Photoredox Catalysis for Building C–C Bonds from C(sp2)–H Bonds
Transition metal-catalyzed C–H bond functionalizations have been the focus of intensive research over the last decades for the formation of C–C bonds from unfunctionalized arenes, heteroarenes, alkenes. These direct transformations provide new approaches in synthesis with high atom- and step-economy...
Saved in:
Published in | Chemical reviews Vol. 118; no. 16; pp. 7532 - 7585 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
22.08.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0009-2665 1520-6890 1520-6890 |
DOI | 10.1021/acs.chemrev.8b00077 |
Cover
Abstract | Transition metal-catalyzed C–H bond functionalizations have been the focus of intensive research over the last decades for the formation of C–C bonds from unfunctionalized arenes, heteroarenes, alkenes. These direct transformations provide new approaches in synthesis with high atom- and step-economy compared to the traditional catalytic cross-coupling reactions. However, such methods still suffer from several limitations including functional group tolerance and the lack of regioselectivity. In addition, they often require harsh reaction conditions and some of them need the use of strong oxidant, in a stoichiometric amount, avoiding these processes to be truly eco-friendly. The use of photoredox catalysis has contributed to a significant expansion of the scope of C(sp2)–H bond functionalizations which include the direct arylations, (perfluoro)alkylations, acylations, and even cyanations. Most of these transformations involve the photochemical induced generation of a radical followed by its regioselective addition to arenes, heteroarenes, or alkenes, leading to the building of a new C(sp2)–C bond. The use of photoredox catalysis plays crucial roles in these reactions promoting electron transfer, enabling the generation of radical species and single electron either oxidation or reduction. Such reactions operating at room temperature allow the building of C–C bonds with high chemo-, regio-, or stereoselectivity. This review surveys the formation of C(sp2)–C bonds initiated by photoredox catalysis which involves a C(sp2)–H bond functionalization step, describes the advantages compared to traditional C(sp2)–H bond functionalizations, and presents mechanistic insights into the role played by the photoredox catalysts. |
---|---|
AbstractList | Transition metal-catalyzed C–H bond functionalizations have been the focus of intensive research over the last decades for the formation of C–C bonds from unfunctionalized arenes, heteroarenes, alkenes. These direct transformations provide new approaches in synthesis with high atom- and step-economy compared to the traditional catalytic cross-coupling reactions. However, such methods still suffer from several limitations including functional group tolerance and the lack of regioselectivity. In addition, they often require harsh reaction conditions and some of them need the use of strong oxidant, in a stoichiometric amount, avoiding these processes to be truly eco-friendly. The use of photoredox catalysis has contributed to a significant expansion of the scope of C(sp2)–H bond functionalizations which include the direct arylations, (perfluoro)alkylations, acylations, and even cyanations. Most of these transformations involve the photochemical induced generation of a radical followed by its regioselective addition to arenes, heteroarenes, or alkenes, leading to the building of a new C(sp2)–C bond. The use of photoredox catalysis plays crucial roles in these reactions promoting electron transfer, enabling the generation of radical species and single electron either oxidation or reduction. Such reactions operating at room temperature allow the building of C–C bonds with high chemo-, regio-, or stereoselectivity. This review surveys the formation of C(sp2)–C bonds initiated by photoredox catalysis which involves a C(sp2)–H bond functionalization step, describes the advantages compared to traditional C(sp2)–H bond functionalizations, and presents mechanistic insights into the role played by the photoredox catalysts. Transition metal-catalyzed C-H bond functionalizations have been the focus of intensive research over the last decades for the formation of C-C bonds from unfunctionalized arenes, heteroarenes, alkenes. These direct transformations provide new approaches in synthesis with high atom- and step-economy compared to the traditional catalytic cross-coupling reactions. However, such methods still suffer from several limitations including functional group tolerance and the lack of regioselectivity. In addition, they often require harsh reaction conditions and some of them need the use of strong oxidant, in a stoichiometric amount, avoiding these processes to be truly eco-friendly. The use of photoredox catalysis has contributed to a significant expansion of the scope of C(sp )-H bond functionalizations which include the direct arylations, (perfluoro)alkylations, acylations, and even cyanations. Most of these transformations involve the photochemical induced generation of a radical followed by its regioselective addition to arenes, heteroarenes, or alkenes, leading to the building of a new C(sp )-C bond. The use of photoredox catalysis plays crucial roles in these reactions promoting electron transfer, enabling the generation of radical species and single electron either oxidation or reduction. Such reactions operating at room temperature allow the building of C-C bonds with high chemo-, regio-, or stereoselectivity. This review surveys the formation of C(sp )-C bonds initiated by photoredox catalysis which involves a C(sp )-H bond functionalization step, describes the advantages compared to traditional C(sp )-H bond functionalizations, and presents mechanistic insights into the role played by the photoredox catalysts. Transition metal-catalyzed C-H bond functionalizations have been the focus of intensive research over the last decades for the formation of C-C bonds from unfunctionalized arenes, heteroarenes, alkenes. These direct transformations provide new approaches in synthesis with high atom- and step-economy compared to the traditional catalytic cross-coupling reactions. However, such methods still suffer from several limitations including functional group tolerance and the lack of regioselectivity. In addition, they often require harsh reaction conditions and some of them need the use of strong oxidant, in a stoichiometric amount, avoiding these processes to be truly eco-friendly. The use of photoredox catalysis has contributed to a significant expansion of the scope of C(sp)-H bond functionalizations which include the direct arylations, (perfluoro)alkylations, acylations, and even cyanations. Most of these transformations involve the photochemical induced generation of a radical followed by its regioselective addition to arenes, heteroarenes, or alkenes, leading to the building of a new C(sp)-C bond. The use of photoredox catalysis plays crucial roles in these reactions promoting electron transfer, enabling the generation of radical species and single electron either oxidation or reduction. Such reactions operating at room temperature allow the building of C-C bonds with high chemo-, regio-, or stereoselectivity. This review surveys the formation of C(sp)-C bonds initiated by photoredox catalysis which involves a C(sp)-H bond functionalization step, describes the advantages compared to traditional C(sp)-H bond functionalizations, and presents mechanistic insights into the role played by the photoredox catalysts. Transition metal-catalyzed C-H bond functionalizations have been the focus of intensive research over the last decades for the formation of C-C bonds from unfunctionalized arenes, heteroarenes, alkenes. These direct transformations provide new approaches in synthesis with high atom- and step-economy compared to the traditional catalytic cross-coupling reactions. However, such methods still suffer from several limitations including functional group tolerance and the lack of regioselectivity. In addition, they often require harsh reaction conditions and some of them need the use of strong oxidant, in a stoichiometric amount, avoiding these processes to be truly eco-friendly. The use of photoredox catalysis has contributed to a significant expansion of the