Photoredox Catalysis for Building C–C Bonds from C(sp2)–H Bonds

Transition metal-catalyzed C–H bond functionalizations have been the focus of intensive research over the last decades for the formation of C–C bonds from unfunctionalized arenes, heteroarenes, alkenes. These direct transformations provide new approaches in synthesis with high atom- and step-economy...

Full description

Saved in:
Bibliographic Details
Published inChemical reviews Vol. 118; no. 16; pp. 7532 - 7585
Main Authors Wang, Chang-Sheng, Dixneuf, Pierre H, Soulé, Jean-François
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 22.08.2018
Subjects
Online AccessGet full text
ISSN0009-2665
1520-6890
1520-6890
DOI10.1021/acs.chemrev.8b00077

Cover

Abstract Transition metal-catalyzed C–H bond functionalizations have been the focus of intensive research over the last decades for the formation of C–C bonds from unfunctionalized arenes, heteroarenes, alkenes. These direct transformations provide new approaches in synthesis with high atom- and step-economy compared to the traditional catalytic cross-coupling reactions. However, such methods still suffer from several limitations including functional group tolerance and the lack of regioselectivity. In addition, they often require harsh reaction conditions and some of them need the use of strong oxidant, in a stoichiometric amount, avoiding these processes to be truly eco-friendly. The use of photoredox catalysis has contributed to a significant expansion of the scope of C­(sp2)–H bond functionalizations which include the direct arylations, (perfluoro)­alkylations, acylations, and even cyanations. Most of these transformations involve the photochemical induced generation of a radical followed by its regioselective addition to arenes, heteroarenes, or alkenes, leading to the building of a new C­(sp2)–C bond. The use of photoredox catalysis plays crucial roles in these reactions promoting electron transfer, enabling the generation of radical species and single electron either oxidation or reduction. Such reactions operating at room temperature allow the building of C–C bonds with high chemo-, regio-, or stereoselectivity. This review surveys the formation of C­(sp2)–C bonds initiated by photoredox catalysis which involves a C­(sp2)–H bond functionalization step, describes the advantages compared to traditional C­(sp2)–H bond functionalizations, and presents mechanistic insights into the role played by the photoredox catalysts.
AbstractList Transition metal-catalyzed C–H bond functionalizations have been the focus of intensive research over the last decades for the formation of C–C bonds from unfunctionalized arenes, heteroarenes, alkenes. These direct transformations provide new approaches in synthesis with high atom- and step-economy compared to the traditional catalytic cross-coupling reactions. However, such methods still suffer from several limitations including functional group tolerance and the lack of regioselectivity. In addition, they often require harsh reaction conditions and some of them need the use of strong oxidant, in a stoichiometric amount, avoiding these processes to be truly eco-friendly. The use of photoredox catalysis has contributed to a significant expansion of the scope of C­(sp2)–H bond functionalizations which include the direct arylations, (perfluoro)­alkylations, acylations, and even cyanations. Most of these transformations involve the photochemical induced generation of a radical followed by its regioselective addition to arenes, heteroarenes, or alkenes, leading to the building of a new C­(sp2)–C bond. The use of photoredox catalysis plays crucial roles in these reactions promoting electron transfer, enabling the generation of radical species and single electron either oxidation or reduction. Such reactions operating at room temperature allow the building of C–C bonds with high chemo-, regio-, or stereoselectivity. This review surveys the formation of C­(sp2)–C bonds initiated by photoredox catalysis which involves a C­(sp2)–H bond functionalization step, describes the advantages compared to traditional C­(sp2)–H bond functionalizations, and presents mechanistic insights into the role played by the photoredox catalysts.
Transition metal-catalyzed C-H bond functionalizations have been the focus of intensive research over the last decades for the formation of C-C bonds from unfunctionalized arenes, heteroarenes, alkenes. These direct transformations provide new approaches in synthesis with high atom- and step-economy compared to the traditional catalytic cross-coupling reactions. However, such methods still suffer from several limitations including functional group tolerance and the lack of regioselectivity. In addition, they often require harsh reaction conditions and some of them need the use of strong oxidant, in a stoichiometric amount, avoiding these processes to be truly eco-friendly. The use of photoredox catalysis has contributed to a significant expansion of the scope of C(sp )-H bond functionalizations which include the direct arylations, (perfluoro)alkylations, acylations, and even cyanations. Most of these transformations involve the photochemical induced generation of a radical followed by its regioselective addition to arenes, heteroarenes, or alkenes, leading to the building of a new C(sp )-C bond. The use of photoredox catalysis plays crucial roles in these reactions promoting electron transfer, enabling the generation of radical species and single electron either oxidation or reduction. Such reactions operating at room temperature allow the building of C-C bonds with high chemo-, regio-, or stereoselectivity. This review surveys the formation of C(sp )-C bonds initiated by photoredox catalysis which involves a C(sp )-H bond functionalization step, describes the advantages compared to traditional C(sp )-H bond functionalizations, and presents mechanistic insights into the role played by the photoredox catalysts.
Transition metal-catalyzed C-H bond functionalizations have been the focus of intensive research over the last decades for the formation of C-C bonds from unfunctionalized arenes, heteroarenes, alkenes. These direct transformations provide new approaches in synthesis with high atom- and step-economy compared to the traditional catalytic cross-coupling reactions. However, such methods still suffer from several limitations including functional group tolerance and the lack of regioselectivity. In addition, they often require harsh reaction conditions and some of them need the use of strong oxidant, in a stoichiometric amount, avoiding these processes to be truly eco-friendly. The use of photoredox catalysis has contributed to a significant expansion of the scope of C(sp)-H bond functionalizations which include the direct arylations, (perfluoro)alkylations, acylations, and even cyanations. Most of these transformations involve the photochemical induced generation of a radical followed by its regioselective addition to arenes, heteroarenes, or alkenes, leading to the building of a new C(sp)-C bond. The use of photoredox catalysis plays crucial roles in these reactions promoting electron transfer, enabling the generation of radical species and single electron either oxidation or reduction. Such reactions operating at room temperature allow the building of C-C bonds with high chemo-, regio-, or stereoselectivity. This review surveys the formation of C(sp)-C bonds initiated by photoredox catalysis which involves a C(sp)-H bond functionalization step, describes the advantages compared to traditional C(sp)-H bond functionalizations, and presents mechanistic insights into the role played by the photoredox catalysts.
Transition metal-catalyzed C-H bond functionalizations have been the focus of intensive research over the last decades for the formation of C-C bonds from unfunctionalized arenes, heteroarenes, alkenes. These direct transformations provide new approaches in synthesis with high atom- and step-economy compared to the traditional catalytic cross-coupling reactions. However, such methods still suffer from several limitations including functional group tolerance and the lack of regioselectivity. In addition, they often require harsh reaction conditions and some of them need the use of strong oxidant, in a stoichiometric amount, avoiding these processes to be truly eco-friendly. The use of photoredox catalysis has contributed to a significant expansion of the scope of C(sp2)-H bond functionalizations which include the direct arylations, (perfluoro)alkylations, acylations, and even cyanations. Most of these transformations involve the photochemical induced generation of a radical followed by its regioselective addition to arenes, heteroarenes, or alkenes, leading to the building of a new C(sp2)-C bond. The use of photoredox catalysis plays crucial roles in these reactions promoting electron transfer, enabling the generation of radical species and single electron either oxidation or reduction. Such reactions operating at room temperature allow the building of C-C bonds with high chemo-, regio-, or stereoselectivity. This review surveys the formation of C(sp2)-C bonds initiated by photoredox catalysis which involves a C(sp2)-H bond functionalization step, describes the advantages compared to traditional C(sp2)-H bond functionalizations, and presents mechanistic insights into the role played by the photoredox catalysts.Transition metal-catalyzed C-H bond functionalizations have been the focus of intensive research over the last decades for the formation of C-C bonds from unfunctionalized arenes, heteroarenes, alkenes. These direct transformations provide new approaches in synthesis with high atom- and step-economy compared to the traditional catalytic cross-coupling reactions. However, such methods still suffer from several limitations including functional group tolerance and the lack of regioselectivity. In addition, they often require harsh reaction conditions and some of them need the use of strong oxidant, in a stoichiometric amount, avoiding these processes to be truly eco-friendly. The use of photoredox catalysis has contributed to a significant expansion of the scope of C(sp2)-H bond functionalizations which include the direct arylations, (perfluoro)alkylations, acylations, and even cyanations. Most of these transformations involve the photochemical induced generation of a radical followed by its regioselective addition to arenes, heteroarenes, or alkenes, leading to the building of a new C(sp2)-C bond. The use of photoredox catalysis plays crucial roles in these reactions promoting electron transfer, enabling the generation of radical species and single electron either oxidation or reduction. Such reactions operating at room temperature allow the building of C-C bonds with high chemo-, regio-, or stereoselectivity. This review surveys the formation of C(sp2)-C bonds initiated by photoredox catalysis which involves a C(sp2)-H bond functionalization step, describes the advantages compared to traditional C(sp2)-H bond functionalizations, and presents mechanistic insights into the role played by the photoredox catalysts.
Transition metal-catalyzed C–H bond functionalizations have been the focus of intensive research over the last decades for the formation of C–C bonds from unfunctionalized arenes, heteroarenes, alkenes. These direct transformations provide new approaches in synthesis with high atom- and step-economy compared to the traditional catalytic cross-coupling reactions. However, such methods still suffer from several limitations including functional group tolerance and the lack of regioselectivity. In addition, they often require harsh reaction conditions and some of them need the use of strong oxidant, in a stoichiometric amount, avoiding these processes to be truly eco-friendly. The use of photoredox catalysis has contributed to a significant expansion of the scope of C(sp²)–H bond functionalizations which include the direct arylations, (perfluoro)alkylations, acylations, and even cyanations. Most of these transformations involve the photochemical induced generation of a radical followed by its regioselective addition to arenes, heteroarenes, or alkenes, leading to the building of a new C(sp²)–C bond. The use of photoredox catalysis plays crucial roles in these reactions promoting electron transfer, enabling the generation of radical species and single electron either oxidation or reduction. Such reactions operating at room temperature allow the building of C–C bonds with high chemo-, regio-, or stereoselectivity. This review surveys the formation of C(sp²)–C bonds initiated by photoredox catalysis which involves a C(sp²)–H bond functionalization step, describes the advantages compared to traditional C(sp²)–H bond functionalizations, and presents mechanistic insights into the role played by the photoredox catalysts.
