Moving Toward the Circular Economy: The Role of Stocks in the Chinese Steel Cycle

As the world’s largest CO2 emitter and steel producer, China has set the ambitious goal of establishing a circular economy which aims at reconciling economic development with environmental protection and sustainable resource use. This work applies dynamic material flow analysis to forecast productio...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 46; no. 1; pp. 148 - 154
Main Authors Pauliuk, Stefan, Wang, Tao, Müller, Daniel B
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 03.01.2012
Subjects
Online AccessGet full text
ISSN0013-936X
1520-5851
1520-5851
DOI10.1021/es201904c

Cover

Abstract As the world’s largest CO2 emitter and steel producer, China has set the ambitious goal of establishing a circular economy which aims at reconciling economic development with environmental protection and sustainable resource use. This work applies dynamic material flow analysis to forecast production, recycling, and iron ore consumption in the Chinese steel cycle until 2100 by using steel services in terms of in-use stock per capita as driver of future development. The whole cycle is modeled to determine possible responses of the steel industry in light of the circular economy concept. If per-capita stock saturates at 8–12 tons as evidence from industrialized countries suggests, consumption may peak between 2015 and 2020, whereupon it is likely to drop by up to 40% until 2050. A slower growing in-use stock could mitigate this peak and hence reduce overcapacity in primary production. Old scrap supply will increase substantially and it could replace up to 80% of iron ore as resource for steel making by 2050. This would require advanced recycling technologies as manufacturers of machinery and transportation equipment would have to shift to secondary steel as well as new capacities in secondary production which could, however, make redundant already existing integrated steel plants.
AbstractList As the world's largest CO(2) emitter and steel producer, China has set the ambitious goal of establishing a circular economy which aims at reconciling economic development with environmental protection and sustainable resource use. This work applies dynamic material flow analysis to forecast production, recycling, and iron ore consumption in the Chinese steel cycle until 2100 by using steel services in terms of in-use stock per capita as driver of future development. The whole cycle is modeled to determine possible responses of the steel industry in light of the circular economy concept. If per-capita stock saturates at 8-12 tons as evidence from industrialized countries suggests, consumption may peak between 2015 and 2020, whereupon it is likely to drop by up to 40% until 2050. A slower growing in-use stock could mitigate this peak and hence reduce overcapacity in primary production. Old scrap supply will increase substantially and it could replace up to 80% of iron ore as resource for steel making by 2050. This would require advanced recycling technologies as manufacturers of machinery and transportation equipment would have to shift to secondary steel as well as new capacities in secondary production which could, however, make redundant already existing integrated steel plants.As the world's largest CO(2) emitter and steel producer, China has set the ambitious goal of establishing a circular economy which aims at reconciling economic development with environmental protection and sustainable resource use. This work applies dynamic material flow analysis to forecast production, recycling, and iron ore consumption in the Chinese steel cycle until 2100 by using steel services in terms of in-use stock per capita as driver of future development. The whole cycle is modeled to determine possible responses of the steel industry in light of the circular economy concept. If per-capita stock saturates at 8-12 tons as evidence from industrialized countries suggests, consumption may peak between 2015 and 2020, whereupon it is likely to drop by up to 40% until 2050. A slower growing in-use stock could mitigate this peak and hence reduce overcapacity in primary production. Old scrap supply will increase substantially and it could replace up to 80% of iron ore as resource for steel making by 2050. This would require advanced recycling technologies as manufacturers of machinery and transportation equipment would have to shift to secondary steel as well as new capacities in secondary production which could, however, make redundant already existing integrated steel plants.
As the world's largest ... emitter and steel producer, China has set the ambitious goal of establishing a circular economy which aims at reconciling economic development with environmental protection and sustainable resource use. This work applies dynamic material flow analysis to forecast production, recycling, and iron ore consumption in the Chinese steel cycle until 2100 by using steel services in terms of in-use stock per capita as driver of future development. The whole cycle is modeled to determine possible responses of the steel industry in light of the circular economy concept. If per-capita stock saturates at 8-12 tons as evidence from industrialized countries suggests, consumption may peak between 2015 and 2020, whereupon it is likely to drop by up to 40% until 2050. A slower growing in-use stock could mitigate this peak and hence reduce overcapacity in primary production. Old scrap supply will increase substantially and it could replace up to 80% of iron ore as resource for steel making by 2050. This would require advanced recycling technologies as manufacturers of machinery and transportation equipment would have to shift to secondary steel as well as new capacities in secondary production which could, however, make redundant already existing integrated steel plants. (ProQuest: ... denotes formulae/symbols omitted.)
