Moving Toward the Circular Economy: The Role of Stocks in the Chinese Steel Cycle
As the world’s largest CO2 emitter and steel producer, China has set the ambitious goal of establishing a circular economy which aims at reconciling economic development with environmental protection and sustainable resource use. This work applies dynamic material flow analysis to forecast productio...
Saved in:
Published in | Environmental science & technology Vol. 46; no. 1; pp. 148 - 154 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
03.01.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 0013-936X 1520-5851 1520-5851 |
DOI | 10.1021/es201904c |
Cover
Abstract | As the world’s largest CO2 emitter and steel producer, China has set the ambitious goal of establishing a circular economy which aims at reconciling economic development with environmental protection and sustainable resource use. This work applies dynamic material flow analysis to forecast production, recycling, and iron ore consumption in the Chinese steel cycle until 2100 by using steel services in terms of in-use stock per capita as driver of future development. The whole cycle is modeled to determine possible responses of the steel industry in light of the circular economy concept. If per-capita stock saturates at 8–12 tons as evidence from industrialized countries suggests, consumption may peak between 2015 and 2020, whereupon it is likely to drop by up to 40% until 2050. A slower growing in-use stock could mitigate this peak and hence reduce overcapacity in primary production. Old scrap supply will increase substantially and it could replace up to 80% of iron ore as resource for steel making by 2050. This would require advanced recycling technologies as manufacturers of machinery and transportation equipment would have to shift to secondary steel as well as new capacities in secondary production which could, however, make redundant already existing integrated steel plants. |
---|---|
AbstractList | As the world's largest CO(2) emitter and steel producer, China has set the ambitious goal of establishing a circular economy which aims at reconciling economic development with environmental protection and sustainable resource use. This work applies dynamic material flow analysis to forecast production, recycling, and iron ore consumption in the Chinese steel cycle until 2100 by using steel services in terms of in-use stock per capita as driver of future development. The whole cycle is modeled to determine possible responses of the steel industry in light of the circular economy concept. If per-capita stock saturates at 8-12 tons as evidence from industrialized countries suggests, consumption may peak between 2015 and 2020, whereupon it is likely to drop by up to 40% until 2050. A slower growing in-use stock could mitigate this peak and hence reduce overcapacity in primary production. Old scrap supply will increase substantially and it could replace up to 80% of iron ore as resource for steel making by 2050. This would require advanced recycling technologies as manufacturers of machinery and transportation equipment would have to shift to secondary steel as well as new capacities in secondary production which could, however, make redundant already existing integrated steel plants.As the world's largest CO(2) emitter and steel producer, China has set the ambitious goal of establishing a circular economy which aims at reconciling economic development with environmental protection and sustainable resource use. This work applies dynamic material flow analysis to forecast production, recycling, and iron ore consumption in the Chinese steel cycle until 2100 by using steel services in terms of in-use stock per capita as driver of future development. The whole cycle is modeled to determine possible responses of the steel industry in light of the circular economy concept. If per-capita stock saturates at 8-12 tons as evidence from industrialized countries suggests, consumption may peak between 2015 and 2020, whereupon it is likely to drop by up to 40% until 2050. A slower growing in-use stock could mitigate this peak and hence reduce overcapacity in primary production. Old scrap supply will increase substantially and it could replace up to 80% of iron ore as resource for steel making by 2050. This would require advanced recycling technologies as manufacturers of machinery and transportation equipment would have to shift to secondary steel as well as new capacities in secondary production which could, however, make redundant already existing integrated steel plants. As the world's largest ... emitter and steel producer, China has set the ambitious goal of establishing a circular economy which aims at reconciling economic development with environmental protection and sustainable resource use. This work applies dynamic material flow analysis to forecast production, recycling, and iron ore consumption in the Chinese steel cycle until 2100 by using steel services in terms of in-use stock per capita as driver of future development. The whole cycle is modeled to determine possible responses of the steel industry in light of the circular economy concept. If per-capita stock saturates at 8-12 tons as evidence from industrialized countries suggests, consumption may peak between 2015 and 2020, whereupon it is likely to drop by up to 40% until 2050. A slower growing in-use stock could mitigate this peak and hence reduce overcapacity in primary production. Old scrap supply will increase substantially and it could replace up to 80% of iron ore as resource for steel making by 2050. This would require advanced recycling technologies as manufacturers of machinery and transportation equipment would have to shift to secondary steel as well as new capacities in secondary production which could, however, make redundant already existing integrated steel plants. (ProQuest: ... denotes formulae/symbols omitted.) As the world’s largest CO₂ emitter and steel producer, China has set the ambitious goal of establishing a circular economy which aims at reconciling economic development with environmental protection and sustainable resource use. This work applies dynamic material flow analysis to forecast production, recycling, and iron ore consumption in the Chinese steel cycle until 2100 by using steel services in terms of in-use stock per capita as driver of future development. The whole cycle is modeled to determine possible responses of the steel industry in light of the circular economy concept. If per-capita stock saturates at 8–12 tons as evidence from industrialized countries suggests, consumption may peak between 2015 and 2020, whereupon it is likely to drop by up to 40% until 2050. A slower growing in-use stock could mitigate this peak and hence reduce overcapacity in primary production. Old scrap supply will increase substantially and it could replace up to 80% of iron ore as resource for steel making by 2050. This would require advanced recycling technologies as manufacturers of machinery and transportation equipment would have to shift to secondary steel as well as new capacities in secondary production which could, however, make redundant already existing integrated steel plants. As the world's largest CO(2) emitter and steel producer, China has set the ambitious goal of establishing a circular economy which aims at reconciling economic development with environmental protection and sustainable resource use. This work applies dynamic material flow analysis to forecast production, recycling, and iron ore consumption in the Chinese steel cycle until 2100 by using steel services in terms of in-use stock per capita as driver of future development. The whole cycle is modeled to determine possible responses of the steel industry in light of the circular economy concept. If per-capita stock saturates at 8-12 tons as evidence from industrialized countries suggests, consumption may peak between 2015 and 2020, whereupon it is likely to drop by up to 40% until 2050. A slower growing in-use stock could mitigate this peak and hence reduce overcapacity in primary production. Old scrap supply will increase substantially and it could replace up to 80% of iron ore as resource for steel making by 2050. This would require advanced recycling technologies as manufacturers of machinery and transportation equipment would have to shift to secondary steel as well as new capacities in secondary production which could, however, make redundant already existing integrated steel plants. As the world’s largest CO2 emitter and steel producer, China has set the ambitious goal of establishing a circular economy which aims at reconciling economic development with environmental protection and sustainable resource use. This work applies dynamic material flow analysis to forecast production, recycling, and iron ore consumption in the Chinese steel cycle until 2100 by using steel services in terms of in-use stock per capita as driver of future development. The whole cycle is modeled to determine possible responses of the steel industry in light of the circular economy concept. If per-capita stock saturates at 8–12 tons as evidence from industrialized countries suggests, consumption may peak between 2015 and 2020, whereupon it is likely to drop by up to 40% until 2050. A slower growing in-use stock could mitigate this peak and hence reduce overcapacity in primary production. Old scrap supply will increase substantially and it could replace up to 80% of iron ore as resource for steel making by 2050. This would require advanced recycling technologies as manufacturers of machinery and transportation equipment would have to shift to secondary steel as well as new capacities in secondary production which could, however, make redundant already existing integrated steel plants. |
Author | Pauliuk, Stefan Müller, Daniel B Wang, Tao |
AuthorAffiliation | Norwegian University of Science and Technology National Institute for Environmental Studies |
AuthorAffiliation_xml | – name: National Institute for Environmental Studies – name: Norwegian University of Science and Technology |
Author_xml | – sequence: 1 givenname: Stefan surname: Pauliuk fullname: Pauliuk, Stefan – sequence: 2 givenname: Tao surname: Wang fullname: Wang, Tao – sequence: 3 givenname: Daniel B surname: Müller fullname: Müller, Daniel B email: daniel.mueller@ntnu.no |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25472354$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22091699$$D View this record in MEDLINE/PubMed |
BookMark | eNp90V1rVDEQBuAgLXZbvfAPSBCKenFsvrPxriz1AyqiruDdIZszsanZpCbnKPvvm7JrC1W8CgzPDHlnDtFeygkQekLJK0oYPYHKCDVEuAdoRiUjnZxLuodmhFDeGa6-HaDDWi8JIYyT-UN0wBgxVBkzQ58-5F8hfcfL_NuWAY8XgBehuCnags9cTnm9eY2Xrfo5R8DZ4y9jdj8qDmlrL0KCCq0KEPFi4yI8QvvexgqPd-8R-vrmbLl4151_fPt-cXreWUnk2HntBZVSKSm0kkwZZvRKGKo5V9o46wcG1gxMEO1XYlDSzAfHuAfDJHeW8iP0fDv3quSfE9SxX4fqIEabIE-1bwGpJFzqJl_8V7KbxTCqtGr02T16maeSWo42T2hChZk39HSHptUahv6qhLUtm_7PVhs43gFbnY2-2ORCvXMtMuNSNPdy61zJtRbwt4SS_uay_e1lmz25Z10Y7RhyGosN8Z8du19YV-9i_O2uAQXWrFQ |
CODEN | ESTHAG |
CitedBy_id | crossref_primary_10_1016_j_jclepro_2020_122853 crossref_primary_10_1111_jiec_12095 crossref_primary_10_1007_s11783_014_0696_3 crossref_primary_10_3390_su10093191 crossref_primary_10_1016_j_ecoinf_2022_101716 crossref_primary_10_1021_acs_est_6b01669 crossref_primary_10_3390_en15249376 crossref_primary_10_1016_j_envint_2016_03_007 crossref_primary_10_1016_j_buildenv_2024_111602 crossref_primary_10_1021_es500902b crossref_primary_10_1021_es502930w crossref_primary_10_3390_su14127388 crossref_primary_10_1021_es403506a crossref_primary_10_1016_j_resconrec_2021_105558 crossref_primary_10_1016_j_jclepro_2018_02_108 crossref_primary_10_1111_jiec_12809 crossref_primary_10_1016_j_scitotenv_2022_159964 crossref_primary_10_1016_j_jmrt_2022_03_171 crossref_primary_10_1021_acs_est_8b03633 crossref_primary_10_1021_acs_est_5b05098 crossref_primary_10_1021_acs_est_5b05012 crossref_primary_10_1111_jiec_13182 crossref_primary_10_1038_s42949_023_00132_x crossref_primary_10_1016_j_resconrec_2012_08_009 crossref_primary_10_1016_j_resconrec_2023_106994 crossref_primary_10_3390_su132313159 crossref_primary_10_1016_j_resconrec_2012_11_008 crossref_primary_10_1111_jiec_13054 crossref_primary_10_3389_fenrg_2022_992617 crossref_primary_10_1007_s11367_014_0793_3 crossref_primary_10_1016_j_resconrec_2015_07_021 crossref_primary_10_1080_10971475_2021_1875156 crossref_primary_10_1016_j_ijpe_2024_109231 crossref_primary_10_3390_rs6064780 crossref_primary_10_1021_acs_est_7b05549 crossref_primary_10_1111_jiec_13179 crossref_primary_10_1021_acs_est_3c01289 crossref_primary_10_2355_isijinternational_ISIJINT_2016_470 crossref_primary_10_3390_resources8020089 crossref_primary_10_1016_j_cec_2022_100004 crossref_primary_10_3390_met10050664 crossref_primary_10_1016_j_scitotenv_2015_07_021 crossref_primary_10_1016_j_jclepro_2017_12_006 crossref_primary_10_1016_j_resourpol_2023_104141 crossref_primary_10_3390_su122410427 crossref_primary_10_1007_s11053_023_10176_6 crossref_primary_10_1016_j_jclepro_2022_130402 crossref_primary_10_1016_j_resconrec_2025_108136 crossref_primary_10_54691_bcpbm_v26i_2052 crossref_primary_10_1016_j_gloenvcha_2021_102410 crossref_primary_10_1038_s41598_021_83698_9 crossref_primary_10_1016_j_jclepro_2023_139038 crossref_primary_10_1016_j_jeurceramsoc_2023_08_033 crossref_primary_10_1016_j_resconrec_2019_06_010 crossref_primary_10_1111_jiec_13040 crossref_primary_10_1016_j_resconrec_2017_10_034 crossref_primary_10_1038_s41467_022_29022_z crossref_primary_10_1016_j_resconrec_2019_104667 crossref_primary_10_1016_j_wasman_2022_08_031 crossref_primary_10_37497_esg_v7iesg_1621 crossref_primary_10_1111_jiec_13321 crossref_primary_10_1016_j_jclepro_2020_123086 crossref_primary_10_1111_jiec_12598 crossref_primary_10_1111_jiec_13203 crossref_primary_10_1111_jiec_13600 crossref_primary_10_1016_j_resconrec_2015_04_001 crossref_primary_10_1021_acs_est_4c09876 crossref_primary_10_1038_nclimate1698 crossref_primary_10_1016_j_jhazmat_2018_04_032 crossref_primary_10_1016_j_jum_2024_10_004 crossref_primary_10_1016_j_resconrec_2016_06_014 crossref_primary_10_1016_j_jclepro_2018_03_243 crossref_primary_10_1016_j_resconrec_2014_04_003 crossref_primary_10_1098_rsta_2012_0496 crossref_primary_10_1016_j_ecolecon_2018_04_030 crossref_primary_10_1016_j_jenvman_2020_111220 crossref_primary_10_1016_j_resconrec_2022_106827 crossref_primary_10_24883_eagleSustainable_v14i_449 crossref_primary_10_1016_j_resourpol_2018_06_011 crossref_primary_10_1016_j_corsci_2023_111589 crossref_primary_10_34133_ehs_0297 crossref_primary_10_1007_s41247_017_0023_2 crossref_primary_10_1016_j_resconrec_2017_01_021 crossref_primary_10_1016_j_jclepro_2016_05_023 crossref_primary_10_1016_j_resconrec_2022_106153 crossref_primary_10_1002_bse_3229 crossref_primary_10_1016_j_resconrec_2013_11_008 crossref_primary_10_1007_s10668_023_03868_9 crossref_primary_10_1016_j_resconrec_2018_09_012 crossref_primary_10_1007_s40831_022_00620_x crossref_primary_10_1016_j_resourpol_2016_07_001 crossref_primary_10_1016_j_jbusres_2022_113513 crossref_primary_10_1016_j_resconrec_2018_02_003 crossref_primary_10_1021_acs_est_0c04321 crossref_primary_10_1021_acssuschemeng_8b04347 crossref_primary_10_1016_j_ecolecon_2020_106838 crossref_primary_10_1016_j_resconrec_2020_104855 crossref_primary_10_1016_j_jclepro_2022_130544 crossref_primary_10_3390_su12073060 crossref_primary_10_1016_j_resourpol_2022_103291 crossref_primary_10_1016_j_scitotenv_2022_159514 crossref_primary_10_1016_j_energy_2021_122434 crossref_primary_10_1016_j_resconrec_2017_07_002 crossref_primary_10_1016_j_egycc_2024_100168 crossref_primary_10_1016_j_gloenvcha_2022_102574 crossref_primary_10_1038_s41597_021_01075_7 crossref_primary_10_1016_j_eiar_2024_107785 crossref_primary_10_3390_recycling1020219 crossref_primary_10_1016_j_rser_2019_05_001 crossref_primary_10_1016_j_eiar_2024_107548 crossref_primary_10_1016_j_jclepro_2016_05_073 crossref_primary_10_1111_jiec_13268 crossref_primary_10_1016_j_resconrec_2017_10_019 crossref_primary_10_1111_jiec_12853 crossref_primary_10_1021_es3010333 crossref_primary_10_1021_es3031424 crossref_primary_10_1016_j_enpol_2022_112809 crossref_primary_10_1016_j_gloenvcha_2016_06_006 crossref_primary_10_1016_j_resourpol_2018_11_011 crossref_primary_10_1038_s43247_023_00972_6 crossref_primary_10_1016_j_resconrec_2020_104943 crossref_primary_10_1016_j_resconrec_2021_105517 crossref_primary_10_1016_j_resourpol_2016_01_010 crossref_primary_10_1016_j_ecolecon_2018_12_012 crossref_primary_10_1016_j_resconrec_2013_10_002 crossref_primary_10_1016_j_jes_2014_04_020 crossref_primary_10_1016_j_resconrec_2016_12_011 crossref_primary_10_1680_ensu_12_00031 crossref_primary_10_1016_j_resourpol_2022_102675 crossref_primary_10_1016_j_procir_2017_11_021 crossref_primary_10_1016_j_envc_2024_100988 crossref_primary_10_1111_jiec_13531 crossref_primary_10_1016_j_resconrec_2024_107949 crossref_primary_10_1111_jiec_13379 crossref_primary_10_2139_ssrn_4158227 crossref_primary_10_1021_es303149z crossref_primary_10_1016_j_eiar_2020_106441 crossref_primary_10_1007_s11837_025_07239_9 crossref_primary_10_1016_j_jclepro_2015_12_042 crossref_primary_10_1111_jiec_12319 crossref_primary_10_1016_j_jclepro_2014_04_045 crossref_primary_10_1016_j_rser_2016_09_123 crossref_primary_10_1016_j_jclepro_2019_04_029 crossref_primary_10_3390_su10010267 crossref_primary_10_1021_acs_est_8b06652 crossref_primary_10_1007_s41247_019_0056_9 crossref_primary_10_1080_20964129_2019_1598780 crossref_primary_10_3390_recycling4010005 crossref_primary_10_1021_es302433p crossref_primary_10_1016_j_susmat_2022_e00425 crossref_primary_10_3390_su15054228 crossref_primary_10_1016_j_apenergy_2022_119453 crossref_primary_10_1111_jiec_13093 crossref_primary_10_1016_j_apenergy_2017_10_084 crossref_primary_10_1111_jiec_12271 crossref_primary_10_1111_jiec_12273 crossref_primary_10_3390_su151310249 crossref_primary_10_1111_jiec_13523 crossref_primary_10_1016_j_jclepro_2020_121260 crossref_primary_10_1111_jiec_12710 crossref_primary_10_1021_acs_est_7b03077 crossref_primary_10_3390_buildings11090388 crossref_primary_10_1111_jiec_12316 crossref_primary_10_1016_j_jclepro_2021_126482 crossref_primary_10_1016_j_resourpol_2019_101506 crossref_primary_10_1016_j_worlddev_2019_104775 crossref_primary_10_1016_j_jclepro_2013_11_008 crossref_primary_10_1021_acs_est_3c09975 crossref_primary_10_1021_acs_est_3c06180 crossref_primary_10_1016_j_resconrec_2021_106105 crossref_primary_10_1016_j_resconrec_2022_106226 crossref_primary_10_1016_j_jclepro_2023_138536 crossref_primary_10_3389_fpubh_2019_00405 crossref_primary_10_1016_j_resconrec_2022_106584 crossref_primary_10_1016_j_jclepro_2017_02_166 crossref_primary_10_1016_j_resconrec_2016_09_029 crossref_primary_10_1021_acs_est_7b00997 crossref_primary_10_1016_j_resconrec_2016_02_003 crossref_primary_10_1016_j_ceramint_2020_12_241 crossref_primary_10_1021_acs_est_7b01683 crossref_primary_10_1016_j_jclepro_2020_121393 crossref_primary_10_1038_500143a crossref_primary_10_1111_jiec_12940 crossref_primary_10_1016_j_jenvman_2020_111035 crossref_primary_10_1021_acs_est_9b01016 crossref_primary_10_1016_j_resconrec_2020_105107 crossref_primary_10_24883_IberoamericanIC_v14i_449 crossref_primary_10_1016_j_resconrec_2016_09_019 crossref_primary_10_1021_es404877u crossref_primary_10_1016_j_resconrec_2015_07_009 crossref_primary_10_1016_j_resourpol_2017_01_002 crossref_primary_10_2208_jscejer_69_II_205 |
Cites_doi | 10.1021/es902909k 10.1016/S0360-5442(98)00051-6 10.1080/09613210701287588 10.1016/S0301-4207(00)00026-X 10.1021/es100044n 10.1016/0301-4207(94)90002-7 10.1016/j.ecolecon.2005.09.025 10.1016/j.enpol.2006.08.007 10.1016/j.resconrec.2009.10.016 10.1021/es102273t 10.1073/pnas.0603375103 10.1021/es903584q 10.1179/174328109X439298 10.1016/j.resconrec.2010.03.003 |
ContentType | Journal Article |
Copyright | Copyright © 2011 American Chemical Society 2014 INIST-CNRS Copyright American Chemical Society Jan 3, 2012 |
Copyright_xml | – notice: Copyright © 2011 American Chemical Society – notice: 2014 INIST-CNRS – notice: Copyright American Chemical Society Jan 3, 2012 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7S9 L.6 7X8 |
DOI | 10.1021/es201904c |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Biotechnology Research Abstracts AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences Applied Sciences |
EISSN | 1520-5851 |
EndPage | 154 |
ExternalDocumentID | 2556110011 22091699 25472354 10_1021_es201904c d071936199 |
Genre | Journal Article Feature |
GeographicLocations | Asia China |
GeographicLocations_xml | – name: China |
GroupedDBID | - .K2 1AW 3R3 4.4 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 6TJ AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADMHC ADUKH AGXLV AHGAQ CITATION CUPRZ GGK MS~ MW2 XSW ZCA .HR 186 1WB 42X 8WZ A6W AAYOK ABHMW ABTAH ACKIV ACRPL ADNMO AETEA AEYZD ANPPW ANTXH IHE IQODW MVM NHB OHT RNS TAE UBC UBX UBY UQL VJK VOH YV5 ZCG ZY4 ~A~ CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-a505t-f7f41556654765269297b491733679cafd2ea9d2407fb4d6598dc23fe9253ca13 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Fri Jul 11 06:22:36 EDT 2025 Fri Jul 11 15:07:35 EDT 2025 Mon Jun 30 04:01:16 EDT 2025 Mon Jul 21 06:04:36 EDT 2025 Wed Apr 02 07:13:33 EDT 2025 Tue Jul 01 02:10:39 EDT 2025 Thu Apr 24 23:00:01 EDT 2025 Thu Aug 27 13:43:00 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Industrial ecology Century 21st Greenhouse gas Carbon dioxide Industrial metabolism Metallurgical industry Steel Resource management Emissions reduction Sustainable development Economic development Environmental protection |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a505t-f7f41556654765269297b491733679cafd2ea9d2407fb4d6598dc23fe9253ca13 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/11250/2393654/1/Chinese_Steel_Cycle_Self-archive.pdf |
PMID | 22091699 |
PQID | 914701498 |
PQPubID | 45412 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_916150357 proquest_miscellaneous_2000221676 proquest_journals_914701498 pubmed_primary_22091699 pascalfrancis_primary_25472354 crossref_primary_10_1021_es201904c crossref_citationtrail_10_1021_es201904c acs_journals_10_1021_es201904c |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-01-03 |
PublicationDateYYYYMMDD | 2012-01-03 |
PublicationDate_xml | – month: 01 year: 2012 text: 2012-01-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2012 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | (ref32/cit32) 2009 (ref20/cit20) 2003 Yellishetty M. (ref17/cit17) 2010; 54 (ref12/cit12) 2008 Wang K. (ref16/cit16) 2007; 35 ref14/cit14 Moody A. (ref9/cit9) Müller D. B. (ref31/cit31) 2006; 103 Bergsdal H. (ref30/cit30) 2007; 35 (ref11/cit11) 2008 Meijer K. (ref3/cit3) 2009; 36 (ref21/cit21) 1999 Zhu D. (ref15/cit15) 2008; 6 Qian W. (ref29/cit29) (ref1/cit1) 2009 Lu Z. (ref10/cit10) 2010; 8 Müller D. B. (ref22/cit22) 2006; 59 Das A. (ref19/cit19) 1998; 23 ref26/cit26 Allwood J. M. (ref2/cit2) 2010; 44 (ref13/cit13) 2007 Hatayama H. (ref24/cit24) 2010; 44 Lu Z. (ref25/cit25) 2002; 37 Jie R. (ref8/cit8) (ref18/cit18) 2009 Birat J. P. (ref4/cit4) 1999; 96 Hao Z. (ref28/cit28) (ref33/cit33) 2011 Hu M. (ref23/cit23) 2010; 54 Reck B. K. (ref34/cit34) 2010; 44 Müller D. B. (ref27/cit27) 2011; 45 Feng L. (ref6/cit6) 1994; 20 Wu Y. (ref7/cit7) 2000; 26 |
References_xml | – volume: 44 start-page: 1888 issue: 6 year: 2010 ident: ref2/cit2 publication-title: Environ. Sci. Technol. doi: 10.1021/es902909k – ident: ref14/cit14 – volume: 23 start-page: 1043 issue: 12 year: 1998 ident: ref19/cit19 publication-title: Energy doi: 10.1016/S0360-5442(98)00051-6 – ident: ref26/cit26 – ident: ref8/cit8 publication-title: China Daily – volume-title: Service Lifetimes of Mineral End Uses year: 2007 ident: ref13/cit13 – volume: 6 start-page: 4 year: 2008 ident: ref15/cit15 publication-title: Chin. J. Population, Resour. Environ. – volume: 35 start-page: 557 issue: 5 year: 2007 ident: ref30/cit30 publication-title: Build. Res. Informat. doi: 10.1080/09613210701287588 – volume: 26 start-page: 171 issue: 3 year: 2000 ident: ref7/cit7 publication-title: Resour. Policy doi: 10.1016/S0301-4207(00)00026-X – volume: 8 start-page: 2 issue: 2 year: 2010 ident: ref10/cit10 publication-title: Eng. Sci. – volume: 44 start-page: 6457 issue: 16 year: 2010 ident: ref24/cit24 publication-title: Environ. Sci. Technol. doi: 10.1021/es100044n – volume: 20 start-page: 219 issue: 4 year: 1994 ident: ref6/cit6 publication-title: Resour. Policy doi: 10.1016/0301-4207(94)90002-7 – volume: 59 start-page: 142 issue: 1 year: 2006 ident: ref22/cit22 publication-title: Ecol. Econ. doi: 10.1016/j.ecolecon.2005.09.025 – volume: 35 start-page: 2320 year: 2007 ident: ref16/cit16 publication-title: Energy Policy doi: 10.1016/j.enpol.2006.08.007 – volume: 54 start-page: 591 issue: 9 year: 2010 ident: ref23/cit23 publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2009.10.016 – ident: ref29/cit29 publication-title: China Daily – volume-title: Energy Consumption and CO2 Emissions from the World Iron and Steel Industry year: 2003 ident: ref20/cit20 – volume: 45 start-page: 182 issue: 1 year: 2011 ident: ref27/cit27 publication-title: Environ. Sci. Technol. doi: 10.1021/es102273t – volume: 103 start-page: 16111 issue: 44 year: 2006 ident: ref31/cit31 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0603375103 – ident: ref28/cit28 publication-title: China Daily – volume: 37 start-page: 66 issue: 4 year: 2002 ident: ref25/cit25 publication-title: Iron Steel – volume-title: China’s Energy and Carbon Emissions Outlook to 2050 year: 2011 ident: ref33/cit33 – volume-title: Worldsteel In Figures 2009 year: 2009 ident: ref1/cit1 – volume-title: Long-Term Perspectives on World Metal Use - A Model-Based Approach year: 1999 ident: ref21/cit21 – volume-title: 2008 Sustainability Report of the World Steel Industry year: 2008 ident: ref12/cit12 – volume: 44 start-page: 3940 issue: 10 year: 2010 ident: ref34/cit34 publication-title: Environ. Sci. Technol. doi: 10.1021/es903584q – volume: 96 start-page: 1203 issue: 10 year: 1999 ident: ref4/cit4 publication-title: Rev. Metall.-Cahiers D Inform. Tech. – volume-title: World Energy Model - Methodology and Assumptions year: 2009 ident: ref18/cit18 – volume: 36 start-page: 249 issue: 4 year: 2009 ident: ref3/cit3 publication-title: Ironmaking Steelmaking doi: 10.1179/174328109X439298 – volume-title: World Energy Outlook 2008 year: 2008 ident: ref11/cit11 – volume: 54 start-page: 1084 issue: 12 year: 2010 ident: ref17/cit17 publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2010.03.003 – ident: ref9/cit9 publication-title: China Daily – volume-title: Energy Technology Transitions for Industry - Strategies for the Next Industrial Revolution year: 2009 ident: ref32/cit32 |
SSID | ssj0002308 |
Score | 2.4954734 |
Snippet | As the world’s largest CO2 emitter and steel producer, China has set the ambitious goal of establishing a circular economy which aims at reconciling economic... As the world's largest CO(2) emitter and steel producer, China has set the ambitious goal of establishing a circular economy which aims at reconciling economic... As the world's largest ... emitter and steel producer, China has set the ambitious goal of establishing a circular economy which aims at reconciling economic... As the world’s largest CO₂ emitter and steel producer, China has set the ambitious goal of establishing a circular economy which aims at reconciling economic... |
SourceID | proquest pubmed pascalfrancis crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 148 |
SubjectTerms | Applied sciences Carbon dioxide China Circular economy Climatology. Bioclimatology. Climate change Commerce - economics Consumption developed countries Earth, ocean, space Economic development Emissions Environmental protection Exact sciences and technology External geophysics Global environmental pollution industry iron Iron - economics Iron compounds material flow analysis Meteorology Pollution primary productivity recycling Scrap secondary productivity steel Steel - economics Steel - supply & distribution Steel industry Steel production transportation |
Title | Moving Toward the Circular Economy: The Role of Stocks in the Chinese Steel Cycle |
URI | http://dx.doi.org/10.1021/es201904c https://www.ncbi.nlm.nih.gov/pubmed/22091699 https://www.proquest.com/docview/914701498 https://www.proquest.com/docview/2000221676 https://www.proquest.com/docview/916150357 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1NT9wwEB1RuFBVLaWlTYGVWzj0ErqxHSfuDS0ghESlFpD2trIdW0VdZRHJHuiv79j5WBBskXKIkomSeMaeN7ZnHsC-ZHzIioLFzigdc4260FmBwQp6F2NkTlWoeHP-Q5xe8bNxOl6BvSUr-DT5Zivq8525eQFrVKB_8fhndNEPt4ih846mQDIx7soH3X_Uux5TPXA9r25Uha3gGvqK5fgy-JmTN3DUZes020v-HMxrfWD-Pi7e-L9f2IDXLc4kh41hvIUVW27Cy3vVBzdh63iR5IaibS-v3sHP8zDNQC7DllqCEJGMrm_DhlXSJDLffSdoX-TXbGrJzJGLGkfVilyXjezvQGuJV62dktEdvv89XJ0cX45O45Z6IVYIierYZc4jjUBNLDwJOZWZ5hjaMSYyaZQrqFWy8OGg07wQqcwLQ5mzkqbMqIRtwWo5K-1HIGyo8EispcJy7lyuRC5crhHqFWrIdQQD1M2k7TrVJKyK02TSN1oEXzu1TUxbuNzzZ0yfEv3Si9401TqeEho80H0vibFyRlnKI9jujGHxWTLhmQ8n8wg-93exK_r1FVXa2bzyjJ6IiBKRiQjIEhnpEfaQpVkEHxozW7yeInYTUn56rkG2YR3PaJgIYjuwWt_O7S5Co1oPQtf4Bx17BNE |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOQBCPEofobAYxIFLysZ2nJhbtWq1QLcSdCvtLbIdW1SsslWTPZRfz9jJZlvUCqScnEnijGfsb_yYD-CDZHzIypLFzigdc41tobMSgxUcXYyROVUh483kRIzP-NdZOuvS5PizMFiJGt9Uh0X8dXaB5JOtqT_2zM19eJAKLjxNw8HotO91EUrnK7YCycRslUXo-qN-BDL1jRHoyYWqURmuZbG4G2aG4eboWctbFCoadpn82l82et_8_iuH4__9yXN42qFOctCayQu4Z6tNeHwtF-EmbB-uj7yhaOfz9Uv4PgmTDmQaNtgSBIxkdH4Ztq-S9ljz1WeC1kZ-LOaWLBw5bbCPrcl51cr-DCSXWGrtnIyu8PtbcHZ0OB2N446IIVYIkJrYZc7jjkBULDwlOZWZ5hjoMSYyaZQrqVWy9MGh07wUqcxLQ5mzkqbMqIRtw0a1qOwuEDZUeCXWUmE5dy5XIhcu1wj8SjXkOoIB6qzoHKkuwho5TYpeaRF8XLVeYbo05p5NY36b6Pte9KLN3XGb0OCGCfSSGDlnlKU8gr2VTayrJROe-eAyj-Bdfxcd06-2qMoulrXn90R8lIhMREDukJEebw9ZmkWw01rb-vMUkZyQ8tW_FPIWHo6nk-Pi-MvJtz14hKU0TBGx17DRXC7tGwRNjR4Eb_kD58sNMw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BkRAI8Sh9hMJiEAcuKRvbcWJu1dJVebQ82kp7ixzHFhWr7KrOHsqvZ-xksy1qBVJOziRxxjP2N37MB_BGMj5kVcViq1UZ8xLboswqDFZwdNFa5lSFjDeHR-LglH-apJMuUPRnYbASDt_kwiK-9-p5ZbsMA8k746g_-sz1bbiDQCTxVA17o-O-50U4nS8ZCyQTk2UmocuP-lFIuyuj0IO5cqgQ2zJZ3Aw1w5AzfgRf-8qGnSa_dhdNuat__5XH8f__5jE87NAn2WvN5QncMvU63L-Uk3AdNvdXR99QtPN99xS-H4bJB3ISNtoSBI5kdHYetrGS9njzxXuCVkd-zKaGzCw5brCvdeSsbmV_BrJLLDVmSkYX-P0NOB3vn4wO4o6QIVYIlJrYZtbjj0BYLDw1OZVZyTHgY0xkUitbUaNk5YNEW_JKpDKvNGXWSJoyrRK2CWv1rDbbQNhQ4ZUYQ4Xh3NpciVzYvEQAWKkhLyMYoN6KzqFcEdbKaVL0Sovg7bIFC92lM_esGtPrRF_3ovM2h8d1QoMrZtBLYgSdUZbyCHaWdrGqlkx45oPMPIJX_V10UL_qomozWzjP84k4KRGZiIDcICM97h6yNItgq7W41ecpIjoh5bN_KeQl3P32YVx8-Xj0eQfuYSENM0XsOaw15wvzArFTUw6Cw_wBoHgPrQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Moving+Toward+the+Circular+Economy%3A+The+Role+of+Stocks+in+the+Chinese+Steel+Cycle&rft.jtitle=Environmental+science+%26+technology&rft.au=Pauliuk%2C+Stefan&rft.au=Wang%2C+Tao&rft.au=Mu%CC%88ller%2C+Daniel+B&rft.date=2012-01-03&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=46&rft.issue=1&rft.spage=148&rft.epage=154&rft_id=info:doi/10.1021%2Fes201904c&rft.externalDocID=d071936199 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |