Machine Learning Force Fields

In recent years, the use of machine learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational complexity of traditional electronic-structure methods. One of the most promising applications is the construction of ML-based force fields (FFs...

Full description

Saved in:
Bibliographic Details
Published inChemical reviews Vol. 121; no. 16; pp. 10142 - 10186
Main Authors Unke, Oliver T, Chmiela, Stefan, Sauceda, Huziel E, Gastegger, Michael, Poltavsky, Igor, Schütt, Kristof T, Tkatchenko, Alexandre, Müller, Klaus-Robert
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 25.08.2021
Subjects
Online AccessGet full text
ISSN0009-2665
1520-6890
1520-6890
DOI10.1021/acs.chemrev.0c01111

Cover

Abstract In recent years, the use of machine learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational complexity of traditional electronic-structure methods. One of the most promising applications is the construction of ML-based force fields (FFs), with the aim to narrow the gap between the accuracy of ab initio methods and the efficiency of classical FFs. The key idea is to learn the statistical relation between chemical structure and potential energy without relying on a preconceived notion of fixed chemical bonds or knowledge about the relevant interactions. Such universal ML approximations are in principle only limited by the quality and quantity of the reference data used to train them. This review gives an overview of applications of ML-FFs and the chemical insights that can be obtained from them. The core concepts underlying ML-FFs are described in detail, and a step-by-step guide for constructing and testing them from scratch is given. The text concludes with a discussion of the challenges that remain to be overcome by the next generation of ML-FFs.
AbstractList In recent years, the use of machine learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational complexity of traditional electronic-structure methods. One of the most promising applications is the construction of ML-based force fields (FFs), with the aim to narrow the gap between the accuracy of ab initio methods and the efficiency of classical FFs. The key idea is to learn the statistical relation between chemical structure and potential energy without relying on a preconceived notion of fixed chemical bonds or knowledge about the relevant interactions. Such universal ML approximations are in principle only limited by the quality and quantity of the reference data used to train them. This review gives an overview of applications of ML-FFs and the chemical insights that can be obtained from them. The core concepts underlying ML-FFs are described in detail, and a step-by-step guide for constructing and testing them from scratch is given. The text concludes with a discussion of the challenges that remain to be overcome by the next generation of ML-FFs.In recent years, the use of machine learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational complexity of traditional electronic-structure methods. One of the most promising applications is the construction of ML-based force fields (FFs), with the aim to narrow the gap between the accuracy of ab initio methods and the efficiency of classical FFs. The key idea is to learn the statistical relation between chemical structure and potential energy without relying on a preconceived notion of fixed chemical bonds or knowledge about the relevant interactions. Such universal ML approximations are in principle only limited by the quality and quantity of the reference data used to train them. This review gives an overview of applications of ML-FFs and the chemical insights that can be obtained from them. The core concepts underlying ML-FFs are described in detail, and a step-by-step guide for constructing and testing them from scratch is given. The text concludes with a discussion of the challenges that remain to be overcome by the next generation of ML-FFs.
In recent years, the use of machine learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational complexity of traditional electronic-structure methods. One of the most promising applications is the construction of ML-based force fields (FFs), with the aim to narrow the gap between the accuracy of ab initio methods and the efficiency of classical FFs. The key idea is to learn the statistical relation between chemical structure and potential energy without relying on a preconceived notion of fixed chemical bonds or knowledge about the relevant interactions. Such universal ML approximations are in principle only limited by the quality and quantity of the reference data used to train them. This review gives an overview of applications of ML-FFs and the chemical insights that can be obtained from them. The core concepts underlying ML-FFs are described in detail, and a step-by-step guide for constructing and testing them from scratch is given. The text concludes with a discussion of the challenges that remain to be overcome by the next generation of ML-FFs.
In recent years, the use of machine learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational complexity of traditional electronic-structure methods. One of the most promising applications is the construction of ML-based force fields (FFs), with the aim to narrow the gap between the accuracy of ab initio methods and the efficiency of classical FFs. The key idea is to learn the statistical relation between chemical structure and potential energy without relying on a preconceived notion of fixed chemical bonds or knowledge about the relevant interactions. Such universal ML approximations are in principle only limited by the quality and quantity of the reference data used to train them. This review gives an overview of applications of ML-FFs and the chemical insights that can be obtained from them. The core concepts underlying ML-FFs are described in detail, and a step-by-step guide for constructing and testing them from scratch is given. The text concludes with a discussion of the challenges that remain to be overcome by the next generation of ML-FFs.
In recent years, the use of machine learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational complexity of traditional electronic-structure methods. One of the most promising applications is the construction of ML-based force fields (FFs), with the aim to narrow the gap between the accuracy of methods and the efficiency of classical FFs. The key idea is to learn the statistical relation between chemical structure and potential energy without relying on a preconceived notion of fixed chemical bonds or knowledge about the relevant interactions. Such universal ML approximations are in principle only limited by the quality and quantity of the reference data used to train them. This review gives an overview of applications of ML-FFs and the chemical insights that can be obtained from them. The core concepts underlying ML-FFs are described in detail, and a step-by-step guide for constructing and testing them from scratch is given. The text concludes with a discussion of the challenges that remain to be overcome by the next generation of ML-FFs.
Author Sauceda, Huziel E
Poltavsky, Igor
Müller, Klaus-Robert
Unke, Oliver T
Gastegger, Michael
Tkatchenko, Alexandre
Chmiela, Stefan
Schütt, Kristof T
AuthorAffiliation Department of Artificial Intelligence
Korea University
Machine Learning Group
Max Planck Institute for Informatics, Stuhlsatzenhausweg
Department of Physics and Materials Science
BASLEARN, BASF-TU Joint Lab
Google Research, Brain Team
BIFOLD−Berlin Institute for the Foundations of Learning and Data
DFG Cluster of Excellence “Unifying Systems in Catalysis” (UniSysCat)
AuthorAffiliation_xml – name: Department of Artificial Intelligence
– name: Korea University
– name: BIFOLD−Berlin Institute for the Foundations of Learning and Data
– name: DFG Cluster of Excellence “Unifying Systems in Catalysis” (UniSysCat)
– name: Department of Physics and Materials Science
– name: Google Research, Brain Team
– name: Machine Learning Group
– name: Max Planck Institute for Informatics, Stuhlsatzenhausweg
– name: BASLEARN, BASF-TU Joint Lab
Author_xml – sequence: 1
  givenname: Oliver T
  orcidid: 0000-0001-7503-406X
  surname: Unke
  fullname: Unke, Oliver T
  organization: DFG Cluster of Excellence “Unifying Systems in Catalysis” (UniSysCat)
– sequence: 2
  givenname: Stefan
  surname: Chmiela
  fullname: Chmiela, Stefan
  organization: Machine Learning Group
– sequence: 3
  givenname: Huziel E
  orcidid: 0000-0001-6091-3408
  surname: Sauceda
  fullname: Sauceda, Huziel E
  organization: BASLEARN, BASF-TU Joint Lab
– sequence: 4
  givenname: Michael
  surname: Gastegger
  fullname: Gastegger, Michael
  organization: BASLEARN, BASF-TU Joint Lab
– sequence: 5
  givenname: Igor
  orcidid: 0000-0002-3188-7017
  surname: Poltavsky
  fullname: Poltavsky, Igor
  organization: Department of Physics and Materials Science
– sequence: 6
  givenname: Kristof T
  orcidid: 0000-0001-8342-0964
  surname: Schütt
  fullname: Schütt, Kristof T
  organization: Machine Learning Group
– sequence: 7
  givenname: Alexandre
  orcidid: 0000-0002-1012-4854
  surname: Tkatchenko
  fullname: Tkatchenko, Alexandre
  email: alexandre.tkatchenko@uni.lu
  organization: Department of Physics and Materials Science
– sequence: 8
  givenname: Klaus-Robert
  orcidid: 0000-0002-3861-7685
  surname: Müller
  fullname: Müller, Klaus-Robert
  email: klaus-robert.mueller@tu-berlin.de
  organization: Google Research, Brain Team
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33705118$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLAzEUhYNU7EN_gSgFN26mzWOSmWwEKVaFihtdh0yaaVOmSU2mBf-9KZ0W7aJmE8L9zuHkni5oWWc1ANcIDhDEaChVGKi5Xnq9GUAFUTxnoIMohgnLOWyBDoSQJ5gx2gbdEBbxSSnOLkCbkAxShPIOuHmTam6s7k-09NbYWX_svNL9sdHVNFyC81JWQV81dw98jp8-Ri_J5P35dfQ4SSSFrE6YlpRmrEB4Oi1VoXJMlKQ851nKueRFkZZK4xQjLguOUYEzmuqpynKCESGkJD3wsPNdrYtlnGhbe1mJlTdL6b-Fk0b8nVgzFzO3ETnhiLM0Gtw3Bt59rXWoxdIEpatKWu3WQWBGWA55ytH_KIUIs5RxGtG7I3Th1t7GTUSK5XGHKeWRuv0d_pB6v-QI8B2gvAvB61IoU8vauO1fTCUQFNtCRSxUNIWKptCoJUfavf1p1XCn2g4PmU8pfgC5JLVg
CitedBy_id crossref_primary_10_1021_acs_jctc_2c00731
crossref_primary_10_1021_acs_jpca_3c02887
crossref_primary_10_1063_5_0252566
crossref_primary_10_1063_5_0047760
crossref_primary_10_1021_acs_jpclett_4c02376
crossref_primary_10_1039_D3NR05966A
crossref_primary_10_1021_acs_jpclett_4c03474
crossref_primary_10_1007_s11426_023_1908_9
crossref_primary_10_1038_s41467_024_48609_2
crossref_primary_10_1088_1361_6463_ad365c
crossref_primary_10_1021_acs_jctc_2c00984
crossref_primary_10_1039_D4TA08189G
crossref_primary_10_1021_acs_jpca_4c06669