scope of C(sp2)-H bond functionalizations which include the direct arylations, (perfluoro)alkylations, acylations, and even cyanations. Most of these transformations involve the photochemical induced generation of a radical followed by its regioselective addition to arenes, heteroarenes, or alkenes, leading to the building of a new C(sp2)-C bond. The use of photoredox catalysis plays crucial roles in these reactions promoting electron transfer, enabling the generation of radical species and single electron either oxidation or reduction. Such reactions operating at room temperature allow the building of C-C bonds with high chemo-, regio-, or stereoselectivity. This review surveys the formation of C(sp2)-C bonds initiated by photoredox catalysis which involves a C(sp2)-H bond functionalization step, describes the advantages compared to traditional C(sp2)-H bond functionalizations, and presents mechanistic insights into the role played by the photoredox catalysts.Transition metal-catalyzed C-H bond functionalizations have been the focus of intensive research over the last decades for the formation of C-C bonds from unfunctionalized arenes, heteroarenes, alkenes. These direct transformations provide new approaches in synthesis with high atom- and step-economy compared to the traditional catalytic cross-coupling reactions. However, such methods still suffer from several limitations including functional group tolerance and the lack of regioselectivity. In addition, they often require harsh reaction conditions and some of them need the use of strong oxidant, in a stoichiometric amount, avoiding these processes to be truly eco-friendly. The use of photoredox catalysis has contributed to a significant expansion of the scope of C(sp2)-H bond functionalizations which include the direct arylations, (perfluoro)alkylations, acylations, and even cyanations. Most of these transformations involve the photochemical induced generation of a radical followed by its regioselective addition to arenes, heteroarenes, or alkenes, leading to the building of a new C(sp2)-C bond. The use of photoredox catalysis plays crucial roles in these reactions promoting electron transfer, enabling the generation of radical species and single electron either oxidation or reduction. Such reactions operating at room temperature allow the building of C-C bonds with high chemo-, regio-, or stereoselectivity. This review surveys the formation of C(sp2)-C bonds initiated by photoredox catalysis which involves a C(sp2)-H bond functionalization step, describes the advantages compared to traditional C(sp2)-H bond functionalizations, and presents mechanistic insights into the role played by the photoredox catalysts. Transition metal-catalyzed C–H bond functionalizations have been the focus of intensive research over the last decades for the formation of C–C bonds from unfunctionalized arenes, heteroarenes, alkenes. These direct transformations provide new approaches in synthesis with high atom- and step-economy compared to the traditional catalytic cross-coupling reactions. However, such methods still suffer from several limitations including functional group tolerance and the lack of regioselectivity. In addition, they often require harsh reaction conditions and some of them need the use of strong oxidant, in a stoichiometric amount, avoiding these processes to be truly eco-friendly. The use of photoredox catalysis has contributed to a significant expansion of the scope of C(sp²)–H bond functionalizations which include the direct arylations, (perfluoro)alkylations, acylations, and even cyanations. Most of these transformations involve the photochemical induced generation of a radical followed by its regioselective addition to arenes, heteroarenes, or alkenes, leading to the building of a new C(sp²)–C bond. The use of photoredox catalysis plays crucial roles in these reactions promoting electron transfer, enabling the generation of radical species and single electron either oxidation or reduction. Such reactions operating at room temperature allow the building of C–C bonds with high chemo-, regio-, or stereoselectivity. This review surveys the formation of C(sp²)–C bonds initiated by photoredox catalysis which involves a C(sp²)–H bond functionalization step, describes the advantages compared to traditional C(sp²)–H bond functionalizations, and presents mechanistic insights into the role played by the photoredox catalysts. Transition metal-catalyzed C–H bond functionalizations have been the focus of intensive research over the last decades for the formation of C–C bonds from unfunctionalized arenes, heteroarenes, alkenes. These direct transformations provide new approaches in synthesis with high atom- and step-economy compared to the traditional catalytic cross-coupling reactions. However, such methods still suffer from several limitations including functional group tolerance and the lack of regioselectivity. In addition, they often require harsh reaction conditions and some of them need the use of strong oxidant, in a stoichiometric amount, avoiding these processes to be truly eco-friendly. The use of photoredox catalysis has contributed to a significant expansion of the scope of C(sp2)–H bond functionalizations which include the direct arylations, (perfluoro)alkylations, acylations, and even cyanations. Most of these transformations involve the photochemical induced generation of a radical followed by its regioselective addition to arenes, heteroarenes, or alkenes, leading to the building of a new C(sp2)–C bond. The use of photoredox catalysis plays crucial roles in these reactions promoting electron transfer, enabling the generation of radical species and single electron either oxidation or reduction. Such reactions operating at room temperature allow the building of C–C bonds with high chemo-, regio-, or stereoselectivity. This review surveys the formation of C(sp2)–C bonds initiated by photoredox catalysis which involves a C(sp2)–H bond functionalization step, describes the advantages compared to traditional C(sp2)–H bond functionalizations, and presents mechanistic insights into the role played by the photoredox catalysts. |
Author | Wang, Chang-Sheng Dixneuf, Pierre H Soulé, Jean-François |
AuthorAffiliation | CNRS, ISCR UMR 6226 Univ Rennes |
AuthorAffiliation_xml | – name: Univ Rennes – name: CNRS, ISCR UMR 6226 |
Author_xml | – sequence: 1 givenname: Chang-Sheng surname: Wang fullname: Wang, Chang-Sheng – sequence: 2 givenname: Pierre H surname: Dixneuf fullname: Dixneuf, Pierre H – sequence: 3 givenname: Jean-François orcidid: 0000-0002-6593-1995 surname: Soulé fullname: Soulé, Jean-François email: jean-francois.soule@univ-rennes1.fr |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30011194$$D View this record in MEDLINE/PubMed https://univ-rennes.hal.science/hal-01862464$$DView record in HAL |
BookMark | eNqFkc9u1DAQxi1URLeFJ0BCkbi0h2xn7PhPjm0ELNJKcICz5SQO6yqJFzup6I134A15ErzKtoceysnyN79vNDPfGTkZ_WgJeYuwRqB4ZZq4bnZ2CPZurWoAkPIFWSGnkAtVwglZJa3MqRD8lJzFeJu-nFP5ipwyAEQsixWpvu785INt_a-sMpPp76OLWedDdjO7vnXjj6z6-_tPld34sU2F4Iesuoh7epnUzaK-Ji8700f75viek-8fP3yrNvn2y6fP1fU2NxzElGNroKG2YZLLGmtVU1YLiYVRsmCmM0o1dVvwEjnrlJQmbVLWTIBl1DAUBTsnl0vfnen1PrjBhHvtjdOb660-aIBK0EIUd5jYi4XdB_9ztnHSg4uN7XszWj9HTZElWGIJ_0dBIhcMpEro-yforZ_DmJZODSkKmY4vE_XuSM31YNvHUR-unoByAZrgYwy2042bzOT8OAXjeo2gDwnrlLA-JqyPCScve-J9aP-862pxHYqPMz_n-Afcu7n3 |