Transition metal-catalyzed C–H bond functionalizations have been the focus of intensive research over the last decades for the formation of C–C bonds from unfunctionalized arenes, heteroarenes, alkenes. These direct transformations provide new approaches in synthesis with high atom- and step-economy compared to the traditional catalytic cross-coupling reactions. However, such methods still suffer from several limitations including functional group tolerance and the lack of regioselectivity. In addition, they often require harsh reaction conditions and some of them need the use of strong oxidant, in a stoichiometric amount, avoiding these processes to be truly eco-friendly. The use of photoredox catalysis has contributed to a significant expansion of the scope of C(sp2)–H bond functionalizations which include the direct arylations, (perfluoro)alkylations, acylations, and even cyanations. Most of these transformations involve the photochemical induced generation of a radical followed by its regioselective addition to arenes, heteroarenes, or alkenes, leading to the building of a new C(sp2)–C bond. The use of photoredox catalysis plays crucial roles in these reactions promoting electron transfer, enabling the generation of radical species and single electron either oxidation or reduction. Such reactions operating at room temperature allow the building of C–C bonds with high chemo-, regio-, or stereoselectivity. This review surveys the formation of C(sp2)–C bonds initiated by photoredox catalysis which involves a C(sp2)–H bond functionalization step, describes the advantages compared to traditional C(sp2)–H bond functionalizations, and presents mechanistic insights into the role played by the photoredox catalysts.
Author Wang, Chang-Sheng
Dixneuf, Pierre H
Soulé, Jean-François
AuthorAffiliation CNRS, ISCR UMR 6226
Univ Rennes
AuthorAffiliation_xml – name: Univ Rennes
– name: CNRS, ISCR UMR 6226
Author_xml – sequence: 1
  givenname: Chang-Sheng
  surname: Wang
  fullname: Wang, Chang-Sheng
– sequence: 2
  givenname: Pierre H
  surname: Dixneuf
  fullname: Dixneuf, Pierre H
– sequence: 3
  givenname: Jean-François
  orcidid: 0000-0002-6593-1995
  surname: Soulé
  fullname: Soulé, Jean-François
  email: jean-francois.soule@univ-rennes1.fr
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30011194$$D View this record in MEDLINE/PubMed
https://univ-rennes.hal.science/hal-01862464$$DView record in HAL
BookMark eNqFkc9u1DAQxi1URLeFJ0BCkbi0h2xn7PhPjm0ELNJKcICz5SQO6yqJFzup6I134A15ErzKtoceysnyN79vNDPfGTkZ_WgJeYuwRqB4ZZq4bnZ2CPZurWoAkPIFWSGnkAtVwglZJa3MqRD8lJzFeJu-nFP5ipwyAEQsixWpvu785INt_a-sMpPp76OLWedDdjO7vnXjj6z6-_tPld34sU2F4Iesuoh7epnUzaK-Ji8700f75viek-8fP3yrNvn2y6fP1fU2NxzElGNroKG2YZLLGmtVU1YLiYVRsmCmM0o1dVvwEjnrlJQmbVLWTIBl1DAUBTsnl0vfnen1PrjBhHvtjdOb660-aIBK0EIUd5jYi4XdB_9ztnHSg4uN7XszWj9HTZElWGIJ_0dBIhcMpEro-yforZ_DmJZODSkKmY4vE_XuSM31YNvHUR-unoByAZrgYwy2042bzOT8OAXjeo2gDwnrlLA-JqyPCScve-J9aP-862pxHYqPMz_n-Afcu7n3
CitedBy_id crossref_primary_10_1039_D0QO01369B
crossref_primary_10_1039_D2GC00310D
crossref_primary_10_1039_D0QO01127D
crossref_primary_10_1038_s41467_024_50979_6
crossref_primary_10_1016_j_tgchem_2023_100009
crossref_primary_10_1016_j_ica_2023_121584
crossref_primary_10_1021_acs_chemrev_0c01236
crossref_primary_10_6023_cjoc202104047
crossref_primary_10_1002_ejoc_201900584
crossref_primary_10_1039_D3GC04450E
crossref_primary_10_1016_j_tetlet_2021_153102
crossref_primary_10_1002_adsc_202101053
crossref_primary_10_3389_fceng_2021_788653
crossref_primary_10_1039_D3OB01676E
crossref_primary_10_3390_molecules28166127
crossref_primary_10_3390_molecules26195763
crossref_primary_10_1007_s42250_020_00144_5
crossref_primary_10_1002_chem_202303692
crossref_primary_10_1002_adsc_202301521
crossref_primary_10_1021_acs_orglett_2c03894
crossref_primary_10_1021_acscatal_1c04835
crossref_primary_10_1039_D4SU00214H
crossref_primary_10_1039_D4CC05985A
crossref_primary_10_1039_D2CC03073J
crossref_primary_10_1039_D0CC07307E
crossref_primary_10_1021_jacsau_2c00392
crossref_primary_10_1039_D4SC07491B
crossref_primary_10_1016_j_mencom_2020_09_001
crossref_primary_10_1021_acs_joc_1c03007
crossref_primary_10_1021_acs_organomet_1c00254
crossref_primary_10_1039_D2SC00552B
crossref_primary_10_1021_acscatal_0c04070
crossref_primary_10_1038_s41467_024_55744_3
crossref_primary_10_3390_molecules24050830
crossref_primary_10_1021_acs_joc_0c01985
crossref_primary_10_1039_D4OB02085E
crossref_primary_10_6023_cjoc202312025
crossref_primary_10_1002_cplu_201900616
crossref_primary_10_1016_j_gresc_2023_10_002
crossref_primary_10_1021_acscatal_1c00242
crossref_primary_10_1038_s42004_020_00413_x
crossref_primary_10_1021_acs_orglett_2c02330
crossref_primary_10_1039_D4OB01744G
crossref_primary_10_1039_D3NJ03780K
crossref_primary_10_1055_s_0040_1720921
crossref_primary_10_1002_cptc_202400405
crossref_primary_10_1021_acs_orglett_9b02812
crossref_primary_10_1039_D2SC03516B
crossref_primary_10_1002_adsc_202101195
crossref_primary_10_1002_adsc_202001431
crossref_primary_10_1021_acssuschemeng_3c04247
crossref_primary_10_1002_chem_201905308
crossref_primary_10_1016_j_tetlet_2021_153485
crossref_primary_10_1021_acs_orglett_0c01391
crossref_primary_10_1039_D0GC01947J
crossref_primary_10_1039_D0CC05672C
crossref_primary_10_1002_anie_202201743
crossref_primary_10_1039_D2GC02950B
crossref_primary_10_1002_slct_202101241
crossref_primary_10_1055_a_1946_0512
crossref_primary_10_1021_acs_jchemed_9b00836
crossref_primary_10_1021_acs_orglett_0c01399
crossref_primary_10_1021_jacs_3c11588
crossref_primary_10_1039_D3OB00238A
crossref_primary_10_1002_chem_202002145
crossref_primary_10_1039_D4OB01951B
crossref_primary_10_1002_ejoc_202001446
crossref_primary_10_1021_acs_orglett_9b01954
crossref_primary_10_1021_acs_orglett_9b01714
crossref_primary_10_1039_D0CC07632E
crossref_primary_10_1021_acs_orglett_9b00620
crossref_primary_10_1021_acs_orglett_9b01831
crossref_primary_10_1021_acs_joc_1c02013
crossref_primary_10_1038_s41570_024_00585_3
crossref_primary_10_1002_adsc_201901562
crossref_primary_10_1016_j_scib_2021_08_001
crossref_primary_10_1002_anie_202219027
crossref_primary_10_3762_bjoc_16_83
crossref_primary_10_1021_acscatal_4c03560
crossref_primary_10_1021_acs_joc_3c00170
crossref_primary_10_1021_acsmaterialsau_2c00019
crossref_primary_10_1021_acs_organomet_9b00119
crossref_primary_10_1021_acs_orglett_0c00154
crossref_primary_10_1002_adsc_202300463
crossref_primary_10_1002_tcr_202100115
crossref_primary_10_1016_j_tetlet_2019_151506
crossref_primary_10_1002_cssc_202002397
crossref_primary_10_1038_s41557_024_01629_3
crossref_primary_10_1021_jacs_0c05025
crossref_primary_10_1016_j_ccr_2021_214255
crossref_primary_10_1039_D3OB01885G
crossref_primary_10_1021_jacs_9b12328
crossref_primary_10_1021_acs_orglett_9b02957
crossref_primary_10_1002_ejoc_201900143
crossref_primary_10_1039_D1SC05294B
crossref_primary_10_1002_adsc_202400466
crossref_primary_10_1021_jacs_2c01807
crossref_primary_10_1038_s41467_023_39753_2
crossref_primary_10_1002_adsc_201901139
crossref_primary_10_1021_acs_orglett_3c03099
crossref_primary_10_1039_D1SC06719B
crossref_primary_10_1002_cctc_201900680
crossref_primary_10_1007_s41061_021_00355_5
crossref_primary_10_3390_molecules29184418
crossref_primary_10_1039_D3SC06675D
crossref_primary_10_1002_anie_201908994
crossref_primary_10_1039_D3OB01305G
crossref_primary_10_1039_D3RA01364B
crossref_primary_10_1021_acs_joc_0c00346
crossref_primary_10_1021_acsami_2c01595
crossref_primary_10_1021_acs_orglett_2c03612
crossref_primary_10_2139_ssrn_4127828
crossref_primary_10_1021_acs_orglett_2c01674
crossref_primary_10_1021_acs_orglett_0c02228
crossref_primary_10_3390_molecules27175364
crossref_primary_10_1002_cctc_201901659
crossref_primary_10_1002_adsc_202300119
crossref_primary_10_1002_ange_201905924
crossref_primary_10_1002_asia_202300897