crossref_primary_10_1002_anie_202219170
crossref_primary_10_1038_s41467_023_37115_6
crossref_primary_10_1021_acs_chemrev_1c00904
crossref_primary_10_1039_D1CP05928A
crossref_primary_10_1021_acs_jcim_1c00503
crossref_primary_10_1002_pol_20230126
crossref_primary_10_1021_acsanm_4c01765
crossref_primary_10_1021_acscentsci_4c00578
crossref_primary_10_1016_j_ailsci_2022_100041
crossref_primary_10_1021_acs_jpca_2c07229
crossref_primary_10_1088_2515_7639_ada996
crossref_primary_10_1021_acs_jpclett_3c01618
crossref_primary_10_3389_fbinf_2022_885983
crossref_primary_10_1002_jcc_27366
crossref_primary_10_1021_acs_jpclett_4c01030
crossref_primary_10_1016_j_sbi_2022_102502
crossref_primary_10_1002_ange_202410088
crossref_primary_10_1021_acscatal_3c01945
crossref_primary_10_1063_1674_0068_cjcp2109159
crossref_primary_10_1021_acs_chemrev_2c00586
crossref_primary_10_1038_s41467_022_31093_x
crossref_primary_10_1039_D1DD00017A
crossref_primary_10_1029_2024GC011951
crossref_primary_10_1039_D1CP04393E
crossref_primary_10_1039_D4CP00017J
crossref_primary_10_1088_2632_2153_ad612b
crossref_primary_10_1039_D4MH01415D
crossref_primary_10_1021_acs_jctc_3c01203
crossref_primary_10_1039_D3CP05865D
crossref_primary_10_1142_S0218126623500998
crossref_primary_10_1063_5_0106617
crossref_primary_10_1021_acs_jpcc_3c07110
crossref_primary_10_1021_acs_jpcc_4c04504
crossref_primary_10_1021_acs_jpclett_1c01357
crossref_primary_10_1063_5_0160326
crossref_primary_10_1063_5_0165835
crossref_primary_10_1088_2632_2153_ace418
crossref_primary_10_1002_aenm_202203307
crossref_primary_10_1038_s41524_023_01073_w
crossref_primary_10_1088_2632_2153_ad6120
crossref_primary_10_1360_TB_2023_0351
crossref_primary_10_1038_s41467_024_48453_4
crossref_primary_10_1098_rsta_2022_0239
crossref_primary_10_1063_5_0214495
crossref_primary_10_1063_5_0126475
crossref_primary_10_1063_5_0158075
crossref_primary_10_1016_j_compositesb_2024_111369
crossref_primary_10_1021_acs_jcim_4c00434
crossref_primary_10_1098_rsta_2022_0250
crossref_primary_10_1021_acs_jctc_2c00702
crossref_primary_10_1007_s11244_021_01521_1
crossref_primary_10_1073_pnas_2410910122
crossref_primary_10_1016_j_actamat_2023_118734
crossref_primary_10_1021_acs_jcim_2c01064
crossref_primary_10_3390_ph15070873
crossref_primary_10_1063_5_0204229
crossref_primary_10_1038_s41467_024_47997_9
crossref_primary_10_1002_eom2_12330
crossref_primary_10_1039_D3CP00571B
crossref_primary_10_1021_acsami_4c22462
crossref_primary_10_1088_1361_648X_ada65b
crossref_primary_10_1021_acs_chemrev_1c00981
crossref_primary_10_1002_ange_202216383
crossref_primary_10_1021_acs_macromol_3c01377
crossref_primary_10_1063_5_0080766
crossref_primary_10_1088_2632_2153_ad0ab5
crossref_primary_10_1016_S1872_2067_21_63852_4
crossref_primary_10_1002_ijch_202100106
crossref_primary_10_1017_qrd_2022_11
crossref_primary_10_1039_D2QO00188H
crossref_primary_10_1063_5_0087165
crossref_primary_10_1088_2632_2153_ac568d
crossref_primary_10_1021_acs_jctc_3c00174
crossref_primary_10_1016_j_inffus_2024_102923
crossref_primary_10_1103_PhysRevResearch_7_L012013
crossref_primary_10_1039_D3CP00112A
crossref_primary_10_1002_smll_202409092
crossref_primary_10_1016_j_csbj_2022_10_038
crossref_primary_10_1007_s10118_024_3221_6
crossref_primary_10_1002_qua_27389
crossref_primary_10_1021_acs_molpharmaceut_4c00342
crossref_primary_10_1021_acs_jpcc_3c07398
crossref_primary_10_1063_5_0064075
crossref_primary_10_1126_sciadv_adn4397
crossref_primary_10_1063_5_0035530
crossref_primary_10_1021_acs_jctc_4c00821
crossref_primary_10_1063_5_0237101
crossref_primary_10_1002_sstr_202400268
crossref_primary_10_1039_D2DD00096B
crossref_primary_10_1016_j_pecs_2025_101220
crossref_primary_10_1080_08927022_2022_2156561
crossref_primary_10_1039_D2DD00072E
crossref_primary_10_1126_sciadv_adp9662
crossref_primary_10_1021_acsengineeringau_3c00021
crossref_primary_10_1021_acs_jpcb_4c07413
crossref_primary_10_1063_5_0150379
crossref_primary_10_1021_acs_jpclett_2c02905
crossref_primary_10_1021_jacs_4c17015
crossref_primary_10_1039_D4CP04484C
crossref_primary_10_1063_5_0121805
crossref_primary_10_1103_PhysRevLett_127_156002
crossref_primary_10_1021_acs_cgd_4c00905
crossref_primary_10_1063_5_0187892
crossref_primary_10_1021_acs_energyfuels_3c00502
crossref_primary_10_1002_qua_26870
crossref_primary_10_1063_5_0155600
crossref_primary_10_1021_acs_jpcc_4c04575
crossref_primary_10_1039_D4DD00099D
crossref_primary_10_1002_adfm_202411171
crossref_primary_10_1021_acsaenm_4c00280
crossref_primary_10_3390_nano14151272
crossref_primary_10_1103_PhysRevB_104_104309
crossref_primary_10_1002_cphc_202400254
crossref_primary_10_1038_s42004_025_01471_9
crossref_primary_10_1103_PhysRevMaterials_6_013804
crossref_primary_10_1038_s41467_024_47999_7
crossref_primary_10_1038_s41467_022_30530_1
crossref_primary_10_1103_PhysRevMaterials_8_043805
crossref_primary_10_1038_s43588_022_00270_9
crossref_primary_10_1126_science_abj6511
crossref_primary_10_1021_acs_jpclett_4c03293
crossref_primary_10_1063_5_0154710
crossref_primary_10_1063_5_0234287
crossref_primary_10_3390_catal11091129
crossref_primary_10_1021_acs_jpca_3c00095
crossref_primary_10_1021_acs_jpcc_2c03156
crossref_primary_10_1002_jcc_27527
crossref_primary_10_1016_j_cplett_2021_138853
crossref_primary_10_1007_s12312_024_01337_6
crossref_primary_10_1088_2632_2153_ada248
crossref_primary_10_1039_D3CP03515H
crossref_primary_10_1021_acs_joc_4c01763
crossref_primary_10_1016_j_cej_2024_151492
crossref_primary_10_1021_acs_jctc_3c01051
crossref_primary_10_1038_s41467_024_54554_x
crossref_primary_10_1039_D2CP02864F
crossref_primary_10_1021_acs_chemmater_1c04252
crossref_primary_10_1063_5_0187867
crossref_primary_10_1039_D4CP02989E
crossref_primary_10_1103_PhysRevB_105_L060102
crossref_primary_10_1021_acs_chemrev_3c00624
crossref_primary_10_1080_08927022_2021_1980215
crossref_primary_10_1007_s00292_024_01308_7
crossref_primary_10_1063_5_0220091
crossref_primary_10_1063_5_0151033
crossref_primary_10_1021_acs_jpcb_4c04100
crossref_primary_10_1021_acsmaterialsau_3c00071
crossref_primary_10_1063_5_0067176
crossref_primary_10_1039_D3CP03845A
crossref_primary_10_1016_j_cossms_2025_101214
crossref_primary_10_1021_acs_jctc_5c00089
crossref_primary_10_1021_accountsmr_2c00184
crossref_primary_10_1063_5_0141233
crossref_primary_10_1140_epjp_s13360_024_05348_z
crossref_primary_10_1088_2632_2153_acb314
crossref_primary_10_1016_j_ces_2025_121494
crossref_primary_10_1021_acs_jpcc_2c08429
crossref_primary_10_1016_j_ensm_2023_103023
crossref_primary_10_1002_wcms_1730
crossref_primary_10_1039_D4DD00140K
crossref_primary_10_1002_adma_202402369
crossref_primary_10_1038_s41524_023_00996_8
crossref_primary_10_1016_j_mattod_2023_05_029
crossref_primary_10_1016_j_aichem_2024_100050
crossref_primary_10_1021_acs_macromol_4c02036
crossref_primary_10_1016_j_aichem_2024_100051
crossref_primary_10_1107_S2053273323000268
crossref_primary_10_1038_s41524_024_01451_y
crossref_primary_10_1021_acs_jced_3c00553
crossref_primary_10_1002_ange_202305964
crossref_primary_10_1016_j_aichem_2024_100059
crossref_primary_10_1039_D4DD00295D
crossref_primary_10_1088_2632_2153_aca005
crossref_primary_10_1039_D4RA01861C
crossref_primary_10_1021_acs_jctc_4c01086
crossref_primary_10_1063_5_0155621
crossref_primary_10_1063_5_0151266
crossref_primary_10_1063_5_0175455
crossref_primary_10_1103_PhysRevA_109_022227
crossref_primary_10_1002_jcc_27313
crossref_primary_10_1039_D4CP01529K
crossref_primary_10_1063_5_0155618
crossref_primary_10_1021_acsnano_3c10201
crossref_primary_10_1103_PhysRevA_111_012806
crossref_primary_10_1080_23746149_2024_2358196
crossref_primary_10_1088_2515_7655_ac4ac3
crossref_primary_10_1021_acs_inorgchem_4c05218
crossref_primary_10_1021_acsmaterialsau_3c00064
crossref_primary_10_1063_5_0030764
crossref_primary_10_1107_S2052520624007492
crossref_primary_10_1039_D2CP02883B
crossref_primary_10_1088_1361_648X_ac9d7d
crossref_primary_10_3390_bioengineering9030090
crossref_primary_10_1038_s41524_022_00863_y
crossref_primary_10_1103_PhysRevMaterials_8_073602
crossref_primary_10_1021_acs_jpclett_5c00172
crossref_primary_10_1109_MSP_2022_3153277
crossref_primary_10_1002_adma_202204272
crossref_primary_10_1021_acs_jctc_2c01275
crossref_primary_10_1063_5_0083060
crossref_primary_10_1038_s41524_023_01049_w
crossref_primary_10_1021_acs_jctc_2c01038
crossref_primary_10_1038_s41597_023_02369_8
crossref_primary_10_1021_jacs_3c07628
crossref_primary_10_1021_acs_jcim_3c00242
crossref_primary_10_1021_acs_jpclett_4c02949
crossref_primary_10_1016_j_cplett_2025_141964
crossref_primary_10_1021_acsnano_4c01787
crossref_primary_10_1016_j_jpowsour_2022_232350
crossref_primary_10_1016_j_commatsci_2021_110939
crossref_primary_10_1038_s41586_023_06587_3
crossref_primary_10_1063_5_0250837
crossref_primary_10_1103_PhysRevB_105_165141
crossref_primary_10_1002_smll_202404274
crossref_primary_10_1073_pnas_2313023120
crossref_primary_10_1002_wcms_1656
crossref_primary_10_1038_s41524_023_01123_3
crossref_primary_10_3390_polym14091642
crossref_primary_10_1016_j_egyai_2024_100454
crossref_primary_10_1021_acs_chemrev_1c00107
crossref_primary_10_1063_5_0202647
crossref_primary_10_1088_1361_648X_ad6bdb
crossref_primary_10_1016_j_nucengdes_2023_112566
crossref_primary_10_1021_acs_jcim_3c00472
crossref_primary_10_1063_5_0146812
crossref_primary_10_3390_molecules27041277
crossref_primary_10_47134_physics_v1i2_480
crossref_primary_10_1016_j_patter_2022_100588
crossref_primary_10_1016_j_jms_2023_111774
crossref_primary_10_1021_acs_jctc_4c00334
crossref_primary_10_1021_acs_jctc_4c01424
crossref_primary_10_1021_acs_jctc_2c01290
crossref_primary_10_1038_s43588_023_00571_7
crossref_primary_10_1021_acs_jpclett_4c00746
crossref_primary_10_1038_s41467_023_39214_w
crossref_primary_10_1088_2752_5724_ac681d
crossref_primary_10_1007_s10462_024_10731_4
crossref_primary_10_3390_en16135003
crossref_primary_10_1038_s41570_023_00516_8
crossref_primary_10_1021_acs_jpca_4c04703
crossref_primary_10_1016_j_isci_2023_106549
crossref_primary_10_1016_j_jechem_2025_02_051
crossref_primary_10_1038_s41560_023_01417_2
crossref_primary_10_1021_acs_jctc_4c00345
crossref_primary_10_1021_acs_jctc_4c00587
crossref_primary_10_1002_wcms_1679
crossref_primary_10_3389_fmolb_2022_899805
crossref_primary_10_1088_2515_7655_acfe9b
crossref_primary_10_1021_acs_jpca_4c00750
crossref_primary_10_1016_j_aichem_2023_100033
crossref_primary_10_1016_j_commatsci_2024_112996
crossref_primary_10_1016_j_apcata_2024_119969
crossref_primary_10_1021_acs_jctc_3c00984
crossref_primary_10_1021_acs_jctc_3c00985
crossref_primary_10_1146_annurev_matsci_080921_085947
crossref_primary_10_1021_acscatal_2c00594
crossref_primary_10_1063_5_0212867