CitedBy_id | crossref_primary_10_1039_D0QO01369B crossref_primary_10_1039_D2GC00310D crossref_primary_10_1039_D0QO01127D crossref_primary_10_1038_s41467_024_50979_6 crossref_primary_10_1016_j_tgchem_2023_100009 crossref_primary_10_1016_j_ica_2023_121584 crossref_primary_10_1021_acs_chemrev_0c01236 crossref_primary_10_6023_cjoc202104047 crossref_primary_10_1002_ejoc_201900584 crossref_primary_10_1039_D3GC04450E crossref_primary_10_1016_j_tetlet_2021_153102 crossref_primary_10_1002_adsc_202101053 crossref_primary_10_3389_fceng_2021_788653 crossref_primary_10_1039_D3OB01676E crossref_primary_10_3390_molecules28166127 crossref_primary_10_3390_molecules26195763 crossref_primary_10_1007_s42250_020_00144_5 crossref_primary_10_1002_chem_202303692 crossref_primary_10_1002_adsc_202301521 crossref_primary_10_1021_acs_orglett_2c03894 crossref_primary_10_1021_acscatal_1c04835 crossref_primary_10_1039_D4SU00214H crossref_primary_10_1039_D4CC05985A crossref_primary_10_1039_D2CC03073J crossref_primary_10_1039_D0CC07307E crossref_primary_10_1021_jacsau_2c00392 crossref_primary_10_1039_D4SC07491B crossref_primary_10_1016_j_mencom_2020_09_001 crossref_primary_10_1021_acs_joc_1c03007 crossref_primary_10_1021_acs_organomet_1c00254 crossref_primary_10_1039_D2SC00552B crossref_primary_10_1021_acscatal_0c04070 crossref_primary_10_1038_s41467_024_55744_3 crossref_primary_10_3390_molecules24050830 crossref_primary_10_1021_acs_joc_0c01985 crossref_primary_10_1039_D4OB02085E crossref_primary_10_6023_cjoc202312025 crossref_primary_10_1002_cplu_201900616 crossref_primary_10_1016_j_gresc_2023_10_002 crossref_primary_10_1021_acscatal_1c00242 crossref_primary_10_1038_s42004_020_00413_x crossref_primary_10_1021_acs_orglett_2c02330 crossref_primary_10_1039_D4OB01744G crossref_primary_10_1039_D3NJ03780K crossref_primary_10_1055_s_0040_1720921 crossref_primary_10_1002_cptc_202400405 crossref_primary_10_1021_acs_orglett_9b02812 crossref_primary_10_1039_D2SC03516B crossref_primary_10_1002_adsc_202101195 crossref_primary_10_1002_adsc_202001431 crossref_primary_10_1021_acssuschemeng_3c04247 crossref_primary_10_1002_chem_201905308 crossref_primary_10_1016_j_tetlet_2021_153485 crossref_primary_10_1021_acs_orglett_0c01391 crossref_primary_10_1039_D0GC01947J crossref_primary_10_1039_D0CC05672C crossref_primary_10_1002_anie_202201743 crossref_primary_10_1039_D2GC02950B crossref_primary_10_1002_slct_202101241 crossref_primary_10_1055_a_1946_0512 crossref_primary_10_1021_acs_jchemed_9b00836 crossref_primary_10_1021_acs_orglett_0c01399 crossref_primary_10_1021_jacs_3c11588 crossref_primary_10_1039_D3OB00238A crossref_primary_10_1002_chem_202002145 crossref_primary_10_1039_D4OB01951B crossref_primary_10_1002_ejoc_202001446 crossref_primary_10_1021_acs_orglett_9b01954 crossref_primary_10_1021_acs_orglett_9b01714 crossref_primary_10_1039_D0CC07632E crossref_primary_10_1021_acs_orglett_9b00620 crossref_primary_10_1021_acs_orglett_9b01831 crossref_primary_10_1021_acs_joc_1c02013 crossref_primary_10_1038_s41570_024_00585_3 crossref_primary_10_1002_adsc_201901562 crossref_primary_10_1016_j_scib_2021_08_001 crossref_primary_10_1002_anie_202219027 crossref_primary_10_3762_bjoc_16_83 crossref_primary_10_1021_acscatal_4c03560 crossref_primary_10_1021_acs_joc_3c00170 crossref_primary_10_1021_acsmaterialsau_2c00019 crossref_primary_10_1021_acs_organomet_9b00119 crossref_primary_10_1021_acs_orglett_0c00154 crossref_primary_10_1002_adsc_202300463 crossref_primary_10_1002_tcr_202100115 crossref_primary_10_1016_j_tetlet_2019_151506 crossref_primary_10_1002_cssc_202002397 crossref_primary_10_1038_s41557_024_01629_3 crossref_primary_10_1021_jacs_0c05025 crossref_primary_10_1016_j_ccr_2021_214255 crossref_primary_10_1039_D3OB01885G crossref_primary_10_1021_jacs_9b12328 crossref_primary_10_1021_acs_orglett_9b02957 crossref_primary_10_1002_ejoc_201900143 crossref_primary_10_1039_D1SC05294B crossref_primary_10_1002_adsc_202400466 crossref_primary_10_1021_jacs_2c01807 crossref_primary_10_1038_s41467_023_39753_2 crossref_primary_10_1002_adsc_201901139 crossref_primary_10_1021_acs_orglett_3c03099 crossref_primary_10_1039_D1SC06719B crossref_primary_10_1002_cctc_201900680 crossref_primary_10_1007_s41061_021_00355_5 crossref_primary_10_3390_molecules29184418 crossref_primary_10_1039_D3SC06675D crossref_primary_10_1002_anie_201908994 crossref_primary_10_1039_D3OB01305G crossref_primary_10_1039_D3RA01364B crossref_primary_10_1021_acs_joc_0c00346 crossref_primary_10_1021_acsami_2c01595 crossref_primary_10_1021_acs_orglett_2c03612 crossref_primary_10_2139_ssrn_4127828 crossref_primary_10_1021_acs_orglett_2c01674 crossref_primary_10_1021_acs_orglett_0c02228 crossref_primary_10_3390_molecules27175364 crossref_primary_10_1002_cctc_201901659 crossref_primary_10_1002_adsc_202300119 crossref_primary_10_1002_ange_201905924 crossref_primary_10_1002_asia_202300897 crossref_primary_10_1021_jacs_1c05988 crossref_primary_10_1021_acs_orglett_1c00915 crossref_primary_10_1021_acs_orglett_4c03998 crossref_primary_10_1039_D1SC02787E crossref_primary_10_1002_chem_202103077 crossref_primary_10_1039_D0GC02264K crossref_primary_10_1016_j_jcat_2024_115705 crossref_primary_10_1021_acscatal_0c01099 crossref_primary_10_6023_cjoc202106013 crossref_primary_10_1039_C8QO01261J crossref_primary_10_1002_chem_202003685 crossref_primary_10_1039_C9QO00166B crossref_primary_10_1002_ajoc_202100648 crossref_primary_10_1016_j_tetlet_2025_155502 crossref_primary_10_1016_j_mcat_2021_111785 crossref_primary_10_1039_D2GC02438A crossref_primary_10_1039_C9RA06120G crossref_primary_10_1039_D0GC02111C crossref_primary_10_1021_acs_accounts_4c00020 crossref_primary_10_1039_D3QO01908J crossref_primary_10_1039_D1QO00344E crossref_primary_10_1021_acs_orglett_9b03827 crossref_primary_10_1021_acscatal_9b03798 crossref_primary_10_1021_acs_orglett_9b02731 crossref_primary_10_1039_D1OB00960E crossref_primary_10_1039_D1CC03221F crossref_primary_10_1039_D3RA03479H crossref_primary_10_1039_D0QO01487G crossref_primary_10_1021_acs_joc_9b03306 crossref_primary_10_1002_ajoc_202400476 crossref_primary_10_1016_j_apcatb_2023_123653 crossref_primary_10_1039_D1QO01859K crossref_primary_10_1021_acs_orglett_0c00020 crossref_primary_10_1021_acs_chemrev_3c00930 crossref_primary_10_1039_C9SC01954E crossref_primary_10_1021_acs_orglett_2c00124 crossref_primary_10_1021_jacs_1c13105 crossref_primary_10_1002_tcr_202100006 crossref_primary_10_1055_a_1647_7292 crossref_primary_10_1021_acs_joc_2c01751 crossref_primary_10_1002_adsc_202000777 crossref_primary_10_1002_adsc_202400356 crossref_primary_10_1039_C9CC00768G crossref_primary_10_1002_anie_202210492 crossref_primary_10_1016_j_jcat_2022_01_024 crossref_primary_10_1039_D2CC02941C crossref_primary_10_1002_adsc_201801707 crossref_primary_10_1021_acs_chemrev_4c00808 crossref_primary_10_1002_adsc_201901481 crossref_primary_10_1039_C9OB01331H crossref_primary_10_1039_D0CS00493F crossref_primary_10_1021_acs_joc_0c02215 crossref_primary_10_1002_adsc_202500031 crossref_primary_10_1039_D3GC01329D crossref_primary_10_1021_acs_oprd_1c00038 crossref_primary_10_1021_acs_orglett_0c03624 crossref_primary_10_1002_adsc_202001053 crossref_primary_10_1002_bkcs_12850 crossref_primary_10_1039_D1NJ00651G crossref_primary_10_1016_S1872_2067_23_64461_4 crossref_primary_10_1021_acs_joc_3c01517 crossref_primary_10_1002_ange_202210492 crossref_primary_10_1002_tcr_202400177 crossref_primary_10_1039_D4NJ04300F crossref_primary_10_3762_bjoc_17_169 crossref_primary_10_1039_C9SC06184C crossref_primary_10_1002_adsc_201900521 crossref_primary_10_1002_adsc_202301239 crossref_primary_10_1021_jacs_4c03085 crossref_primary_10_1002_adsc_201900402 crossref_primary_10_1021_acs_joc_3c00780 crossref_primary_10_1021_acs_joc_1c02668 crossref_primary_10_1016_j_tetlet_2021_153064 crossref_primary_10_1039_D3GC04412B crossref_primary_10_1021_acs_orglett_2c01750 crossref_primary_10_1002_adsc_202001280 crossref_primary_10_1021_acs_orglett_9b00201 crossref_primary_10_1039_D0CC07880H crossref_primary_10_1002_cctc_201801601 crossref_primary_10_1038_s41467_020_17224_2 crossref_primary_10_3762_bjoc_15_201 crossref_primary_10_1038_s41467_019_12403_2 crossref_primary_10_1002_tcr_202000049 crossref_primary_10_1002_ejoc_202400749 crossref_primary_10_1016_j_tetlet_2019_151124 crossref_primary_10_1039_D2QO01985J crossref_primary_10_1021_jacs_3c06169 crossref_primary_10_1021_acs_analchem_0c02384 crossref_primary_10_1021_acscatal_9b00405 crossref_primary_10_1002_anie_202309709 crossref_primary_10_1021_acs_orglett_9b00351 crossref_primary_10_1038_s41467_023_36103_0 crossref_primary_10_1002_adsc_202001396 crossref_primary_10_1021_acs_orglett_1c01559 crossref_primary_10_1002_adsc_202001272 crossref_primary_10_1021_acs_orglett_1c00226 crossref_primary_10_1039_D2CS00289B crossref_primary_10_1021_acs_joc_0c01222 crossref_primary_10_1021_acsomega_9b04009 crossref_primary_10_1021_acs_joc_2c00595 crossref_primary_10_1002_adsc_202400682 crossref_primary_10_1039_C9QO01413F crossref_primary_10_1021_acs_orglett_9b02539 crossref_primary_10_3390_catal10050529 crossref_primary_10_1002_anie_201905924 crossref_primary_10_1039_D0CC03089A crossref_primary_10_1002_anie_201913320 crossref_primary_10_1021_acs_organomet_0c00356 crossref_primary_10_1021_acs_orglett_3c01933 crossref_primary_10_1039_C8DT03604G crossref_primary_10_1002_chem_201900932 