As the world’s largest CO₂ emitter and steel producer, China has set the ambitious goal of establishing a circular economy which aims at reconciling economic development with environmental protection and sustainable resource use. This work applies dynamic material flow analysis to forecast production, recycling, and iron ore consumption in the Chinese steel cycle until 2100 by using steel services in terms of in-use stock per capita as driver of future development. The whole cycle is modeled to determine possible responses of the steel industry in light of the circular economy concept. If per-capita stock saturates at 8–12 tons as evidence from industrialized countries suggests, consumption may peak between 2015 and 2020, whereupon it is likely to drop by up to 40% until 2050. A slower growing in-use stock could mitigate this peak and hence reduce overcapacity in primary production. Old scrap supply will increase substantially and it could replace up to 80% of iron ore as resource for steel making by 2050. This would require advanced recycling technologies as manufacturers of machinery and transportation equipment would have to shift to secondary steel as well as new capacities in secondary production which could, however, make redundant already existing integrated steel plants.
As the world's largest CO(2) emitter and steel producer, China has set the ambitious goal of establishing a circular economy which aims at reconciling economic development with environmental protection and sustainable resource use. This work applies dynamic material flow analysis to forecast production, recycling, and iron ore consumption in the Chinese steel cycle until 2100 by using steel services in terms of in-use stock per capita as driver of future development. The whole cycle is modeled to determine possible responses of the steel industry in light of the circular economy concept. If per-capita stock saturates at 8-12 tons as evidence from industrialized countries suggests, consumption may peak between 2015 and 2020, whereupon it is likely to drop by up to 40% until 2050. A slower growing in-use stock could mitigate this peak and hence reduce overcapacity in primary production. Old scrap supply will increase substantially and it could replace up to 80% of iron ore as resource for steel making by 2050. This would require advanced recycling technologies as manufacturers of machinery and transportation equipment would have to shift to secondary steel as well as new capacities in secondary production which could, however, make redundant already existing integrated steel plants.
As the world’s largest CO2 emitter and steel producer, China has set the ambitious goal of establishing a circular economy which aims at reconciling economic development with environmental protection and sustainable resource use. This work applies dynamic material flow analysis to forecast production, recycling, and iron ore consumption in the Chinese steel cycle until 2100 by using steel services in terms of in-use stock per capita as driver of future development. The whole cycle is modeled to determine possible responses of the steel industry in light of the circular economy concept. If per-capita stock saturates at 8–12 tons as evidence from industrialized countries suggests, consumption may peak between 2015 and 2020, whereupon it is likely to drop by up to 40% until 2050. A slower growing in-use stock could mitigate this peak and hence reduce overcapacity in primary production. Old scrap supply will increase substantially and it could replace up to 80% of iron ore as resource for steel making by 2050. This would require advanced recycling technologies as manufacturers of machinery and transportation equipment would have to shift to secondary steel as well as new capacities in secondary production which could, however, make redundant already existing integrated steel plants.
Author Pauliuk, Stefan
Müller, Daniel B
Wang, Tao
AuthorAffiliation Norwegian University of Science and Technology
National Institute for Environmental Studies
AuthorAffiliation_xml – name: National Institute for Environmental Studies
– name: Norwegian University of Science and Technology
Author_xml – sequence: 1
  givenname: Stefan
  surname: Pauliuk
  fullname: Pauliuk, Stefan
– sequence: 2
  givenname: Tao
  surname: Wang
  fullname: Wang, Tao
– sequence: 3
  givenname: Daniel B
  surname: Müller
  fullname: Müller, Daniel B
  email: daniel.mueller@ntnu.no
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25472354$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22091699$$D View this record in MEDLINE/PubMed
BookMark eNp90V1rVDEQBuAgLXZbvfAPSBCKenFsvrPxriz1AyqiruDdIZszsanZpCbnKPvvm7JrC1W8CgzPDHlnDtFeygkQekLJK0oYPYHKCDVEuAdoRiUjnZxLuodmhFDeGa6-HaDDWi8JIYyT-UN0wBgxVBkzQ58-5F8hfcfL_NuWAY8XgBehuCnags9cTnm9eY2Xrfo5R8DZ4y9jdj8qDmlrL0KCCq0KEPFi4yI8QvvexgqPd-8R-vrmbLl4151_fPt-cXreWUnk2HntBZVSKSm0kkwZZvRKGKo5V9o46wcG1gxMEO1XYlDSzAfHuAfDJHeW8iP0fDv3quSfE9SxX4fqIEabIE-1bwGpJFzqJl_8V7KbxTCqtGr02T16maeSWo42T2hChZk39HSHptUahv6qhLUtm_7PVhs43gFbnY2-2ORCvXMtMuNSNPdy61zJtRbwt4SS_uay_e1lmz25Z10Y7RhyGosN8Z8du19YV-9i_O2uAQXWrFQ
CODEN ESTHAG
CitedBy_id crossref_primary_10_1016_j_jclepro_2020_122853
crossref_primary_10_1111_jiec_12095
crossref_primary_10_1007_s11783_014_0696_3
crossref_primary_10_3390_su10093191
crossref_primary_10_1016_j_ecoinf_2022_101716
crossref_primary_10_1021_acs_est_6b01669
crossref_primary_10_3390_en15249376
crossref_primary_10_1016_j_envint_2016_03_007
crossref_primary_10_1016_j_buildenv_2024_111602
crossref_primary_10_1021_es500902b
crossref_primary_10_1021_es502930w
crossref_primary_10_3390_su14127388
crossref_primary_10_1021_es403506a
crossref_primary_10_1016_j_resconrec_2021_105558
crossref_primary_10_1016_j_jclepro_2018_02_108
crossref_primary_10_1111_jiec_12809
crossref_primary_10_1016_j_scitotenv_2022_159964
crossref_primary_10_1016_j_jmrt_2022_03_171
crossref_primary_10_1021_acs_est_8b03633
crossref_primary_10_1021_acs_est_5b05098
crossref_primary_10_1021_acs_est_5b05012
crossref_primary_10_1111_jiec_13182
crossref_primary_10_1038_s42949_023_00132_x
crossref_primary_10_1016_j_resconrec_2012_08_009
crossref_primary_10_1016_j_resconrec_2023_106994
crossref_primary_10_3390_su132313159
crossref_primary_10_1016_j_resconrec_2012_11_008
crossref_primary_10_1111_jiec_13054
crossref_primary_10_3389_fenrg_2022_992617
crossref_primary_10_1007_s11367_014_0793_3
crossref_primary_10_1016_j_resconrec_2015_07_021
crossref_primary_10_1080_10971475_2021_1875156
crossref_primary_10_1016_j_ijpe_2024_109231
crossref_primary_10_3390_rs6064780
crossref_primary_10_1021_acs_est_7b05549
crossref_primary_10_1111_jiec_13179
crossref_primary_10_1021_acs_est_3c01289
crossref_primary_10_2355_isijinternational_ISIJINT_2016_470
crossref_primary_10_3390_resources8020089
crossref_primary_10_1016_j_cec_2022_100004
crossref_primary_10_3390_met10050664
crossref_primary_10_1016_j_scitotenv_2015_07_021
crossref_primary_10_1016_j_jclepro_2017_12_006
crossref_primary_10_1016_j_resourpol_2023_104141
crossref_primary_10_3390_su122410427
crossref_primary_10_1007_s11053_023_10176_6
crossref_primary_10_1016_j_jclepro_2022_130402
crossref_primary_10_1016_j_resconrec_2025_108136
crossref_primary_10_54691_bcpbm_v26i_2052
crossref_primary_10_1016_j_gloenvcha_2021_102410
crossref_primary_10_1038_s41598_021_83698_9
crossref_primary_10_1016_j_jclepro_2023_139038
crossref_primary_10_1016_j_jeurceramsoc_2023_08_033
crossref_primary_10_1016_j_resconrec_2019_06_010
crossref_primary_10_1111_jiec_13040
crossref_primary_10_1016_j_resconrec_2017_10_034
crossref_primary_10_1038_s41467_022_29022_z
crossref_primary_10_1016_j_resconrec_2019_104667
crossref_primary_10_1016_j_wasman_2022_08_031
crossref_primary_10_37497_esg_v7iesg_1621
crossref_primary_10_1111_jiec_13321
crossref_primary_10_1016_j_jclepro_2020_123086
crossref_primary_10_1111_jiec_12598
crossref_primary_10_1111_jiec_13203
crossref_primary_10_1111_jiec_13600
crossref_primary_10_1016_j_resconrec_2015_04_001
crossref_primary_10_1021_acs_est_4c09876
crossref_primary_10_1038_nclimate1698
crossref_primary_10_1016_j_jhazmat_2018_04_032
crossref_primary_10_1016_j_jum_2024_10_004
crossref_primary_10_1016_j_resconrec_2016_06_014
crossref_primary_10_1016_j_jclepro_2018_03_243
crossref_primary_10_1016_j_resconrec_2014_04_003
crossref_primary_10_1098_rsta_2012_0496
crossref_primary_10_1016_j_ecolecon_2018_04_030
crossref_primary_10_1016_j_jenvman_2020_111220
crossref_primary_10_1016_j_resconrec_2022_106827
crossref_primary_10_24883_eagleSustainable_v14i_449
crossref_primary_10_1016_j_resourpol_2018_06_011
crossref_primary_10_1016_j_corsci_2023_111589
crossref_primary_10_34133_ehs_0297
crossref_primary_10_1007_s41247_017_0023_2
crossref_primary_10_1016_j_resconrec_2017_01_021
crossref_primary_10_1016_j_jclepro_2016_05_023
crossref_primary_10_1016_j_resconrec_2022_106153
crossref_primary_10_1002_bse_3229
crossref_primary_10_1016_j_resconrec_2013_11_008
crossref_primary_10_1007_s10668_023_03868_9
crossref_primary_10_1016_j_resconrec_2018_09_012
crossref_primary_10_1007_s40831_022_00620_x
crossref_primary_10_1016_j_resourpol_2016_07_001
crossref_primary_10_1016_j_jbusres_2022_113513
crossref_primary_10_1016_j_resconrec_2018_02_003
crossref_primary_10_1021_acs_est_0c04321
crossref_primary_10_1021_acssuschemeng_8b04347
crossref_primary_10_1016_j_ecolecon_2020_106838
crossref_primary_10_1016_j_resconrec_2020_104855
crossref_primary_10_1016_j_jclepro_2022_130544
crossref_primary_10_3390_su12073060
crossref_primary_10_1016_j_resourpol_2022_103291
crossref_primary_10_1016_j_scitotenv_2022_159514
crossref_primary_10_1016_j_energy_2021_122434
crossref_primary_10_1016_j_resconrec_2017_07_002
crossref_primary_10_1016_j_egycc_2024_100168
crossref_primary_10_1016_j_gloenvcha_2022_102574
crossref_primary_10_1038_s41597_021_01075_7
crossref_primary_10_1016_j_eiar_2024_107785
crossref_primary_10_3390_recycling1020219
crossref_primary_10_1016_j_rser_2019_05_001
crossref_primary_10_1016_j_eiar_2024_107548
crossref_primary_10_1016_j_jclepro_2016_05_073
crossref_primary_10_1111_jiec_13268
crossref_primary_10_1016_j_resconrec_2017_10_019
crossref_primary_10_1111_jiec_12853
crossref_primary_10_1021_es3010333
crossref_primary_10_1021_es3031424
crossref_primary_10_1016_j_enpol_2022_112809
crossref_primary_10_1016_j_gloenvcha_2016_06_006
crossref_primary_10_1016_j_resourpol_2018_11_011
crossref_primary_10_1038_s43247_023_00972_6
crossref_primary_10_1016_j_resconrec_2020_104943
crossref_primary_10_1016_j_resconrec_2021_105517
crossref_primary_10_1016_j_resourpol_2016_01_010
crossref_primary_10_1016_j_ecolecon_2018_12_012
crossref_primary_10_1016_j_resconrec_2013_10_002
crossref_primary_10_1016_j_jes_2014_04_020
crossref_primary_10_1016_j_resconrec_2016_12_011
crossref_primary_10_1680_ensu_12_00031
crossref_primary_10_1016_j_resourpol_2022_102675
crossref_primary_10_1016_j_procir_2017_11_021
crossref_primary_10_1016_j_envc_2024_100988
crossref_primary_10_1111_jiec_13531
crossref_primary_10_1016_j_resconrec_2024_107949
crossref_primary_10_1111_jiec_13379