crossref_primary_10_1063_5_0142280
crossref_primary_10_1002_mgea_4
crossref_primary_10_3390_pr11092769
crossref_primary_10_1063_5_0180541
crossref_primary_10_1039_D1CE01564H
crossref_primary_10_1016_j_aichem_2023_100037
crossref_primary_10_1063_5_0230060
crossref_primary_10_1002_anie_202216383
crossref_primary_10_1021_acs_macromol_4c00488
crossref_primary_10_1063_5_0170972
crossref_primary_10_1021_acs_jpclett_4c00322
crossref_primary_10_3389_fmats_2024_1466793
crossref_primary_10_1103_PhysRevLett_130_078001
crossref_primary_10_1021_acs_jctc_4c00173
crossref_primary_10_1039_D4TC03403A
crossref_primary_10_1021_acs_jpcb_0c09898
crossref_primary_10_1021_acs_jctc_4c01012
crossref_primary_10_1016_j_chempr_2024_07_031
crossref_primary_10_1016_j_cpc_2023_108883
crossref_primary_10_1021_acs_jpcb_2c06354
crossref_primary_10_1088_2632_2153_ac3845
crossref_primary_10_1088_1674_1056_ac5d2d
crossref_primary_10_3390_molecules28114477
crossref_primary_10_1038_s41467_022_33783_y
crossref_primary_10_1063_5_0253919
crossref_primary_10_1021_acs_chemrev_4c00380
crossref_primary_10_1007_s11426_022_1506_1
crossref_primary_10_1021_acs_jcim_2c01510
crossref_primary_10_1042_BST20210499
crossref_primary_10_1103_PhysRevMaterials_7_123804
crossref_primary_10_2472_jsms_73_645
crossref_primary_10_1063_5_0187154
crossref_primary_10_1021_acs_jctc_3c00955
crossref_primary_10_1021_acs_jctc_1c00978
crossref_primary_10_1088_1402_4896_ad37ab
crossref_primary_10_1021_acs_jpcc_3c03229
crossref_primary_10_1021_acs_jctc_4c01475
crossref_primary_10_1088_2632_2153_ad360e
crossref_primary_10_1016_j_heliyon_2024_e28124
crossref_primary_10_1021_acs_jpca_1c09719
crossref_primary_10_1039_D4SC01109K
crossref_primary_10_1038_s44287_024_00076_z
crossref_primary_10_1016_j_commt_2024_100003
crossref_primary_10_1038_s41524_024_01227_4
crossref_primary_10_3390_biom12091246
crossref_primary_10_1002_med_22008
crossref_primary_10_1038_s41570_022_00424_3
crossref_primary_10_1002_chem_202401148
crossref_primary_10_1021_acs_jpcb_4c02882
crossref_primary_10_1021_acs_jctc_4c01604
crossref_primary_10_1063_5_0085081
crossref_primary_10_1021_acs_jpclett_3c03405
crossref_primary_10_1088_2516_1083_ad7220
crossref_primary_10_1016_j_scitotenv_2023_161871
crossref_primary_10_21105_joss_06264
crossref_primary_10_1039_D3CP00603D
crossref_primary_10_3390_catal11040493
crossref_primary_10_1021_acs_jctc_1c00363
crossref_primary_10_1039_D3FD00153A
crossref_primary_10_1038_s41524_023_00969_x
crossref_primary_10_1021_acs_chemrev_3c00169
crossref_primary_10_1021_acs_jpca_3c02949
crossref_primary_10_1021_acsphyschemau_4c00003
crossref_primary_10_1063_5_0210866
crossref_primary_10_1080_00268976_2024_2381617
crossref_primary_10_1016_j_trechm_2021_04_003
crossref_primary_10_1039_D2CP04155C
crossref_primary_10_1039_D3NR01045G
crossref_primary_10_1088_2632_2153_ad652c
crossref_primary_10_1016_j_nanoen_2023_108695
crossref_primary_10_1021_acs_jctc_1c01241
crossref_primary_10_1021_acs_jctc_2c01216
crossref_primary_10_1063_5_0087255
crossref_primary_10_1063_5_0099469
crossref_primary_10_1126_sciadv_adf0873
crossref_primary_10_1021_acs_nanolett_4c00890
crossref_primary_10_1021_acs_chemrev_3c00189
crossref_primary_10_1039_D2CP00834C
crossref_primary_10_1039_D4MD00869C
crossref_primary_10_1016_j_enconman_2023_117366
crossref_primary_10_1021_acs_jpca_4c04039
crossref_primary_10_1021_acs_jpcb_1c08383
crossref_primary_10_1021_acs_jpcb_4c01987
crossref_primary_10_1038_s41529_024_00478_2
crossref_primary_10_1016_j_jmb_2023_168358
crossref_primary_10_1002_aesr_202300112
crossref_primary_10_1021_acs_jpcc_3c04950
crossref_primary_10_1038_s43588_022_00369_z
crossref_primary_10_1063_5_0134009
crossref_primary_10_1103_PhysRevMaterials_5_103803
crossref_primary_10_3389_fddsv_2022_908870
crossref_primary_10_1063_5_0156290
crossref_primary_10_1007_s10825_023_02062_4
crossref_primary_10_1021_acs_iecr_2c02333
crossref_primary_10_1371_journal_pone_0297502
crossref_primary_10_3389_fenrg_2021_695902
crossref_primary_10_1021_acs_jpclett_4c02586
crossref_primary_10_1146_annurev_physchem_062123_024417
crossref_primary_10_1002_qua_27087
crossref_primary_10_1021_acs_jctc_3c01421
crossref_primary_10_1039_D2NR05918E
crossref_primary_10_1016_j_gsf_2023_101735
crossref_primary_10_1063_5_0151833
crossref_primary_10_1073_pnas_2309884120
crossref_primary_10_1021_acs_jpcb_2c00212
crossref_primary_10_1021_acsphyschemau_3c00080
crossref_primary_10_1021_acs_jpcb_3c08166
crossref_primary_10_1002_adma_202305758
crossref_primary_10_1039_D2DD00034B
crossref_primary_10_1021_acs_jctc_2c00555
crossref_primary_10_1021_acs_jctc_3c00568
crossref_primary_10_1063_5_0259061
crossref_primary_10_1016_j_jechem_2022_01_018
crossref_primary_10_1063_5_0179149
crossref_primary_10_1039_D2CP05793J
crossref_primary_10_1021_acs_jpcc_2c03630
crossref_primary_10_1063_5_0169343
crossref_primary_10_1021_acs_jpca_3c07129
crossref_primary_10_1088_1361_651X_acda50
crossref_primary_10_1039_D1SC02574K
crossref_primary_10_1016_j_heliyon_2023_e17575
crossref_primary_10_3389_fmats_2023_1128954
crossref_primary_10_1002_advs_202409009
crossref_primary_10_1038_s41467_021_27504_0
crossref_primary_10_1002_qute_202200131
crossref_primary_10_1140_epjb_s10051_021_00234_4
crossref_primary_10_1021_acs_chemmater_4c00979
crossref_primary_10_1021_acs_jctc_4c00788
crossref_primary_10_1016_j_matdes_2023_112012
crossref_primary_10_1016_j_commatsci_2024_113486
crossref_primary_10_1021_acs_jpclett_2c03288
crossref_primary_10_1021_acscatal_4c06717
crossref_primary_10_1088_2516_1075_adbf5a
crossref_primary_10_1021_acs_est_1c05970
crossref_primary_10_1063_5_0197986
crossref_primary_10_1021_acs_jctc_3c00271
crossref_primary_10_1039_D3MH00125C
crossref_primary_10_1021_acs_jpclett_1c01204
crossref_primary_10_1088_1361_648X_ad9f09
crossref_primary_10_1016_j_jmps_2024_105927
crossref_primary_10_1021_acs_jpclett_3c00671
crossref_primary_10_1088_2515_7655_ad0d00
crossref_primary_10_1021_acsami_4c03815
crossref_primary_10_1063_5_0139611
crossref_primary_10_1021_acs_jpclett_1c03884
crossref_primary_10_1038_s41467_022_28526_y
crossref_primary_10_1021_jacsau_4c00488
crossref_primary_10_1038_s43588_023_00424_3
crossref_primary_10_1016_j_cartre_2023_100257
crossref_primary_10_1021_acs_jctc_3c01343
crossref_primary_10_1142_S2737416521420072
crossref_primary_10_1088_2516_1075_ad48ec
crossref_primary_10_1021_acsomega_4c08854
crossref_primary_10_1021_acs_jpcb_4c08471
crossref_primary_10_3390_ijms25158530
crossref_primary_10_1007_s11837_022_05306_z
crossref_primary_10_1038_s41524_024_01332_4
crossref_primary_10_1002_jcc_70081
crossref_primary_10_1021_acs_jctc_2c00874
crossref_primary_10_1038_s41597_025_04720_7
crossref_primary_10_1021_acs_jpclett_4c03323
crossref_primary_10_1088_2632_2153_ad3ee6
crossref_primary_10_1038_s41570_022_00416_3
crossref_primary_10_1021_acs_jctc_3c00491
crossref_primary_10_1002_jcc_27006
crossref_primary_10_1021_acs_jcim_1c00651
crossref_primary_10_1002_ange_202208681
crossref_primary_10_1021_acs_jpclett_1c02316
crossref_primary_10_1021_acs_jpclett_4c03332
crossref_primary_10_1002_jcc_70071
crossref_primary_10_1093_nsr_nwad335
crossref_primary_10_1021_acs_jctc_4c00907
crossref_primary_10_1021_acs_jctc_2c00645
crossref_primary_10_1021_acspolymersau_1c00027
crossref_primary_10_5802_crchim_315
crossref_primary_10_1016_j_isci_2024_109673
crossref_primary_10_1021_acs_jctc_2c00643
crossref_primary_10_1021_acs_jpclett_3c01723
crossref_primary_10_1038_s41524_024_01441_0
crossref_primary_10_1039_D3DD00051F
crossref_primary_10_1021_acs_jpcc_4c00028
crossref_primary_10_1063_5_0079483
crossref_primary_10_1039_D4NR00589A
crossref_primary_10_1039_D3CY01160G
crossref_primary_10_1093_nsr_nwad321
crossref_primary_10_1039_D2SC06696C
crossref_primary_10_1039_D3SC02482B
crossref_primary_10_1016_j_jallcom_2024_175751
crossref_primary_10_1021_acs_chemrev_2c00479
crossref_primary_10_1016_j_commatsci_2024_113484
crossref_primary_10_1021_acs_chemrev_1c00800
crossref_primary_10_1073_pnas_2212250120
crossref_primary_10_1039_D4NR00017J
crossref_primary_10_1063_5_0174669
crossref_primary_10_1016_j_bpj_2022_08_045
crossref_primary_10_1103_PhysRevB_108_L100302
crossref_primary_10_1021_acs_jpclett_1c01645
crossref_primary_10_1016_j_scitotenv_2023_167028
crossref_primary_10_1109_TPAMI_2023_3339980
crossref_primary_10_1021_acs_jpcb_2c01954
crossref_primary_10_1021_acs_jpcb_2c09059
crossref_primary_10_1209_0295_5075_acf33f
crossref_primary_10_1002_chem_202402036
crossref_primary_10_1063_5_0128774
crossref_primary_10_1088_2632_2153_ac9955
crossref_primary_10_1002_aisy_202200073
crossref_primary_10_1063_5_0142843
crossref_primary_10_1016_j_pmatsci_2025_101474
crossref_primary_10_1021_acs_jctc_2c00827
crossref_primary_10_1021_acs_jpca_4c06989
crossref_primary_10_1103_PhysRevLett_129_226001
crossref_primary_10_1016_j_jece_2024_113732
crossref_primary_10_1103_PhysRevE_111_034303
crossref_primary_10_1063_5_0129613
crossref_primary_10_1002_kin_21759
crossref_primary_10_1039_D2CP04421H
crossref_primary_10_1021_acs_langmuir_3c03401
crossref_primary_10_1021_acs_jpclett_1c01895
crossref_primary_10_1021_acsnano_4c03094
crossref_primary_10_1016_j_apcatb_2025_125192
crossref_primary_10_2174_1874471015666220831091403
crossref_primary_10_1021_acs_jctc_3c00289
crossref_primary_10_1038_s42254_024_00791_4
crossref_primary_10_1063_5_0157078
crossref_primary_10_1146_annurev_pathmechdis_051222_113147
crossref_primary_10_1021_acs_jctc_3c00050
crossref_primary_10_1039_D3RA08650J
crossref_primary_10_1021_acs_jcim_4c01847
crossref_primary_10_1063_5_0206974
crossref_primary_10_1039_D2SC04056E
crossref_primary_10_1016_j_fuel_2023_129909
crossref_primary_10_1002_adfm_202400773
crossref_primary_10_1021_acs_jctc_3c00279
crossref_primary_10_1039_D2DD00102K
crossref_primary_10_1039_D4DD00134F
crossref_primary_10_21105_joss_04467
crossref_primary_10_1038_s41467_024_53028_4
crossref_primary_10_1021_acs_jpcb_4c06231
crossref_primary_10_1088_1367_2630_ac3261
crossref_primary_10_1038_s41467_022_33414_6
crossref_primary_10_1021_acs_jcim_1c00448
crossref_primary_10_1103_PhysRevB_110_054109
crossref_primary_10_1002_anie_202410088
crossref_primary_10_1021_acs_jpcc_1c05137
crossref_primary_10_1063_5_0226314
crossref_primary_10_1021_jacsau_4c01160
crossref_primary_10_1038_s41524_022_00843_2
crossref_primary_10_1021_jacs_4c18223
crossref_primary_10_1063_5_0143724
crossref_primary_10_1021_acspolymersau_2c00049
crossref_primary_10_1039_D1SC02742E
crossref_primary_10_1063_5_0197592
crossref_primary_10_1063_5_0203682
crossref_primary_10_1021_acs_jpcc_4c06615
crossref_primary_10_1063_1674_0068_cjcp2110218
crossref_primary_10_1021_acs_macromol_2c02272
crossref_primary_10_1063_5_0138367
crossref_primary_10_1038_s41598_023_50978_5
