF5SWxu3tx04tvn_jTzGX1BQ8-ja6UAeG_2A8syRIaLI0OYGeVijRCrNXuPPxEdNQVWtFpIASvkwz9_RE8jsxw_jj6ZWMuhkrOnD3dTXJf3-CZhJy8XY5H-tJ8_U7o-D-2tshGZYX67cmy2SYrttgha526-Nsuad2VQZbWr_KvPvvd_sBYv4sBb8M90uteP3ZugqqSQqB4KEaBsIoDsNARzXNntEkpM4rLFMCElEpqHTtj0TkslZY00jThMfCcYBkjxphj-6RR9At7SPyQOqETrhLATTHNnUpMJEClojIwOnUeOQfWsmonDLPSyU2jDF9W_GYVvx6htewzU2Ukx8IY78s7XUw7fU4Sciwnb9Y_9WdOYOaBmgLbUXrkdNoMEkZniSpsf4w0cHSLWEi-hEYwkQI-ljDMwWSdTOfEGIwA6M0jydwKmhJgXu_5luL1pczvDTYrpkk7-r8kj8k6xVibELQeb5LGaDC2LTCWRvqk3CLfOJYPgA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5VcKCXFgpttzwapB44NDSxYyc-ohWrbWG5wErcItuxW0SbrTa7l_76zmSTLEvRih7j-DV-zEMz_gbgU2ILwxMyU5nVIX7FofFehKnlvIhc5pP6kdjoSg7Hybdbcds8CqO3MDiJCnuqaif-El0g_kJlSMYvyswSWcqQjjbPZo2FQgpR_3oZ2NEmaiXfgZSixRp6uhOSSrZalUr_qJqPIyYfiKDBaxh3k68jT-5P5zNzav88wnX8X-q24VWjkwZni0O0Ay9c-Qa2-m0quF04HNUhly5o0Fi_B4PJ1LpgQOFv1R6MB-c3_WHY5FUItYjkLJROCzQzTMyKwltjM8atFipD00IprYxJvHXkKlbaKBYblooESU8pqRHn3PO3sFFOSvcegoh5aVKhU7SiElZ4ndpYIoMl1mBN5ntwgqTlzb2o8trlzeKcCht684beHrB2C3Lb4JNTmoyf6xt97hr9XsBzrK9-0O7tck6o9CHTQk1S9eC4-40rTK4TXbrJnOqgIJeJVGJNHcllhtaywmHeLY5LNyfOcQS05XqQrhykrgKhfK_-Ke9-1GjfqMESaNqH56_kR9ga3owu88uvVxf78JJRFE6E_FAcwMZsOneHqEbNzFF9a_4CAwUX6w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ8QSJQXEQU9-aqJDzxQaHe72-4jOW1AhZgICTw1u9tdNWrvQu9e-OuZ6bXFQ3MxPHY7-zH7MTuTmf0NwLvEloYnZKYyq0P8ikPjvQhTy3kZucwnzSOxs3N5cpl8vBJXS5B1b2FwEDW2VDdOfDrV49K3CAPxEZUjK78pO0tkKUs62j0rgkDgSCkafr0P7uiStZL_QErR4Q39uxG6mWw9fzP9pW4-jJr84xrK1-C6Z6CJPvl5OJ2YQ3v7ANvxMRw-h2etbhoczzbTOiy56gU8HXYp4V7CzlkTeumCFpX1W5CPbqwLcgqDqzfgMv9wMTwJ2_wKoRaRnITSaYHmholZWXprbMa41UJlaGIopZUxibeOXMZKG8Viw1KRIPspJTfinHu-CcvVqHKvIYiYlyYVOkVrKmGl16mNJQpaEhHWZH4A-8ha0Z6Pumhc3ywuqLDlt2j5HQDrlqGwLU45pcv4tbjSQV9pPIPpWEy-3a3v_ZhQ-UPhhRqlGsDb_jfOMLlQdOVGU6LBC10mUokFNJLLDK1mhd28mm2ZfkycYw9o0w0gndtMPQGhfc__qX58b1C_UZMl8LQ3_z-Te_Dky_u8-Hx6_mkLVhkF40QoFsU2LE9upm4HtamJ2W0Ozh3ndhpl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Force+Fields&rft.jtitle=Chemical+reviews&rft.au=Unke%2C+Oliver+T.&rft.au=Chmiela%2C+Stefan&rft.au=Sauceda%2C+Huziel+E.&rft.au=Gastegger%2C+Michael&rft.date=2021-08-25&rft.pub=American+Chemical+Society&rft.issn=0009-2665&rft.eissn=1520-6890&rft.volume=121&rft.issue=16&rft.spage=10142&rft.epage=10186&rft_id=info:doi/10.1021%2Facs.chemrev.0c01111&rft_id=info%3Apmid%2F33705118&rft.externalDocID=PMC8391964 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2665&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2665&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2665&client=summon |