crossref_primary_10_1021_jacs_1c05988
crossref_primary_10_1021_acs_orglett_1c00915
crossref_primary_10_1021_acs_orglett_4c03998
crossref_primary_10_1039_D1SC02787E
crossref_primary_10_1002_chem_202103077
crossref_primary_10_1039_D0GC02264K
crossref_primary_10_1016_j_jcat_2024_115705
crossref_primary_10_1021_acscatal_0c01099
crossref_primary_10_6023_cjoc202106013
crossref_primary_10_1039_C8QO01261J
crossref_primary_10_1002_chem_202003685
crossref_primary_10_1039_C9QO00166B
crossref_primary_10_1002_ajoc_202100648
crossref_primary_10_1016_j_tetlet_2025_155502
crossref_primary_10_1016_j_mcat_2021_111785
crossref_primary_10_1039_D2GC02438A
crossref_primary_10_1039_C9RA06120G
crossref_primary_10_1039_D0GC02111C
crossref_primary_10_1021_acs_accounts_4c00020
crossref_primary_10_1039_D3QO01908J
crossref_primary_10_1039_D1QO00344E
crossref_primary_10_1021_acs_orglett_9b03827
crossref_primary_10_1021_acscatal_9b03798
crossref_primary_10_1021_acs_orglett_9b02731
crossref_primary_10_1039_D1OB00960E
crossref_primary_10_1039_D1CC03221F
crossref_primary_10_1039_D3RA03479H
crossref_primary_10_1039_D0QO01487G
crossref_primary_10_1021_acs_joc_9b03306
crossref_primary_10_1002_ajoc_202400476
crossref_primary_10_1016_j_apcatb_2023_123653
crossref_primary_10_1039_D1QO01859K
crossref_primary_10_1021_acs_orglett_0c00020
crossref_primary_10_1021_acs_chemrev_3c00930
crossref_primary_10_1039_C9SC01954E
crossref_primary_10_1021_acs_orglett_2c00124
crossref_primary_10_1021_jacs_1c13105
crossref_primary_10_1002_tcr_202100006
crossref_primary_10_1055_a_1647_7292
crossref_primary_10_1021_acs_joc_2c01751
crossref_primary_10_1002_adsc_202000777
crossref_primary_10_1002_adsc_202400356
crossref_primary_10_1039_C9CC00768G
crossref_primary_10_1002_anie_202210492
crossref_primary_10_1016_j_jcat_2022_01_024
crossref_primary_10_1039_D2CC02941C
crossref_primary_10_1002_adsc_201801707
crossref_primary_10_1021_acs_chemrev_4c00808
crossref_primary_10_1002_adsc_201901481
crossref_primary_10_1039_C9OB01331H
crossref_primary_10_1039_D0CS00493F
crossref_primary_10_1021_acs_joc_0c02215
crossref_primary_10_1002_adsc_202500031
crossref_primary_10_1039_D3GC01329D
crossref_primary_10_1021_acs_oprd_1c00038
crossref_primary_10_1021_acs_orglett_0c03624
crossref_primary_10_1002_adsc_202001053
crossref_primary_10_1002_bkcs_12850
crossref_primary_10_1039_D1NJ00651G
crossref_primary_10_1016_S1872_2067_23_64461_4
crossref_primary_10_1021_acs_joc_3c01517
crossref_primary_10_1002_ange_202210492
crossref_primary_10_1002_tcr_202400177
crossref_primary_10_1039_D4NJ04300F
crossref_primary_10_3762_bjoc_17_169
crossref_primary_10_1039_C9SC06184C
crossref_primary_10_1002_adsc_201900521
crossref_primary_10_1002_adsc_202301239
crossref_primary_10_1021_jacs_4c03085
crossref_primary_10_1002_adsc_201900402
crossref_primary_10_1021_acs_joc_3c00780
crossref_primary_10_1021_acs_joc_1c02668
crossref_primary_10_1016_j_tetlet_2021_153064
crossref_primary_10_1039_D3GC04412B
crossref_primary_10_1021_acs_orglett_2c01750
crossref_primary_10_1002_adsc_202001280
crossref_primary_10_1021_acs_orglett_9b00201
crossref_primary_10_1039_D0CC07880H
crossref_primary_10_1002_cctc_201801601
crossref_primary_10_1038_s41467_020_17224_2
crossref_primary_10_3762_bjoc_15_201
crossref_primary_10_1038_s41467_019_12403_2
crossref_primary_10_1002_tcr_202000049
crossref_primary_10_1002_ejoc_202400749
crossref_primary_10_1016_j_tetlet_2019_151124
crossref_primary_10_1039_D2QO01985J
crossref_primary_10_1021_jacs_3c06169
crossref_primary_10_1021_acs_analchem_0c02384
crossref_primary_10_1021_acscatal_9b00405
crossref_primary_10_1002_anie_202309709
crossref_primary_10_1021_acs_orglett_9b00351
crossref_primary_10_1038_s41467_023_36103_0
crossref_primary_10_1002_adsc_202001396
crossref_primary_10_1021_acs_orglett_1c01559
crossref_primary_10_1002_adsc_202001272
crossref_primary_10_1021_acs_orglett_1c00226
crossref_primary_10_1039_D2CS00289B
crossref_primary_10_1021_acs_joc_0c01222
crossref_primary_10_1021_acsomega_9b04009
crossref_primary_10_1021_acs_joc_2c00595
crossref_primary_10_1002_adsc_202400682
crossref_primary_10_1039_C9QO01413F
crossref_primary_10_1021_acs_orglett_9b02539
crossref_primary_10_3390_catal10050529
crossref_primary_10_1002_anie_201905924
crossref_primary_10_1039_D0CC03089A
crossref_primary_10_1002_anie_201913320
crossref_primary_10_1021_acs_organomet_0c00356
crossref_primary_10_1021_acs_orglett_3c01933
crossref_primary_10_1039_C8DT03604G
crossref_primary_10_1002_chem_201900932
crossref_primary_10_1021_acs_joc_1c01555
crossref_primary_10_1002_ejoc_202001178
crossref_primary_10_1039_D1QO01653A
crossref_primary_10_1039_D1QO01085A
crossref_primary_10_1039_D4CC04309J
crossref_primary_10_1021_acs_inorgchem_0c00986
crossref_primary_10_1039_D1CY00293G
crossref_primary_10_1021_acs_orglett_0c02760
crossref_primary_10_1002_chem_202302542
crossref_primary_10_1016_j_xcrp_2022_100763
crossref_primary_10_1021_acs_jpca_1c06772
crossref_primary_10_1002_cptc_202100090
crossref_primary_10_3762_bjoc_16_103
crossref_primary_10_1021_acs_orglett_0c02400
crossref_primary_10_1021_acs_orglett_9b03850
crossref_primary_10_1016_j_xcrp_2022_100768
crossref_primary_10_1021_acs_orglett_3c04085
crossref_primary_10_1039_C9CY01170F
crossref_primary_10_1021_acs_joc_0c01454
crossref_primary_10_1002_celc_201900435
crossref_primary_10_1021_acs_joc_4c00310
crossref_primary_10_1039_D4QO01562B
crossref_primary_10_1039_D4CC01335B
crossref_primary_10_1039_D3OB00961K
crossref_primary_10_1002_adsc_201901601
crossref_primary_10_1039_D5OB00149H
crossref_primary_10_1002_open_202100254
crossref_primary_10_1039_C9GC02193K
crossref_primary_10_1039_D3QO01929B
crossref_primary_10_1039_D2CC00502F
crossref_primary_10_1039_C9CC09586A
crossref_primary_10_1038_s41467_023_44202_1
crossref_primary_10_1002_anie_202413557
crossref_primary_10_1002_bkcs_12778
crossref_primary_10_1016_j_tetlet_2020_152606
crossref_primary_10_1021_jacs_4c08459
crossref_primary_10_1039_C9DT00428A
crossref_primary_10_1039_C9OB02328C
crossref_primary_10_1039_D0CC02645J
crossref_primary_10_1002_anie_202110304
crossref_primary_10_1039_D0CC08123J
crossref_primary_10_1002_ange_202201743
crossref_primary_10_1002_jccs_201900471
crossref_primary_10_1002_ange_202102262
crossref_primary_10_1002_ange_202219027
crossref_primary_10_1002_anie_201809431
crossref_primary_10_1021_acs_chemrev_1c00311
crossref_primary_10_1039_D4CC04610B
crossref_primary_10_6023_cjoc202010008
crossref_primary_10_1002_anie_202003035
crossref_primary_10_1021_acscatal_2c02924
crossref_primary_10_1039_C9OB01227C
crossref_primary_10_1002_ejoc_202001113
crossref_primary_10_1002_ange_202009288
crossref_primary_10_1021_acs_chemrev_3c00755
crossref_primary_10_1055_a_2328_3037
crossref_primary_10_1016_j_tetlet_2023_154486
crossref_primary_10_1021_acs_orglett_0c02863
crossref_primary_10_1039_D1GC00175B
crossref_primary_10_1039_D1GC03168F
crossref_primary_10_1002_chem_202002646
crossref_primary_10_1039_D4CC00361F
crossref_primary_10_1002_anie_201902258
crossref_primary_10_1002_chem_202001434
crossref_primary_10_1021_acs_orglett_4c00768
crossref_primary_10_1021_jacs_0c08389
crossref_primary_10_1021_jacs_5c01983
crossref_primary_10_1021_acs_orglett_9b01212
crossref_primary_10_1021_acs_orglett_9b01333
crossref_primary_10_1002_ange_201909457
crossref_primary_10_1021_acs_orglett_9b03879
crossref_primary_10_1002_adsc_202001125
crossref_primary_10_1039_D2QO00416J
crossref_primary_10_1039_D4CC04889J
crossref_primary_10_3390_catal10010080
crossref_primary_10_1002_ange_202010217
crossref_primary_10_1002_chem_201903910
crossref_primary_10_1021_acssuschemeng_0c01243
crossref_primary_10_1038_s41467_019_12216_3
crossref_primary_10_1039_D1QO01765A
crossref_primary_10_1016_j_poly_2021_115337
crossref_primary_10_1021_acs_joc_2c01453
crossref_primary_10_1002_adsc_202200674