crossref_primary_10_1021_acs_chemrestox_3c00032
crossref_primary_10_1016_j_scib_2024_08_039
crossref_primary_10_1021_acs_jpca_1c05105
crossref_primary_10_1016_j_cbpa_2022_102175
crossref_primary_10_1063_5_0176641
crossref_primary_10_1002_admi_202101734
crossref_primary_10_1021_accountsmr_3c00223
crossref_primary_10_1021_acs_jctc_4c01176
crossref_primary_10_1021_acsami_4c01480
crossref_primary_10_1016_j_sbi_2023_102533
crossref_primary_10_1002_ange_202219170
crossref_primary_10_1007_s12274_024_6983_9
crossref_primary_10_1021_acs_jctc_1c00821
crossref_primary_10_1039_D2DD00082B
crossref_primary_10_1021_acs_chemrev_4c00572
crossref_primary_10_1021_acs_jctc_4c01151
crossref_primary_10_1021_acs_jctc_4c01393
crossref_primary_10_1063_5_0139245
crossref_primary_10_1016_j_cpc_2024_109446
crossref_primary_10_1016_j_sbi_2024_102821
crossref_primary_10_1063_5_0201241
crossref_primary_10_1021_acs_jpcb_3c05369
crossref_primary_10_1039_D3SC04317G
crossref_primary_10_1088_2516_1075_ac59ca
crossref_primary_10_1002_adts_202200206
crossref_primary_10_1021_acs_jctc_1c00813
crossref_primary_10_1002_adma_202417516
crossref_primary_10_1016_j_tibs_2022_05_003
crossref_primary_10_1021_acs_chemrev_3c00735
crossref_primary_10_1038_s41524_023_01092_7
crossref_primary_10_1063_5_0173351
crossref_primary_10_1016_j_chemphys_2022_111518
crossref_primary_10_1021_acscatal_3c06201
crossref_primary_10_1063_5_0211053
crossref_primary_10_1021_acsmaterialsau_4c00095
crossref_primary_10_1039_D2CP05976B
crossref_primary_10_1063_5_0052857
crossref_primary_10_1021_acs_jctc_5c00178
crossref_primary_10_1021_acs_jcim_4c01473
crossref_primary_10_1039_D3CP04729F
crossref_primary_10_1126_sciadv_adj1719
crossref_primary_10_1038_s41467_023_42148_y
crossref_primary_10_1063_5_0155992
crossref_primary_10_1038_s42256_021_00418_8
crossref_primary_10_1021_acs_jpcc_4c03394
crossref_primary_10_1063_5_0215869
crossref_primary_10_1016_j_mtcomm_2024_110628
crossref_primary_10_1038_s41598_025_93874_w
crossref_primary_10_1039_D4SC03523B
crossref_primary_10_1038_s42256_024_00818_6
crossref_primary_10_1016_j_sbi_2024_102847
crossref_primary_10_1088_2632_2153_ad1626
crossref_primary_10_1109_TPAMI_2021_3115452
crossref_primary_10_1038_s41524_024_01278_7
crossref_primary_10_1021_acs_jctc_2c01078
crossref_primary_10_1039_D4CC00010B
crossref_primary_10_1063_5_0146803
crossref_primary_10_1063_5_0226764
crossref_primary_10_1063_5_0155760
crossref_primary_10_1016_j_cplett_2024_141223
crossref_primary_10_1063_5_0139010
crossref_primary_10_1021_acs_jpcc_3c07646
crossref_primary_10_1063_5_0244175
crossref_primary_10_1103_PhysRevFluids_8_064004
crossref_primary_10_1038_s41597_022_01870_w
crossref_primary_10_1088_1361_651X_ac4002
crossref_primary_10_1063_5_0196232
crossref_primary_10_1021_acs_jpclett_1c01810
crossref_primary_10_1186_s13321_024_00914_0
crossref_primary_10_1088_1361_6528_ac46d7
crossref_primary_10_1063_5_0235460
crossref_primary_10_1039_D4SC06529H
crossref_primary_10_1088_2632_2153_ac8e4f
crossref_primary_10_1063_5_0227821
crossref_primary_10_3390_met15010048
crossref_primary_10_1002_wcms_1645
crossref_primary_10_1063_5_0214754
crossref_primary_10_1103_PhysRevB_107_184111
crossref_primary_10_1007_s12033_023_00726_x
crossref_primary_10_1088_1361_648X_ac462b
crossref_primary_10_1016_j_nocx_2022_100115
crossref_primary_10_1088_2632_2153_ac7d3c
crossref_primary_10_1088_1361_648X_ada710
crossref_primary_10_1038_s41524_024_01254_1
crossref_primary_10_1002_jcc_70016
crossref_primary_10_1073_pnas_2403497121
crossref_primary_10_1021_acs_jcim_2c01127
crossref_primary_10_1021_acs_jpca_2c00255
crossref_primary_10_1021_acs_jctc_4c01570
crossref_primary_10_1039_D2CS00203E
crossref_primary_10_1039_D3QI02410E
crossref_primary_10_1039_D3CP01416A
crossref_primary_10_1088_2632_2153_ad5f11
crossref_primary_10_1038_s41467_024_50620_6
crossref_primary_10_1360_SSPMA_2024_0030
crossref_primary_10_1021_jacs_3c07506
crossref_primary_10_1063_5_0041548
crossref_primary_10_1098_rsta_2020_0382
crossref_primary_10_1146_annurev_physchem_082720_034254
crossref_primary_10_1002_minf_202400361
crossref_primary_10_1088_1361_6463_acd1fd
crossref_primary_10_1088_2632_2153_aca1f7
crossref_primary_10_1021_acs_jctc_4c01333
crossref_primary_10_1021_acs_jctc_4c00008
crossref_primary_10_1021_acs_jpclett_2c03943
crossref_primary_10_1021_acs_jpclett_3c03131
crossref_primary_10_1021_acs_jpca_2c05962
crossref_primary_10_1016_j_surfin_2024_105689
crossref_primary_10_1021_acs_jpca_4c01546
crossref_primary_10_1021_acs_chemrev_1c00021
crossref_primary_10_1021_acs_chemrev_1c00022
crossref_primary_10_1021_acscatal_4c01920
crossref_primary_10_1088_1361_6463_ac6f97
crossref_primary_10_1016_j_jcp_2023_112180
crossref_primary_10_1021_acsnano_3c13099
crossref_primary_10_1063_5_0132573
crossref_primary_10_1021_acs_jpclett_4c01942
crossref_primary_10_1039_D4SC04164J
crossref_primary_10_1039_D4DD00209A
crossref_primary_10_1016_j_bbagen_2023_130534
crossref_primary_10_1039_D4CP01801J
crossref_primary_10_1038_s41586_025_08628_5
crossref_primary_10_2142_biophysico_bppb_v19_0027
crossref_primary_10_3389_fchem_2023_1286257
crossref_primary_10_1039_D4FD00025K
crossref_primary_10_1103_PhysRevResearch_5_L012028
crossref_primary_10_1115_1_4062966
crossref_primary_10_1021_acs_jpclett_4c00860
crossref_primary_10_1021_acs_jpcc_3c04639
crossref_primary_10_1007_s00214_023_02997_8
crossref_primary_10_1021_acs_jctc_4c00463
crossref_primary_10_1038_s43588_024_00636_1
crossref_primary_10_1039_D2CP01211A
crossref_primary_10_1016_j_matdes_2025_113865
crossref_primary_10_1021_acs_jpclett_2c00654
crossref_primary_10_1063_5_0222798
crossref_primary_10_1063_5_0251833
crossref_primary_10_1039_D3DD00216K
crossref_primary_10_1063_5_0222557
crossref_primary_10_1021_acs_jpclett_1c04004
crossref_primary_10_1039_D1CP03594K
crossref_primary_10_1021_acs_jcim_4c02042
crossref_primary_10_1021_acs_jpcc_3c05522
crossref_primary_10_1016_j_bpj_2024_02_029
crossref_primary_10_1021_acs_jcim_2c00760
crossref_primary_10_1002_adfm_202313420
crossref_primary_10_3390_molecules28041715
crossref_primary_10_1021_acs_chemrev_1c00033
crossref_primary_10_1021_acs_jctc_1c00832
crossref_primary_10_1002_aenm_202400564
crossref_primary_10_1021_acs_jcim_2c01617
crossref_primary_10_1021_acs_jctc_4c01382
crossref_primary_10_1039_D3CP05201J
crossref_primary_10_1021_acs_jpcb_4c04750
crossref_primary_10_1063_5_0231265
crossref_primary_10_3390_ph17020158
crossref_primary_10_1116_6_0004288
crossref_primary_10_1038_s41467_024_54631_1
crossref_primary_10_1039_D2CP03893E
crossref_primary_10_1038_s43588_022_00228_x
crossref_primary_10_1016_j_rser_2025_115358
crossref_primary_10_1002_smll_202405299
crossref_primary_10_1021_accountsmr_1c00238
crossref_primary_10_1016_j_patter_2022_100663
crossref_primary_10_1021_acs_jctc_4c00497
crossref_primary_10_1021_acs_chemrev_2c00704
crossref_primary_10_1021_acs_jctc_4c00498
crossref_primary_10_1021_acs_jctc_4c01108
crossref_primary_10_1039_D4TA00452C
crossref_primary_10_1021_acs_jctc_2c01130
crossref_primary_10_1146_annurev_chembioeng_092220_025342
crossref_primary_10_1088_1361_648X_adbb9c
crossref_primary_10_1021_jacs_1c12932
crossref_primary_10_1038_s43588_023_00406_5
crossref_primary_10_1002_adma_202301449
crossref_primary_10_1002_advs_202204684
crossref_primary_10_1021_acs_jpclett_4c01751
crossref_primary_10_1038_s41524_024_01481_6
crossref_primary_10_1038_s41524_025_01547_z
crossref_primary_10_1002_adma_202416901
crossref_primary_10_1038_s41578_023_00537_1
crossref_primary_10_1038_s41524_025_01523_7
crossref_primary_10_1021_acs_jpca_3c07872
crossref_primary_10_1063_5_0120386
crossref_primary_10_1039_D2FD00107A
crossref_primary_10_1021_acs_jpclett_2c02632
crossref_primary_10_1063_5_0222779
crossref_primary_10_1088_2632_2153_ac6ec6
crossref_primary_10_1021_acs_accounts_1c00503
crossref_primary_10_1021_acs_jctc_2c00290
crossref_primary_10_3390_ijms232314699
crossref_primary_10_1021_acs_jctc_2c01304
crossref_primary_10_1038_s41597_023_01998_3
crossref_primary_10_1021_acs_jctc_2c00693
crossref_primary_10_1021_acs_jctc_3c00427
crossref_primary_10_1016_j_cej_2024_148779
crossref_primary_10_1016_j_commatsci_2023_112715
crossref_primary_10_1063_5_0080506
crossref_primary_10_1039_D3CP01922E
crossref_primary_10_1088_1361_648X_ad64a2
crossref_primary_10_1103_PhysRevLett_131_228001
crossref_primary_10_1063_5_0070931
crossref_primary_10_1016_j_mtcomm_2023_107526
crossref_primary_10_1063_5_0209545
crossref_primary_10_1038_s41524_025_01550_4
crossref_primary_10_1038_s41467_025_57101_4
crossref_primary_10_1016_j_scriptamat_2025_116568
crossref_primary_10_1088_2632_2153_ad9709
crossref_primary_10_1021_acs_jpcc_4c00886
crossref_primary_10_1039_D4CC05117C
crossref_primary_10_1021_acs_jpcb_4c00104
crossref_primary_10_1002_anie_202208681
crossref_primary_10_1021_acs_jpclett_4c02430
crossref_primary_10_1007_s11426_024_2072_4
crossref_primary_10_1063_5_0134317
crossref_primary_10_1063_5_0120169
crossref_primary_10_1063_5_0245615
crossref_primary_10_1021_acs_jpclett_3c01592
crossref_primary_10_1021_acs_jpclett_4c03727
crossref_primary_10_1021_acs_jpcc_4c01988
crossref_primary_10_1021_acs_jctc_3c00641
crossref_primary_10_1063_5_0156343
crossref_primary_10_1038_s41467_025_57134_9
crossref_primary_10_1021_acs_jcim_3c00999
crossref_primary_10_1039_D2MA00673A
crossref_primary_10_1021_acs_jcim_3c00989
crossref_primary_10_1038_s41597_022_01185_w
crossref_primary_10_1039_D4CP01497A
crossref_primary_10_1021_acs_jpcc_3c00451
crossref_primary_10_1088_2632_2153_ad27e1
crossref_primary_10_1016_j_commatsci_2024_113072
crossref_primary_10_1021_acs_jctc_4c00618
crossref_primary_10_1021_jacs_2c06833
crossref_primary_10_1021_acs_jctc_4c00858
crossref_primary_10_1021_acs_jctc_3c00873
crossref_primary_10_1021_acsnano_3c13001
crossref_primary_10_1039_D3DD00011G
crossref_primary_10_1039_D4FD00041B
crossref_primary_10_1088_1367_2630_acf2bb
crossref_primary_10_1063_5_0123698
crossref_primary_10_3390_agriengineering5040106
crossref_primary_10_1021_acs_cgd_3c00375
crossref_primary_10_1088_2632_2153_abfd96
crossref_primary_10_1021_acs_jctc_4c00869
crossref_primary_10_1039_D1SC03564A
crossref_primary_10_7498_aps_73_20231618
crossref_primary_10_1021_acs_jctc_3c00469
crossref_primary_10_1016_j_polymer_2024_127416
crossref_primary_10_1007_s10910_022_01334_x
crossref_primary_10_1021_acs_jpcc_3c05908
crossref_primary_10_1088_2632_2153_acf115
crossref_primary_10_1021_acs_jctc_2c00661
crossref_primary_10_1038_s41524_024_01339_x
crossref_primary_10_1039_D1DD00050K
crossref_primary_10_1039_D4NR02114B
crossref_primary_10_1063_5_0204064
crossref_primary_10_1038_s41524_023_01053_0
crossref_primary_10_1021_acscatal_4c01364
crossref_primary_10_1063_5_0242304
crossref_primary_10_1186_s41313_021_00027_3
crossref_primary_10_1088_1361_648X_ad9657
crossref_primary_10_1021_acsnano_4c18956
crossref_primary_10_1063_5_0219764
crossref_primary_10_1103_PhysRevB_109_014310
crossref_primary_10_1021_acs_jpcc_4c08188
crossref_primary_10_3390_ijms25031448
crossref_primary_10_1103_PhysRevB_108_094102
crossref_primary_10_1016_j_gsf_2024_101925
crossref_primary_10_1021_acs_jpcb_3c07187
crossref_primary_10_1063_5_0205123
crossref_primary_10_1093_bib_bbad008
crossref_primary_10_1021_acs_jctc_4c01503
crossref_primary_10_1038_s41467_024_47422_1
crossref_primary_10_1016_j_xinn_2021_100179
crossref_primary_10_1021_acs_jctc_2c00440
crossref_primary_10_1039_D3CP05643K
crossref_primary_10_1021_acs_jctc_4c00660
crossref_primary_10_1021_acsami_4c00618
crossref_primary_10_1002_anie_202305964
crossref_primary_10_1103_PhysRevB_110_035204
crossref_primary_10_1103_PhysRevB_110_184106
Cites_doi 10.1126/science.aaw1147
10.1021/ja00457a004
10.1162/089976698300017467
10.1145/1364782.1364802
10.1017/S0305004100030401
10.1007/978-3-030-40245-7_12
10.1063/1.5082885
10.1126/sciadv.1603015
10.1021/acs.jpcc.7b12064
10.1021/ct4003702
10.1088/2632-2153/ab5922
10.1016/j.str.2005.11.014
10.1002/anie.201703114
10.1063/1.5092521
10.1039/C4CP05192K
10.1063/1.5019779
10.1016/0893-6080(91)90009-T
10.1007/978-3-319-21233-3_6
10.1103/PhysRevLett.117.135502
10.1063/1.5022469
10.1155/2015/183918
10.1103/PhysRevB.92.045131
10.1021/acscentsci.8b00913
10.1016/S0893-6080(98)00116-6
10.1063/1.5100267
10.1021/acs.jpclett.9b02173
10.1007/978-3-642-35289-8_3
10.1016/0893-6080(88)90020-2
10.1016/S0167-7322(02)00094-6
10.1063/1.465188
10.1080/00048402.2014.992447
10.1063/1.5011399
10.1126/science.aag2302
10.1021/acs.jpcb.8b06433
10.1038/nature12162
10.1016/j.cpc.2018.09.020
10.1002/adma.201902765
10.1021/acs.jpclett.0c01307
10.1063/1.5114981
10.1021/acs.chemrev.6b00446
10.1093/imaiai/iaw009
10.1021/acs.jpcb.6b07814
10.1038/s41467-020-20427-2
10.1007/978-1-4757-2440-0
10.1109/72.914517
10.2174/157340911795677602
10.1007/978-3-540-28650-9_4
10.1021/acs.chemrev.0c00749
10.1021/ct400953f
10.1109/34.6778
10.1137/16M1075454
10.1038/nature14539
10.1162/neco.1992.4.1.1
10.5281/zenodo.2605341
10.1002/qua.24890
10.1007/978-1-62703-017-5_8
10.1038/sdata.2014.22
10.1007/3-540-49430-8_3
10.1016/S0959-440X(00)00196-2
10.1093/bioinformatics/btx431
10.1103/PhysRevLett.77.3865
10.1063/1.4909549
10.1103/PhysRevB.89.205118
10.1007/978-0-387-84858-7
10.1038/s41467-020-19093-1
10.1145/130385.130417
10.1039/C9SC06017K
10.1063/1.5006596
10.1021/jp401225b
10.1039/C7SC04934J
10.1021/cr200137a
10.1039/C9SC05116C
10.1063/5.0007276
10.1063/1.5019667
10.1103/PhysRevLett.120.143001
10.1039/C9SC01742A
10.1063/1.469597
10.1039/C9CS00786E
10.1073/pnas.1602375113
10.1063/1.478522
10.1038/s41557-020-0527-z
10.1021/acs.jctc.8b00705
10.1016/j.jphotochemrev.2013.10.004
10.1088/2516-1075/ab1edb
10.1063/1.5097385
10.1063/1.441588
10.1063/1.3682557
10.1021/acs.jpcb.8b11905
10.1021/ct700127w
10.1038/s41524-018-0112-9
10.1088/1367-2630/ab81b5
10.1039/C6CP00415F
10.31635/ccschem.020.202000195
10.1039/D0CP01893G
10.1103/PhysRevB.87.184115
10.1103/PhysRevLett.104.136403
10.1073/pnas.1816132116
10.1063/1.3124802
10.1021/acs.jpclett.8b03026
10.1021/acs.jctc.8b00873
10.1007/978-3-030-40245-7
10.1063/1.4986489
10.1039/C7CP05036D
10.1007/BFb0104276
10.1063/1.2746846
10.1021/acs.jpclett.5b00831
10.1137/1.9781611970128
10.1038/ncomms13890
10.1016/j.cpc.2018.03.016
10.1063/1.5126701
10.1016/j.neunet.2014.09.003
10.1002/anie.200802019
10.1103/PhysRevLett.102.073005
10.1016/j.cpc.2016.05.010
10.1021/ja00540a008
10.1021/ja902302h
10.1103/PhysRev.159.98
10.1007/BF00549096
10.1051/sfn/201112009
10.1103/PhysRevLett.120.036002
10.1146/annurev-physchem-040412-110122
10.1007/978-3-030-40245-7_14
10.1063/1.4951697
10.1063/1.5020710
10.1039/C5RA16956A
10.1021/acs.jpclett.0c00527
10.1007/BFb0020283
10.1016/j.cpc.2019.02.007
10.1021/acs.chemrev.0c00665
10.1063/5.0023005
10.1038/s41570-017-0109
10.1021/cr040426m
10.1146/annurev-physchem-042018-052331
10.1063/1.5024317
10.1016/S0893-6080(98)00032-X
10.1038/s41570-020-0189-9
10.1063/1.5053562
10.1016/0263-7855(95)00087-9
10.1063/1.5017898
10.1021/acs.jpcb.7b06985
10.1021/ci300415d
10.1098/rspa.1924.0082
10.1103/PhysRevLett.121.265701
10.1021/jacs.8b12471
10.1039/D0CP00668H
10.1103/PhysRevLett.98.146401
10.1126/sciadv.1701816
10.1103/PhysRev.28.1049
10.1021/acs.jpcb.9b05578
10.1021/acs.jcim.7b00090
10.1016/S0009-2614(97)00448-X
10.1039/C7SC02267K
10.1021/acs.jpclett.9b02037
10.1021/acs.jpclett.8b00902
10.1063/1.5100131
10.1002/pssb.200844219
10.1016/j.neuroimage.2010.11.004
10.1038/s41467-017-00839-3
10.1021/ct400781b
10.2172/10176421
10.1073/pnas.0408036102
10.1080/10408437308244871
10.1088/1367-2630/ab4509
10.1007/978-3-642-61659-4_30
10.1073/pnas.1707745115
10.1007/978-3-030-40245-7_6
10.1038/s41467-019-12875-2
10.1063/1.4993424
10.1038/s41467-017-02388-1
10.1002/andp.19273892002
10.1088/2632-2153/abba6f
10.1098/rspa.1929.0094
10.1115/1.1752925
10.1063/1.5078687
10.1063/1.5011181
10.1016/j.sbi.2019.12.005
10.1002/qua.21278
10.1021/acs.jctc.0c00580
10.1021/acs.jctc.9b00181
10.1038/267585a0
10.1063/1.2336223
10.1063/1.472596
10.1063/1.464814
10.1007/978-3-662-09438-9
10.1214/009053607000000677
10.1101/2020.06.27.175430
10.1038/s41467-020-20212-1
10.1103/PhysRev.56.340
10.1063/5.0008223
10.1021/acs.jpcc.6b10908
10.1088/1361-648X/aa680e
10.1063/1.456153
10.1007/978-3-642-35289-8
10.1103/PhysRev.46.618
10.1007/BF00994018
10.1038/s41557-020-0544-y
10.1021/ct400195d
10.1063/1.3382344
10.1063/1.4964627
10.1103/PhysRevB.96.014112
10.1021/acs.jctc.5b00743
10.1162/neco.1996.8.7.1341
10.1142/S0218339094000179
10.1088/1367-2630/15/9/095003
10.1007/978-3-030-40245-7_15
10.1021/acs.jctc.8b00908
10.1016/j.cpc.2019.106949
10.1063/1.3553717
10.1038/nsb0902-646
10.1109/JRPROC.1949.232969
10.1016/j.cpc.2009.06.022
10.1007/978-1-4612-4380-9_35
10.1002/qua.24927
10.1063/1.5024797
10.1038/s41586-019-1923-7
10.1063/1.5023802
10.1109/72.788641
10.1039/C5SC03443D
10.1002/wcms.31
10.1103/PhysRevLett.108.058301
10.1063/1.5003074
10.1109/TNN.2008.2005605
10.1039/C9SC01928F
10.1039/C6SC05720A
10.1103/PhysRevLett.114.096405
10.1007/BFb0020217
10.1007/978-3-030-28954-6_17
10.1016/B978-044451719-7/50084-6
10.1021/jp004368u
10.1021/ct900292r
10.1063/5.0012911
10.1063/1.5020067
10.1103/PhysRevLett.56.2656
10.1038/s41467-019-08987-4
10.1093/oso/9780198538493.001.0001
10.1016/S0009-2614(98)00207-3
10.1145/130385.130401
10.1021/acs.jctc.8b00187
10.1007/3-540-44581-1_27
10.1007/s10822-016-9938-8
10.1007/BF02551274
10.1002/qua.24917
10.1103/PhysRevLett.108.253002
10.1063/1.1290491
10.1038/s41467-018-06169-2
10.1103/PhysRevLett.93.175503
10.1007/BF02478259
10.1063/1.5018409
10.1103/PhysRevX.8.041048
10.1103/PhysRevB.95.094203
ContentType Journal Article
Copyright 2021 The Authors. Published by American Chemical Society
Copyright American Chemical Society Aug 25, 2021
2021 The Authors. Published by American Chemical Society 2021 The Authors
Copyright_xml – notice: 2021 The Authors. Published by American Chemical Society
– notice: Copyright American Chemical Society Aug 25, 2021
– notice: 2021 The Authors. Published by American Chemical Society 2021 The Authors
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
7S9
L.6
5PM
DOI 10.1021/acs.chemrev.0c01111
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database

PubMed
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-6890
EndPage 10186
ExternalDocumentID PMC8391964
33705118
10_1021_acs_chemrev_0c01111
a574410784
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
  grantid: 031L0207D
– fundername: ;
  grantid: EXC 2046/1
– fundername: ;
  grantid: 019-0-00079
– fundername: ;
  grantid: 01GQ0850
– fundername: ;
  grantid: 01IS14013A-E
– fundername: ;
  grantid: NA
– fundername: ;
  grantid: 01IS18037A
– fundername: ;
  grantid: Math+
– fundername: ;
  grantid: 2017-0-00451
– fundername: ;
  grantid: 01IS18025A
GroupedDBID -
.K2
02
1AW
29B
4.4
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABFRP
ABMVS
ABPPZ
ABPTK
ABUCX
ACGFS
ACGOD
ACIWK
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
D0L
DU5
DZ
EBS
ED
ED~
F5P
GGK
GNL
IH9
IHE
JG
JG~
K2
LG6
P2P
PQEST
PQQKQ
ROL
RWL
TAE
TN5
UI2
UKR
UNM
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
---
-DZ
-~X
.DC
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
CITATION
CUPRZ
XSW
~02
NPM
7SR
8BQ
8FD
JG9
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-a506t-6ea5576b12ddfcbc823ca59897499a9bb4fce24219ab921b2754edc78321333f3
IEDL.DBID ACS
ISSN 0009-2665
1520-6890
IngestDate Thu Aug 21 17:59:47 EDT 2025
Thu Jul 10 17:56:06 EDT 2025
Fri Jul 11 12:05:19 EDT 2025
Mon Jun 30 10:20:45 EDT 2025
Thu Apr 03 07:05:59 EDT 2025
Thu Apr 24 22:51:45 EDT 2025
Tue Jul 01 03:16:20 EDT 2025
Fri Aug 27 15:31:21 EDT 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a506t-6ea5576b12ddfcbc823ca59897499a9bb4fce24219ab921b2754edc78321333f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7503-406X
0000-0002-3861-7685
0000-0001-6091-3408
0000-0002-3188-7017
0000-0001-8342-0964
0000-0002-1012-4854
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8391964
PMID 33705118
PQID 2568705459
PQPubID 45407
PageCount 45
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8391964
proquest_miscellaneous_2636809491
proquest_miscellaneous_2501264695
proquest_journals_2568705459
pubmed_primary_33705118
crossref_citationtrail_10_1021_acs_chemrev_0c01111
crossref_primary_10_1021_acs_chemrev_0c01111
acs_journals_10_1021_acs_chemrev_0c01111
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
GGK
W1F
ABFRP
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-25
PublicationDateYYYYMMDD 2021-08-25
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-25
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Chemical reviews
PublicationTitleAlternate Chem. Rev
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Zhang L. (ref113/cit113) 2018
ref99/cit99
ref81/cit81
Phillips D. (ref3/cit3) 1981
Köhler J. (ref34/cit34) 2020; 119
Gebauer N. (ref64/cit64) 2019
Duvenaud D. K. (ref196/cit196) 2015
Zubatyuk T. (ref315/cit315) 2019
ref16/cit16
Hoffmann M. (ref65/cit65) 2019
Rudi A. (ref139/cit139) 2017
ref185/cit185
ref23/cit23
ref115/cit115
ref259/cit259
ref187/cit187
ref181/cit181
ref327/cit327
ref111/cit111
ref255/cit255
ref183/cit183
ref257/cit257
ref117/cit117
ref48/cit48
ref74/cit74
ref189/cit189
ref119/cit119
Jia W. (ref216/cit216) 2020
ref10/cit10
ref35/cit35
ref93/cit93
ref251/cit251
ref253/cit253
ref42/cit42
ref321/cit321
ref120/cit120
ref178/cit178
Zeiler M. D. (ref235/cit235) 2012
ref61/cit61
ref176/cit176
ref54/cit54
Hellman H. (ref163/cit163) 1937; 0
Bergstra J. (ref243/cit243) 2012; 13