crossref_primary_10_1021_acs_joc_1c01555 crossref_primary_10_1002_ejoc_202001178 crossref_primary_10_1039_D1QO01653A crossref_primary_10_1039_D1QO01085A crossref_primary_10_1039_D4CC04309J crossref_primary_10_1021_acs_inorgchem_0c00986 crossref_primary_10_1039_D1CY00293G crossref_primary_10_1021_acs_orglett_0c02760 crossref_primary_10_1002_chem_202302542 crossref_primary_10_1016_j_xcrp_2022_100763 crossref_primary_10_1021_acs_jpca_1c06772 crossref_primary_10_1002_cptc_202100090 crossref_primary_10_3762_bjoc_16_103 crossref_primary_10_1021_acs_orglett_0c02400 crossref_primary_10_1021_acs_orglett_9b03850 crossref_primary_10_1016_j_xcrp_2022_100768 crossref_primary_10_1021_acs_orglett_3c04085 crossref_primary_10_1039_C9CY01170F crossref_primary_10_1021_acs_joc_0c01454 crossref_primary_10_1002_celc_201900435 crossref_primary_10_1021_acs_joc_4c00310 crossref_primary_10_1039_D4QO01562B crossref_primary_10_1039_D4CC01335B crossref_primary_10_1039_D3OB00961K crossref_primary_10_1002_adsc_201901601 crossref_primary_10_1039_D5OB00149H crossref_primary_10_1002_open_202100254 crossref_primary_10_1039_C9GC02193K crossref_primary_10_1039_D3QO01929B crossref_primary_10_1039_D2CC00502F crossref_primary_10_1039_C9CC09586A crossref_primary_10_1038_s41467_023_44202_1 crossref_primary_10_1002_anie_202413557 crossref_primary_10_1002_bkcs_12778 crossref_primary_10_1016_j_tetlet_2020_152606 crossref_primary_10_1021_jacs_4c08459 crossref_primary_10_1039_C9DT00428A crossref_primary_10_1039_C9OB02328C crossref_primary_10_1039_D0CC02645J crossref_primary_10_1002_anie_202110304 crossref_primary_10_1039_D0CC08123J crossref_primary_10_1002_ange_202201743 crossref_primary_10_1002_jccs_201900471 crossref_primary_10_1002_ange_202102262 crossref_primary_10_1002_ange_202219027 crossref_primary_10_1002_anie_201809431 crossref_primary_10_1021_acs_chemrev_1c00311 crossref_primary_10_1039_D4CC04610B crossref_primary_10_6023_cjoc202010008 crossref_primary_10_1002_anie_202003035 crossref_primary_10_1021_acscatal_2c02924 crossref_primary_10_1039_C9OB01227C crossref_primary_10_1002_ejoc_202001113 crossref_primary_10_1002_ange_202009288 crossref_primary_10_1021_acs_chemrev_3c00755 crossref_primary_10_1055_a_2328_3037 crossref_primary_10_1016_j_tetlet_2023_154486 crossref_primary_10_1021_acs_orglett_0c02863 crossref_primary_10_1039_D1GC00175B crossref_primary_10_1039_D1GC03168F crossref_primary_10_1002_chem_202002646 crossref_primary_10_1039_D4CC00361F crossref_primary_10_1002_anie_201902258 crossref_primary_10_1002_chem_202001434 crossref_primary_10_1021_acs_orglett_4c00768 crossref_primary_10_1021_jacs_0c08389 crossref_primary_10_1021_jacs_5c01983 crossref_primary_10_1021_acs_orglett_9b01212 crossref_primary_10_1021_acs_orglett_9b01333 crossref_primary_10_1002_ange_201909457 crossref_primary_10_1021_acs_orglett_9b03879 crossref_primary_10_1002_adsc_202001125 crossref_primary_10_1039_D2QO00416J crossref_primary_10_1039_D4CC04889J crossref_primary_10_3390_catal10010080 crossref_primary_10_1002_ange_202010217 crossref_primary_10_1002_chem_201903910 crossref_primary_10_1021_acssuschemeng_0c01243 crossref_primary_10_1038_s41467_019_12216_3 crossref_primary_10_1039_D1QO01765A crossref_primary_10_1016_j_poly_2021_115337 crossref_primary_10_1021_acs_joc_2c01453 crossref_primary_10_1002_adsc_202200674 crossref_primary_10_3390_molecules25092125 crossref_primary_10_1039_D2OB01732F crossref_primary_10_1002_ajoc_202300544 crossref_primary_10_1021_acscatal_0c02808 crossref_primary_10_1021_acs_joc_0c02477 crossref_primary_10_1021_acsmacrolett_3c00646 crossref_primary_10_1016_j_tetlet_2020_152746 crossref_primary_10_1038_s41467_022_31976_z crossref_primary_10_1038_s41467_024_50141_2 crossref_primary_10_1002_ange_202300159 crossref_primary_10_1039_D2GC01256A crossref_primary_10_1039_D2QO02052A crossref_primary_10_1021_acscatal_9b04921 crossref_primary_10_1016_j_tetlet_2020_152632 crossref_primary_10_1039_D1QO00994J crossref_primary_10_1021_acscatal_4c07316 crossref_primary_10_1021_acs_joc_1c01356 crossref_primary_10_1016_j_cclet_2019_09_040 crossref_primary_10_1016_j_tetlet_2022_154055 crossref_primary_10_1021_acsami_4c01259 crossref_primary_10_1002_cptc_201900300 crossref_primary_10_1002_tcr_202200177 crossref_primary_10_3762_bjoc_16_147 crossref_primary_10_1016_j_tetlet_2023_154585 crossref_primary_10_1039_C9GC02270H crossref_primary_10_1021_acs_joc_0c02227 crossref_primary_10_1039_C9GC03936H crossref_primary_10_1021_acscatal_1c05067 crossref_primary_10_1002_chem_202001414 crossref_primary_10_1021_acs_orglett_0c00545 crossref_primary_10_1039_D4CC05854B crossref_primary_10_1002_chem_202301379 crossref_primary_10_1126_science_aay8224 crossref_primary_10_1002_anie_202015596 crossref_primary_10_1055_a_1734_9782 crossref_primary_10_1002_ange_201814488 crossref_primary_10_2139_ssrn_4157070 crossref_primary_10_1039_C9OB00244H crossref_primary_10_1039_D1CS01168E crossref_primary_10_1039_D2GC03577D crossref_primary_10_1039_D1QO00775K crossref_primary_10_1039_D0CS01392G crossref_primary_10_1039_D1CC00996F crossref_primary_10_1002_adsc_201901520 crossref_primary_10_1039_D0CY01963A crossref_primary_10_1021_acs_joc_3c00490 crossref_primary_10_1002_ejoc_202100806 crossref_primary_10_1002_asia_202300235 crossref_primary_10_1002_anie_202010217 crossref_primary_10_1021_acs_joc_8b03155 crossref_primary_10_1021_acscatal_3c03112 crossref_primary_10_1039_D1GC03187B crossref_primary_10_1039_D1CC01756J crossref_primary_10_1248_cpb_c23_00323 crossref_primary_10_1002_chem_202301700 crossref_primary_10_1055_a_1495_6994 crossref_primary_10_1021_acs_orglett_1c03431 crossref_primary_10_1021_jacs_0c04886 crossref_primary_10_1002_ange_202309709 crossref_primary_10_1021_acs_joc_1c01612 crossref_primary_10_1021_acs_joc_9b01625 crossref_primary_10_1002_cjoc_202300288 crossref_primary_10_3389_fchem_2024_1372572 crossref_primary_10_3390_molecules25071606 crossref_primary_10_1039_D1QO01570B crossref_primary_10_1002_ajoc_202300252 crossref_primary_10_1039_D2OB01646J crossref_primary_10_1002_cssc_202401958 crossref_primary_10_1021_acs_inorgchem_2c02911 crossref_primary_10_1021_acs_orglett_9b02463 crossref_primary_10_1002_cctc_202200623 crossref_primary_10_1002_cptc_202000061 crossref_primary_10_1021_acs_joc_3c01801 crossref_primary_10_1002_chem_202400443 crossref_primary_10_1016_j_tetlet_2020_152766 crossref_primary_10_1039_D2OB00109H crossref_primary_10_1002_anie_202206420 crossref_primary_10_1016_j_cclet_2022_108097 crossref_primary_10_1021_acscatal_0c04722 crossref_primary_10_1021_acs_joc_9b01879 crossref_primary_10_1002_asia_201901718 crossref_primary_10_1021_acs_joc_2c00047 crossref_primary_10_1002_anie_201909457 crossref_primary_10_1039_D2CC03595B crossref_primary_10_1002_ange_202400845 crossref_primary_10_1021_acs_chemrev_1c00384 crossref_primary_10_1002_ajoc_202300221 crossref_primary_10_1021_acs_orglett_0c02912 crossref_primary_10_6023_cjoc202110030 crossref_primary_10_1021_jacs_4c00676 crossref_primary_10_1039_D0SC04879H crossref_primary_10_1039_D2CC02907C crossref_primary_10_1021_acscatal_0c04756 crossref_primary_10_1002_chem_202402776 crossref_primary_10_1021_acs_orglett_4c03005 crossref_primary_10_1039_C8OB02921K crossref_primary_10_1021_acscatal_0c02454 crossref_primary_10_1021_acscatal_0c03422 crossref_primary_10_1021_jacs_4c08158 crossref_primary_10_1021_acsomega_2c08094 crossref_primary_10_1021_acs_orglett_3c03713 crossref_primary_10_1021_jacsau_3c00231 crossref_primary_10_1002_adsc_202200231 crossref_primary_10_1039_D1QO00162K crossref_primary_10_1039_D4SC03292F crossref_primary_10_1002_ejoc_202300191 crossref_primary_10_1039_D2QO01348G crossref_primary_10_1039_D3OB01177A crossref_primary_10_1021_acs_joc_4c00270 crossref_primary_10_1002_ajoc_202300234 crossref_primary_10_1021_acscatal_2c00763 crossref_primary_10_1021_acs_orglett_9b02487 crossref_primary_10_1002_chem_202102006 crossref_primary_10_1002_chem_201903816 crossref_primary_10_1055_a_2405_2961 crossref_primary_10_1016_j_tetlet_2020_152425 crossref_primary_10_1039_D0OB00508H crossref_primary_10_1039_D1OB01432C crossref_primary_10_1039_D4QO01939C crossref_primary_10_1021_acs_chemrev_1c00247 crossref_primary_10_3390_molecules29235553 crossref_primary_10_1016_j_cclet_2020_08_013 crossref_primary_10_1021_acscatal_0c00142 crossref_primary_10_1002_anie_202007144 crossref_primary_10_1021_acs_orglett_3c03701 crossref_primary_10_1038_s41929_023_01105_0 crossref_primary_10_1039_D0NJ02527E crossref_primary_10_1002_cptc_201900044 crossref_primary_10_1021_jacs_1c12961 crossref_primary_10_1039_D3QO00505D crossref_primary_10_1021_jacs_1c10783 crossref_primary_10_1039_C9OB01918A crossref_primary_10_1039_C9QO00536F crossref_primary_10_1039_D4CC06594H crossref_primary_10_1021_acscatal_1c05318 crossref_primary_10_1002_cctc_202200319 crossref_primary_10_1016_j_ccr_2020_213683 crossref_primary_10_1002_chem_202401623 crossref_primary_10_3390_molecules29040782 crossref_primary_10_1039_D0OB01580F crossref_primary_10_1002_anie_202309572 crossref_primary_10_1021_acs_joc_9b00855 crossref_primary_10_1111_php_13303 crossref_primary_10_1002_adsc_202201143 crossref_primary_10_1055_a_2302_5887 crossref_primary_10_1002_ange_202007144 crossref_primary_10_1039_D1QO00605C crossref_primary_10_1002_ejoc_201900957 crossref_primary_10_1002_chem_202401617 crossref_primary_10_1021_acs_orglett_9b04201 crossref_primary_10_1039_C9QO01193E crossref_primary_10_1021_acs_orglett_9b00083 crossref_primary_10_1002_anie_202311531 crossref_primary_10_1002_ejoc_201900952 crossref_primary_10_1039_C9OB02113B crossref_primary_10_1021_acscatal_0c00200 crossref_primary_10_1039_D0OB01581D crossref_primary_10_1021_acs_organomet_0c00387 crossref_primary_10_1039_D1SC04475C crossref_primary_10_1039_D2OB00795A crossref_primary_10_1039_D3CC02424E crossref_primary_10_1070_RCR4978 crossref_primary_10_1021_acs_orglett_3c03764 crossref_primary_10_1039_C9OB01169B crossref_primary_10_1039_D5OB00018A crossref_primary_10_1002_ajoc_201900170 crossref_primary_10_1021_acscatal_8b04553 crossref_primary_10_1021_acs_orglett_1c02562 crossref_primary_10_1021_acssuschemeng_9b04631 crossref_primary_10_1039_D3CP05585J crossref_primary_10_1016_j_ccr_2019_213129 crossref_primary_10_1002_ange_201908994 crossref_primary_10_1002_slct_202003022 crossref_primary_10_1002_asia_202000905 crossref_primary_10_1021_acs_inorgchem_2c02945 crossref_primary_10_1021_acs_chemrev_0c00841 crossref_primary_10_3390_molecules27185976 crossref_primary_10_1021_acscatal_0c04952 crossref_primary_10_1038_s43586_021_00041_2 crossref_primary_10_1002_cctc_202300537 crossref_primary_10_1016_j_jcat_2023_07_004 crossref_primary_10_1021_acs_joc_8b02595 crossref_primary_10_1039_C8CC07759B crossref_primary_10_6023_cjoc202112024 crossref_primary_10_1039_C9CC06587C crossref_primary_10_1021_acs_orglett_2c03077 crossref_primary_10_1063_5_0094380 crossref_primary_10_1039_D4GC00502C crossref_primary_10_1021_acs_orglett_9b03018 crossref_primary_10_1021_jacs_2c12481 crossref_primary_10_1021_acs_joc_1c02972 crossref_primary_10_1070_RCR4959 crossref_primary_10_1016_j_ccr_2023_215607 crossref_primary_10_1055_s_0042_1751497 crossref_primary_10_1016_j_tetlet_2022_154321 crossref_primary_10_1039_D2OB00430E crossref_primary_10_1038_s41467_019_10441_4 crossref_primary_10_1002_asia_202100614 crossref_primary_10_1039_D4QI00613E crossref_primary_10_1002_ajoc_202200356 crossref_primary_10_1016_j_cej_2021_129976 crossref_primary_10_1002_slct_202100225 crossref_primary_10_1039_D1OB01829A crossref_primary_10_3390_molecules25020419 crossref_primary_10_1002_asia_202401442 crossref_primary_10_1002_ejoc_202100461 crossref_primary_10_1055_a_2193_2682 crossref_primary_10_1021_jacs_8b08052 crossref_primary_10_1039_D1CC05882G crossref_primary_10_1039_C9OB02294E crossref_primary_10_1021_acscatal_0c02159 crossref_primary_10_1016_j_tetlet_2024_155083 crossref_primary_10_1039_C8CC07732K crossref_primary_10_1039_D4CC02914C crossref_primary_10_1021_acs_inorgchem_4c01726 crossref_primary_10_1021_acs_orglett_4c00031 crossref_primary_10_1039_D2GC03829C crossref_primary_10_1007_s10311_020_01150_2 crossref_primary_10_1002_adsc_201801203 crossref_primary_10_1021_acs_inorgchem_3c03831 crossref_primary_10_1055_a_2378_8663 crossref_primary_10_1021_acs_inorgchem_3c00688 crossref_primary_10_1002_ange_202206420 crossref_primary_10_1039_C9OB00659A crossref_primary_10_1039_D2QO01475K crossref_primary_10_1039_D3OB01389H crossref_primary_10_1039_C9CC08524F crossref_primary_10_1002_chem_202101414 crossref_primary_10_1021_jacs_0c03144 crossref_primary_10_1002_adsc_202000630 crossref_primary_10_1039_D1RA05936J crossref_primary_10_1021_acs_inorgchem_9b03664 crossref_primary_10_1002_chem_202402220 crossref_primary_10_1021_acs_orglett_3c03449 crossref_primary_10_1016_j_tetlet_2022_153693 crossref_primary_10_1039_D0CP01556C crossref_primary_10_1002_ejoc_202300257 crossref_primary_10_1039_C9CC07666B crossref_primary_10_1039_D1QO01127H crossref_primary_10_1016_j_mcat_2024_114337 crossref_primary_10_1039_D1GC04825B crossref_primary_10_1002_asia_202100513 crossref_primary_10_1002_ange_202309572 crossref_primary_10_1002_ejoc_201801650 crossref_primary_10_1039_C9NJ05211A crossref_primary_10_1002_ajoc_202300069 crossref_primary_10_1002_ange_201809431 crossref_primary_10_1021_acscatal_1c04204 crossref_primary_10_1002_ange_202311531 crossref_primary_10_1002_ange_202110304 crossref_primary_10_1038_s41467_022_30176_z crossref_primary_10_3390_molecules27051597 crossref_primary_10_1002_ejoc_202001616 crossref_primary_10_1039_C9OB02074H crossref_primary_10_1016_j_jcat_2022_07_023 crossref_primary_10_1039_D2CC05842A crossref_primary_10_1039_D0GC03697H crossref_primary_10_1093_chemle_upae103 crossref_primary_10_1039_C9QO01058K crossref_primary_10_1055_a_1932_6937 crossref_primary_10_1093_bulcsj_uoae138 crossref_primary_10_1039_D2OB01587K crossref_primary_10_1016_j_trechm_2021_12_008 crossref_primary_10_1039_D0CC00178C crossref_primary_10_1021_acs_jpca_9b10238 crossref_primary_10_1002_cssc_202301015 crossref_primary_10_1039_D1QO01925B crossref_primary_10_1002_ajoc_202100601 crossref_primary_10_1002_anie_202400845 crossref_primary_10_1039_D3GC04154A crossref_primary_10_1039_D3SC06476J crossref_primary_10_1002_ange_201913320 crossref_primary_10_1002_anie_202009288 crossref_primary_10_1021_acs_orglett_4c01594 crossref_primary_10_1002_asia_202001087 crossref_primary_10_1021_acs_joc_4c02065 crossref_primary_10_1055_a_2131_3208 crossref_primary_10_1021_acscatal_1c01350 crossref_primary_10_1021_acs_orglett_0c02179 crossref_primary_10_1021_acs_orglett_0c03269 crossref_primary_10_1039_D1CS00544H crossref_primary_10_1039_D2OB01584F crossref_primary_10_1016_j_rechem_2023_101249 crossref_primary_10_1039_D0OB00854K crossref_primary_10_1021_acs_orglett_1c03115 crossref_primary_10_1002_ajoc_202000268 crossref_primary_10_1016_j_catcom_2019_105785 crossref_primary_10_1002_adsc_202000961 crossref_primary_10_1002_cctc_202200830 crossref_primary_10_1039_D2CC04408K crossref_primary_10_1039_D1QO01914G crossref_primary_10_1021_acsami_9b13538 crossref_primary_10_1021_acs_orglett_1c04319 crossref_primary_10_1002_ajoc_202200685 crossref_primary_10_1039_D3CC03855F crossref_primary_10_1021_jacs_9b07370 crossref_primary_10_1002_ejoc_202101242 crossref_primary_10_1039_D2CC01212J crossref_primary_10_1021_acssuschemeng_9b02842 crossref_primary_10_1002_ange_201902258 crossref_primary_10_1021_jacs_4c13485 crossref_primary_10_1021_acs_joc_9b02646 crossref_primary_10_1039_D1CC04883J crossref_primary_10_1002_ajoc_201900666 crossref_primary_10_1039_D2QO00472K crossref_primary_10_1039_D1OB00260K crossref_primary_10_1039_D4RA03259D crossref_primary_10_1002_chem_201901397 crossref_primary_10_1021_acs_joc_9b00670 crossref_primary_10_1002_chem_202004373 crossref_primary_10_1002_ejoc_202101572 crossref_primary_10_1002_ange_202015596 crossref_primary_10_1039_D4GC02807D crossref_primary_10_1002_anie_201814488 crossref_primary_10_1039_D1CC04872D crossref_primary_10_1002_ange_202413557 crossref_primary_10_1021_acs_joc_9b00318 crossref_primary_10_1021_acs_joc_4c00902 crossref_primary_10_1021_acs_joc_9b00557 crossref_primary_10_1039_D4SC06005A crossref_primary_10_1002_chem_202402333 crossref_primary_10_7498_aps_69_20200287 crossref_primary_10_1039_D3SC02768F crossref_primary_10_1002_chem_202403420 crossref_primary_10_1016_j_tet_2020_131342 crossref_primary_10_1002_chem_202301934 crossref_primary_10_1021_acs_orglett_5c00287 crossref_primary_10_1039_D0QI00590H crossref_primary_10_1039_D0SC02134B crossref_primary_10_1007_s11426_019_9627_x crossref_primary_10_1360_SSC_2024_0266 crossref_primary_10_1021_acs_orglett_9b01911 crossref_primary_10_1002_anie_202102262 crossref_primary_10_1021_acscatal_0c02247 crossref_primary_10_1021_acs_joc_0c01818 crossref_primary_10_1002_ange_202003035 crossref_primary_10_1002_anie_202300159 crossref_primary_10_1016_j_jcat_2020_05_041 |