crossref_primary_10_3390_molecules25092125
crossref_primary_10_1039_D2OB01732F
crossref_primary_10_1002_ajoc_202300544
crossref_primary_10_1021_acscatal_0c02808
crossref_primary_10_1021_acs_joc_0c02477
crossref_primary_10_1021_acsmacrolett_3c00646
crossref_primary_10_1016_j_tetlet_2020_152746
crossref_primary_10_1038_s41467_022_31976_z
crossref_primary_10_1038_s41467_024_50141_2
crossref_primary_10_1002_ange_202300159
crossref_primary_10_1039_D2GC01256A
crossref_primary_10_1039_D2QO02052A
crossref_primary_10_1021_acscatal_9b04921
crossref_primary_10_1016_j_tetlet_2020_152632
crossref_primary_10_1039_D1QO00994J
crossref_primary_10_1021_acscatal_4c07316
crossref_primary_10_1021_acs_joc_1c01356
crossref_primary_10_1016_j_cclet_2019_09_040
crossref_primary_10_1016_j_tetlet_2022_154055
crossref_primary_10_1021_acsami_4c01259
crossref_primary_10_1002_cptc_201900300
crossref_primary_10_1002_tcr_202200177
crossref_primary_10_3762_bjoc_16_147
crossref_primary_10_1016_j_tetlet_2023_154585
crossref_primary_10_1039_C9GC02270H
crossref_primary_10_1021_acs_joc_0c02227
crossref_primary_10_1039_C9GC03936H
crossref_primary_10_1021_acscatal_1c05067
crossref_primary_10_1002_chem_202001414
crossref_primary_10_1021_acs_orglett_0c00545
crossref_primary_10_1039_D4CC05854B
crossref_primary_10_1002_chem_202301379
crossref_primary_10_1126_science_aay8224
crossref_primary_10_1002_anie_202015596
crossref_primary_10_1055_a_1734_9782
crossref_primary_10_1002_ange_201814488
crossref_primary_10_2139_ssrn_4157070
crossref_primary_10_1039_C9OB00244H
crossref_primary_10_1039_D1CS01168E
crossref_primary_10_1039_D2GC03577D
crossref_primary_10_1039_D1QO00775K
crossref_primary_10_1039_D0CS01392G
crossref_primary_10_1039_D1CC00996F
crossref_primary_10_1002_adsc_201901520
crossref_primary_10_1039_D0CY01963A
crossref_primary_10_1021_acs_joc_3c00490
crossref_primary_10_1002_ejoc_202100806
crossref_primary_10_1002_asia_202300235
crossref_primary_10_1002_anie_202010217
crossref_primary_10_1021_acs_joc_8b03155
crossref_primary_10_1021_acscatal_3c03112
crossref_primary_10_1039_D1GC03187B
crossref_primary_10_1039_D1CC01756J
crossref_primary_10_1248_cpb_c23_00323
crossref_primary_10_1002_chem_202301700
crossref_primary_10_1055_a_1495_6994
crossref_primary_10_1021_acs_orglett_1c03431
crossref_primary_10_1021_jacs_0c04886
crossref_primary_10_1002_ange_202309709
crossref_primary_10_1021_acs_joc_1c01612
crossref_primary_10_1021_acs_joc_9b01625
crossref_primary_10_1002_cjoc_202300288
crossref_primary_10_3389_fchem_2024_1372572
crossref_primary_10_3390_molecules25071606
crossref_primary_10_1039_D1QO01570B
crossref_primary_10_1002_ajoc_202300252
crossref_primary_10_1039_D2OB01646J
crossref_primary_10_1002_cssc_202401958
crossref_primary_10_1021_acs_inorgchem_2c02911
crossref_primary_10_1021_acs_orglett_9b02463
crossref_primary_10_1002_cctc_202200623
crossref_primary_10_1002_cptc_202000061
crossref_primary_10_1021_acs_joc_3c01801
crossref_primary_10_1002_chem_202400443
crossref_primary_10_1016_j_tetlet_2020_152766
crossref_primary_10_1039_D2OB00109H
crossref_primary_10_1002_anie_202206420
crossref_primary_10_1016_j_cclet_2022_108097
crossref_primary_10_1021_acscatal_0c04722
crossref_primary_10_1021_acs_joc_9b01879
crossref_primary_10_1002_asia_201901718
crossref_primary_10_1021_acs_joc_2c00047
crossref_primary_10_1002_anie_201909457
crossref_primary_10_1039_D2CC03595B
crossref_primary_10_1002_ange_202400845
crossref_primary_10_1021_acs_chemrev_1c00384
crossref_primary_10_1002_ajoc_202300221
crossref_primary_10_1021_acs_orglett_0c02912
crossref_primary_10_6023_cjoc202110030
crossref_primary_10_1021_jacs_4c00676
crossref_primary_10_1039_D0SC04879H
crossref_primary_10_1039_D2CC02907C
crossref_primary_10_1021_acscatal_0c04756
crossref_primary_10_1002_chem_202402776
crossref_primary_10_1021_acs_orglett_4c03005
crossref_primary_10_1039_C8OB02921K
crossref_primary_10_1021_acscatal_0c02454
crossref_primary_10_1021_acscatal_0c03422
crossref_primary_10_1021_jacs_4c08158
crossref_primary_10_1021_acsomega_2c08094
crossref_primary_10_1021_acs_orglett_3c03713
crossref_primary_10_1021_jacsau_3c00231
crossref_primary_10_1002_adsc_202200231
crossref_primary_10_1039_D1QO00162K
crossref_primary_10_1039_D4SC03292F
crossref_primary_10_1002_ejoc_202300191
crossref_primary_10_1039_D2QO01348G
crossref_primary_10_1039_D3OB01177A
crossref_primary_10_1021_acs_joc_4c00270
crossref_primary_10_1002_ajoc_202300234
crossref_primary_10_1021_acscatal_2c00763
crossref_primary_10_1021_acs_orglett_9b02487
crossref_primary_10_1002_chem_202102006
crossref_primary_10_1002_chem_201903816
crossref_primary_10_1055_a_2405_2961
crossref_primary_10_1016_j_tetlet_2020_152425
crossref_primary_10_1039_D0OB00508H
crossref_primary_10_1039_D1OB01432C
crossref_primary_10_1039_D4QO01939C
crossref_primary_10_1021_acs_chemrev_1c00247
crossref_primary_10_3390_molecules29235553
crossref_primary_10_1016_j_cclet_2020_08_013
crossref_primary_10_1021_acscatal_0c00142
crossref_primary_10_1002_anie_202007144
crossref_primary_10_1021_acs_orglett_3c03701
crossref_primary_10_1038_s41929_023_01105_0
crossref_primary_10_1039_D0NJ02527E
crossref_primary_10_1002_cptc_201900044
crossref_primary_10_1021_jacs_1c12961
crossref_primary_10_1039_D3QO00505D
crossref_primary_10_1021_jacs_1c10783
crossref_primary_10_1039_C9OB01918A
crossref_primary_10_1039_C9QO00536F
crossref_primary_10_1039_D4CC06594H
crossref_primary_10_1021_acscatal_1c05318
crossref_primary_10_1002_cctc_202200319
crossref_primary_10_1016_j_ccr_2020_213683
crossref_primary_10_1002_chem_202401623
crossref_primary_10_3390_molecules29040782
crossref_primary_10_1039_D0OB01580F
crossref_primary_10_1002_anie_202309572
crossref_primary_10_1021_acs_joc_9b00855
crossref_primary_10_1111_php_13303
crossref_primary_10_1002_adsc_202201143
crossref_primary_10_1055_a_2302_5887
crossref_primary_10_1002_ange_202007144
crossref_primary_10_1039_D1QO00605C
crossref_primary_10_1002_ejoc_201900957
crossref_primary_10_1002_chem_202401617
crossref_primary_10_1021_acs_orglett_9b04201
crossref_primary_10_1039_C9QO01193E
crossref_primary_10_1021_acs_orglett_9b00083
crossref_primary_10_1002_anie_202311531
crossref_primary_10_1002_ejoc_201900952
crossref_primary_10_1039_C9OB02113B
crossref_primary_10_1021_acscatal_0c00200
crossref_primary_10_1039_D0OB01581D
crossref_primary_10_1021_acs_organomet_0c00387
crossref_primary_10_1039_D1SC04475C
crossref_primary_10_1039_D2OB00795A
crossref_primary_10_1039_D3CC02424E
crossref_primary_10_1070_RCR4978
crossref_primary_10_1021_acs_orglett_3c03764
crossref_primary_10_1039_C9OB01169B
crossref_primary_10_1039_D5OB00018A
crossref_primary_10_1002_ajoc_201900170
crossref_primary_10_1021_acscatal_8b04553
crossref_primary_10_1021_acs_orglett_1c02562
crossref_primary_10_1021_acssuschemeng_9b04631
crossref_primary_10_1039_D3CP05585J
crossref_primary_10_1016_j_ccr_2019_213129
crossref_primary_10_1002_ange_201908994
crossref_primary_10_1002_slct_202003022
crossref_primary_10_1002_asia_202000905
crossref_primary_10_1021_acs_inorgchem_2c02945
crossref_primary_10_1021_acs_chemrev_0c00841
crossref_primary_10_3390_molecules27185976
crossref_primary_10_1021_acscatal_0c04952
crossref_primary_10_1038_s43586_021_00041_2
crossref_primary_10_1002_cctc_202300537
crossref_primary_10_1016_j_jcat_2023_07_004
crossref_primary_10_1021_acs_joc_8b02595
crossref_primary_10_1039_C8CC07759B
crossref_primary_10_6023_cjoc202112024
crossref_primary_10_1039_C9CC06587C
crossref_primary_10_1021_acs_orglett_2c03077
crossref_primary_10_1063_5_0094380
crossref_primary_10_1039_D4GC00502C
crossref_primary_10_1021_acs_orglett_9b03018
crossref_primary_10_1021_jacs_2c12481
crossref_primary_10_1021_acs_joc_1c02972
crossref_primary_10_1070_RCR4959
crossref_primary_10_1016_j_ccr_2023_215607
crossref_primary_10_1055_s_0042_1751497
crossref_primary_10_1016_j_tetlet_2022_154321
crossref_primary_10_1039_D2OB00430E
crossref_primary_10_1038_s41467_019_10441_4
crossref_primary_10_1002_asia_202100614
crossref_primary_10_1039_D4QI00613E
crossref_primary_10_1002_ajoc_202200356
crossref_primary_10_1016_j_cej_2021_129976
crossref_primary_10_1002_slct_202100225
crossref_primary_10_1039_D1OB01829A
crossref_primary_10_3390_molecules25020419
crossref_primary_10_1002_asia_202401442
crossref_primary_10_1002_ejoc_202100461
crossref_primary_10_1055_a_2193_2682
crossref_primary_10_1021_jacs_8b08052
crossref_primary_10_1039_D1CC05882G
crossref_primary_10_1039_C9OB02294E
crossref_primary_10_1021_acscatal_0c02159
crossref_primary_10_1016_j_tetlet_2024_155083
crossref_primary_10_1039_C8CC07732K
crossref_primary_10_1039_D4CC02914C
crossref_primary_10_1021_acs_inorgchem_4c01726
crossref_primary_10_1021_acs_orglett_4c00031
crossref_primary_10_1039_D2GC03829C
crossref_primary_10_1007_s10311_020_01150_2
crossref_primary_10_1002_adsc_201801203
crossref_primary_10_1021_acs_inorgchem_3c03831
crossref_primary_10_1055_a_2378_8663
crossref_primary_10_1021_acs_inorgchem_3c00688
crossref_primary_10_1002_ange_202206420
crossref_primary_10_1039_C9OB00659A
crossref_primary_10_1039_D2QO01475K
crossref_primary_10_1039_D3OB01389H
crossref_primary_10_1039_C9CC08524F
crossref_primary_10_1002_chem_202101414
crossref_primary_10_1021_jacs_0c03144
crossref_primary_10_1002_adsc_202000630
crossref_primary_10_1039_D1RA05936J
crossref_primary_10_1021_acs_inorgchem_9b03664
crossref_primary_10_1002_chem_202402220
crossref_primary_10_1021_acs_orglett_3c03449
crossref_primary_10_1016_j_tetlet_2022_153693
crossref_primary_10_1039_D0CP01556C
crossref_primary_10_1002_ejoc_202300257
crossref_primary_10_1039_C9CC07666B
crossref_primary_10_1039_D1QO01127H
crossref_primary_10_1016_j_mcat_2024_114337
crossref_primary_10_1039_D1GC04825B
crossref_primary_10_1002_asia_202100513
crossref_primary_10_1002_ange_202309572
crossref_primary_10_1002_ejoc_201801650
crossref_primary_10_1039_C9NJ05211A
crossref_primary_10_1002_ajoc_202300069
crossref_primary_10_1002_ange_201809431
crossref_primary_10_1021_acscatal_1c04204
crossref_primary_10_1002_ange_202311531
crossref_primary_10_1002_ange_202110304
crossref_primary_10_1038_s41467_022_30176_z
crossref_primary_10_3390_molecules27051597
crossref_primary_10_1002_ejoc_202001616
crossref_primary_10_1039_C9OB02074H
crossref_primary_10_1016_j_jcat_2022_07_023
crossref_primary_10_1039_D2CC05842A
crossref_primary_10_1039_D0GC03697H
crossref_primary_10_1093_chemle_upae103
crossref_primary_10_1039_C9QO01058K
crossref_primary_10_1055_a_1932_6937
crossref_primary_10_1093_bulcsj_uoae138
crossref_primary_10_1039_D2OB01587K
crossref_primary_10_1016_j_trechm_2021_12_008
crossref_primary_10_1039_D0CC00178C
crossref_primary_10_1021_acs_jpca_9b10238
crossref_primary_10_1002_cssc_202301015
crossref_primary_10_1039_D1QO01925B
crossref_primary_10_1002_ajoc_202100601
crossref_primary_10_1002_anie_202400845
crossref_primary_10_1039_D3GC04154A
crossref_primary_10_1039_D3SC06476J
crossref_primary_10_1002_ange_201913320
crossref_primary_10_1002_anie_202009288
crossref_primary_10_1021_acs_orglett_4c01594
crossref_primary_10_1002_asia_202001087
crossref_primary_10_1021_acs_joc_4c02065
crossref_primary_10_1055_a_2131_3208
crossref_primary_10_1021_acscatal_1c01350
crossref_primary_10_1021_acs_orglett_0c02179
crossref_primary_10_1021_acs_orglett_0c03269
crossref_primary_10_1039_D1CS00544H
crossref_primary_10_1039_D2OB01584F
crossref_primary_10_1016_j_rechem_2023_101249
crossref_primary_10_1039_D0OB00854K
crossref_primary_10_1021_acs_orglett_1c03115
crossref_primary_10_1002_ajoc_202000268
crossref_primary_10_1016_j_catcom_2019_105785
crossref_primary_10_1002_adsc_202000961
crossref_primary_10_1002_cctc_202200830
crossref_primary_10_1039_D2CC04408K
crossref_primary_10_1039_D1QO01914G
crossref_primary_10_1021_acsami_9b13538
crossref_primary_10_1021_acs_orglett_1c04319
crossref_primary_10_1002_ajoc_202200685
crossref_primary_10_1039_D3CC03855F
crossref_primary_10_1021_jacs_9b07370
crossref_primary_10_1002_ejoc_202101242
crossref_primary_10_1039_D2CC01212J
crossref_primary_10_1021_acssuschemeng_9b02842
crossref_primary_10_1002_ange_201902258
crossref_primary_10_1021_jacs_4c13485
crossref_primary_10_1021_acs_joc_9b02646
crossref_primary_10_1039_D1CC04883J
crossref_primary_10_1002_ajoc_201900666
crossref_primary_10_1039_D2QO00472K
crossref_primary_10_1039_D1OB00260K
crossref_primary_10_1039_D4RA03259D
crossref_primary_10_1002_chem_201901397
crossref_primary_10_1021_acs_joc_9b00670
crossref_primary_10_1002_chem_202004373
crossref_primary_10_1002_ejoc_202101572
crossref_primary_10_1002_ange_202015596
crossref_primary_10_1039_D4GC02807D
crossref_primary_10_1002_anie_201814488
crossref_primary_10_1039_D1CC04872D
crossref_primary_10_1002_ange_202413557
crossref_primary_10_1021_acs_joc_9b00318
crossref_primary_10_1021_acs_joc_4c00902
crossref_primary_10_1021_acs_joc_9b00557
crossref_primary_10_1039_D4SC06005A
crossref_primary_10_1002_chem_202402333
crossref_primary_10_7498_aps_69_20200287
crossref_primary_10_1039_D3SC02768F
crossref_primary_10_1002_chem_202403420
crossref_primary_10_1016_j_tet_2020_131342
crossref_primary_10_1002_chem_202301934
crossref_primary_10_1021_acs_orglett_5c00287
crossref_primary_10_1039_D0QI00590H
crossref_primary_10_1039_D0SC02134B
crossref_primary_10_1007_s11426_019_9627_x
crossref_primary_10_1360_SSC_2024_0266
crossref_primary_10_1021_acs_orglett_9b01911
crossref_primary_10_1002_anie_202102262
crossref_primary_10_1021_acscatal_0c02247
crossref_primary_10_1021_acs_joc_0c01818
crossref_primary_10_1002_ange_202003035
crossref_primary_10_1002_anie_202300159
crossref_primary_10_1016_j_jcat_2020_05_041
Cites_doi 10.1021/ol102326b
10.1039/C7OB01418J
10.1002/anie.201702213
10.1021/acs.orglett.7b01952
10.1021/acs.orglett.5b01069
10.1039/C6QO00393A
10.1021/acscatal.5b00668
10.1002/chem.201701665
10.1002/anie.201103145
10.1039/C6SC05533H
10.1021/ol900934g
10.1002/anie.201405478
10.1002/tcr.201600125
10.1021/ar000209h
10.1021/ol500469a
10.1021/ol501094z
10.1021/cr500368h
10.1038/ncomms8919
10.1021/acs.joc.5b00305
10.1016/S0010-8545(00)00274-5
10.1002/anie.201402008
10.1002/anie.201506432
10.1016/S0040-4020(01)98677-6
10.3762/bjoc.12.210
10.1039/C6CS00023A
10.1021/acscatal.7b00840
10.1038/nature14885
10.1055/s-0032-1318155
10.1021/ol1012857
10.1002/cctc.201700557
10.1021/acs.accounts.6b00275
10.1002/chem.201602596
10.1021/cr100379j
10.1021/ja413208y
10.1002/anie.201210276
10.1021/ja300798k
10.1021/cr900184e
10.1021/cr100280d
10.1039/C5CC09726F
10.1039/C6SC02653B
10.1039/c3cc42672f
10.1002/chem.201302407
10.1126/science.1258232
10.1021/ja00778a054
10.1021/cr9000836
10.1016/j.tet.2015.02.034
10.1039/C6QO00158K
10.1021/acs.orglett.5b02061
10.1021/acs.orglett.6b00442
10.1021/acscatal.5b02386
10.1002/anie.201706896
10.1021/ol501081h
10.1021/acs.joc.6b01058
10.1002/cbic.200301023
10.1002/chem.201304120
10.1016/S0022-1139(00)81780-7
10.1039/C2CS35250H
10.1039/C5GC01931A
10.1021/acs.joc.8b00205
10.1021/acscatal.6b02586
10.1039/C7SC00283A
10.1039/c1cs15082k
10.1002/cssc.201301282
10.1002/anie.200901353
10.1021/acscentsci.6b00090
10.1002/anie.201409529
10.1002/adsc.200900874
10.1002/ejoc.201501189
10.1021/acs.jmedchem.5b00258
10.1021/ja501621q
10.1002/ejoc.201601653
10.1039/c3ra43299h
10.1039/C6SC00807K
10.1002/cssc.201700783
10.1021/ja0176907
10.1016/j.tetlet.2016.08.081
10.1021/acs.joc.6b01034
10.1021/acs.orglett.5b03016
10.1038/nchem.1452
10.1002/adsc.201300199
10.1021/jo5020432
10.1002/anie.201308614
10.1021/acs.joc.7b00659
10.1002/anie.201608297
10.1002/anie.201203269
10.1016/S0022-1139(00)00324-9
10.1021/acscatal.6b01452
10.1016/j.chempr.2016.08.002
10.1016/j.chempr.2017.11.004
10.1021/jm500759v
10.1002/anie.201203599
10.1002/ejoc.201500006
10.1002/anie.201510533
10.1021/cs501686d
10.1002/adsc.201600125