Snoek J. (ref158/cit158) 2012; 25
ref310/cit310
ref318/cit318
ref11/cit11
ref29/cit29
ref314/cit314
Cutajar K. (ref142/cit142) 2016
Lu Z. (ref156/cit156) 2017; 30
ref244/cit244
ref271/cit271
ref5/cit5
Goodfellow I. (ref323/cit323) 2016
ref43/cit43
ref80/cit80
ref28/cit28
ref279/cit279
ref275/cit275
ref233/cit233
ref307/cit307
ref55/cit55
ref144/cit144
ref303/cit303
ref218/cit218
Kingma D. P. (ref237/cit237) 2015
Gebauer N. W. (ref63/cit63) 2018
ref167/cit167
Telgarsky M. (ref155/cit155) 2016
Nesterov Y. E. (ref232/cit232) 1983
ref66/cit66
ref264/cit264
Murphy K. P. (ref128/cit128) 2012
ref22/cit22
Sugiyama M. (ref230/cit230) 2007; 8
ref260/cit260
ref87/cit87
Vapnik V. (ref325/cit325) 1995
ref106/cit106
ref190/cit190
ref214/cit214
Schütt K. T. (ref27/cit27) 2020
ref194/cit194
ref210/cit210
ref268/cit268
Ripley B. D. (ref148/cit148) 2007
ref297/cit297
ref227/cit227
ref222/cit222
ref150/cit150
ref294/cit294
ref295/cit295
ref56/cit56
Montavon G. (ref169/cit169) 2012
ref229/cit229
Hastie T. (ref159/cit159) 2009
ref8/cit8
ref59/cit59
ref85/cit85
Schölkopf B. (ref126/cit126) 2002
ref37/cit37
ref221/cit221
ref292/cit292
ref60/cit60
ref17/cit17
ref219/cit219
ref82/cit82
ref147/cit147
ref306/cit306
Anderson B. (ref202/cit202) 2019
Boltzmann L. (ref256/cit256) 1898
ref145/cit145
ref304/cit304
ref238/cit238
ref21/cit21
ref166/cit166
Chmiela S. (ref240/cit240) 2019
ref164/cit164
Cohen N. (ref154/cit154) 2016
Theodoridis S. (ref98/cit98) 2020
Gastegger M. (ref317/cit317) 2020
ref213/cit213
ref284/cit284
ref286/cit286
Srivastava N. (ref223/cit223) 2014; 15
Barron J. T. (ref239/cit239) 2019
ref78/cit78
ref211/cit211
ref312/cit312
ref36/cit36
ref83/cit83
ref79/cit79
ref246/cit246
ref270/cit270
ref14/cit14
ref57/cit57
ref278/cit278
ref40/cit40
ref273/cit273
ref131/cit131
ref205/cit205
ref161/cit161
ref301/cit301
ref289/cit289
Moore E. H. (ref140/cit140) 1920; 26
ref15/cit15
ref180/cit180
ref309/cit309
ref62/cit62
ref41/cit41
Kriege N. M. (ref173/cit173) 2016
ref58/cit58
Lee J. (ref101/cit101) 2017
Williams C. K. (ref135/cit135) 2001
ref262/cit262
ref177/cit177
Feynman R. P. (ref1/cit1) 1963; 1
ref84/cit84
Vinyals O. (ref208/cit208) 2015
ref123/cit123
ref281/cit281
ref7/cit7
ref45/cit45
Theodoridis S. (ref97/cit97) 2008
Noether E. (ref86/cit86) 1918; 1918
ref52/cit52
ref184/cit184
Ruder S. (ref236/cit236) 2016
ref114/cit114
ref258/cit258
ref186/cit186
ref116/cit116
Pachauri D. (ref175/cit175) 2013
ref110/cit110
ref254/cit254
ref182/cit182
ref2/cit2
ref112/cit112
ref77/cit77
ref71/cit71
ref188/cit188
ref20/cit20
ref118/cit118
Böselt L. (ref319/cit319) 2020
ref89/cit89
ref19/cit19
Raykar V. C. (ref134/cit134) 2007
Bishop C. M. (ref94/cit94) 1995
ref96/cit96
ref107/cit107
ref191/cit191
ref265/cit265
ref13/cit13
ref193/cit193
ref105/cit105
ref261/cit261
ref263/cit263
Nilsson N. J. (ref320/cit320) 1982
ref197/cit197
ref38/cit38
ref199/cit199
ref90/cit90
ref267/cit267
ref195/cit195
ref269/cit269
ref311/cit311
Kondor R. I. (ref207/cit207) 2002
ref6/cit6
Matthews A. G. d. G. (ref102/cit102) 2018
ref18/cit18
Braun M. L. (ref103/cit103) 2008; 9
Nair V. (ref204/cit204) 2010
ref171/cit171
ref245/cit245
ref241/cit241
ref76/cit76
ref32/cit32
ref39/cit39
ref272/cit272
ref168/cit168
ref206/cit206
ref132/cit132
ref276/cit276
ref91/cit91
Simm G. N. (ref67/cit67) 2020
Rahimi A. (ref138/cit138) 2008
ref287/cit287
ref252/cit252
ref12/cit12
ref326/cit326
ref322/cit322
ref179/cit179
ref33/cit33
ref249/cit249
Berlinet A. (ref125/cit125) 2011
Tikhonov A. N. (ref143/cit143) 1977; 14
ref283/cit283
Abadi M. (ref250/cit250) 2016
ref129/cit129
ref44/cit44
ref70/cit70
ref9/cit9
ref152/cit152
ref225/cit225
ref296/cit296
ref226/cit226
ref298/cit298
ref228/cit228
ref299/cit299
ref293/cit293
ref151/cit151
ref92/cit92
Quiñonero-Candela J. (ref136/cit136) 2005; 6
Schütt K. (ref109/cit109) 2017
Eldan R. (ref153/cit153) 2016
ref31/cit31
ref290/cit290
ref220/cit220
ref291/cit291
Micchelli C. A. (ref130/cit130) 2006; 7
ref88/cit88
Schütt K. T. (ref200/cit200) 2019
ref160/cit160
Vert J. (ref174/cit174) 2008
ref302/cit302
ref217/cit217
ref288/cit288
ref53/cit53
ref162/cit162
ref308/cit308
Golub G. H. (ref133/cit133) 2012; 3
Huo H. (ref170/cit170) 2017
ref49/cit49
ref75/cit75
ref24/cit24
ref141/cit141
Gal Y. (ref224/cit224) 2016
ref300/cit300
ref215/cit215
ref280/cit280
ref50/cit50
Wahba G. (ref122/cit122) 1990; 59
ref282/cit282
Paszke A. (ref248/cit248) 2019
ref313/cit313
ref209/cit209
ref100/cit100
Montavon G. (ref157/cit157) 2012; 2
ref25/cit25
ref247/cit247
ref72/cit72
ref242/cit242
ref316/cit316
ref201/cit201
Haykin S. S. (ref149/cit149) 2009; 3
ref51/cit51
Musil F. (ref121/cit121) 2021
ref277/cit277
ref68/cit68
ref274/cit274
ref146/cit146
ref305/cit305
ref26/cit26
ref73/cit73
ref231/cit231
ref69/cit69
ref165/cit165
ref324/cit324
Gilmer J. (ref198/cit198) 2017
Montavon G. (ref104/cit104) 2011
ref95/cit95
ref108/cit108
Argyriou A. (ref124/cit124) 2009; 10
Snelson E. (ref137/cit137) 2006
ref192/cit192
Weiler M. (ref203/cit203) 2018
ref266/cit266
Wu H. (ref46/cit46) 2018
ref4/cit4
ref30/cit30
ref212/cit212
ref47/cit47
ref127/cit127
ref285/cit285
Duchi J. (ref234/cit234) 2011
Eickenberg M. (ref172/cit172) 2017
References_xml – ident: ref33/cit33
  doi: 10.1126/science.aaw1147
– start-page: 1177
  year: 2008
  ident: ref138/cit138
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: ref309/cit309
  doi: 10.1021/ja00457a004
– ident: ref92/cit92
  doi: 10.1162/089976698300017467
– volume: 119
  start-page: 5361
  year: 2020
  ident: ref34/cit34
  publication-title: Proceedings of the 37th International Conference on Machine Learning
– volume-title: Vorlesungen über Gastheorie: 2. Teil
  year: 1898
  ident: ref256/cit256
– ident: ref5/cit5
  doi: 10.1145/1364782.1364802
– ident: ref141/cit141
  doi: 10.1017/S0305004100030401
– ident: ref226/cit226
  doi: 10.1007/978-3-030-40245-7_12
– ident: ref285/cit285
  doi: 10.1063/1.5082885
– volume: 8
  start-page: 985
  year: 2007
  ident: ref230/cit230
  publication-title: J. Mach. Learn. Res.
– volume: 3
  volume-title: Matrix Computations
  year: 2012
  ident: ref133/cit133
– ident: ref105/cit105
  doi: 10.1126/sciadv.1603015
– start-page: 1050
  year: 2016
  ident: ref224/cit224
  publication-title: International Conference on Machine Learning.
– ident: ref273/cit273
  doi: 10.1021/acs.jpcc.7b12064
– ident: ref18/cit18
  doi: 10.1021/ct4003702
– start-page: 1257
  year: 2006
  ident: ref137/cit137
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: ref13/cit13
  doi: 10.1088/2632-2153/ab5922
– ident: ref6/cit6
  doi: 10.1016/j.str.2005.11.014
– ident: ref258/cit258
  doi: 10.1002/anie.201703114
– ident: ref47/cit47
  doi: 10.1063/1.5092521
– ident: ref287/cit287
  doi: 10.1039/C4CP05192K
– ident: ref274/cit274
  doi: 10.1063/1.5019779
– ident: ref152/cit152
  doi: 10.1016/0893-6080(91)90009-T
– start-page: 1
  year: 2015
  ident: ref237/cit237
  publication-title: International Conference on Learning Representations.
– ident: ref38/cit38
  doi: 10.1007/978-3-319-21233-3_6
– ident: ref120/cit120
  doi: 10.1103/PhysRevLett.117.135502
– ident: ref40/cit40
  doi: 10.1063/1.5022469
– ident: ref77/cit77
  doi: 10.1155/2015/183918
– start-page: 2529
  year: 2016
  ident: ref142/cit142
  publication-title: International Conference on Machine Learning.
– ident: ref305/cit305
  doi: 10.1103/PhysRevB.92.045131
– ident: ref51/cit51
  doi: 10.1021/acscentsci.8b00913
– ident: ref233/cit233
  doi: 10.1016/S0893-6080(98)00116-6
– ident: ref48/cit48
  doi: 10.1063/1.5100267
– year: 2016
  ident: ref236/cit236
  publication-title: arXiv preprint arXiv:1609.04747
– ident: ref35/cit35
  doi: 10.1021/acs.jpclett.9b02173
– ident: ref150/cit150
  doi: 10.1007/978-3-642-35289-8_3
– ident: ref145/cit145
  doi: 10.1016/0893-6080(88)90020-2
– ident: ref282/cit282
  doi: 10.1016/S0167-7322(02)00094-6
– volume-title: Deep Learning
  year: 2016
  ident: ref323/cit323
– volume-title: Machine Learning: A Bayesian And Optimization Perspective
  year: 2020
  ident: ref98/cit98
– ident: ref81/cit81
  doi: 10.1063/1.465188
– ident: ref88/cit88
  doi: 10.1080/00048402.2014.992447
– ident: ref45/cit45
  doi: 10.1063/1.5011399
– ident: ref62/cit62
  doi: 10.1126/science.aag2302
– ident: ref275/cit275
  doi: 10.1021/acs.jpcb.8b06433
– ident: ref7/cit7
  doi: 10.1038/nature12162
– start-page: 315
  year: 2002
  ident: ref207/cit207
  publication-title: Proceedings of the 19th International Conference on Machine Learning.
– ident: ref247/cit247
  doi: 10.1016/j.cpc.2018.09.020
– ident: ref259/cit259
  doi: 10.1002/adma.201902765
– ident: ref57/cit57
  doi: 10.1021/acs.jpclett.0c01307
– ident: ref272/cit272
  doi: 10.1063/1.5114981
– ident: ref281/cit281
  doi: 10.1021/acs.chemrev.6b00446
– year: 2019
  ident: ref65/cit65
  publication-title: arXiv preprint arXiv:1910.03131
– ident: ref162/cit162
  doi: 10.1093/imaiai/iaw009
– ident: ref26/cit26
  doi: 10.1021/acs.jpcb.6b07814
– volume: 6
  start-page: 1939
  year: 2005
  ident: ref136/cit136
  publication-title: J. Mach. Learn. Res.
– ident: ref306/cit306
  doi: 10.1038/s41467-020-20427-2
– volume-title: The Nature Of Statistical Learning Theory
  year: 1995
  ident: ref325/cit325
  doi: 10.1007/978-1-4757-2440-0
– ident: ref90/cit90
  doi: 10.1109/72.914517
– ident: ref80/cit80
  doi: 10.2174/157340911795677602
– ident: ref127/cit127
  doi: 10.1007/978-3-540-28650-9_4
– ident: ref302/cit302
  doi: 10.1021/acs.chemrev.0c00749
– ident: ref24/cit24
  doi: 10.1021/ct400953f
– ident: ref178/cit178
  doi: 10.1109/34.6778
– ident: ref171/cit171
  doi: 10.1137/16M1075454
– ident: ref321/cit321
  doi: 10.1038/nature14539
– ident: ref89/cit89
  doi: 10.1162/neco.1992.4.1.1
– start-page: 14537
  year: 2019
  ident: ref202/cit202
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: ref210/cit210
  doi: 10.5281/zenodo.2605341
– ident: ref205/cit205
  doi: 10.1002/qua.24890
– start-page: 682
  year: 2001
  ident: ref135/cit135
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: ref211/cit211
  doi: 10.1007/978-1-62703-017-5_8
– ident: ref249/cit249
  doi: 10.1038/sdata.2014.22
– ident: ref244/cit244
  doi: 10.1007/3-540-49430-8_3
– ident: ref16/cit16
  doi: 10.1016/S0959-440X(00)00196-2
– ident: ref39/cit39
  doi: 10.1093/bioinformatics/btx431
– volume-title: Pattern Recognition and Neural Networks
  year: 2007
  ident: ref148/cit148
– year: 2021
  ident: ref121/cit121
  publication-title: arXiv preprint arXiv:2101.04673
– ident: ref167/cit167
  doi: 10.1103/PhysRevLett.77.3865
– ident: ref15/cit15
  doi: 10.1063/1.4909549
– ident: ref118/cit118
  doi: 10.1103/PhysRevB.89.205118
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref223/cit223
  publication-title: J. Mach. Learn. Res.
– volume-title: The Elements Of Statistical Learning: Data Mining, Inference, and Prediction
  year: 2009
  ident: ref159/cit159
  doi: 10.1007/978-0-387-84858-7
– ident: ref60/cit60
  doi: 10.1038/s41467-020-19093-1
– ident: ref220/cit220
  doi: 10.1145/130385.130417
– ident: ref316/cit316
  doi: 10.1039/C9SC06017K
– start-page: 4436
  year: 2018
  ident: ref113/cit113
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: ref300/cit300
  doi: 10.1063/1.5006596
– ident: ref312/cit312
  doi: 10.1021/jp401225b
– ident: ref195/cit195
  doi: 10.1039/C7SC04934J
– ident: ref215/cit215
  doi: 10.1021/cr200137a
– start-page: 12
  year: 2011
  ident: ref234/cit234
  publication-title: J. Mach. Learn. Res.
– ident: ref261/cit261
  doi: 10.1039/C9SC05116C
– ident: ref53/cit53
  doi: 10.1063/5.0007276
– ident: ref206/cit206
  doi: 10.1063/1.5019667
– ident: ref112/cit112
  doi: 10.1103/PhysRevLett.120.143001
– ident: ref277/cit277
  doi: 10.1039/C9SC01742A
– ident: ref183/cit183
  doi: 10.1063/1.469597
– year: 2018
  ident: ref102/cit102
  publication-title: arXiv preprint arXiv:1804.11271
– volume: 9
  start-page: 1875
  year: 2008
  ident: ref103/cit103
  publication-title: J. Mach. Learn. Res.
– ident: ref68/cit68
  doi: 10.1039/C9CS00786E
– volume-title: Machine Learning: A Probabilistic Perspective
  year: 2012
  ident: ref128/cit128
– ident: ref260/cit260
  doi: 10.1073/pnas.1602375113
– year: 2020
  ident: ref216/cit216
  publication-title: arXiv preprint arXiv:2005.00223
– ident: ref166/cit166
  doi: 10.1063/1.478522
– volume-title: Towards Exact Molecular Dynamics Simulations With Invariant Machine-learned Models
  year: 2019
  ident: ref240/cit240
– ident: ref307/cit307
  doi: 10.1038/s41557-020-0527-z
– ident: ref290/cit290
  doi: 10.1021/acs.jctc.8b00705
– ident: ref74/cit74
  doi: 10.1016/j.jphotochemrev.2013.10.004
– ident: ref213/cit213
  doi: 10.1088/2516-1075/ab1edb
– ident: ref36/cit36
  doi: 10.1063/1.5097385
– ident: ref82/cit82
  doi: 10.1063/1.441588
– ident: ref221/cit221
  doi: 10.1063/1.3682557
– ident: ref318/cit318
  doi: 10.1021/acs.jpcb.8b11905
– ident: ref254/cit254
– ident: ref17/cit17
  doi: 10.1021/ct700127w
– ident: ref299/cit299
  doi: 10.1038/s41524-018-0112-9
– ident: ref73/cit73
  doi: 10.1088/1367-2630/ab81b5
– ident: ref177/cit177
  doi: 10.1039/C6CP00415F
– ident: ref269/cit269
  doi: 10.31635/ccschem.020.202000195
– ident: ref280/cit280
  doi: 10.1039/D0CP01893G
– ident: ref117/cit117
  doi: 10.1103/PhysRevB.87.184115
– ident: ref179/cit179
  doi: 10.1103/PhysRevLett.104.136403
– ident: ref311/cit311
  doi: 10.1073/pnas.1816132116
– ident: ref190/cit190
  doi: 10.1063/1.3124802
– start-page: 1263
  year: 2017
  ident: ref198/cit198
  publication-title: International Conference on Machine Learning.
– ident: ref110/cit110
– ident: ref276/cit276
  doi: 10.1021/acs.jpclett.8b03026
– ident: ref314/cit314
  doi: 10.1021/acs.jctc.8b00873
– volume-title: Machine Learning Meets Quantum Physics
  year: 2020
  ident: ref27/cit27
  doi: 10.1007/978-3-030-40245-7
– ident: ref313/cit313
  doi: 10.1063/1.4986489
– start-page: 1860
  year: 2013
  ident: ref175/cit175
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: ref268/cit268
  doi: 10.1039/C7CP05036D
– volume: 14
  volume-title: Solutions of Ill-Posed Problems
  year: 1977
  ident: ref143/cit143
– ident: ref147/cit147
  doi: 10.1007/BFb0104276
– ident: ref189/cit189
  doi: 10.1063/1.2746846
– ident: ref31/cit31
  doi: 10.1021/acs.jpclett.5b00831
– volume: 59
  volume-title: Spline Models For Observational Data
  year: 1990
  ident: ref122/cit122
  doi: 10.1137/1.9781611970128
– ident: ref160/cit160
  doi: 10.1038/ncomms13890
– ident: ref252/cit252
  doi: 10.1016/j.cpc.2018.03.016
– ident: ref107/cit107
  doi: 10.1063/1.5126701
– ident: ref322/cit322
  doi: 10.1016/j.neunet.2014.09.003
– ident: ref25/cit25
  doi: 10.1002/anie.200802019
– ident: ref168/cit168
  doi: 10.1103/PhysRevLett.102.073005
– ident: ref191/cit191
  doi: 10.1016/j.cpc.2016.05.010
– ident: ref22/cit22
  doi: 10.1021/ja00540a008
– volume-title: Pattern Recognition
  year: 2008
  ident: ref97/cit97
– start-page: 7566
  year: 2019
  ident: ref64/cit64
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: ref303/cit303
  doi: 10.1021/ja902302h
– ident: ref85/cit85
  doi: 10.1103/PhysRev.159.98
– start-page: 265
  year: 2016
  ident: ref250/cit250
  publication-title: 12th USENIX symposium on operating systems design and implementation (OSDI 16)
– year: 2007
  ident: ref134/cit134
  publication-title: Learning Workshop
– start-page: 1517
  year: 2016
  ident: ref155/cit155
  publication-title: Conference On Learning Theory.
– ident: ref310/cit310
  doi: 10.1007/BF00549096
– year: 2012
  ident: ref235/cit235
  publication-title: arXiv preprint arXiv:1212.5701
– ident: ref12/cit12
  doi: 10.1051/sfn/201112009
– ident: ref181/cit181
  doi: 10.1103/PhysRevLett.120.036002
– ident: ref83/cit83
  doi: 10.1146/annurev-physchem-040412-110122
– year: 2010
  ident: ref204/cit204
  publication-title: Int. Conf. Mach. Learn.
– ident: ref327/cit327
  doi: 10.1007/978-3-030-40245-7_14
– year: 2019
  ident: ref315/cit315
  publication-title: arXiv preprint arXiv:1909.12963
– start-page: 3975
  year: 2018
  ident: ref46/cit46
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: ref267/cit267
  doi: 10.1063/1.4951697
– ident: ref106/cit106
  doi: 10.1063/1.5020710
– ident: ref296/cit296
  doi: 10.1039/C5RA16956A
– year: 2015
  ident: ref208/cit208
  publication-title: arXiv preprint arXiv:1511.06391
– ident: ref278/cit278
  doi: 10.1021/acs.jpclett.0c00527
– ident: ref95/cit95
  doi: 10.1007/BFb0020283
– ident: ref165/cit165
  doi: 10.1016/j.cpc.2019.02.007
– ident: ref286/cit286
  doi: 10.1021/acs.chemrev.0c00665
– start-page: 12
  year: 2011
  ident: ref104/cit104
  publication-title: J. Mach. Learn. Res.
– ident: ref214/cit214
  doi: 10.1063/5.0023005
– ident: ref298/cit298
  doi: 10.1038/s41570-017-0109
– year: 2018
  ident: ref63/cit63
  publication-title: NeurIPS 2018 Workshop on Machine Learning for Molecules and Materials
– volume: 25
  start-page: 2951
  year: 2012
  ident: ref158/cit158
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: ref76/cit76
  doi: 10.1021/cr040426m
– ident: ref54/cit54
  doi: 10.1146/annurev-physchem-042018-052331
– ident: ref297/cit297
  doi: 10.1063/1.5024317
– ident: ref129/cit129
  doi: 10.1016/S0893-6080(98)00032-X
– ident: ref32/cit32
  doi: 10.1038/s41570-020-0189-9
– ident: ref72/cit72
  doi: 10.1063/1.5053562
– ident: ref185/cit185
  doi: 10.1016/0263-7855(95)00087-9
– ident: ref193/cit193
  doi: 10.1063/1.5017898
– ident: ref288/cit288
  doi: 10.1021/acs.jpcb.7b06985
– ident: ref304/cit304
  doi: 10.1021/ci300415d
– volume-title: Learning With Kernels: Support Vector Machines, Regularization, Optimization, And Beyond
  year: 2002
  ident: ref126/cit126
– ident: ref14/cit14
  doi: 10.1098/rspa.1924.0082
– start-page: 1623
  year: 2016
  ident: ref173/cit173
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: ref266/cit266
  doi: 10.1103/PhysRevLett.121.265701
– ident: ref289/cit289
  doi: 10.1021/jacs.8b12471
– ident: ref270/cit270
  doi: 10.1039/D0CP00668H
– ident: ref114/cit114
  doi: 10.1103/PhysRevLett.98.146401
– ident: ref180/cit180
  doi: 10.1126/sciadv.1701816
– ident: ref78/cit78
  doi: 10.1103/PhysRev.28.1049
– volume: 3
  volume-title: Neural Networks and Learning Machines
  year: 2009
  ident: ref149/cit149
– start-page: 2224
  year: 2015
  ident: ref196/cit196
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: ref49/cit49
  doi: 10.1021/acs.jpcb.9b05578
– ident: ref255/cit255
  doi: 10.1021/acs.jcim.7b00090
– ident: ref186/cit186
  doi: 10.1016/S0009-2614(97)00448-X
– ident: ref71/cit71
  doi: 10.1039/C7SC02267K
– ident: ref111/cit111
  doi: 10.1021/acs.jpclett.9b02037
– ident: ref265/cit265
  doi: 10.1021/acs.jpclett.8b00902
– ident: ref52/cit52
  doi: 10.1063/1.5100131
– ident: ref263/cit263
  doi: 10.1002/pssb.200844219
– volume: 0
  volume-title: Einführung In Die Quantenchemie
  year: 1937
  ident: ref163/cit163
– ident: ref231/cit231
  doi: 10.1016/j.neuroimage.2010.11.004
– ident: ref59/cit59
  doi: 10.1038/s41467-017-00839-3
– ident: ref19/cit19
  doi: 10.1021/ct400781b
– volume: 30
  start-page: 6231
  year: 2017
  ident: ref156/cit156
  publication-title: Adv. Neural. Inf. Process. Syst.
– start-page: 10381
  year: 2018
  ident: ref203/cit203
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: ref251/cit251
  doi: 10.2172/10176421
– start-page: 907
  year: 2016
  ident: ref153/cit153
  publication-title: Conference on Learning Theory.
– ident: ref217/cit217
– ident: ref308/cit308
  doi: 10.1038/s41557-020-0527-z
– year: 2020
  ident: ref319/cit319
  publication-title: arXiv preprint arXiv:2010.11610
– ident: ref212/cit212
  doi: 10.1073/pnas.0408036102
– ident: ref292/cit292
  doi: 10.1080/10408437308244871
– ident: ref279/cit279
  doi: 10.1088/1367-2630/ab4509
– ident: ref291/cit291
  doi: 10.1007/978-3-642-61659-4_30
– ident: ref295/cit295
  doi: 10.1073/pnas.1707745115
– ident: ref182/cit182
  doi: 10.1007/978-3-030-40245-7_6
– ident: ref55/cit55
  doi: 10.1038/s41467-019-12875-2
– volume-title: Biomolecular Stereodynamics
  year: 1981
  ident: ref3/cit3
– ident: ref21/cit21
  doi: 10.1063/1.4993424
– ident: ref44/cit44
  doi: 10.1038/s41467-017-02388-1
– ident: ref79/cit79
  doi: 10.1002/andp.19273892002
– ident: ref241/cit241
  doi: 10.1088/2632-2153/abba6f
– start-page: 8026
  year: 2019
  ident: ref248/cit248
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: ref10/cit10
  doi: 10.1098/rspa.1929.0094
– ident: ref294/cit294
  doi: 10.1115/1.1752925
– ident: ref70/cit70
  doi: 10.1063/1.5078687
– year: 2020
  ident: ref67/cit67
  publication-title: arXiv preprint arXiv:2002.07717
– ident: ref115/cit115
  doi: 10.1063/1.5011181
– ident: ref37/cit37
  doi: 10.1016/j.sbi.2019.12.005
– ident: ref20/cit20
  doi: 10.1002/qua.21278
– ident: ref242/cit242
  doi: 10.1021/acs.jctc.0c00580
– ident: ref108/cit108
  doi: 10.1021/acs.jctc.9b00181
– ident: ref2/cit2
  doi: 10.1038/267585a0
– ident: ref188/cit188
  doi: 10.1063/1.2336223
– start-page: 4331
  year: 2019
  ident: ref239/cit239
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
– ident: ref184/cit184
  doi: 10.1063/1.472596
– ident: ref301/cit301
  doi: 10.1063/1.464814
– volume: 1918
  start-page: 37
  year: 1918
  ident: ref86/cit86
  publication-title: Gött. Nachr., mathematisch-physikalische Klasse
– volume-title: Principles of Artificial Intelligence
  year: 1982
  ident: ref320/cit320
  doi: 10.1007/978-3-662-09438-9
– start-page: 3888
  year: 2017
  ident: ref139/cit139
  publication-title: Adv. Neural. Inf. Process. Syst.
– year: 2020
  ident: ref317/cit317
  publication-title: arXiv preprint arXiv:2010.14942
– ident: ref132/cit132
  doi: 10.1214/009053607000000677
– ident: ref8/cit8
  doi: 10.1101/2020.06.27.175430
– ident: ref161/cit161
  doi: 10.1038/s41467-020-20212-1
– ident: ref164/cit164
  doi: 10.1103/PhysRev.56.340
– ident: ref271/cit271
  doi: 10.1063/5.0008223
– ident: ref257/cit257
  doi: 10.1021/acs.jpcc.6b10908
– ident: ref246/cit246
  doi: 10.1088/1361-648X/aa680e
– ident: ref284/cit284
  doi: 10.1063/1.456153
– volume: 2
  volume-title: Neural Networks: Tricks Of The Trade
  year: 2012
  ident: ref157/cit157
  doi: 10.1007/978-3-642-35289-8
– year: 2017
  ident: ref170/cit170
  publication-title: arXiv preprint arXiv:1704.06439
– ident: ref283/cit283
  doi: 10.1103/PhysRev.46.618
– ident: ref324/cit324
  doi: 10.1007/BF00994018
– ident: ref61/cit61
  doi: 10.1038/s41557-020-0544-y
– ident: ref30/cit30
  doi: 10.1021/ct400195d
– ident: ref209/cit209
  doi: 10.1063/1.3382344
– ident: ref131/cit131
  doi: 10.1063/1.4964627
– ident: ref192/cit192
  doi: 10.1103/PhysRevB.96.014112
– ident: ref43/cit43
  doi: 10.1021/acs.jctc.5b00743
– ident: ref100/cit100
  doi: 10.1162/neco.1996.8.7.1341
– ident: ref146/cit146
  doi: 10.1142/S0218339094000179
– ident: ref29/cit29
  doi: 10.1088/1367-2630/15/9/095003
– ident: ref227/cit227
  doi: 10.1007/978-3-030-40245-7_15
– ident: ref245/cit245
  doi: 10.1021/acs.jctc.8b00908
– ident: ref253/cit253
  doi: 10.1016/j.cpc.2019.106949
– ident: ref116/cit116
  doi: 10.1063/1.3553717
– ident: ref9/cit9
  doi: 10.1038/nsb0902-646
– ident: ref87/cit87
  doi: 10.1109/JRPROC.1949.232969
– ident: ref218/cit218
  doi: 10.1016/j.cpc.2009.06.022
– ident: ref238/cit238
  doi: 10.1007/978-1-4612-4380-9_35
– ident: ref176/cit176
  doi: 10.1002/qua.24927
– start-page: 543
  year: 1983
  ident: ref232/cit232
  publication-title: Proc. USSR Acad. Sci.
– ident: ref201/cit201
  doi: 10.1063/1.5024797
– ident: ref42/cit42
  doi: 10.1038/s41586-019-1923-7
– ident: ref222/cit222
  doi: 10.1063/1.5023802
– ident: ref93/cit93
  doi: 10.1109/72.788641
– volume-title: Reproducing Kernel Hilbert Spaces in Probability and Statistics
  year: 2011
  ident: ref125/cit125
– ident: ref84/cit84
  doi: 10.1039/C5SC03443D
– start-page: 991
  year: 2017
  ident: ref109/cit109
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 7
  start-page: 2651
  year: 2006
  ident: ref130/cit130
  publication-title: J. Mach. Learn. Res.
– ident: ref228/cit228
  doi: 10.1002/wcms.31
– ident: ref28/cit28
  doi: 10.1103/PhysRevLett.108.058301
– ident: ref99/cit99
  doi: 10.1063/1.5003074
– ident: ref199/cit199
  doi: 10.1109/TNN.2008.2005605
– ident: ref66/cit66
  doi: 10.1039/C9SC01928F
– ident: ref194/cit194
  doi: 10.1039/C6SC05720A
– ident: ref225/cit225
  doi: 10.1103/PhysRevLett.114.096405
– ident: ref91/cit91
  doi: 10.1007/BFb0020217
– start-page: 698
  year: 2016
  ident: ref154/cit154
  publication-title: Conference On Learning Theory.
– start-page: 311
  volume-title: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning
  year: 2019
  ident: ref200/cit200
  doi: 10.1007/978-3-030-28954-6_17
– ident: ref11/cit11
  doi: 10.1016/B978-044451719-7/50084-6
– ident: ref23/cit23
  doi: 10.1021/jp004368u
– ident: ref4/cit4
  doi: 10.1021/ct900292r
– year: 2017
  ident: ref101/cit101
  publication-title: arXiv preprint arXiv:1711.00165
– ident: ref56/cit56
  doi: 10.1063/5.0012911
– start-page: 6540
  year: 2017
  ident: ref172/cit172
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: ref229/cit229
  doi: 10.1063/1.5020067
– volume: 10
  start-page: 2507
  year: 2009
  ident: ref124/cit124
  publication-title: J. Mach. Learn. Res.
– year: 2008
  ident: ref174/cit174
  publication-title: arXiv preprint arXiv:0801.4061
– ident: ref75/cit75
  doi: 10.1103/PhysRevLett.56.2656
– ident: ref326/cit326
  doi: 10.1038/s41467-019-08987-4
– volume-title: Neural Networks for Pattern Recognition
  year: 1995
  ident: ref94/cit94
  doi: 10.1093/oso/9780198538493.001.0001
– ident: ref187/cit187
  doi: 10.1016/S0009-2614(98)00207-3
– ident: ref96/cit96
  doi: 10.1145/130385.130401
– ident: ref50/cit50
  doi: 10.1021/acs.jctc.8b00187
– ident: ref123/cit123
  doi: 10.1007/3-540-44581-1_27
– ident: ref197/cit197
  doi: 10.1007/s10822-016-9938-8
– ident: ref151/cit151
  doi: 10.1007/BF02551274
– ident: ref119/cit119
  doi: 10.1002/qua.24917
– volume: 26
  start-page: 394
  year: 1920
  ident: ref140/cit140
  publication-title: Bull. Am. Math. Soc.
– ident: ref58/cit58
  doi: 10.1103/PhysRevLett.108.253002
– start-page: 440
  year: 2012
  ident: ref169/cit169
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: ref293/cit293
  doi: 10.1063/1.1290491
– ident: ref69/cit69
  doi: 10.1038/s41467-018-06169-2
– ident: ref219/cit219
  doi: 10.1103/PhysRevLett.93.175503
– ident: ref144/cit144
  doi: 10.1007/BF02478259
– ident: ref41/cit41
  doi: 10.1063/1.5018409
– ident: ref264/cit264
  doi: 10.1103/PhysRevX.8.041048
– ident: ref262/cit262
  doi: 10.1103/PhysRevB.95.094203
– volume: 13
  start-page: 281
  year: 2012
  ident: ref243/cit243
  publication-title: J. Mach. Learn. Res.
– volume: 1
  volume-title: The Feynman Lectures On Physics
  year: 1963
  ident: ref1/cit1
SSID ssj0005527
Score 2.7496092
SecondaryResourceType review_article
Snippet In recent years, the use of machine learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational...
In recent years, the use of machine learning (ML) in computational chemistry has enabled numerous advances previously out of reach due to the computational...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10142
SubjectTerms artificial intelligence
chemical bonding
Chemical bonds
chemical structure
Computational chemistry
Electronic structure
forces
Machine learning
Potential energy
Review
Title Machine Learning Force Fields
URI http://dx.doi.org/10.1021/acs.chemrev.0c01111
https://www.ncbi.nlm.nih.gov/pubmed/33705118
https://www.proquest.com/docview/2568705459
https://www.proquest.com/docview/2501264695
https://www.proquest.com/docview/2636809491
https://pubmed.ncbi.nlm.nih.gov/PMC8391964
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1520-6890
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005527
  issn: 0009-2665
  databaseCode: ACS
  dateStart: 19240401
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI7QOMCF96OwoSJx4EChTZq0OU4TE0KCC0ziViVpAgjo0B4Xfj12145toIljG6eJ3cTxJzs2IWexyTWLEaZSowJ4igLtHA8Sw1ge2tTF5SWxu3tx04tvn_jTzGX1BQ8-ja6UAeG_2A8syRIaLI0OYGeVijRCrNXuPPxEdNQVWtFpIASvkwz9_RE8jsxw_jj6ZWMuhkrOnD3dTXJf3-CZhJy8XY5H-tJ8_U7o-D-2tshGZYX67cmy2SYrttgha526-Nsuad2VQZbWr_KvPvvd_sBYv4sBb8M90uteP3ZugqqSQqB4KEaBsIoDsNARzXNntEkpM4rLFMCElEpqHTtj0TkslZY00jThMfCcYBkjxphj-6RR9At7SPyQOqETrhLATTHNnUpMJEClojIwOnUeOQfWsmonDLPSyU2jDF9W_GYVvx6htewzU2Ukx8IY78s7XUw7fU4Sciwnb9Y_9WdOYOaBmgLbUXrkdNoMEkZniSpsf4w0cHSLWEi-hEYwkQI-ljDMwWSdTOfEGIwA6M0jydwKmhJgXu_5luL1pczvDTYrpkk7-r8kj8k6xVibELQeb5LGaDC2LTCWRvqk3CLfOJYPgA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5VcKCXFgpttzwapB44NDSxYyc-ohWrbWG5wErcItuxW0SbrTa7l_76zmSTLEvRih7j-DV-zEMz_gbgU2ILwxMyU5nVIX7FofFehKnlvIhc5pP6kdjoSg7Hybdbcds8CqO3MDiJCnuqaif-El0g_kJlSMYvyswSWcqQjjbPZo2FQgpR_3oZ2NEmaiXfgZSixRp6uhOSSrZalUr_qJqPIyYfiKDBaxh3k68jT-5P5zNzav88wnX8X-q24VWjkwZni0O0Ay9c-Qa2-m0quF04HNUhly5o0Fi_B4PJ1LpgQOFv1R6MB-c3_WHY5FUItYjkLJROCzQzTMyKwltjM8atFipD00IprYxJvHXkKlbaKBYblooESU8pqRHn3PO3sFFOSvcegoh5aVKhU7SiElZ4ndpYIoMl1mBN5ntwgqTlzb2o8trlzeKcCht684beHrB2C3Lb4JNTmoyf6xt97hr9XsBzrK9-0O7tck6o9CHTQk1S9eC4-40rTK4TXbrJnOqgIJeJVGJNHcllhtaywmHeLY5LNyfOcQS05XqQrhykrgKhfK_-Ke9-1GjfqMESaNqH56_kR9ga3owu88uvVxf78JJRFE6E_FAcwMZsOneHqEbNzFF9a_4CAwUX6w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ8QSJQXEQU9-aqJDzxQaHe72-4jOW1AhZgICTw1u9tdNWrvQu9e-OuZ6bXFQ3MxPHY7-zH7MTuTmf0NwLvEloYnZKYyq0P8ikPjvQhTy3kZucwnzSOxs3N5cpl8vBJXS5B1b2FwEDW2VDdOfDrV49K3CAPxEZUjK78pO0tkKUs62j0rgkDgSCkafr0P7uiStZL_QErR4Q39uxG6mWw9fzP9pW4-jJr84xrK1-C6Z6CJPvl5OJ2YQ3v7ANvxMRw-h2etbhoczzbTOiy56gU8HXYp4V7CzlkTeumCFpX1W5CPbqwLcgqDqzfgMv9wMTwJ2_wKoRaRnITSaYHmholZWXprbMa41UJlaGIopZUxibeOXMZKG8Viw1KRIPspJTfinHu-CcvVqHKvIYiYlyYVOkVrKmGl16mNJQpaEhHWZH4A-8ha0Z6Pumhc3ywuqLDlt2j5HQDrlqGwLU45pcv4tbjSQV9pPIPpWEy-3a3v_ZhQ-UPhhRqlGsDb_jfOMLlQdOVGU6LBC10mUokFNJLLDK1mhd28mm2ZfkycYw9o0w0gndtMPQGhfc__qX58b1C_UZMl8LQ3_z-Te_Dky_u8-Hx6_mkLVhkF40QoFsU2LE9upm4HtamJ2W0Ozh3ndhpl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Force+Fields&rft.jtitle=Chemical+reviews&rft.au=Unke%2C+Oliver+T.&rft.au=Chmiela%2C+Stefan&rft.au=Sauceda%2C+Huziel+E.&rft.au=Gastegger%2C+Michael&rft.date=2021-08-25&rft.pub=American+Chemical+Society&rft.issn=0009-2665&rft.eissn=1520-6890&rft.volume=121&rft.issue=16&rft.spage=10142&rft.epage=10186&rft_id=info:doi/10.1021%2Facs.chemrev.0c01111&rft_id=info%3Apmid%2F33705118&rft.externalDocID=PMC8391964
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2665&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2665&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2665&client=summon