crossref_primary_10_2139_ssrn_4158227
crossref_primary_10_1021_es303149z
crossref_primary_10_1016_j_eiar_2020_106441
crossref_primary_10_1007_s11837_025_07239_9
crossref_primary_10_1016_j_jclepro_2015_12_042
crossref_primary_10_1111_jiec_12319
crossref_primary_10_1016_j_jclepro_2014_04_045
crossref_primary_10_1016_j_rser_2016_09_123
crossref_primary_10_1016_j_jclepro_2019_04_029
crossref_primary_10_3390_su10010267
crossref_primary_10_1021_acs_est_8b06652
crossref_primary_10_1007_s41247_019_0056_9
crossref_primary_10_1080_20964129_2019_1598780
crossref_primary_10_3390_recycling4010005
crossref_primary_10_1021_es302433p
crossref_primary_10_1016_j_susmat_2022_e00425
crossref_primary_10_3390_su15054228
crossref_primary_10_1016_j_apenergy_2022_119453
crossref_primary_10_1111_jiec_13093
crossref_primary_10_1016_j_apenergy_2017_10_084
crossref_primary_10_1111_jiec_12271
crossref_primary_10_1111_jiec_12273
crossref_primary_10_3390_su151310249
crossref_primary_10_1111_jiec_13523
crossref_primary_10_1016_j_jclepro_2020_121260
crossref_primary_10_1111_jiec_12710
crossref_primary_10_1021_acs_est_7b03077
crossref_primary_10_3390_buildings11090388
crossref_primary_10_1111_jiec_12316
crossref_primary_10_1016_j_jclepro_2021_126482
crossref_primary_10_1016_j_resourpol_2019_101506
crossref_primary_10_1016_j_worlddev_2019_104775
crossref_primary_10_1016_j_jclepro_2013_11_008
crossref_primary_10_1021_acs_est_3c09975
crossref_primary_10_1021_acs_est_3c06180
crossref_primary_10_1016_j_resconrec_2021_106105
crossref_primary_10_1016_j_resconrec_2022_106226
crossref_primary_10_1016_j_jclepro_2023_138536
crossref_primary_10_3389_fpubh_2019_00405
crossref_primary_10_1016_j_resconrec_2022_106584
crossref_primary_10_1016_j_jclepro_2017_02_166
crossref_primary_10_1016_j_resconrec_2016_09_029
crossref_primary_10_1021_acs_est_7b00997
crossref_primary_10_1016_j_resconrec_2016_02_003
crossref_primary_10_1016_j_ceramint_2020_12_241
crossref_primary_10_1021_acs_est_7b01683
crossref_primary_10_1016_j_jclepro_2020_121393
crossref_primary_10_1038_500143a
crossref_primary_10_1111_jiec_12940
crossref_primary_10_1016_j_jenvman_2020_111035
crossref_primary_10_1021_acs_est_9b01016
crossref_primary_10_1016_j_resconrec_2020_105107
crossref_primary_10_24883_IberoamericanIC_v14i_449
crossref_primary_10_1016_j_resconrec_2016_09_019
crossref_primary_10_1021_es404877u
crossref_primary_10_1016_j_resconrec_2015_07_009
crossref_primary_10_1016_j_resourpol_2017_01_002
crossref_primary_10_2208_jscejer_69_II_205
Cites_doi 10.1021/es902909k
10.1016/S0360-5442(98)00051-6
10.1080/09613210701287588
10.1016/S0301-4207(00)00026-X
10.1021/es100044n
10.1016/0301-4207(94)90002-7
10.1016/j.ecolecon.2005.09.025
10.1016/j.enpol.2006.08.007
10.1016/j.resconrec.2009.10.016
10.1021/es102273t
10.1073/pnas.0603375103
10.1021/es903584q
10.1179/174328109X439298
10.1016/j.resconrec.2010.03.003
ContentType Journal Article
Copyright Copyright © 2011 American Chemical Society
2014 INIST-CNRS
Copyright American Chemical Society Jan 3, 2012
Copyright_xml – notice: Copyright © 2011 American Chemical Society
– notice: 2014 INIST-CNRS
– notice: Copyright American Chemical Society Jan 3, 2012
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7S9
L.6
7X8
DOI 10.1021/es201904c
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Biotechnology Research Abstracts
AGRICOLA
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Applied Sciences
EISSN 1520-5851
EndPage 154
ExternalDocumentID 2556110011
22091699
25472354
10_1021_es201904c
d071936199
Genre Journal Article
Feature
GeographicLocations Asia
China
GeographicLocations_xml – name: China
GroupedDBID -
.K2
1AW
3R3
4.4
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
6TJ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
ADMHC
ADUKH
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
MS~
MW2
XSW
ZCA
.HR
186
1WB
42X
8WZ
A6W
AAYOK
ABHMW
ABTAH
ACKIV
ACRPL
ADNMO
AETEA
AEYZD
ANPPW
ANTXH
IHE
IQODW
MVM
NHB
OHT
RNS
TAE
UBC
UBX
UBY
UQL
VJK
VOH
YV5
ZCG
ZY4
~A~
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7S9
L.6
7X8
ID FETCH-LOGICAL-a505t-f7f41556654765269297b491733679cafd2ea9d2407fb4d6598dc23fe9253ca13
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Fri Jul 11 06:22:36 EDT 2025
Fri Jul 11 15:07:35 EDT 2025
Mon Jun 30 04:01:16 EDT 2025
Mon Jul 21 06:04:36 EDT 2025
Wed Apr 02 07:13:33 EDT 2025
Tue Jul 01 02:10:39 EDT 2025
Thu Apr 24 23:00:01 EDT 2025
Thu Aug 27 13:43:00 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Industrial ecology
Century 21st
Greenhouse gas
Carbon dioxide
Industrial metabolism
Metallurgical industry
Steel
Resource management
Emissions reduction
Sustainable development
Economic development
Environmental protection
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a505t-f7f41556654765269297b491733679cafd2ea9d2407fb4d6598dc23fe9253ca13
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/11250/2393654/1/Chinese_Steel_Cycle_Self-archive.pdf
PMID 22091699
PQID 914701498
PQPubID 45412
PageCount 7
ParticipantIDs proquest_miscellaneous_916150357
proquest_miscellaneous_2000221676
proquest_journals_914701498
pubmed_primary_22091699
pascalfrancis_primary_25472354
crossref_primary_10_1021_es201904c
crossref_citationtrail_10_1021_es201904c
acs_journals_10_1021_es201904c
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-01-03
PublicationDateYYYYMMDD 2012-01-03
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-01-03
  day: 03
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2012
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References (ref32/cit32) 2009
(ref20/cit20) 2003
Yellishetty M. (ref17/cit17) 2010; 54
(ref12/cit12) 2008
Wang K. (ref16/cit16) 2007; 35
ref14/cit14
Moody A. (ref9/cit9)
Müller D. B. (ref31/cit31) 2006; 103
Bergsdal H. (ref30/cit30) 2007; 35
(ref11/cit11) 2008
Meijer K. (ref3/cit3) 2009; 36
(ref21/cit21) 1999
Zhu D. (ref15/cit15) 2008; 6
Qian W. (ref29/cit29)
(ref1/cit1) 2009
Lu Z. (ref10/cit10) 2010; 8
Müller D. B. (ref22/cit22) 2006; 59
Das A. (ref19/cit19) 1998; 23
ref26/cit26
Allwood J. M. (ref2/cit2) 2010; 44
(ref13/cit13) 2007
Hatayama H. (ref24/cit24) 2010; 44
Lu Z. (ref25/cit25) 2002; 37
Jie R. (ref8/cit8)
(ref18/cit18) 2009
Birat J. P. (ref4/cit4) 1999; 96
Hao Z. (ref28/cit28)
(ref33/cit33) 2011
Hu M. (ref23/cit23) 2010; 54
Reck B. K. (ref34/cit34) 2010; 44
Müller D. B. (ref27/cit27) 2011; 45
Feng L. (ref6/cit6) 1994; 20
Wu Y. (ref7/cit7) 2000; 26
References_xml – volume: 44
  start-page: 1888
  issue: 6
  year: 2010
  ident: ref2/cit2
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es902909k
– ident: ref14/cit14
– volume: 23
  start-page: 1043
  issue: 12
  year: 1998
  ident: ref19/cit19
  publication-title: Energy
  doi: 10.1016/S0360-5442(98)00051-6
– ident: ref26/cit26
– ident: ref8/cit8
  publication-title: China Daily
– volume-title: Service Lifetimes of Mineral End Uses
  year: 2007
  ident: ref13/cit13
– volume: 6
  start-page: 4
  year: 2008
  ident: ref15/cit15
  publication-title: Chin. J. Population, Resour. Environ.
– volume: 35
  start-page: 557
  issue: 5
  year: 2007
  ident: ref30/cit30
  publication-title: Build. Res. Informat.
  doi: 10.1080/09613210701287588
– volume: 26
  start-page: 171
  issue: 3
  year: 2000
  ident: ref7/cit7
  publication-title: Resour. Policy
  doi: 10.1016/S0301-4207(00)00026-X
– volume: 8
  start-page: 2
  issue: 2
  year: 2010
  ident: ref10/cit10
  publication-title: Eng. Sci.