10.1021/ja212099r
10.1021/ja208068w
10.1021/jacs.6b12708
10.1021/cr900005n
10.1016/j.tetlet.2017.09.010
10.1002/cjoc.201300411
10.1002/ejoc.201500354
10.1002/ajoc.201402199
10.1021/acs.joc.6b00811
10.1016/0040-4039(91)80524-A
10.1002/anie.201410432
10.1021/acs.joc.6b01449
10.1002/anie.201408891
10.1246/cl.130547
10.1039/b606984n
10.1021/ol5013839
10.1039/C7QO00012J
10.1021/ol101146f
10.1039/C5OB01486G
10.1021/ol501939m
10.1021/ol902703k
10.1039/c2cs35096c
10.1038/nchem.1607
10.1021/jo401894b
10.1021/cr300153j
10.1002/adsc.201400542
10.1002/chem.201301988
10.1039/c1cs15093f
10.1021/acs.orglett.6b01735
10.1002/anie.201508698
10.3762/bjoc.10.108
10.1021/acs.joc.6b02891
10.1039/C7CS00339K
10.1021/ol400946k
10.1039/C5QO00031A
10.1002/adsc.201200569
10.1021/acs.joc.5b01803
10.1016/j.tetlet.2013.10.090
10.1126/science.1131943
10.1021/acscatal.7b01133
10.1002/anie.201400560
10.1039/C5OB01349F
10.1039/C4SC02537G
10.1039/C5CC02349A
10.1002/anie.201703004
10.1021/acs.orglett.7b03001
10.1021/cr300503r
10.1039/C6CC08975E
10.1016/j.tetlet.2017.04.001
10.1002/anie.200902996
10.1021/ol2032575
10.1039/C4CC07925F
10.1016/j.tetlet.2012.02.032
10.1021/jo202538x
10.1039/C5CC09881E
10.1002/chem.201600229
10.1002/anie.201512027
10.1002/adsc.201200588
10.1126/science.1253647
10.1021/acs.accounts.6b00229
10.1021/acs.orglett.5b01530
10.1039/C4CC07066F
10.1039/c39930001359
10.1002/anie.201402023
10.1021/cr0509760
10.1021/ja512946e
10.1039/C1OB06652H
10.1055/s-2008-1042907
10.1002/adsc.201500514
10.1039/C6NJ00079G
10.1002/open.201200011
10.1039/c3cc42695e
10.1021/ol502163f
10.1039/P29840001093
10.1055/s-0035-1561320
10.1021/ja991365q
10.1021/ar700149s
10.1021/jo3022346
10.1038/ncomms6268
10.1021/acs.orglett.6b02179
10.1002/chem.201605640
10.1039/C4CC05467A
10.1021/jo00431a051
10.1016/j.tet.2016.03.087
10.1021/acs.orglett.7b00196
10.1021/acs.joc.7b00088
10.1002/anie.201602349
10.1002/cssc.201403429
10.1002/anie.201505731
10.1021/ar3003305
10.1007/BFb0119266
10.1021/cs5005823
10.1002/anie.201308376
10.1039/c1cs15083a
10.1038/nature10647
10.1002/slct.201701156
10.1021/jacs.7b06715
10.1016/0047-2670(87)85011-6
10.1021/acs.orglett.6b01718
10.1039/b816707a
10.1021/acs.chemrev.6b00057
10.1002/anie.201501908
10.1021/acs.joc.5b00677
10.1021/acs.joc.7b00140
10.1038/s41570-017-0077
10.1039/C5CY02095F
10.1002/chem.201405505
10.1039/C3GC42517G
10.1016/S0022-1139(00)82380-5
10.1021/ol101618u
10.1021/ol200017a
10.1002/anie.201208380
10.1002/anie.201508622
10.1016/S0022-1139(00)80995-1
10.1055/s-0036-1588527
10.1055/s-0033-1340956
10.1039/c3cc44438d
10.1039/C4QO00251B
10.1021/acscatal.5b02410
10.1002/chem.201504985
10.1246/cl.2007.200
10.1002/anie.200806273
10.1002/ejoc.201601518
ContentType Journal Article
Copyright Copyright American Chemical Society Aug 22, 2018
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright American Chemical Society Aug 22, 2018
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
7S9
L.6
1XC
DOI 10.1021/acs.chemrev.8b00077
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic
AGRICOLA
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-6890
EndPage 7585
ExternalDocumentID oai_HAL_hal_01862464v1
30011194
10_1021_acs_chemrev_8b00077
f32351861
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
1AW
29B
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
D0L
DU5
DZ
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
P2P
PQEST
PQQKQ
ROL
RWL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
ZHY
---
-DZ
-~X
.DC
4.4
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
~02
NPM
7SR
8BQ
8FD
JG9
7X8
7S9
L.6
1XC
ID FETCH-LOGICAL-a506t-1da0c2ec3757b1b8b23b6714a8743afa88cbd459153f877a1529b360e32a31643
IEDL.DBID ACS
ISSN 0009-2665
1520-6890
IngestDate Fri Sep 12 12:56:18 EDT 2025
Fri Jul 11 03:18:51 EDT 2025
Fri Jul 11 04:29:29 EDT 2025
Mon Jun 30 08:36:09 EDT 2025
Thu Apr 03 07:04:44 EDT 2025
Thu Apr 24 23:11:27 EDT 2025
Tue Jul 01 03:16:16 EDT 2025
Thu Aug 27 13:42:18 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a506t-1da0c2ec3757b1b8b23b6714a8743afa88cbd459153f877a1529b360e32a31643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6593-1995
0000-0002-3025-6969
PMID 30011194
PQID 2121675207
PQPubID 45407
PageCount 54
ParticipantIDs hal_primary_oai_HAL_hal_01862464v1
proquest_miscellaneous_2131867190
proquest_miscellaneous_2071563078
proquest_journals_2121675207
pubmed_primary_30011194
crossref_citationtrail_10_1021_acs_chemrev_8b00077
crossref_primary_10_1021_acs_chemrev_8b00077
acs_journals_10_1021_acs_chemrev_8b00077
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-08-22
PublicationDateYYYYMMDD 2018-08-22
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-22
  day: 22
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Chemical reviews
PublicationTitleAlternate Chem. Rev
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref185/cit185
ref23/cit23
ref115/cit115
ref187/cit187
ref181/cit181
ref111/cit111
ref113/cit113
ref183/cit183
ref117/cit117
ref48/cit48
ref74/cit74
ref189/cit189
ref119/cit119
ref10/cit10
ref35/cit35
ref93/cit93
ref42/cit42
ref120/cit120
ref178/cit178
ref122/cit122
ref61/cit61
ref176/cit176
Dixneuf P. H. (ref20/cit20) 2015
ref67/cit67
ref128/cit128
ref124/cit124
ref126/cit126
ref54/cit54
ref137/cit137
ref11/cit11
ref102/cit102
ref29/cit29
ref174/cit174
ref86/cit86
Campeau L.-C. (ref2/cit2) 2007; 40
ref170/cit170
ref5/cit5
ref43/cit43
ref80/cit80
ref133/cit133
ref207/cit207
ref203/cit203
ref148/cit148
ref55/cit55
ref144/cit144
ref218/cit218
ref167/cit167
ref163/cit163
ref66/cit66
ref22/cit22
ref87/cit87
ref106/cit106
ref190/cit190
ref140/cit140
ref198/cit198
ref214/cit214
ref194/cit194
ref98/cit98
ref210/cit210
ref153/cit153
ref150/cit150
ref63/cit63
ref56/cit56
ref155/cit155
ref156/cit156
ref158/cit158
ref8/cit8
ref59/cit59
ref500/cit500
ref85/cit85
ref34/cit34
ref37/cit37
ref221/cit221
ref60/cit60
ref17/cit17
ref219/cit219
ref82/cit82
ref147/cit147
ref145/cit145
ref21/cit21
ref166/cit166
ref164/cit164
ref213/cit213
ref78/cit78
ref211/cit211
ref36/cit36
ref83/cit83
ref79/cit79
ref139/cit139
ref172/cit172
ref200/cit200
ref14/cit14
ref57/cit57
ref169/cit169
ref134/cit134
ref208/cit208
ref40/cit40
ref131/cit131
ref205/cit205
ref161/cit161
ref142/cit142
ref216/cit216
ref15/cit15
ref180/cit180
ref62/cit62
ref41/cit41
ref58/cit58
ref104/cit104
ref177/cit177
ref84/cit84
ref1/cit1
ref123/cit123
ref196/cit196
ref7/cit7
ref45/cit45
ref52/cit52
ref184/cit184
ref114/cit114
ref186/cit186
ref116/cit116
ref182/cit182
ref112/cit112
ref77/cit77
ref71/cit71
ref188/cit188
ref118/cit118
ref89/cit89
ref19/cit19
ref96/cit96
ref107/cit107
ref191/cit191
ref109/cit109
ref13/cit13
ref193/cit193
ref105/cit105
ref197/cit197
ref38/cit38
ref199/cit199
ref90/cit90
ref195/cit195
ref64/cit64
ref6/cit6
ref18/cit18
ref136/cit136
ref65/cit65
ref171/cit171
ref97/cit97
ref101/cit101
ref76/cit76
ref32/cit32
ref39/cit39
ref202/cit202
ref168/cit168
ref206/cit206
ref132/cit132
ref91/cit91
ref12/cit12
ref179/cit179
ref121/cit121
ref175/cit175
ref33/cit33
ref129/cit129
ref44/cit44
ref70/cit70
ref125/cit125
ref9/cit9
ref152/cit152
ref154/cit154
ref27/cit27
ref151/cit151
ref159/cit159
ref92/cit92
ref157/cit157
Balzani V. (ref28/cit28) 2007
ref31/cit31
ref220/cit220
ref88/cit88
Dolbier W. R. (ref110/cit110) 1997
ref160/cit160
ref143/cit143
ref217/cit217
ref53/cit53
ref149/cit149
ref162/cit162
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref141/cit141
ref215/cit215
ref50/cit50
ref209/cit209
ref138/cit138
ref100/cit100
ref25/cit25
ref173/cit173
ref103/cit103
ref72/cit72
ref201/cit201
ref51/cit51
ref135/cit135
ref68/cit68
ref94/cit94
ref130/cit130
ref204/cit204
ref146/cit146
ref26/cit26
ref73/cit73
ref69/cit69
ref165/cit165
ref95/cit95
ref108/cit108
ref192/cit192
ref4/cit4
ref30/cit30
ref212/cit212
ref47/cit47
ref127/cit127
References_xml – ident: ref144/cit144
  doi: 10.1021/ol102326b
– ident: ref183/cit183
  doi: 10.1039/C7OB01418J
– ident: ref38/cit38
  doi: 10.1002/anie.201702213
– ident: ref132/cit132
  doi: 10.1021/acs.orglett.7b01952
– ident: ref129/cit129
  doi: 10.1021/acs.orglett.5b01069
– ident: ref212/cit212
  doi: 10.1039/C6QO00393A
– ident: ref40/cit40
  doi: 10.1021/acscatal.5b00668
– ident: ref82/cit82
  doi: 10.1002/chem.201701665
– ident: ref154/cit154
  doi: 10.1002/anie.201103145
– ident: ref93/cit93
  doi: 10.1039/C6SC05533H
– ident: ref175/cit175
  doi: 10.1021/ol900934g
– ident: ref217/cit217
  doi: 10.1002/anie.201405478
– ident: ref49/cit49
  doi: 10.1002/tcr.201600125
– ident: ref214/cit214
  doi: 10.1021/ar000209h
– ident: ref138/cit138
  doi: 10.1021/ol500469a
– ident: ref122/cit122
  doi: 10.1021/ol501094z
– ident: ref104/cit104
  doi: 10.1021/cr500368h
– ident: ref146/cit146
  doi: 10.1038/ncomms8919
– ident: ref190/cit190
  doi: 10.1021/acs.joc.5b00305
– ident: ref30/cit30
  doi: 10.1016/S0010-8545(00)00274-5
– ident: ref128/cit128
  doi: 10.1002/anie.201402008
– ident: ref202/cit202
  doi: 10.1002/anie.201506432
– ident: ref213/cit213
  doi: 10.1016/S0040-4020(01)98677-6
– ident: ref63/cit63
  doi: 10.3762/bjoc.12.210
– ident: ref21/cit21
  doi: 10.1039/C6CS00023A
– ident: ref181/cit181
  doi: 10.1021/acscatal.7b00840
– ident: ref167/cit167
  doi: 10.1038/nature14885
– ident: ref69/cit69
  doi: 10.1055/s-0032-1318155
– ident: ref180/cit180
  doi: 10.1021/ol1012857
– ident: ref221/cit221
  doi: 10.1002/cctc.201700557
– ident: ref50/cit50
  doi: 10.1021/acs.accounts.6b00275
– ident: ref117/cit117
  doi: 10.1002/chem.201602596
– ident: ref13/cit13
  doi: 10.1021/cr100379j
– ident: ref163/cit163
  doi: 10.1021/ja413208y
– ident: ref54/cit54
  doi: 10.1002/anie.201210276
– ident: ref119/cit119
  doi: 10.1021/ja300798k
– ident: ref23/cit23
  doi: 10.1021/cr900184e
– ident: ref15/cit15
  doi: 10.1021/cr100280d
– ident: ref153/cit153
  doi: 10.1039/C5CC09726F
– ident: ref160/cit160
  doi: 10.1039/C6SC02653B
– ident: ref193/cit193
  doi: 10.1039/c3cc42672f
– ident: ref194/cit194
  doi: 10.1002/chem.201302407
– ident: ref77/cit77
  doi: 10.1126/science.1258232
– ident: ref29/cit29
  doi: 10.1021/ja00778a054
– ident: ref7/cit7
  doi: 10.1021/cr9000836
– ident: ref130/cit130
  doi: 10.1016/j.tet.2015.02.034
– ident: ref137/cit137
  doi: 10.1039/C6QO00158K
– ident: ref208/cit208
  doi: 10.1021/acs.orglett.5b02061
– ident: ref173/cit173
  doi: 10.1021/acs.orglett.6b00442
– ident: ref36/cit36
  doi: 10.1021/acscatal.5b02386
– ident: ref172/cit172
  doi: 10.1002/anie.201706896
– ident: ref207/cit207
  doi: 10.1021/ol501081h
– ident: ref43/cit43
  doi: 10.1021/acs.joc.6b01058
– ident: ref102/cit102
  doi: 10.1002/cbic.200301023
– ident: ref60/cit60
  doi: 10.1002/chem.201304120
– ident: ref105/cit105
  doi: 10.1016/S0022-1139(00)81780-7
– ident: ref27/cit27
  doi: 10.1039/C2CS35250H
– ident: ref178/cit178
  doi: 10.1039/C5GC01931A
– ident: ref171/cit171
  doi: 10.1021/acs.joc.8b00205
– ident: ref95/cit95
  doi: 10.1021/acscatal.6b02586
– ident: ref165/cit165
  doi: 10.1039/C7SC00283A
– ident: ref12/cit12
  doi: 10.1039/c1cs15082k
– ident: ref116/cit116
  doi: 10.1002/cssc.201301282
– ident: ref11/cit11
  doi: 10.1002/anie.200901353
– ident: ref53/cit53
  doi: 10.1021/acscentsci.6b00090
– ident: ref157/cit157
  doi: 10.1002/anie.201409529
– ident: ref177/cit177
  doi: 10.1002/adsc.200900874
– ident: ref125/cit125
  doi: 10.1002/ejoc.201501189
– ident: ref103/cit103
  doi: 10.1021/acs.jmedchem.5b00258
– ident: ref91/cit91
  doi: 10.1021/ja501621q
– ident: ref46/cit46
  doi: 10.1002/ejoc.201601653
– ident: ref65/cit65
  doi: 10.1039/c3ra43299h
– ident: ref156/cit156
  doi: 10.1039/C6SC00807K
– ident: ref78/cit78
  doi: 10.1002/cssc.201700783
– ident: ref216/cit216
  doi: 10.1021/ja0176907
– ident: ref45/cit45
  doi: 10.1016/j.tetlet.2016.08.081
– ident: ref83/cit83
  doi: 10.1021/acs.joc.6b01034
– ident: ref145/cit145
  doi: 10.1021/acs.orglett.5b03016
– ident: ref72/cit72
  doi: 10.1038/nchem.1452
– ident: ref112/cit112
  doi: 10.1002/adsc.201300199
– ident: ref61/cit61
  doi: 10.1021/jo5020432
– volume: 40
  start-page: 35
  year: 2007
  ident: ref2/cit2
  publication-title: Aldrichimica Acta
– ident: ref89/cit89
  doi: 10.1002/anie.201308614
– ident: ref57/cit57
  doi: 10.1021/acs.joc.7b00659
– ident: ref133/cit133
  doi: 10.1002/anie.201608297
– ident: ref24/cit24
  doi: 10.1002/anie.201203269
– ident: ref111/cit111
  doi: 10.1016/S0022-1139(00)00324-9
– ident: ref79/cit79
  doi: 10.1021/acscatal.6b01452
– ident: ref147/cit147
  doi: 10.1016/j.chempr.2016.08.002
– ident: ref192/cit192
  doi: 10.1016/j.chempr.2017.11.004
– ident: ref143/cit143
  doi: 10.1021/jm500759v
– ident: ref73/cit73
  doi: 10.1002/anie.201203599
– ident: ref64/cit64
  doi: 10.1002/ejoc.201500006
– ident: ref209/cit209
  doi: 10.1002/anie.201510533
– ident: ref96/cit96
  doi: 10.1021/cs501686d
– volume-title: C-H Bond Activation and Catalytic Functionalization
  year: 2015
  ident: ref20/cit20
– ident: ref37/cit37
  doi: 10.1002/adsc.201600125
– ident: ref62/cit62
  doi: 10.1021/ja212099r
– ident: ref56/cit56
  doi: 10.1021/ja208068w
– ident: ref184/cit184
  doi: 10.1021/jacs.6b12708
– ident: ref9/cit9
  doi: 10.1021/cr900005n
– ident: ref126/cit126
  doi: 10.1016/j.tetlet.2017.09.010
– ident: ref120/cit120
  doi: 10.1002/cjoc.201300411
– ident: ref98/cit98
  doi: 10.1002/ejoc.201500354
– ident: ref201/cit201
  doi: 10.1002/ajoc.201402199
– ident: ref168/cit168
  doi: 10.1021/acs.joc.6b00811
– ident: ref108/cit108
  doi: 10.1016/0040-4039(91)80524-A
– ident: ref174/cit174
  doi: 10.1002/anie.201410432
– ident: ref44/cit44
  doi: 10.1021/acs.joc.6b01449
– ident: ref220/cit220
  doi: 10.1002/anie.201408891
– ident: ref70/cit70
  doi: 10.1246/cl.130547
– ident: ref4/cit4
  doi: 10.1039/b606984n
– ident: ref189/cit189
  doi: 10.1021/ol5013839
– ident: ref204/cit204
  doi: 10.1039/C7QO00012J
– ident: ref149/cit149
  doi: 10.1021/ol101146f
– ident: ref42/cit42
  doi: 10.1039/C5OB01486G
– ident: ref188/cit188
  doi: 10.1021/ol501939m
– ident: ref148/cit148
  doi: 10.1021/ol902703k
– ident: ref17/cit17
  doi: 10.1039/c2cs35096c
– ident: ref19/cit19
  doi: 10.1038/nchem.1607
– ident: ref197/cit197
  doi: 10.1021/jo401894b
– ident: ref16/cit16
  doi: 10.1021/cr300153j
– ident: ref123/cit123
  doi: 10.1002/adsc.201400542
– ident: ref218/cit218
  doi: 10.1002/chem.201301988
– ident: ref94/cit94
  doi: 10.1039/c1cs15093f
– ident: ref99/cit99
  doi: 10.1021/acs.orglett.6b01735
– ident: ref135/cit135
  doi: 10.1002/anie.201508698
– ident: ref141/cit141
  doi: 10.3762/bjoc.10.108
– ident: ref164/cit164
  doi: 10.1021/acs.joc.6b02891
– ident: ref33/cit33
  doi: 10.1039/C7CS00339K
– ident: ref74/cit74
  doi: 10.1021/ol400946k
– ident: ref59/cit59
  doi: 10.1039/C5QO00031A
– ident: ref191/cit191
  doi: 10.1002/adsc.201200569
– ident: ref205/cit205
  doi: 10.1021/acs.joc.5b01803
– ident: ref34/cit34
  doi: 10.1016/j.tetlet.2013.10.090
– ident: ref101/cit101
  doi: 10.1126/science.1131943
– ident: ref169/cit169
  doi: 10.1021/acscatal.7b01133
– ident: ref215/cit215
  doi: 10.1002/anie.201400560
– ident: ref41/cit41
  doi: 10.1039/C5OB01349F
– ident: ref118/cit118
  doi: 10.1039/C4SC02537G
– ident: ref68/cit68
  doi: 10.1039/C5CC02349A
– ident: ref88/cit88
  doi: 10.1002/anie.201703004
– ident: ref76/cit76
  doi: 10.1021/acs.orglett.7b03001
– ident: ref25/cit25
  doi: 10.1021/cr300503r
– ident: ref139/cit139
  doi: 10.1039/C6CC08975E
– ident: ref66/cit66
  doi: 10.1016/j.tetlet.2017.04.001
– ident: ref6/cit6
  doi: 10.1002/anie.200902996
– ident: ref219/cit219
  doi: 10.1021/ol2032575
– ident: ref124/cit124
  doi: 10.1039/C4CC07925F
– ident: ref115/cit115
  doi: 10.1016/j.tetlet.2012.02.032
– ident: ref31/cit31
  doi: 10.1021/jo202538x
– ident: ref113/cit113
  doi: 10.1039/C5CC09881E
– ident: ref127/cit127
  doi: 10.1002/chem.201600229
– ident: ref85/cit85
  doi: 10.1002/anie.201512027
– ident: ref161/cit161
  doi: 10.1002/adsc.201200588
– ident: ref87/cit87
  doi: 10.1126/science.1253647
– ident: ref51/cit51
  doi: 10.1021/acs.accounts.6b00229
– ident: ref151/cit151
  doi: 10.1021/acs.orglett.5b01530
– ident: ref211/cit211
  doi: 10.1039/C4CC07066F
– ident: ref109/cit109
  doi: 10.1039/c39930001359
– ident: ref159/cit159
  doi: 10.1002/anie.201402023
– ident: ref1/cit1
  doi: 10.1021/cr0509760
– ident: ref86/cit86
  doi: 10.1021/ja512946e
– ident: ref150/cit150
  doi: 10.1039/C1OB06652H
– ident: ref5/cit5
  doi: 10.1055/s-2008-1042907
– ident: ref152/cit152
  doi: 10.1002/adsc.201500514
– ident: ref186/cit186
  doi: 10.1039/C6NJ00079G
– ident: ref67/cit67
  doi: 10.1002/open.201200011
– ident: ref162/cit162
  doi: 10.1039/c3cc42695e
– ident: ref195/cit195
  doi: 10.1021/ol502163f
– ident: ref32/cit32
  doi: 10.1039/P29840001093
– ident: ref155/cit155
  doi: 10.1055/s-0035-1561320
– start-page: 1
  volume-title: Photochemistry and Photophysics of Coordination Compounds I
  year: 2007
  ident: ref28/cit28
– ident: ref71/cit71
  doi: 10.1021/ja991365q
– ident: ref121/cit121
  doi: 10.1021/ar700149s
– ident: ref131/cit131
  doi: 10.1021/jo3022346
– ident: ref142/cit142
  doi: 10.1038/ncomms6268
– ident: ref158/cit158
  doi: 10.1021/acs.orglett.6b02179
– ident: ref170/cit170
  doi: 10.1002/chem.201605640
– ident: ref134/cit134
  doi: 10.1039/C4CC05467A
– ident: ref199/cit199
  doi: 10.1021/jo00431a051
– ident: ref100/cit100
  doi: 10.1016/j.tet.2016.03.087
– ident: ref166/cit166
  doi: 10.1021/acs.orglett.7b00196
– ident: ref80/cit80
  doi: 10.1021/acs.joc.7b00088
– ident: ref81/cit81
  doi: 10.1002/anie.201602349
– ident: ref97/cit97
  doi: 10.1002/cssc.201403429
– ident: ref92/cit92
  doi: 10.1002/anie.201505731
– ident: ref18/cit18
  doi: 10.1021/ar3003305
– ident: ref52/cit52
  doi: 10.1002/tcr.201600125
– start-page: 97
  volume-title: Organofluorine Chemistry
  year: 1997
  ident: ref110/cit110
  doi: 10.1007/BFb0119266
– ident: ref140/cit140
  doi: 10.1021/cs5005823
– ident: ref206/cit206
  doi: 10.1002/anie.201308376
– ident: ref14/cit14
  doi: 10.1039/c1cs15083a
– ident: ref35/cit35
  doi: 10.1038/nature10647
– ident: ref47/cit47
  doi: 10.1002/slct.201701156
– ident: ref185/cit185
  doi: 10.1021/jacs.7b06715
– ident: ref55/cit55
  doi: 10.1016/0047-2670(87)85011-6
– ident: ref84/cit84
  doi: 10.1021/acs.orglett.6b01718
– ident: ref10/cit10
  doi: 10.1039/b816707a
– ident: ref26/cit26
  doi: 10.1021/acs.chemrev.6b00057
– ident: ref179/cit179
  doi: 10.1002/anie.201501908
– ident: ref196/cit196
  doi: 10.1021/acs.joc.5b00677
– ident: ref58/cit58
  doi: 10.1021/acs.joc.7b00140
– ident: ref48/cit48
  doi: 10.1038/s41570-017-0077
– ident: ref22/cit22
  doi: 10.1039/C5CY02095F
– ident: ref39/cit39
  doi: 10.1002/chem.201405505
– ident: ref210/cit210
  doi: 10.1039/C3GC42517G
– ident: ref106/cit106
  doi: 10.1016/S0022-1139(00)82380-5
– ident: ref176/cit176
  doi: 10.1021/ol101618u
– ident: ref182/cit182
  doi: 10.1021/ol200017a
– ident: ref187/cit187
  doi: 10.1002/anie.201208380
– ident: ref136/cit136
  doi: 10.1002/anie.201508622
– ident: ref107/cit107
  doi: 10.1016/S0022-1139(00)80995-1
– ident: ref114/cit114
  doi: 10.1055/s-0036-1588527
– ident: ref198/cit198
  doi: 10.1055/s-0033-1340956
– ident: ref90/cit90
  doi: 10.1039/c3cc44438d
– ident: ref200/cit200
  doi: 10.1039/C4QO00251B
– ident: ref75/cit75
  doi: 10.1021/acscatal.5b02410
– ident: ref203/cit203
  doi: 10.1002/chem.201504985
– ident: ref3/cit3
  doi: 10.1246/cl.2007.200
– ident: ref8/cit8
  doi: 10.1002/anie.200806273
– ident: ref500/cit500
  doi: 10.1002/ejoc.201601518
SSID ssj0005527
Score 2.6995208
SecondaryResourceType review_article
Snippet Transition metal-catalyzed C–H bond functionalizations have been the focus of intensive research over the last decades for the formation of C–C bonds from...
Transition metal-catalyzed C-H bond functionalizations have been the focus of intensive research over the last decades for the formation of C-C bonds from...
SourceID hal
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7532
SubjectTerms Alkenes
Alkylation
ambient temperature
Aromatic compounds
aromatic hydrocarbons
arylation
Bonding
Catalysis
catalysts
catalytic activity
chemical bonding
Chemical bonds
Chemical reactions
Chemical Sciences
Chemical synthesis
Cross coupling
cross-coupling reactions
Electron transfer
Functional groups
Hydrogen bonds
Metals
moieties
oxidants
Oxidation
Oxidizing agents
Photocatalysis
Photochemicals
photochemistry
Photoredox catalysis
Regioselectivity
Stereoselectivity
surveys
Transformations
Transition metals
Title Photoredox Catalysis for Building C–C Bonds from C(sp2)–H Bonds
URI http://dx.doi.org/10.1021/acs.chemrev.8b00077
https://www.ncbi.nlm.nih.gov/pubmed/30011194
https://www.proquest.com/docview/2121675207
https://www.proquest.com/docview/2071563078
https://www.proquest.com/docview/2131867190
https://univ-rennes.hal.science/hal-01862464
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RcoBLoeW1UKq04lAkUvyK7RxLRLVCUFWCSr1FtuPVSqWbqrtbIU78B_4hv4SZPLY82lWv47HljB_zOWN_A_AqZMr53FRprOQoVblUqXOWwoWeVcyFqDw9Tv50qIfH6sNJdvLHY_V_IviCv3UBjT-OZ5SSxTY-zazAXaHR0xASKj5f3ejoM7RS0EDrrCcZur4Rckdh-pc7WhnTZcibkGbjcQ4ewGH_bqe9aHK6N5_5vfD9fxrH233MQ1jrsGey306WdbgTJxtwr-hTvj2C4mhc4xk8VvW3pKD_OkRXkiCsTd512bOT4tePn0VCyYix4KI-S4rd6bl4jdJhK30MxwfvvxTDtMuykLqM6VnKK8eCiEGazHjurRfSa8OVswgu3MhZG3ylshy3xpE1xqHDz73ULErhJB625BNYndST-AwSxC4sxw1AEa-fzEc200YqwXHQGffBDmAXDVB2q2RaNgFwwUsSdlYpO6sMQPTjUoaOrZySZnxdXunNotJ5S9axXH0HB3yhSUTbw_2PJckYp4czWl3yAWz28-Gq4-jvOZ60BMM2thfFOFgUbXGTWM9RB8Ebka8Zu0SHy4ZgMGcDeNrOtUV3JKF1nqvntzfaC7iPeI4Yx1MhNmF1djGPLxEzzfxWs1J-AyOhD4s
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RcigX3o-FAgFxKBIpfsV2jktEFWBbIdGVeotsJ6tK0E3V7CLEif_AP-SXMJNNsgLBCq7jhyZ-zeeM5xuAZyFRzqemjKtSzmKVShU7Z8ld6FnJXKiUp-DkwyOdT9Xbk-SkCwqjWBhUosGemtaJv2YX4C9Jhp9xRplZbGvazBZcTrTSlLBhnH1YP-zoE7WS70DrpOca-nMnZJVC84tV2jqlN5F_A5yt4Tm4BtNB5fa9ycf95cLvh6-_sTn-7zddh6sdEo3Gq6VzAy5V85uwk_UJ4G5B9v60xht5VdZfooz-8hB5SYQgN3rV5dKOsh_fvmcRpSbGgov6LMr2mnPxHKX5Snobpgevj7M87nIuxC5hehHz0rEgqiBNYjz31gvpteHKWYQabuasDb5USYoH5cwa49D8p15qVknhJF695B3Yntfz6h5EiGRYiseBIpY_mc5soo1UguMSYNwHO4I9HICi2zNN0brDBS9I2I1K0Y3KCEQ_PUXouMsphcanzY1eDI3OV9Qdm6s_xXkfahLtdj6eFCRjnMJotPrMR7DbL4u14mj9Od67BMM-ngzFOFnke3Hzql5iHYRyRMVm7IY6XLZ0gykbwd3VkhvUkYTdearu__ugPYad_PhwUkzeHL17AFcQ6REXeSzELmwvLpbVQ0RTC_-o3Tw_AfulF-0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RQIuvB8LBQLiUCRS_ErsHJfAaoFSVYJK5RTZjqNK0M2q2UWIE_-Bf8gvYSabpALBCnEdPzQZj-3PGfsbgMc-UdZluoxDKatYZVLF1hoKFzpWMuuDcvQ4-e1-Oj1Ur4-Sow0w_VsYVKLBnpo2iE-zel5WHcMAf0Zy_JQTys5i2u1Nb8I5hCSckjaM83dnlzv6ZK0UP0jTpOcb-nMntDP55pedafOY7kX-DXS2m8_kMnwY1G7vnHzcXS7crv_6G6Pj_3zXFbjUIdJovHKhq7ARZtfgQt4ngrsO-cFxjSfzUNZfopz-9hCJSYRgN3re5dSO8h_fvucRpSjGgtP6JMp3mrl4gtLpSnoDDicv3-fTuMu9ENuEpYuYl5Z5EbzUiXbcGSekSzVX1iDksJU1xrtSJRkumJXR2iIMyJxMWZDCSjyCyZuwNatn4TZEiGhYhsuCIrY_mVUmSbVUgqMrMO68GcEOGqDo5k5TtGFxwQsSdlYpOquMQPRDVPiOw5xSaXxa3-jp0Gi-ovBYX_0Rjv1Qk-i3p-O9gmSM03OaVH3mI9juXeNMcUQBHM9fgmEfD4diHCyKwdhZqJdYByEdUbJps6YOly3tYMZGcGvldoM6kjA8z9SdfzfaAzh_8GJS7L3af3MXLiLgI0ryWIht2FqcLsM9BFULd7-dPz8B9M4aZw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photoredox+Catalysis+for+Building+C-C+Bonds+from+C%28sp2%29-H+Bonds&rft.jtitle=Chemical+reviews&rft.au=Wang%2C+Chang-Sheng&rft.au=Dixneuf%2C+Pierre+H&rft.au=Soul%C3%A9%2C+Jean-Fran%C3%A7ois&rft.date=2018-08-22&rft.issn=1520-6890&rft.eissn=1520-6890&rft.volume=118&rft.issue=16&rft.spage=7532&rft_id=info:doi/10.1021%2Facs.chemrev.8b00077&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2665&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2665&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2665&client=summon