Cites_doi | 10.1021/ol102326b 10.1039/C7OB01418J 10.1002/anie.201702213 10.1021/acs.orglett.7b01952 10.1021/acs.orglett.5b01069 10.1039/C6QO00393A 10.1021/acscatal.5b00668 10.1002/chem.201701665 10.1002/anie.201103145 10.1039/C6SC05533H 10.1021/ol900934g 10.1002/anie.201405478 10.1002/tcr.201600125 10.1021/ar000209h 10.1021/ol500469a 10.1021/ol501094z 10.1021/cr500368h 10.1038/ncomms8919 10.1021/acs.joc.5b00305 10.1016/S0010-8545(00)00274-5 10.1002/anie.201402008 10.1002/anie.201506432 10.1016/S0040-4020(01)98677-6 10.3762/bjoc.12.210 10.1039/C6CS00023A 10.1021/acscatal.7b00840 10.1038/nature14885 10.1055/s-0032-1318155 10.1021/ol1012857 10.1002/cctc.201700557 10.1021/acs.accounts.6b00275 10.1002/chem.201602596 10.1021/cr100379j 10.1021/ja413208y 10.1002/anie.201210276 10.1021/ja300798k 10.1021/cr900184e 10.1021/cr100280d 10.1039/C5CC09726F 10.1039/C6SC02653B 10.1039/c3cc42672f 10.1002/chem.201302407 10.1126/science.1258232 10.1021/ja00778a054 10.1021/cr9000836 10.1016/j.tet.2015.02.034 10.1039/C6QO00158K 10.1021/acs.orglett.5b02061 10.1021/acs.orglett.6b00442 10.1021/acscatal.5b02386 10.1002/anie.201706896 10.1021/ol501081h 10.1021/acs.joc.6b01058 10.1002/cbic.200301023 10.1002/chem.201304120 10.1016/S0022-1139(00)81780-7 10.1039/C2CS35250H 10.1039/C5GC01931A 10.1021/acs.joc.8b00205 10.1021/acscatal.6b02586 10.1039/C7SC00283A 10.1039/c1cs15082k 10.1002/cssc.201301282 10.1002/anie.200901353 10.1021/acscentsci.6b00090 10.1002/anie.201409529 10.1002/adsc.200900874 10.1002/ejoc.201501189 10.1021/acs.jmedchem.5b00258 10.1021/ja501621q 10.1002/ejoc.201601653 10.1039/c3ra43299h 10.1039/C6SC00807K 10.1002/cssc.201700783 10.1021/ja0176907 10.1016/j.tetlet.2016.08.081 10.1021/acs.joc.6b01034 10.1021/acs.orglett.5b03016 10.1038/nchem.1452 10.1002/adsc.201300199 10.1021/jo5020432 10.1002/anie.201308614 10.1021/acs.joc.7b00659 10.1002/anie.201608297 10.1002/anie.201203269 10.1016/S0022-1139(00)00324-9 10.1021/acscatal.6b01452 10.1016/j.chempr.2016.08.002 10.1016/j.chempr.2017.11.004 10.1021/jm500759v 10.1002/anie.201203599 10.1002/ejoc.201500006 10.1002/anie.201510533 10.1021/cs501686d 10.1002/adsc.201600125 10.1021/ja212099r 10.1021/ja208068w 10.1021/jacs.6b12708 10.1021/cr900005n 10.1016/j.tetlet.2017.09.010 10.1002/cjoc.201300411 10.1002/ejoc.201500354 10.1002/ajoc.201402199 10.1021/acs.joc.6b00811 10.1016/0040-4039(91)80524-A 10.1002/anie.201410432 10.1021/acs.joc.6b01449 10.1002/anie.201408891 10.1246/cl.130547 10.1039/b606984n 10.1021/ol5013839 10.1039/C7QO00012J 10.1021/ol101146f 10.1039/C5OB01486G 10.1021/ol501939m 10.1021/ol902703k 10.1039/c2cs35096c 10.1038/nchem.1607 10.1021/jo401894b 10.1021/cr300153j 10.1002/adsc.201400542 10.1002/chem.201301988 10.1039/c1cs15093f 10.1021/acs.orglett.6b01735 10.1002/anie.201508698 10.3762/bjoc.10.108 10.1021/acs.joc.6b02891 10.1039/C7CS00339K 10.1021/ol400946k 10.1039/C5QO00031A 10.1002/adsc.201200569 10.1021/acs.joc.5b01803 10.1016/j.tetlet.2013.10.090 10.1126/science.1131943 10.1021/acscatal.7b01133 10.1002/anie.201400560 10.1039/C5OB01349F 10.1039/C4SC02537G 10.1039/C5CC02349A 10.1002/anie.201703004 10.1021/acs.orglett.7b03001 10.1021/cr300503r 10.1039/C6CC08975E 10.1016/j.tetlet.2017.04.001 10.1002/anie.200902996 10.1021/ol2032575 10.1039/C4CC07925F 10.1016/j.tetlet.2012.02.032 10.1021/jo202538x 10.1039/C5CC09881E 10.1002/chem.201600229 10.1002/anie.201512027 10.1002/adsc.201200588 10.1126/science.1253647 10.1021/acs.accounts.6b00229 10.1021/acs.orglett.5b01530 10.1039/C4CC07066F 10.1039/c39930001359 10.1002/anie.201402023 10.1021/cr0509760 10.1021/ja512946e 10.1039/C1OB06652H 10.1055/s-2008-1042907 10.1002/adsc.201500514 10.1039/C6NJ00079G 10.1002/open.201200011 10.1039/c3cc42695e 10.1021/ol502163f 10.1039/P29840001093 10.1055/s-0035-1561320 10.1021/ja991365q 10.1021/ar700149s 10.1021/jo3022346 10.1038/ncomms6268 10.1021/acs.orglett.6b02179 10.1002/chem.201605640 10.1039/C4CC05467A 10.1021/jo00431a051 10.1016/j.tet.2016.03.087 10.1021/acs.orglett.7b00196 10.1021/acs.joc.7b00088 10.1002/anie.201602349 10.1002/cssc.201403429 10.1002/anie.201505731 10.1021/ar3003305 10.1007/BFb0119266 10.1021/cs5005823 10.1002/anie.201308376 10.1039/c1cs15083a 10.1038/nature10647 10.1002/slct.201701156 10.1021/jacs.7b06715 10.1016/0047-2670(87)85011-6 10.1021/acs.orglett.6b01718 10.1039/b816707a 10.1021/acs.chemrev.6b00057 10.1002/anie.201501908 10.1021/acs.joc.5b00677 10.1021/acs.joc.7b00140 10.1038/s41570-017-0077 10.1039/C5CY02095F 10.1002/chem.201405505 10.1039/C3GC42517G 10.1016/S0022-1139(00)82380-5 10.1021/ol101618u 10.1021/ol200017a 10.1002/anie.201208380 10.1002/anie.201508622 10.1016/S0022-1139(00)80995-1 10.1055/s-0036-1588527 10.1055/s-0033-1340956 10.1039/c3cc44438d 10.1039/C4QO00251B 10.1021/acscatal.5b02410 10.1002/chem.201504985 10.1246/cl.2007.200 10.1002/anie.200806273 10.1002/ejoc.201601518 |
ContentType | Journal Article |
Copyright | Copyright American Chemical Society Aug 22, 2018 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright American Chemical Society Aug 22, 2018 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 7S9 L.6 1XC |
DOI | 10.1021/acs.chemrev.8b00077 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-6890 |
EndPage | 7585 |
ExternalDocumentID | oai_HAL_hal_01862464v1 30011194 10_1021_acs_chemrev_8b00077 f32351861 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 1AW 29B 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 D0L DU5 DZ EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 LG6 P2P PQEST PQQKQ ROL RWL TAE TN5 UI2 UKR UPT VF5 VG9 VQA W1F WH7 X YZZ ZHY --- -DZ -~X .DC 4.4 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AFXLT AGXLV AHGAQ CITATION CUPRZ GGK XSW ~02 NPM 7SR 8BQ 8FD JG9 7X8 7S9 L.6 1XC |
ID | FETCH-LOGICAL-a506t-1da0c2ec3757b1b8b23b6714a8743afa88cbd459153f877a1529b360e32a31643 |
IEDL.DBID | ACS |
ISSN | 0009-2665 1520-6890 |
IngestDate | Fri Sep 12 12:56:18 EDT 2025 Fri Jul 11 03:18:51 EDT 2025 Fri Jul 11 04:29:29 EDT 2025 Mon Jun 30 08:36:09 EDT 2025 Thu Apr 03 07:04:44 EDT 2025 Thu Apr 24 23:11:27 EDT 2025 Tue Jul 01 03:16:16 EDT 2025 Thu Aug 27 13:42:18 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a506t-1da0c2ec3757b1b8b23b6714a8743afa88cbd459153f877a1529b360e32a31643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6593-1995 0000-0002-3025-6969 |
PMID | 30011194 |
PQID | 2121675207 |
PQPubID | 45407 |
PageCount | 54 |
ParticipantIDs | hal_primary_oai_HAL_hal_01862464v1 proquest_miscellaneous_2131867190 proquest_miscellaneous_2071563078 proquest_journals_2121675207 pubmed_primary_30011194 crossref_citationtrail_10_1021_acs_chemrev_8b00077 crossref_primary_10_1021_acs_chemrev_8b00077 acs_journals_10_1021_acs_chemrev_8b00077 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-08-22 |
PublicationDateYYYYMMDD | 2018-08-22 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Chemical reviews |
PublicationTitleAlternate | Chem. Rev |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 ref185/cit185 ref23/cit23 ref115/cit115 ref187/cit187 ref181/cit181 ref111/cit111 ref113/cit113 ref183/cit183 ref117/cit117 ref48/cit48 ref74/cit74 ref189/cit189 ref119/cit119 ref10/cit10 ref35/cit35 ref93/cit93 ref42/cit42 ref120/cit120 ref178/cit178 ref122/cit122 ref61/cit61 ref176/cit176 Dixneuf P. H. (ref20/cit20) 2015 ref67/cit67 ref128/cit128 ref124/cit124 ref126/cit126 ref54/cit54 ref137/cit137 ref11/cit11 ref102/cit102 ref29/cit29 ref174/cit174 ref86/cit86 Campeau L.-C. (ref2/cit2) 2007; 40 ref170/cit170 ref5/cit5 ref43/cit43 ref80/cit80 ref133/cit133 ref207/cit207 ref203/cit203 ref148/cit148 ref55/cit55 ref144/cit144 ref218/cit218 ref167/cit167 ref163/cit163 ref66/cit66 ref22/cit22 ref87/cit87 ref106/cit106 ref190/cit190 ref140/cit140 ref198/cit198 ref214/cit214 ref194/cit194 ref98/cit98 ref210/cit210 ref153/cit153 ref150/cit150 ref63/cit63 ref56/cit56 ref155/cit155 ref156/cit156 ref158/cit158 ref8/cit8 ref59/cit59 ref500/cit500 ref85/cit85 ref34/cit34 ref37/cit37 ref221/cit221 ref60/cit60 ref17/cit17 ref219/cit219 ref82/cit82 ref147/cit147 ref145/cit145 ref21/cit21 ref166/cit166 ref164/cit164 ref213/cit213 ref78/cit78 ref211/cit211 ref36/cit36 ref83/cit83 ref79/cit79 ref139/cit139 ref172/cit172 ref200/cit200 ref14/cit14 ref57/cit57 ref169/cit169 ref134/cit134 ref208/cit208 ref40/cit40 ref131/cit131 ref205/cit205 ref161/cit161 ref142/cit142 ref216/cit216 ref15/cit15 ref180/cit180 ref62/cit62 ref41/cit41 ref58/cit58 ref104/cit104 ref177/cit177 ref84/cit84 ref1/cit1 ref123/cit123 ref196/cit196 ref7/cit7 ref45/cit45 ref52/cit52 ref184/cit184 ref114/cit114 ref186/cit186 ref116/cit116 ref182/cit182 ref112/cit112 ref77/cit77 ref71/cit71 ref188/cit188 ref118/cit118 ref89/cit89 ref19/cit19 ref96/cit96 ref107/cit107 ref191/cit191 ref109/cit109 ref13/cit13 ref193/cit193 ref105/cit105 ref197/cit197 ref38/cit38 ref199/cit199 ref90/cit90 ref195/cit195 ref64/cit64 ref6/cit6 ref18/cit18 ref136/cit136 ref65/cit65 ref171/cit171 ref97/cit97 ref101/cit101 ref76/cit76 ref32/cit32 ref39/cit39 ref202/cit202 ref168/cit168 ref206/cit206 ref132/cit132 ref91/cit91 ref12/cit12 ref179/cit179 ref121/cit121 ref175/cit175 ref33/cit33 ref129/cit129 ref44/cit44 ref70/cit70 ref125/cit125 ref9/cit9 ref152/cit152 ref154/cit154 ref27/cit27 ref151/cit151 ref159/cit159 ref92/cit92 ref157/cit157 Balzani V. (ref28/cit28) 2007 ref31/cit31 ref220/cit220 ref88/cit88 Dolbier W. R. (ref110/cit110) 1997 ref160/cit160 ref143/cit143 ref217/cit217 ref53/cit53 ref149/cit149 ref162/cit162 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref141/cit141 ref215/cit215 ref50/cit50 ref209/cit209 ref138/cit138 ref100/cit100 ref25/cit25 ref173/cit173 ref103/cit103 ref72/cit72 ref201/cit201 ref51/cit51 ref135/cit135 ref68/cit68 ref94/cit94 ref130/cit130 ref204/cit204 ref146/cit146 ref26/cit26 ref73/cit73 ref69/cit69 ref165/cit165 ref95/cit95 ref108/cit108 ref192/cit192 ref4/cit4 ref30/cit30 ref212/cit212 ref47/cit47 ref127/cit127 |
References_xml | – ident: ref144/cit144 doi: 10.1021/ol102326b – ident: ref183/cit183 doi: 10.1039/C7OB01418J – ident: ref38/cit38 doi: 10.1002/anie.201702213 – ident: ref132/cit132 doi: 10.1021/acs.orglett.7b01952 – ident: ref129/cit129 doi: 10.1021/acs.orglett.5b01069 – ident: ref212/cit212 doi: 10.1039/C6QO00393A – ident: ref40/cit40 doi: 10.1021/acscatal.5b00668 – ident: ref82/cit82 doi: 10.1002/chem.201701665 – ident: ref154/cit154 doi: 10.1002/anie.201103145 – ident: ref93/cit93 doi: 10.1039/C6SC05533H – ident: ref175/cit175 doi: 10.1021/ol900934g – ident: ref217/cit217 doi: 10.1002/anie.201405478 – ident: ref49/cit49 doi: 10.1002/tcr.201600125 – ident: ref214/cit214 doi: 10.1021/ar000209h – ident: ref138/cit138 doi: 10.1021/ol500469a – ident: ref122/cit122 doi: 10.1021/ol501094z – ident: ref104/cit104 doi: 10.1021/cr500368h – ident: ref146/cit146 doi: 10.1038/ncomms8919 – ident: ref190/cit190 doi: 10.1021/acs.joc.5b00305 – ident: ref30/cit30 doi: 10.1016/S0010-8545(00)00274-5 – ident: ref128/cit128 doi: 10.1002/anie.201402008 – ident: ref202/cit202 doi: 10.1002/anie.201506432 – ident: ref213/cit213 doi: 10.1016/S0040-4020(01)98677-6 – ident: ref63/cit63 doi: 10.3762/bjoc.12.210 – ident: ref21/cit21 doi: 10.1039/C6CS00023A – ident: ref181/cit181 doi: 10.1021/acscatal.7b00840 – ident: ref167/cit167 doi: 10.1038/nature14885 – ident: ref69/cit69 doi: 10.1055/s-0032-1318155 – ident: ref180/cit180 doi: 10.1021/ol1012857 – ident: ref221/cit221 doi: 10.1002/cctc.201700557 – ident: ref50/cit50 doi: 10.1021/acs.accounts.6b00275 – ident: ref117/cit117 doi: 10.1002/chem.201602596 – ident: ref13/cit13 doi: 10.1021/cr100379j – ident: ref163/cit163 doi: 10.1021/ja413208y – ident: ref54/cit54 doi: 10.1002/anie.201210276 – ident: ref119/cit119 doi: 10.1021/ja300798k – ident: ref23/cit23 doi: 10.1021/cr900184e – ident: ref15/cit15 doi: 10.1021/cr100280d – ident: ref153/cit153 doi: 10.1039/C5CC09726F – ident: ref160/cit160 doi: 10.1039/C6SC02653B – ident: ref193/cit193 doi: 10.1039/c3cc42672f – ident: ref194/cit194 doi: 10.1002/chem.201302407 – ident: ref77/cit77 doi: 10.1126/science.1258232 – ident: ref29/cit29 doi: 10.1021/ja00778a054 – ident: ref7/cit7 doi: 10.1021/cr9000836 – ident: ref130/cit130 doi: 10.1016/j.tet.2015.02.034 – ident: ref137/cit137 doi: 10.1039/C6QO00158K – ident: ref208/cit208 doi: 10.1021/acs.orglett.5b02061 – ident: ref173/cit173 doi: 10.1021/acs.orglett.6b00442 – ident: ref36/cit36 doi: 10.1021/acscatal.5b02386 – ident: ref172/cit172 doi: 10.1002/anie.201706896 – ident: ref207/cit207 doi: 10.1021/ol501081h – ident: ref43/cit43 doi: 10.1021/acs.joc.6b01058 – ident: ref102/cit102 doi: 10.1002/cbic.200301023 – ident: ref60/cit60 doi: 10.1002/chem.201304120 – ident: ref105/cit105 doi: 10.1016/S0022-1139(00)81780-7 – ident: ref27/cit27 doi: 10.1039/C2CS35250H – ident: ref178/cit178 doi: 10.1039/C5GC01931A – ident: ref171/cit171 doi: 10.1021/acs.joc.8b00205 – ident: ref95/cit95 doi: 10.1021/acscatal.6b02586 – ident: ref165/cit165 doi: 10.1039/C7SC00283A – ident: ref12/cit12 doi: 10.1039/c1cs15082k – ident: ref116/cit116 doi: 10.1002/cssc.201301282 – ident: ref11/cit11 doi: 10.1002/anie.200901353 – ident: ref53/cit53 doi: 10.1021/acscentsci.6b00090 – ident: ref157/cit157 doi: 10.1002/anie.201409529 – ident: ref177/cit177 doi: 10.1002/adsc.200900874 – ident: ref125/cit125 doi: 10.1002/ejoc.201501189 – ident: ref103/cit103 doi: 10.1021/acs.jmedchem.5b00258 – ident: ref91/cit91 doi: 10.1021/ja501621q – ident: ref46/cit46 doi: 10.1002/ejoc.201601653 – ident: ref65/cit65 doi: 10.1039/c3ra43299h – ident: ref156/cit156 doi: 10.1039/C6SC00807K – ident: ref78/cit78 doi: 10.1002/cssc.201700783 – ident: ref216/cit216 doi: 10.1021/ja0176907 – ident: ref45/cit45 doi: 10.1016/j.tetlet.2016.08.081 – ident: ref83/cit83 doi: 10.1021/acs.joc.6b01034 – ident: ref145/cit145 doi: 10.1021/acs.orglett.5b03016 – ident: ref72/cit72 doi: 10.1038/nchem.1452 – ident: ref112/cit112 doi: 10.1002/adsc.201300199 – ident: ref61/cit61 doi: 10.1021/jo5020432 – volume: 40 start-page: 35 year: 2007 ident: ref2/cit2 publication-title: Aldrichimica Acta – ident: ref89/cit89 doi: 10.1002/anie.201308614 – ident: ref57/cit57 doi: 10.1021/acs.joc.7b00659 – ident: ref133/cit133 doi: 10.1002/anie.201608297 – ident: ref24/cit24 doi: 10.1002/anie.201203269 – ident: ref111/cit111 doi: 10.1016/S0022-1139(00)00324-9 – ident: ref79/cit79 doi: 10.1021/acscatal.6b01452 – ident: ref147/cit147 doi: 10.1016/j.chempr.2016.08.002 – ident: ref192/cit192 doi: 10.1016/j.chempr.2017.11.004 – ident: ref143/cit143 doi: 10.1021/jm500759v – ident: ref73/cit73 doi: 10.1002/anie.201203599 – ident: ref64/cit64 doi: 10.1002/ejoc.201500006 – ident: ref209/cit209 doi: 10.1002/anie.201510533 – ident: ref96/cit96 doi: 10.1021/cs501686d – volume-title: C-H Bond Activation and Catalytic Functionalization year: 2015 ident: ref20/cit20 – ident: ref37/cit37 doi: 10.1002/adsc.201600125 – ident: ref62/cit62 doi: 10.1021/ja212099r – ident: ref56/cit56 doi: 10.1021/ja208068w – ident: ref184/cit184 doi: 10.1021/jacs.6b12708 – ident: ref9/cit9 doi: 10.1021/cr900005n – ident: ref126/cit126 doi: 10.1016/j.tetlet.2017.09.010 – ident: ref120/cit120 doi: 10.1002/cjoc.201300411 – ident: ref98/cit98 doi: 10.1002/ejoc.201500354 – ident: ref201/cit201 doi: 10.1002/ajoc.201402199 – ident: ref168/cit168 doi: 10.1021/acs.joc.6b00811 – ident: ref108/cit108 doi: 10.1016/0040-4039(91)80524-A – ident: ref174/cit174 doi: 10.1002/anie.201410432 – ident: ref44/cit44 doi: 10.1021/acs.joc.6b01449 – ident: ref220/cit220 doi: 10.1002/anie.201408891 – ident: ref70/cit70 doi: 10.1246/cl.130547 – ident: ref4/cit4 doi: 10.1039/b606984n – ident: ref189/cit189 doi: 10.1021/ol5013839 – ident: ref204/cit204 doi: 10.1039/C7QO00012J – ident: ref149/cit149 doi: 10.1021/ol101146f – ident: ref42/cit42 doi: 10.1039/C5OB01486G – ident: ref188/cit188 doi: 10.1021/ol501939m – ident: ref148/cit148 doi: 10.1021/ol902703k – ident: ref17/cit17 doi: 10.1039/c2cs35096c – ident: ref19/cit19 doi: 10.1038/nchem.1607 – ident: ref197/cit197 doi: 10.1021/jo401894b – ident: ref16/cit16 doi: 10.1021/cr300153j – ident: ref123/cit123 doi: 10.1002/adsc.201400542 – ident: ref218/cit218 doi: 10.1002/chem.201301988 – ident: ref94/cit94 doi: 10.1039/c1cs15093f – ident: ref99/cit99 doi: 10.1021/acs.orglett.6b01735 – ident: ref135/cit135 doi: 10.1002/anie.201508698 – ident: ref141/cit141 doi: 10.3762/bjoc.10.108 – ident: ref164/cit164 doi: 10.1021/acs.joc.6b02891 – ident: ref33/cit33 doi: 10.1039/C7CS00339K – ident: ref74/cit74 doi: 10.1021/ol400946k – ident: ref59/cit59 doi: 10.1039/C5QO00031A – ident: ref191/cit191 doi: 10.1002/adsc.201200569 – ident: ref205/cit205 doi: 10.1021/acs.joc.5b01803 – ident: ref34/cit34 doi: 10.1016/j.tetlet.2013.10.090 – ident: ref101/cit101 doi: 10.1126/science.1131943 – ident: ref169/cit169 doi: 10.1021/acscatal.7b01133 – ident: ref215/cit215 doi: 