– volume: 44
  start-page: 6457
  issue: 16
  year: 2010
  ident: ref24/cit24
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es100044n
– volume: 20
  start-page: 219
  issue: 4
  year: 1994
  ident: ref6/cit6
  publication-title: Resour. Policy
  doi: 10.1016/0301-4207(94)90002-7
– volume: 59
  start-page: 142
  issue: 1
  year: 2006
  ident: ref22/cit22
  publication-title: Ecol. Econ.
  doi: 10.1016/j.ecolecon.2005.09.025
– volume: 35
  start-page: 2320
  year: 2007
  ident: ref16/cit16
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2006.08.007
– volume: 54
  start-page: 591
  issue: 9
  year: 2010
  ident: ref23/cit23
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2009.10.016
– ident: ref29/cit29
  publication-title: China Daily
– volume-title: Energy Consumption and CO2 Emissions from the World Iron and Steel Industry
  year: 2003
  ident: ref20/cit20
– volume: 45
  start-page: 182
  issue: 1
  year: 2011
  ident: ref27/cit27
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es102273t
– volume: 103
  start-page: 16111
  issue: 44
  year: 2006
  ident: ref31/cit31
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0603375103
– ident: ref28/cit28
  publication-title: China Daily
– volume: 37
  start-page: 66
  issue: 4
  year: 2002
  ident: ref25/cit25
  publication-title: Iron Steel
– volume-title: China’s Energy and Carbon Emissions Outlook to 2050
  year: 2011
  ident: ref33/cit33
– volume-title: Worldsteel In Figures 2009
  year: 2009
  ident: ref1/cit1
– volume-title: Long-Term Perspectives on World Metal Use - A Model-Based Approach
  year: 1999
  ident: ref21/cit21
– volume-title: 2008 Sustainability Report of the World Steel Industry
  year: 2008
  ident: ref12/cit12
– volume: 44
  start-page: 3940
  issue: 10
  year: 2010
  ident: ref34/cit34
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es903584q
– volume: 96
  start-page: 1203
  issue: 10
  year: 1999
  ident: ref4/cit4
  publication-title: Rev. Metall.-Cahiers D Inform. Tech.
– volume-title: World Energy Model - Methodology and Assumptions
  year: 2009
  ident: ref18/cit18
– volume: 36
  start-page: 249
  issue: 4
  year: 2009
  ident: ref3/cit3
  publication-title: Ironmaking Steelmaking
  doi: 10.1179/174328109X439298
– volume-title: World Energy Outlook 2008
  year: 2008
  ident: ref11/cit11
– volume: 54
  start-page: 1084
  issue: 12
  year: 2010
  ident: ref17/cit17
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2010.03.003
– ident: ref9/cit9
  publication-title: China Daily
– volume-title: Energy Technology Transitions for Industry - Strategies for the Next Industrial Revolution
  year: 2009
  ident: ref32/cit32
SSID ssj0002308
Score 2.4954734
Snippet As the world’s largest CO2 emitter and steel producer, China has set the ambitious goal of establishing a circular economy which aims at reconciling economic...
As the world's largest CO(2) emitter and steel producer, China has set the ambitious goal of establishing a circular economy which aims at reconciling economic...
As the world's largest ... emitter and steel producer, China has set the ambitious goal of establishing a circular economy which aims at reconciling economic...
As the world’s largest CO₂ emitter and steel producer, China has set the ambitious goal of establishing a circular economy which aims at reconciling economic...
SourceID proquest
pubmed
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 148
SubjectTerms Applied sciences
Carbon dioxide
China