10.1002/anie.201400560 – ident: ref41/cit41 doi: 10.1039/C5OB01349F – ident: ref118/cit118 doi: 10.1039/C4SC02537G – ident: ref68/cit68 doi: 10.1039/C5CC02349A – ident: ref88/cit88 doi: 10.1002/anie.201703004 – ident: ref76/cit76 doi: 10.1021/acs.orglett.7b03001 – ident: ref25/cit25 doi: 10.1021/cr300503r – ident: ref139/cit139 doi: 10.1039/C6CC08975E – ident: ref66/cit66 doi: 10.1016/j.tetlet.2017.04.001 – ident: ref6/cit6 doi: 10.1002/anie.200902996 – ident: ref219/cit219 doi: 10.1021/ol2032575 – ident: ref124/cit124 doi: 10.1039/C4CC07925F – ident: ref115/cit115 doi: 10.1016/j.tetlet.2012.02.032 – ident: ref31/cit31 doi: 10.1021/jo202538x – ident: ref113/cit113 doi: 10.1039/C5CC09881E – ident: ref127/cit127 doi: 10.1002/chem.201600229 – ident: ref85/cit85 doi: 10.1002/anie.201512027 – ident: ref161/cit161 doi: 10.1002/adsc.201200588 – ident: ref87/cit87 doi: 10.1126/science.1253647 – ident: ref51/cit51 doi: 10.1021/acs.accounts.6b00229 – ident: ref151/cit151 doi: 10.1021/acs.orglett.5b01530 – ident: ref211/cit211 doi: 10.1039/C4CC07066F – ident: ref109/cit109 doi: 10.1039/c39930001359 – ident: ref159/cit159 doi: 10.1002/anie.201402023 – ident: ref1/cit1 doi: 10.1021/cr0509760 – ident: ref86/cit86 doi: 10.1021/ja512946e – ident: ref150/cit150 doi: 10.1039/C1OB06652H – ident: ref5/cit5 doi: 10.1055/s-2008-1042907 – ident: ref152/cit152 doi: 10.1002/adsc.201500514 – ident: ref186/cit186 doi: 10.1039/C6NJ00079G – ident: ref67/cit67 doi: 10.1002/open.201200011 – ident: ref162/cit162 doi: 10.1039/c3cc42695e – ident: ref195/cit195 doi: 10.1021/ol502163f – ident: ref32/cit32 doi: 10.1039/P29840001093 – ident: ref155/cit155 doi: 10.1055/s-0035-1561320 – start-page: 1 volume-title: Photochemistry and Photophysics of Coordination Compounds I year: 2007 ident: ref28/cit28 – ident: ref71/cit71 doi: 10.1021/ja991365q – ident: ref121/cit121 doi: 10.1021/ar700149s – ident: ref131/cit131 doi: 10.1021/jo3022346 – ident: ref142/cit142 doi: 10.1038/ncomms6268 – ident: ref158/cit158 doi: 10.1021/acs.orglett.6b02179 – ident: ref170/cit170 doi: 10.1002/chem.201605640 – ident: ref134/cit134 doi: 10.1039/C4CC05467A – ident: ref199/cit199 doi: 10.1021/jo00431a051 – ident: ref100/cit100 doi: 10.1016/j.tet.2016.03.087 – ident: ref166/cit166 doi: 10.1021/acs.orglett.7b00196 – ident: ref80/cit80 doi: 10.1021/acs.joc.7b00088 – ident: ref81/cit81 doi: 10.1002/anie.201602349 – ident: ref97/cit97 doi: 10.1002/cssc.201403429 – ident: ref92/cit92 doi: 10.1002/anie.201505731 – ident: ref18/cit18 doi: 10.1021/ar3003305 – ident: ref52/cit52 doi: 10.1002/tcr.201600125 – start-page: 97 volume-title: Organofluorine Chemistry year: 1997 ident: ref110/cit110 doi: 10.1007/BFb0119266 – ident: ref140/cit140 doi: 10.1021/cs5005823 – ident: ref206/cit206 doi: 10.1002/anie.201308376 – ident: ref14/cit14 doi: 10.1039/c1cs15083a – ident: ref35/cit35 doi: 10.1038/nature10647 – ident: ref47/cit47 doi: 10.1002/slct.201701156 – ident: ref185/cit185 doi: 10.1021/jacs.7b06715 – ident: ref55/cit55 doi: 10.1016/0047-2670(87)85011-6 – ident: ref84/cit84 doi: 10.1021/acs.orglett.6b01718 – ident: ref10/cit10 doi: 10.1039/b816707a – ident: ref26/cit26 doi: 10.1021/acs.chemrev.6b00057 – ident: ref179/cit179 doi: 10.1002/anie.201501908 – ident: ref196/cit196 doi: 10.1021/acs.joc.5b00677 – ident: ref58/cit58 doi: 10.1021/acs.joc.7b00140 – ident: ref48/cit48 doi: 10.1038/s41570-017-0077 – ident: ref22/cit22 doi: 10.1039/C5CY02095F – ident: ref39/cit39 doi: 10.1002/chem.201405505 – ident: ref210/cit210 doi: 10.1039/C3GC42517G – ident: ref106/cit106 doi: 10.1016/S0022-1139(00)82380-5 – ident: ref176/cit176 doi: 10.1021/ol101618u – ident: ref182/cit182 doi: 10.1021/ol200017a – ident: ref187/cit187 doi: 10.1002/anie.201208380 – ident: ref136/cit136 doi: 10.1002/anie.201508622 – ident: ref107/cit107 doi: 10.1016/S0022-1139(00)80995-1 – ident: ref114/cit114 doi: 10.1055/s-0036-1588527 – ident: ref198/cit198 doi: 10.1055/s-0033-1340956 – ident: ref90/cit90 doi: 10.1039/c3cc44438d – ident: ref200/cit200 doi: 10.1039/C4QO00251B – ident: ref75/cit75 doi: 10.1021/acscatal.5b02410 – ident: ref203/cit203 doi: 10.1002/chem.201504985 – ident: ref3/cit3 doi: 10.1246/cl.2007.200 – ident: ref8/cit8 doi: 10.1002/anie.200806273 – ident: ref500/cit500 doi: 10.1002/ejoc.201601518 |
SSID | ssj0005527 |
Score | 2.6995208 |
SecondaryResourceType | review_article |
Snippet | Transition metal-catalyzed C–H bond functionalizations have been the focus of intensive research over the last decades for the formation of C–C bonds from... Transition metal-catalyzed C-H bond functionalizations have been the focus of intensive research over the last decades for the formation of C-C bonds from... |
SourceID | hal proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7532 |
SubjectTerms | Alkenes Alkylation ambient temperature Aromatic compounds aromatic hydrocarbons arylation Bonding Catalysis catalysts catalytic activity chemical bonding Chemical bonds Chemical reactions Chemical Sciences Chemical synthesis Cross coupling cross-coupling reactions Electron transfer Functional groups Hydrogen bonds Metals moieties oxidants Oxidation Oxidizing agents Photocatalysis Photochemicals photochemistry Photoredox catalysis Regioselectivity Stereoselectivity surveys Transformations Transition metals |
Title | Photoredox Catalysis for Building C–C Bonds from C(sp2)–H Bonds |
URI | http://dx.doi.org/10.1021/acs.chemrev.8b00077 https://www.ncbi.nlm.nih.gov/pubmed/30011194 https://www.proquest.com/docview/2121675207 https://www.proquest.com/docview/2071563078 https://www.proquest.com/docview/2131867190 https://univ-rennes.hal.science/hal-01862464 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RcoBLoeW1UKq04lAkUvyK7RxLRLVCUFWCSr1FtuPVSqWbqrtbIU78B_4hv4SZPLY82lWv47HljB_zOWN_A_AqZMr53FRprOQoVblUqXOWwoWeVcyFqDw9Tv50qIfH6sNJdvLHY_V_IviCv3UBjT-OZ5SSxTY-zazAXaHR0xASKj5f3ejoM7RS0EDrrCcZur4Rckdh-pc7WhnTZcibkGbjcQ4ewGH_bqe9aHK6N5_5vfD9fxrH233MQ1jrsGey306WdbgTJxtwr-hTvj2C4mhc4xk8VvW3pKD_OkRXkiCsTd512bOT4tePn0VCyYix4KI-S4rd6bl4jdJhK30MxwfvvxTDtMuykLqM6VnKK8eCiEGazHjurRfSa8OVswgu3MhZG3ylshy3xpE1xqHDz73ULErhJB625BNYndST-AwSxC4sxw1AEa-fzEc200YqwXHQGffBDmAXDVB2q2RaNgFwwUsSdlYpO6sMQPTjUoaOrZySZnxdXunNotJ5S9axXH0HB3yhSUTbw_2PJckYp4czWl3yAWz28-Gq4-jvOZ60BMM2thfFOFgUbXGTWM9RB8Ebka8Zu0SHy4ZgMGcDeNrOtUV3JKF1nqvntzfaC7iPeI4Yx1MhNmF1djGPLxEzzfxWs1J-AyOhD4s |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RcigX3o-FAgFxKBIpfsV2jktEFWBbIdGVeotsJ6tK0E3V7CLEif_AP-SXMJNNsgLBCq7jhyZ-zeeM5xuAZyFRzqemjKtSzmKVShU7Z8ld6FnJXKiUp-DkwyOdT9Xbk-SkCwqjWBhUosGemtaJv2YX4C9Jhp9xRplZbGvazBZcTrTSlLBhnH1YP-zoE7WS70DrpOca-nMnZJVC84tV2jqlN5F_A5yt4Tm4BtNB5fa9ycf95cLvh6-_sTn-7zddh6sdEo3Gq6VzAy5V85uwk_UJ4G5B9v60xht5VdZfooz-8hB5SYQgN3rV5dKOsh_fvmcRpSbGgov6LMr2mnPxHKX5Snobpgevj7M87nIuxC5hehHz0rEgqiBNYjz31gvpteHKWYQabuasDb5USYoH5cwa49D8p15qVknhJF695B3Yntfz6h5EiGRYiseBIpY_mc5soo1UguMSYNwHO4I9HICi2zNN0brDBS9I2I1K0Y3KCEQ_PUXouMsphcanzY1eDI3OV9Qdm6s_xXkfahLtdj6eFCRjnMJotPrMR7DbL4u14mj9Od67BMM-ngzFOFnke3Hzql5iHYRyRMVm7IY6XLZ0gykbwd3VkhvUkYTdearu__ugPYad_PhwUkzeHL17AFcQ6REXeSzELmwvLpbVQ0RTC_-o3Tw_AfulF-0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RQIuvB8LBQLiUCRS_ErsHJfAaoFSVYJK5RTZjqNK0M2q2UWIE_-Bf8gvYSabpALBCnEdPzQZj-3PGfsbgMc-UdZluoxDKatYZVLF1hoKFzpWMuuDcvQ4-e1-Oj1Ur4-Sow0w_VsYVKLBnpo2iE-zel5WHcMAf0Zy_JQTys5i2u1Nb8I5hCSckjaM83dnlzv6ZK0UP0jTpOcb-nMntDP55pedafOY7kX-DXS2m8_kMnwY1G7vnHzcXS7crv_6G6Pj_3zXFbjUIdJovHKhq7ARZtfgQt4ngrsO-cFxjSfzUNZfopz-9hCJSYRgN3re5dSO8h_fvucRpSjGgtP6JMp3mrl4gtLpSnoDDicv3-fTuMu9ENuEpYuYl5Z5EbzUiXbcGSekSzVX1iDksJU1xrtSJRkumJXR2iIMyJxMWZDCSjyCyZuwNatn4TZEiGhYhsuCIrY_mVUmSbVUgqMrMO68GcEOGqDo5k5TtGFxwQsSdlYpOquMQPRDVPiOw5xSaXxa3-jp0Gi-ovBYX_0Rjv1Qk-i3p-O9gmSM03OaVH3mI9juXeNMcUQBHM9fgmEfD4diHCyKwdhZqJdYByEdUbJps6YOly3tYMZGcGvldoM6kjA8z9SdfzfaAzh_8GJS7L3af3MXLiLgI0ryWIht2FqcLsM9BFULd7-dPz8B9M4aZw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photoredox+Catalysis+for+Building+C-C+Bonds+from+C%28sp2%29-H+Bonds&rft.jtitle=Chemical+reviews&rft.au=Wang%2C+Chang-Sheng&rft.au=Dixneuf%2C+Pierre+H&rft.au=Soul%C3%A9%2C+Jean-Fran%C3%A7ois&rft.date=2018-08-22&rft.issn=1520-6890&rft.eissn=1520-6890&rft.volume=118&rft.issue=16&rft.spage=7532&rft_id=info:doi/10.1021%2Facs.chemrev.8b00077&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2665&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2665&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2665&client=summon |