Circular economy
Climatology. Bioclimatology. Climate change
Commerce - economics
Consumption
developed countries
Earth, ocean, space
Economic development
Emissions
Environmental protection
Exact sciences and technology
External geophysics
Global environmental pollution
industry
iron
Iron - economics
Iron compounds
material flow analysis
Meteorology
Pollution
primary productivity
recycling
Scrap
secondary productivity
steel
Steel - economics
Steel - supply & distribution
Steel industry
Steel production
transportation
Title Moving Toward the Circular Economy: The Role of Stocks in the Chinese Steel Cycle
URI http://dx.doi.org/10.1021/es201904c
https://www.ncbi.nlm.nih.gov/pubmed/22091699
https://www.proquest.com/docview/914701498
https://www.proquest.com/docview/2000221676
https://www.proquest.com/docview/916150357
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1NT9wwEB1RuFBVLaWlTYGVWzj0ErqxHSfuDS0ghESlFpD2trIdW0VdZRHJHuiv79j5WBBskXKIkomSeMaeN7ZnHsC-ZHzIioLFzigdc4260FmBwQp6F2NkTlWoeHP-Q5xe8bNxOl6BvSUr-DT5Zivq8525eQFrVKB_8fhndNEPt4ih846mQDIx7soH3X_Uux5TPXA9r25Uha3gGvqK5fgy-JmTN3DUZes020v-HMxrfWD-Pi7e-L9f2IDXLc4kh41hvIUVW27Cy3vVBzdh63iR5IaibS-v3sHP8zDNQC7DllqCEJGMrm_DhlXSJDLffSdoX-TXbGrJzJGLGkfVilyXjezvQGuJV62dktEdvv89XJ0cX45O45Z6IVYIierYZc4jjUBNLDwJOZWZ5hjaMSYyaZQrqFWy8OGg07wQqcwLQ5mzkqbMqIRtwWo5K-1HIGyo8EispcJy7lyuRC5crhHqFWrIdQQD1M2k7TrVJKyK02TSN1oEXzu1TUxbuNzzZ0yfEv3Si9401TqeEho80H0vibFyRlnKI9jujGHxWTLhmQ8n8wg-93exK_r1FVXa2bzyjJ6IiBKRiQjIEhnpEfaQpVkEHxozW7yeInYTUn56rkG2YR3PaJgIYjuwWt_O7S5Co1oPQtf4Bx17BNE
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOQBCPEofobAYxIFLysZ2nJhbtWq1QLcSdCvtLbIdW1SsslWTPZRfz9jJZlvUCqScnEnijGfsb_yYD-CDZHzIypLFzigdc41tobMSgxUcXYyROVUh483kRIzP-NdZOuvS5PizMFiJGt9Uh0X8dXaB5JOtqT_2zM19eJAKLjxNw8HotO91EUrnK7YCycRslUXo-qN-BDL1jRHoyYWqURmuZbG4G2aG4eboWctbFCoadpn82l82et_8_iuH4__9yXN42qFOctCayQu4Z6tNeHwtF-EmbB-uj7yhaOfz9Uv4PgmTDmQaNtgSBIxkdH4Ztq-S9ljz1WeC1kZ-LOaWLBw5bbCPrcl51cr-DCSXWGrtnIyu8PtbcHZ0OB2N446IIVYIkJrYZc7jjkBULDwlOZWZ5hjoMSYyaZQrqVWy9MGh07wUqcxLQ5mzkqbMqIRtw0a1qOwuEDZUeCXWUmE5dy5XIhcu1wj8SjXkOoIB6qzoHKkuwho5TYpeaRF8XLVeYbo05p5NY36b6Pte9KLN3XGb0OCGCfSSGDlnlKU8gr2VTayrJROe-eAyj-Bdfxcd06-2qMoulrXn90R8lIhMREDukJEebw9ZmkWw01rb-vMUkZyQ8tW_FPIWHo6nk-Pi-MvJtz14hKU0TBGx17DRXC7tGwRNjR4Eb_kD58sNMw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BkRAI8Sh9hMJiEAcuKRvbcWJu1dJVebQ82kp7ixzHFhWr7KrOHsqvZ-xksy1qBVJOziRxxjP2N37MB_BGMj5kVcViq1UZ8xLboswqDFZwdNFa5lSFjDeHR-LglH-apJMuUPRnYbASDt_kwiK-9-p5ZbsMA8k746g_-sz1bbiDQCTxVA17o-O-50U4nS8ZCyQTk2UmocuP-lFIuyuj0IO5cqgQ2zJZ3Aw1w5AzfgRf-8qGnSa_dhdNuat__5XH8f__5jE87NAn2WvN5QncMvU63L-Uk3AdNvdXR99QtPN99xS-H4bJB3ISNtoSBI5kdHYetrGS9njzxXuCVkd-zKaGzCw5brCvdeSsbmV_BrJLLDVmSkYX-P0NOB3vn4wO4o6QIVYIlJrYZtbjj0BYLDw1OZVZyTHgY0xkUitbUaNk5YNEW_JKpDKvNGXWSJoyrRK2CWv1rDbbQNhQ4ZUYQ4Xh3NpciVzYvEQAWKkhLyMYoN6KzqFcEdbKaVL0Sovg7bIFC92lM_esGtPrRF_3ovM2h8d1QoMrZtBLYgSdUZbyCHaWdrGqlkx45oPMPIJX_V10UL_qomozWzjP84k4KRGZiIDcICM97h6yNItgq7W41ecpIjoh5bN_KeQl3P32YVx8-Xj0eQfuYSENM0XsOaw15wvzArFTUw6Cw_wBoHgPrQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Moving+Toward+the+Circular+Economy%3A+The+Role+of+Stocks+in+the+Chinese+Steel+Cycle&rft.jtitle=Environmental+science+%26+technology&rft.au=Pauliuk%2C+Stefan&rft.au=Wang%2C+Tao&rft.au=Mu%CC%88ller%2C+Daniel+B&rft.date=2012-01-03&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=46&rft.issue=1&rft.spage=148&rft.epage=154&rft_id=info:doi/10.1021%2Fes201904c&rft.externalDocID=d071936199
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon