Overriding plate thinning in subduction zones: Localized convection induced by slab dehydration

In subduction zones, many observations indicate that the backarc thermal state is particularly hot and that the upper lithosphere is thin, even if no recent extension episode has occurred. This might result from free thermal convection favored by low viscosities in the hydrated mantle wedge. We perf...

Full description

Saved in:
Bibliographic Details
Published inGeochemistry, geophysics, geosystems : G3 Vol. 7; no. 2; pp. np - n/a
Main Authors Arcay, D., Doin, M.-P., Tric, E., Bousquet, R., de Capitani, C.
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 01.02.2006
AGU and the Geochemical Society
Subjects
Online AccessGet full text
ISSN1525-2027
1525-2027
DOI10.1029/2005GC001061

Cover

Abstract In subduction zones, many observations indicate that the backarc thermal state is particularly hot and that the upper lithosphere is thin, even if no recent extension episode has occurred. This might result from free thermal convection favored by low viscosities in the hydrated mantle wedge. We perform 2‐D numerical experiments of the convective mantle wedge interaction with both the downgoing slab and the overriding plate to test this hypothesis, explore its physical mechanism, and assess its dependencies on some relevant rock properties. Water transfers across the subducting plate and the mantle wedge are explicitly modeled by including in the calculation realistic hydration/dehydration reaction boundaries for a water‐saturated mantle and oceanic crust. The rheology is non‐Newtonian and temperature‐, pressure‐, and water content‐dependent. For low strength reduction associated to water content, the upper plate is locally thinned by an enhanced corner flow. For larger strength reductions, small convection cells rapidly thin the upper plate (in less than 15 Myr) over the area in the overriding lithosphere hydrated by slab‐derived water fluxes. As a result, the thinned region location depends on the subducting plate thermal state, and it increases with high convergence rates and low subduction dip angles. Other simulations are performed to test the sole effect of hydrous rock weakening on the upper plate/mantle convective interaction. They show that the thinning process is not influenced by the corner flow, but develops at the favor of a decoupling level induced by the formation of hydroxylated minerals inside the hydrated lithosphere. The erosion mechanism identified in these simulations allows us to explain the characteristic duration of erosion as a function of the hydrous strength reduction. We find that the presence of amphibole in the upper lithosphere in significant proportions is required down to a temperature of about 980°C, corresponding to an initial depth of ∼70 km, to strongly decrease the strength of the base of the lithosphere and trigger a rapid erosion (<15 Myr).
AbstractList In subduction zones, many observations indicate that the backarc thermal state is particularly hot and that the upper lithosphere is thin, even if no recent extension episode has occurred. This might result from free thermal convection favored by low viscosities in the hydrated mantle wedge. We perform 2‐D numerical experiments of the convective mantle wedge interaction with both the downgoing slab and the overriding plate to test this hypothesis, explore its physical mechanism, and assess its dependencies on some relevant rock properties. Water transfers across the subducting plate and the mantle wedge are explicitly modeled by including in the calculation realistic hydration/dehydration reaction boundaries for a water‐saturated mantle and oceanic crust. The rheology is non‐Newtonian and temperature‐, pressure‐, and water content‐dependent. For low strength reduction associated to water content, the upper plate is locally thinned by an enhanced corner flow. For larger strength reductions, small convection cells rapidly thin the upper plate (in less than 15 Myr) over the area in the overriding lithosphere hydrated by slab‐derived water fluxes. As a result, the thinned region location depends on the subducting plate thermal state, and it increases with high convergence rates and low subduction dip angles. Other simulations are performed to test the sole effect of hydrous rock weakening on the upper plate/mantle convective interaction. They show that the thinning process is not influenced by the corner flow, but develops at the favor of a decoupling level induced by the formation of hydroxylated minerals inside the hydrated lithosphere. The erosion mechanism identified in these simulations allows us to explain the characteristic duration of erosion as a function of the hydrous strength reduction. We find that the presence of amphibole in the upper lithosphere in significant proportions is required down to a temperature of about 980°C, corresponding to an initial depth of ∼70 km, to strongly decrease the strength of the base of the lithosphere and trigger a rapid erosion (<15 Myr).
In subduction zones, many observations indicate that the backarc thermal state is particularly hot and that the upper lithosphere is thin, even if no recent extension episode has occurred. This might result from free thermal convection favored by low viscosities in the hydrated mantle wedge. We perform 2-D numerical experiments of the convective mantle wedge interaction with both the downgoing slab and the overriding plate to test this hypothesis, explore its physical mechanism, and assess its dependencies on some relevant rock properties. Water transfers across the subducting plate and the mantle wedge are explicitly modeled by including in the calculation realistic hydration/dehydration reaction boundaries for a water-saturated mantle and oceanic crust. The rheology is non-Newtonian and temperature-, pressure-, and water content-dependent. For low strength reduction associated to water content, the upper plate is locally thinned by an enhanced corner flow. For larger strength reductions, small convection cells rapidly thin the upper plate (in less than 15 Myr) over the area in the overriding lithosphere hydrated by slab-derived water fluxes. As a result, the thinned region location depends on the subducting plate thermal state, and it increases with high convergence rates and low subduction dip angles. Other simulations are performed to test the sole effect of hydrous rock weakening on the upper plate/mantle convective interaction. They show that the thinning process is not influenced by the corner flow, but develops at the favor of a decoupling level induced by the formation of hydroxylated minerals inside the hydrated lithosphere. The erosion mechanism identified in these simulations allows us to explain the characteristic duration of erosion as a function of the hydrous strength reduction. We find that the presence of amphibole in the upper lithosphere in significant proportions is required down to a temperature of about 980 degree C, corresponding to an initial depth of 70 km, to strongly decrease the strength of the base of the lithosphere and trigger a rapid erosion (<15 Myr).
Author Tric, E.
de Capitani, C.
Arcay, D.
Doin, M.-P.
Bousquet, R.
Author_xml – sequence: 1
  givenname: D.
  surname: Arcay
  fullname: Arcay, D.
  email: arcay@geoazur.unice.fr
  organization: Laboratoire Géosciences Azur, Université de Nice-Sophia Antipolis, 250 Rue Albert Einstein,, F-06560, Valbonne, France
– sequence: 2
  givenname: M.-P.
  surname: Doin
  fullname: Doin, M.-P.
  organization: Laboratoire de Géologie, Ecole Normale Supérieure, 24 Rue Lhomond,, F-75231, Paris Cedex 05, France
– sequence: 3
  givenname: E.
  surname: Tric
  fullname: Tric, E.
  organization: Laboratoire Géosciences Azur, Université de Nice-Sophia Antipolis, 250 Rue Albert Einstein,, F-06560, Valbonne, France
– sequence: 4
  givenname: R.
  surname: Bousquet
  fullname: Bousquet, R.
  organization: Institut für Geowissenschaften, Universität Potsdam, Karl Liebnechtstrasse 24-25,, D-14476, Potsdam-Golm, Germany
– sequence: 5
  givenname: C.
  surname: de Capitani
  fullname: de Capitani, C.
  organization: Mineralogisch-Petrographisches Institut, Universität Basel, Bernoullistrasse 30,, CH-4056, Basel, Switzerland
BackLink https://hal.science/hal-00407579$$DView record in HAL
BookMark eNqFkcFu1DAQQC1UJNrCjQ_IESQC9sQTJ9yqVZsFRfRSxNFyHJs1uM5iZxe2X4-XAKqQgJPHM--NrZkzchKmYAh5yuhLRqF9BZRit6KU0Zo9IKcMAUugIE7uxY_IWUqfMsMRm1Mir_cmRje68LHYejWbYt64EI5XF4q0G8adnt0Uirv8VHpd9JNW3t2ZsdBT2Jul5kKmcmo4FMmroRjN5jBGdaw9Jg-t8sk8-Xmek_dXlzerddlfd29WF32pkHIoG4tQARViHDXYStuhaRtWCWOQWYUChUVKa-Qw1LYBqxhqzYUFymrWCl2dk-dL343ychvdrYoHOSkn1xe9POYo5TS3afcss88WdhunLzuTZnnrkjbeq2CmXZKs5gBtWzX4fxSBc4actxmFBdVxSikaK7Wbf8xgjsp5yag8LkneX1KWXvwh_fr7X3C24F-dN4d_srLrukshIDvl4rg0m2-_HRU_y1pUAuWHd518y_gNrnsur6rvJeKvxA
CitedBy_id crossref_primary_10_1007_s11430_015_5107_5
crossref_primary_10_1016_j_jvolgeores_2009_11_004
crossref_primary_10_1016_j_epsl_2007_06_026
crossref_primary_10_1139_cjes_2024_0020
crossref_primary_10_1007_s00531_021_01982_5
crossref_primary_10_1029_2010GC003262
crossref_primary_10_1029_2021GL093201
crossref_primary_10_1002_2015GC006125
crossref_primary_10_1029_2020GC009304
crossref_primary_10_1016_j_jog_2007_06_002
crossref_primary_10_1029_2009GC002625
crossref_primary_10_1016_j_lithos_2019_105323
crossref_primary_10_1002_2017TC004689
crossref_primary_10_1016_j_epsl_2011_07_016
crossref_primary_10_1016_j_pepi_2019_106274
crossref_primary_10_1016_j_tecto_2017_03_014
crossref_primary_10_1029_2024GC011897
crossref_primary_10_1016_j_tecto_2010_03_005
crossref_primary_10_1111_j_1365_246X_2012_05426_x
crossref_primary_10_1016_j_epsl_2006_12_027
crossref_primary_10_1093_petrology_egp010
crossref_primary_10_1016_j_tecto_2014_11_021
crossref_primary_10_1029_2007JB005415
crossref_primary_10_1029_2018JB016697
crossref_primary_10_1029_2007GC001786
crossref_primary_10_1016_j_lithos_2024_107550
crossref_primary_10_1016_j_tecto_2010_09_014
crossref_primary_10_1002_2017JB014046
crossref_primary_10_1016_j_jog_2022_101958
crossref_primary_10_1016_j_pepi_2017_05_008
crossref_primary_10_3389_feart_2021_743163
crossref_primary_10_1016_j_epsl_2010_06_029
crossref_primary_10_1038_s41561_024_01473_7
crossref_primary_10_1016_j_epsl_2008_06_009
crossref_primary_10_1016_j_epsl_2008_02_037
crossref_primary_10_1016_j_jseaes_2017_03_039
crossref_primary_10_1029_2021TC006795
crossref_primary_10_1029_2011JB008431
crossref_primary_10_1029_2020GC009009
crossref_primary_10_1029_2007GC001875
crossref_primary_10_1029_2018JB017097
crossref_primary_10_1029_2005JB004024
crossref_primary_10_1144_SP311_10
crossref_primary_10_1002_2013GC005022
crossref_primary_10_1016_j_pepi_2018_03_001
crossref_primary_10_1029_2023GC011155
crossref_primary_10_1111_j_1365_246X_2009_04372_x
crossref_primary_10_1016_j_jog_2011_06_005
crossref_primary_10_1016_j_tecto_2007_06_001
crossref_primary_10_1007_s00024_010_0207_9
crossref_primary_10_1016_j_epsl_2012_09_010
crossref_primary_10_5194_se_3_467_2012
crossref_primary_10_1111_j_1440_1738_2007_00567_x
crossref_primary_10_1016_j_tecto_2023_229906
crossref_primary_10_1029_2018GC007650
Cites_doi 10.1029/93JB02020
10.1007/s004100050321
10.1111/j.1365-246X.1974.tb04118.x
10.1016/S0012-821X(98)00142-3
10.1007/BF01167097
10.1029/1999JB900110
10.1007/s004100050495
10.1029/ME001p0137
10.1016/S0012-821X(00)00015-7
10.1016/S0040-1951(01)00161-5
10.1029/138GM07
10.1016/0012-821X(96)00154-9
10.1029/2003JB002414
10.1111/j.1365-246X.1984.tb01939.x
10.1016/S0040-1951(99)00296-6
10.1029/95JB01460
10.1007/s004100050176
10.1029/97JB01353
10.1007/BF00879044
10.1111/j.1525-1314.1998.00140.x
10.1029/91JB02642
10.1016/0040-1951(89)90011-5
10.1016/S0040-1951(99)00068-2
10.1029/2004GC000785
10.1016/S0012-821X(03)00537-5
10.2138/am-1995-9-1015
10.1029/2004JB003450
10.1016/S0040-1951(98)00035-3
10.1016/S0040-1951(96)00290-9
10.1029/2002TC001406
10.1007/s005310050121
10.1016/S0040-1951(99)00297-8
10.1007/s004100050563
10.1016/S0012-821X(01)00238-2
10.1016/S0012-821X(03)00265-6
10.1016/S0031-9201(02)00157-7
10.1016/j.epsl.2004.08.013
10.1029/138GM13
10.1130/1052-5173(2005)015<4:SZBMBA>2.0.CO;2
10.1016/S0012-821X(02)00745-8
10.1016/j.epsl.2004.04.020
10.1139/e92-096
10.1007/s00410-002-0365-6
10.1093/petrology/egh088
10.1017/S0022112093001740
10.1029/98JB01492
10.1111/j.1365-246X.1969.tb00259.x
10.1016/S0012-821X(02)00753-7
10.1093/petrology/29.3.625
10.1130/G19525.1
10.1029/JB093iB12p15207
10.1016/j.pepi.2004.08.020
10.1139/e84-077
10.1029/2002GL015853
10.1146/annurev.earth.30.091201.140550
10.1016/S0024-4937(03)00106-3
10.1029/94JB01405
10.1016/0016-7037(87)90145-1
10.1130/G20018.1
10.1029/2000JB900197
ContentType Journal Article
Copyright Copyright 2006 by the American Geophysical Union.
Copyright
Copyright_xml – notice: Copyright 2006 by the American Geophysical Union.
– notice: Copyright
DBID BSCLL
AAYXX
CITATION
7TN
F1W
H96
L.G
8FD
FR3
H8D
KR7
L7M
1XC
VOOES
DOI 10.1029/2005GC001061
DatabaseName Istex
CrossRef
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1525-2027
EndPage n/a
ExternalDocumentID oai_HAL_hal_00407579v1
10_1029_2005GC001061
GGGE772
ark_67375_WNG_J14T5HL4_F
Genre article
GroupedDBID 05W
0R~
1OC
24P
31~
50Y
5GY
8-1
88I
8CJ
8FE
8FH
8G5
8R4
8R5
AAESR
AAFWJ
AAMMB
AANHP
AAYCA
AAZKR
ABCUV
ABUWG
ACAHQ
ACBWZ
ACCMX
ACGFS
ACGOD
ACPOU
ACRPL
ACXQS
ACYXJ
ADBBV
ADEOM
ADIYS
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AENEX
AEUYN
AFBPY
AFGKR
AFKRA
AFPKN
AGQPQ
AGXDD
AIDQK
AIDYY
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BFHJK
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
BSCLL
CCPQU
CS3
D1J
DCZOG
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
FEDTE
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HVGLF
HZ~
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M2O
M2P
M7R
MSFUL
MSSTM
MXFUL
MXSTM
MY~
M~E
O9-
OK1
P-X
P2W
PCBAR
PHGZM
PHGZT
PQQKQ
PROAC
PUEGO
Q2X
R.K
ROL
SUPJJ
UB1
WBKPD
WIN
ZZTAW
~02
~OA
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
7TN
F1W
H96
L.G
8FD
FR3
H8D
KR7
L7M
1XC
VOOES
ID FETCH-LOGICAL-a5042-8f5232077ddc2f3cfb898137ee51fa5757f5006542b6f82fa15cc47f2016197c3
ISSN 1525-2027
IngestDate Fri Sep 12 12:39:48 EDT 2025
Thu Sep 04 20:47:51 EDT 2025
Thu Sep 04 20:43:31 EDT 2025
Tue Jul 01 02:31:33 EDT 2025
Thu Apr 24 23:00:47 EDT 2025
Wed Aug 20 07:27:05 EDT 2025
Sun Sep 21 06:19:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright: http://hal.archives-ouvertes.fr/licences/copyright
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a5042-8f5232077ddc2f3cfb898137ee51fa5757f5006542b6f82fa15cc47f2016197c3
Notes ark:/67375/WNG-J14T5HL4-F
ArticleID:2005GC001061
istex:8F2597FB06D0337003EBB8A22D796D4C0E87DC86
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9546-4005
0000-0001-6773-0807
OpenAccessLink https://hal.science/hal-00407579
PQID 1524415449
PQPubID 23462
PageCount 26
ParticipantIDs hal_primary_oai_HAL_hal_00407579v1
proquest_miscellaneous_1642299385
proquest_miscellaneous_1524415449
crossref_citationtrail_10_1029_2005GC001061
crossref_primary_10_1029_2005GC001061
wiley_primary_10_1029_2005GC001061_GGGE772
istex_primary_ark_67375_WNG_J14T5HL4_F
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2006
PublicationDateYYYYMMDD 2006-02-01
PublicationDate_xml – month: 02
  year: 2006
  text: February 2006
PublicationDecade 2000
PublicationTitle Geochemistry, geophysics, geosystems : G3
PublicationTitleAlternate Geochem. Geophys. Geosyst
PublicationYear 2006
Publisher Blackwell Publishing Ltd
AGU and the Geochemical Society
Publisher_xml – name: Blackwell Publishing Ltd
– name: AGU and the Geochemical Society
References Niida, K., and D. Green (1999), Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions, Contrib. Mineral. Petrol., 135, 18-40.
Wallace, M., and D. Green (1991), The effect of bulk rock composition on the stability of amphibole in the upper mantle: Implications for solidus positions and mantle metasomatism, Mineral. Petrol., 44, 1-19.
Katayama, I., A. Muko, T. Iizuka, S. Maruyama, K. Terada, Y. Tsutsumi, Y. Sano, R. Zhang, and J. Liou (2003), Dating of zircon from Ti-clinohumite-bearing garnet peridotite: Implication for timing of mantle metasomatism, Geology, 31, 713-716.
Springer, M., and A. Forster (1998), Heat-flow density across the Central Andean subduction zone, Tectonophysics, 291, 123-129.
Altenberger, U. (1997), Strain localization mechanisms in deep-seated layered rocks, Geol. Rundsch., 86, 56-68.
Honda, S., and T. Yoshida (2005), Application of the model of small-scale convection under the island arc to the NE Honshu subduction zone, Geochem. Geophys. Geosyst., 6, Q01002, doi:10.1029/2004GC000785.
McKenzie, D., and M. Bickle (1988), The volume and composition of melt generated by extension of the lithosphere, J. Petrol., 29, 625-679.
Mei, S., W. Bai, T. Hiraga, and D. Kohlstedt (2002), Influence of melt on the creep behavior of olivine-basalt aggregates under hydrous conditions, Earth Planet. Sci. Lett., 201, 491-507.
Poli, S., and M. Schmidt (2002), Petrology of subducted slabs, Annu. Rev. Earth Planet. Sci., 30, 207-235.
Christensen, U. R. (1992), An Eulerian technique for thermomechanical modeling, J. Geophys. Res., 97, 2015-2036.
Bousquet, R., B. Goff, X. Le Pichon, C. de Capitani, C. Chopin, and P. Henry (2005), Comment on "Subduction factory: 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents,", J. Geophys. Res., 110, B02206, doi:10.1029/2004JB003450.
Morency, C., and M.-P. Doin (2004), Numerical simulations of the mantle lithosphere delamination, J. Geophys. Res., 109, B03410, doi:10.1029/2003JB002414.
Tsumura, N., S. Matsumoto, S. Horiuchi, and A. Hasegawa (2000), Three-dimensional attenuation structure beneath the northeastern Japan arc estimated from spectra of small earthquakes, Tectonophysics, 319, 241-260.
Hasegawa, A., A. Yamamoto, N. Umino, S. Miura, S. Horiuchi, D. Zhao, and H. Sato (2000), Seismic activity and deformation process of the overriding plate in the northeastern Japan subduction zone, Tectonophysics, 319, 225-239.
Hirth, G., and D. Kohlstedt (1996), Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere, Earth Planet. Sci. Lett., 144, 93-108.
Furukawa, Y. (1993), Depth of the decoupling plate interface and thermal structure under arcs, J. Geophys. Res., 98, 20,005-20,013.
McKenzie, D. (1969), Speculations on consequences and causes of plate motions, Geophys. J. R. Astron. Soc., 18, 1-32.
Davies, E., and T. Lewis (1984), Heat flow in a back-arc environment: Intermontane and Omineca crystalline belts, southern Canadian Cordillera, Can. J. Earth Sci., 21, 715-726.
Holland, T., and R. Powell (1998), An internally consistent thermodynamic data set for phases of petrological interest, J. Metamorph. Geol., 16, 309-343.
Van Keken, P., S. King, H. Schmeling, U. Christensen, D. Neumeister, and M.-P. Doin (1997), A comparison of methods for the modeling of thermochemical convection, J. Geophys. Res., 102, 22,477-22,495.
Furukawa, Y., and S. Uyeda (1989), Thermal state under the Tohoko Arc with consideration of crustal heat generation, Tectonophysics, 164, 175-187.
Christensen, U. R. (1984), Convection with pressure- and temperature-dependent non-Newtonian rheology, Geophys. J. R. Astron. Soc., 77, 343-384.
Dumoulin, C., M.-P. Doin, and L. Fleitout (1999), Heat transport in stagnant lid convection with temperature- and pressure-dependent Newtonian or non-Newtonian rheology, J. Geophys. Res., 104, 12,759-12,778.
Andrews, D., and N. Sleep (1974), Numerical modelling of tectonic flow behind island arcs, Geophys. J. R. Astron. Soc., 38, 237-241.
Kohlstedt, D., H. Keppler, and D. Rubie (1995), Solubility of water in the α, β and γ phases of (Mg,Fe)2SiO4, J. Geophys. Res., 100, 17,587-17,602.
Lewis, T., W. Bentkowski, and R. Hyndman (1992), Crustal temperatures near the Lithoprobe Southern Canadian Cordillera Transect, Can. J. Earth Sci., 29, 1197-1214.
Fumagalli, P., and S. Poli (2005), Experimentally determined phase relations in hydrous peridotites to 6.5 GPa and their consequences on the dynamics of subduction zones, J. Petrol., 46, 555-578.
Pawley, A., and B. Wood (1995), The high-pressure stability of talc and 10Å phase: Potential storage sites for H2O in subduction zones, Am. Mineral., 80, 998-1003.
Arcay, D., E. Tric, and M.-P. Doin (2005), Numerical simulations of subduction zones: Effect of slab dehydration on the mantle wedge dynamics, Phys. Earth Planet. Inter., 149, 133-153.
Morency, C., M.-P. Doin, and C. Dumoulin (2002), Convective destabilization of a thickened continental lithosphere, Earth Planet. Sci. Lett., 202, 303-320.
Schmidt, M., and S. Poli (1998), Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation, Earth Planet. Sci. Lett., 163, 361-379.
Gerya, T., D. Yuen, and E. Sevre (2004), Dynamical causes for incipient magma chambers above slabs, Geology, 32, 89-92.
Honda, S., and M. Saito (2003), Small-scale convection under the back-arc occurring in the low viscosity wedge, Earth Planet. Sci. Lett., 216, 703-715.
Hyndman, R., C. Currie, and S. Mazzotti (2005), Subduction zone backarcs, mobile belts, and orogenic heat, GSA Today, 15, 4-10.
Hyndman, R., and T. Lewis (1999), Geophysical consequences of the Cordillera-Craton thermal transition in southwestern Canada, Tectonophysics, 306, 397-422.
Lu, R., and H. Keppler (1997), Water solubility in pyrope to 100 kbar, Contrib. Mineral. Petrol., 129, 35-42.
Honda, S., M. Saito, and T. Nakakuki (2002), Possible existence of small-scale convection under the back arc, Geophys. Res. Lett., 29(21), 2043, doi:10.1029/2002GL015853.
Gerya, T., B. Stöckert, and A. Perchuk (2002), Exhumation of high-pressure metamorphic rocks in a subduction channel: A numerical simulation, Tectonics, 21(6), 1056, doi:10.1029/2002TC001406.
Rauch, M., and H. Keppler (2002), Water solubility in orthopyroxene, Contrib. Mineral. Petrol., 143, 525-536.
Grasset, O., and E. Parmentier (1998), Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature-dependent viscosity: Implications for planetary thermal evolution, J. Geophys. Res., 103, 18,171-18,181.
Pawley, A. (2000), Stability of clinohumite in the system MgO-SiO2-H2O, Contrib. Mineral. Petrol., 138, 284-291.
Lewis, T., W. Bentkowski, E. Davis, R. Hyndman, J. Souther, and J. Wright (1988), Subduction of the Juan de Fuca Plate: Thermal consequence, J. Geophys. Res., 93, 15,207-15,227.
Doin, M.-P., and P. Henry (2001), Subduction initiation and continental crust recycling: The roles of rheology and eclogitization, Tectonophysics, 342, 163-191.
Gerya, T., and D. Yuen (2003), Rayleigh-Taylor instabilities from hydration and melting propel 'cold plumes' at subduction zones, Earth Planet. Sci. Lett., 212, 47-62.
Pawley, A., and B. Wood (1996), The low-pressure stability of phase A: Mg7Si2O8(OH)6, Contrib. Mineral. Petrol., 124, 90-97.
Currie, C., R. Hyndman, and K. Wang (2004b), The thermal structure of subduction zone backarcs, Eos Trans. AGU, 85(47), Fall Meet. Suppl., Abstract T23B-1320.
Solomatov, V., and L.-N. Moresi (2000), Scaling of time-dependent stagnant lid convection: Application to small-scale convection on Earth and other terrestrial planets, Geophys. Res. Lett., 105, 21,795-21,817.
de Capitani, C., and T. Brown (1987), The computation of chemical equilibrium in complex systems containing non-ideal solutions, Geochim. Cosmochim. Acta, 51, 2639-2652.
Iwamori, H. (2004), Phase relations of peridotites under H2O-saturated conditions and ability of subducting plates for transportation of H2O, Earth Planet. Sci. Lett., 227, 57-71.
Drury, M., R. Vissers, D. van der Wal, and E. Hoogerduijn Strating (1991), Shear localisation in upper mantle peridotites, Pure Appl. Geophys., 137, 439-460.
Davaille, A., and C. Jaupart (1993), Transient high-Rayleigh number thermal convection with large viscosity variations, J. Fluid. Mech., 253, 141-166.
Yang, J.-J. (2003), Titanian clinohumite-garnet-pyroxene rock from the Su-Lu UHP metamorphic terrane, China: Chemical evolution and tectonic implications, Lithos, 70, 359-379.
Davaille, A., and C. Jaupart (1994), Onset of thermal convection in fluids with temperature-dependent viscosity: Application to the oceanic mantle, J. Geophys. Res., 99, 19,853-19,866.
Fumagalli, P., L. Stixrude, S. Poli, and D. Snyder (2001), The 10Å phase: A high-pressure expandable sheet silicate stable during subduction of hydrated lithosphere, Earth Planet. Sci. Lett., 186, 125-141.
Braun, M., G. Hirth, and E. Parmentier (2000), The effect of deep damp melting on mantle flow and melt generation beneath mid-ocean ridge, Earth Planet. Sci. Lett., 176, 339-356.
Currie, C., K. Wang, R. Hyndman, and J. He (2004a), The thermal effects of steady-state slab-driven mantle flow above a subducting plate: The Cascadia subduction zone and backarc, Earth Planet. Sci. Lett., 223, 35-48.
Eberle, M., O. Grasset, and C. Sotin (2002), A numerical study of the interaction between the mantle wedge, the subducting slab, and overriding plate, Phys. Earth Planet. Inter., 134, 191-202.
Bousquet, R., B. Goffé, P. Henry, X. L. Pichon, and C. Chopin (1997), Kinematic, thermal and petrological model of the Central Alps: Lepontine metamorphism in the upper crust and eclogitisation of the lower crust, Tectonophysics, 273, 105-127.
2001; 342
2001; 186
1997; 86
1997; 273
2000; 138
1984; 21
1975
1996; 144
2000; 176
1992; 97
2004; 32
1998; 16
1997; 102
1998; 291
2002; 143
1991; 44
2005; 149
1986
1999; 135
1982
1993; 253
1998; 163
1974; 38
2000; 319
2004; 85
1987; 51
2003; 216
2004; 223
2003; 138
2005; 110
2002; 30
2002; 134
1969; 18
2004; 109
1999; 104
2003; 212
1996; 124
1991; 137
2004; 227
1988; 93
2003; 31
2005; 46
1999; 306
1997; 129
2002; 29
1995; 80
2003; 70
1988; 29
2000; 105
2002; 201
1984; 77
1993; 98
1989; 164
2002; 202
2002; 21
1994; 99
1992; 29
1977; 1
2005; 6
1998; 103
1995; 100
2005; 15
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
Currie C. (e_1_2_9_11_1) 2004; 85
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
Mengel K. (e_1_2_9_47_1) 1986
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – reference: Fumagalli, P., and S. Poli (2005), Experimentally determined phase relations in hydrous peridotites to 6.5 GPa and their consequences on the dynamics of subduction zones, J. Petrol., 46, 555-578.
– reference: Furukawa, Y., and S. Uyeda (1989), Thermal state under the Tohoko Arc with consideration of crustal heat generation, Tectonophysics, 164, 175-187.
– reference: Niida, K., and D. Green (1999), Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions, Contrib. Mineral. Petrol., 135, 18-40.
– reference: Eberle, M., O. Grasset, and C. Sotin (2002), A numerical study of the interaction between the mantle wedge, the subducting slab, and overriding plate, Phys. Earth Planet. Inter., 134, 191-202.
– reference: Doin, M.-P., and P. Henry (2001), Subduction initiation and continental crust recycling: The roles of rheology and eclogitization, Tectonophysics, 342, 163-191.
– reference: Currie, C., R. Hyndman, and K. Wang (2004b), The thermal structure of subduction zone backarcs, Eos Trans. AGU, 85(47), Fall Meet. Suppl., Abstract T23B-1320.
– reference: Wallace, M., and D. Green (1991), The effect of bulk rock composition on the stability of amphibole in the upper mantle: Implications for solidus positions and mantle metasomatism, Mineral. Petrol., 44, 1-19.
– reference: Hyndman, R., C. Currie, and S. Mazzotti (2005), Subduction zone backarcs, mobile belts, and orogenic heat, GSA Today, 15, 4-10.
– reference: Hyndman, R., and T. Lewis (1999), Geophysical consequences of the Cordillera-Craton thermal transition in southwestern Canada, Tectonophysics, 306, 397-422.
– reference: Rauch, M., and H. Keppler (2002), Water solubility in orthopyroxene, Contrib. Mineral. Petrol., 143, 525-536.
– reference: Fumagalli, P., L. Stixrude, S. Poli, and D. Snyder (2001), The 10Å phase: A high-pressure expandable sheet silicate stable during subduction of hydrated lithosphere, Earth Planet. Sci. Lett., 186, 125-141.
– reference: Yang, J.-J. (2003), Titanian clinohumite-garnet-pyroxene rock from the Su-Lu UHP metamorphic terrane, China: Chemical evolution and tectonic implications, Lithos, 70, 359-379.
– reference: Christensen, U. R. (1984), Convection with pressure- and temperature-dependent non-Newtonian rheology, Geophys. J. R. Astron. Soc., 77, 343-384.
– reference: Lu, R., and H. Keppler (1997), Water solubility in pyrope to 100 kbar, Contrib. Mineral. Petrol., 129, 35-42.
– reference: Davies, E., and T. Lewis (1984), Heat flow in a back-arc environment: Intermontane and Omineca crystalline belts, southern Canadian Cordillera, Can. J. Earth Sci., 21, 715-726.
– reference: Christensen, U. R. (1992), An Eulerian technique for thermomechanical modeling, J. Geophys. Res., 97, 2015-2036.
– reference: Tsumura, N., S. Matsumoto, S. Horiuchi, and A. Hasegawa (2000), Three-dimensional attenuation structure beneath the northeastern Japan arc estimated from spectra of small earthquakes, Tectonophysics, 319, 241-260.
– reference: Drury, M., R. Vissers, D. van der Wal, and E. Hoogerduijn Strating (1991), Shear localisation in upper mantle peridotites, Pure Appl. Geophys., 137, 439-460.
– reference: Davaille, A., and C. Jaupart (1994), Onset of thermal convection in fluids with temperature-dependent viscosity: Application to the oceanic mantle, J. Geophys. Res., 99, 19,853-19,866.
– reference: Iwamori, H. (2004), Phase relations of peridotites under H2O-saturated conditions and ability of subducting plates for transportation of H2O, Earth Planet. Sci. Lett., 227, 57-71.
– reference: Springer, M., and A. Forster (1998), Heat-flow density across the Central Andean subduction zone, Tectonophysics, 291, 123-129.
– reference: Pawley, A. (2000), Stability of clinohumite in the system MgO-SiO2-H2O, Contrib. Mineral. Petrol., 138, 284-291.
– reference: Poli, S., and M. Schmidt (2002), Petrology of subducted slabs, Annu. Rev. Earth Planet. Sci., 30, 207-235.
– reference: Pawley, A., and B. Wood (1995), The high-pressure stability of talc and 10Å phase: Potential storage sites for H2O in subduction zones, Am. Mineral., 80, 998-1003.
– reference: Braun, M., G. Hirth, and E. Parmentier (2000), The effect of deep damp melting on mantle flow and melt generation beneath mid-ocean ridge, Earth Planet. Sci. Lett., 176, 339-356.
– reference: Lewis, T., W. Bentkowski, E. Davis, R. Hyndman, J. Souther, and J. Wright (1988), Subduction of the Juan de Fuca Plate: Thermal consequence, J. Geophys. Res., 93, 15,207-15,227.
– reference: McKenzie, D., and M. Bickle (1988), The volume and composition of melt generated by extension of the lithosphere, J. Petrol., 29, 625-679.
– reference: Hirth, G., and D. Kohlstedt (1996), Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere, Earth Planet. Sci. Lett., 144, 93-108.
– reference: Honda, S., and M. Saito (2003), Small-scale convection under the back-arc occurring in the low viscosity wedge, Earth Planet. Sci. Lett., 216, 703-715.
– reference: Altenberger, U. (1997), Strain localization mechanisms in deep-seated layered rocks, Geol. Rundsch., 86, 56-68.
– reference: Davaille, A., and C. Jaupart (1993), Transient high-Rayleigh number thermal convection with large viscosity variations, J. Fluid. Mech., 253, 141-166.
– reference: Morency, C., M.-P. Doin, and C. Dumoulin (2002), Convective destabilization of a thickened continental lithosphere, Earth Planet. Sci. Lett., 202, 303-320.
– reference: Furukawa, Y. (1993), Depth of the decoupling plate interface and thermal structure under arcs, J. Geophys. Res., 98, 20,005-20,013.
– reference: de Capitani, C., and T. Brown (1987), The computation of chemical equilibrium in complex systems containing non-ideal solutions, Geochim. Cosmochim. Acta, 51, 2639-2652.
– reference: Gerya, T., B. Stöckert, and A. Perchuk (2002), Exhumation of high-pressure metamorphic rocks in a subduction channel: A numerical simulation, Tectonics, 21(6), 1056, doi:10.1029/2002TC001406.
– reference: Mei, S., W. Bai, T. Hiraga, and D. Kohlstedt (2002), Influence of melt on the creep behavior of olivine-basalt aggregates under hydrous conditions, Earth Planet. Sci. Lett., 201, 491-507.
– reference: Kohlstedt, D., H. Keppler, and D. Rubie (1995), Solubility of water in the α, β and γ phases of (Mg,Fe)2SiO4, J. Geophys. Res., 100, 17,587-17,602.
– reference: Solomatov, V., and L.-N. Moresi (2000), Scaling of time-dependent stagnant lid convection: Application to small-scale convection on Earth and other terrestrial planets, Geophys. Res. Lett., 105, 21,795-21,817.
– reference: Honda, S., M. Saito, and T. Nakakuki (2002), Possible existence of small-scale convection under the back arc, Geophys. Res. Lett., 29(21), 2043, doi:10.1029/2002GL015853.
– reference: Pawley, A., and B. Wood (1996), The low-pressure stability of phase A: Mg7Si2O8(OH)6, Contrib. Mineral. Petrol., 124, 90-97.
– reference: Grasset, O., and E. Parmentier (1998), Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature-dependent viscosity: Implications for planetary thermal evolution, J. Geophys. Res., 103, 18,171-18,181.
– reference: Honda, S., and T. Yoshida (2005), Application of the model of small-scale convection under the island arc to the NE Honshu subduction zone, Geochem. Geophys. Geosyst., 6, Q01002, doi:10.1029/2004GC000785.
– reference: Schmidt, M., and S. Poli (1998), Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation, Earth Planet. Sci. Lett., 163, 361-379.
– reference: Hasegawa, A., A. Yamamoto, N. Umino, S. Miura, S. Horiuchi, D. Zhao, and H. Sato (2000), Seismic activity and deformation process of the overriding plate in the northeastern Japan subduction zone, Tectonophysics, 319, 225-239.
– reference: Holland, T., and R. Powell (1998), An internally consistent thermodynamic data set for phases of petrological interest, J. Metamorph. Geol., 16, 309-343.
– reference: Morency, C., and M.-P. Doin (2004), Numerical simulations of the mantle lithosphere delamination, J. Geophys. Res., 109, B03410, doi:10.1029/2003JB002414.
– reference: Dumoulin, C., M.-P. Doin, and L. Fleitout (1999), Heat transport in stagnant lid convection with temperature- and pressure-dependent Newtonian or non-Newtonian rheology, J. Geophys. Res., 104, 12,759-12,778.
– reference: Arcay, D., E. Tric, and M.-P. Doin (2005), Numerical simulations of subduction zones: Effect of slab dehydration on the mantle wedge dynamics, Phys. Earth Planet. Inter., 149, 133-153.
– reference: Bousquet, R., B. Goffé, P. Henry, X. L. Pichon, and C. Chopin (1997), Kinematic, thermal and petrological model of the Central Alps: Lepontine metamorphism in the upper crust and eclogitisation of the lower crust, Tectonophysics, 273, 105-127.
– reference: Bousquet, R., B. Goff, X. Le Pichon, C. de Capitani, C. Chopin, and P. Henry (2005), Comment on "Subduction factory: 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents,", J. Geophys. Res., 110, B02206, doi:10.1029/2004JB003450.
– reference: Andrews, D., and N. Sleep (1974), Numerical modelling of tectonic flow behind island arcs, Geophys. J. R. Astron. Soc., 38, 237-241.
– reference: Katayama, I., A. Muko, T. Iizuka, S. Maruyama, K. Terada, Y. Tsutsumi, Y. Sano, R. Zhang, and J. Liou (2003), Dating of zircon from Ti-clinohumite-bearing garnet peridotite: Implication for timing of mantle metasomatism, Geology, 31, 713-716.
– reference: Gerya, T., D. Yuen, and E. Sevre (2004), Dynamical causes for incipient magma chambers above slabs, Geology, 32, 89-92.
– reference: Lewis, T., W. Bentkowski, and R. Hyndman (1992), Crustal temperatures near the Lithoprobe Southern Canadian Cordillera Transect, Can. J. Earth Sci., 29, 1197-1214.
– reference: Gerya, T., and D. Yuen (2003), Rayleigh-Taylor instabilities from hydration and melting propel 'cold plumes' at subduction zones, Earth Planet. Sci. Lett., 212, 47-62.
– reference: McKenzie, D. (1969), Speculations on consequences and causes of plate motions, Geophys. J. R. Astron. Soc., 18, 1-32.
– reference: Currie, C., K. Wang, R. Hyndman, and J. He (2004a), The thermal effects of steady-state slab-driven mantle flow above a subducting plate: The Cascadia subduction zone and backarc, Earth Planet. Sci. Lett., 223, 35-48.
– reference: Van Keken, P., S. King, H. Schmeling, U. Christensen, D. Neumeister, and M.-P. Doin (1997), A comparison of methods for the modeling of thermochemical convection, J. Geophys. Res., 102, 22,477-22,495.
– volume: 29
  issue: 21
  year: 2002
  article-title: Possible existence of small‐scale convection under the back arc
  publication-title: Geophys. Res. Lett.
– volume: 306
  start-page: 397
  year: 1999
  end-page: 422
  article-title: Geophysical consequences of the Cordillera‐Craton thermal transition in southwestern Canada
  publication-title: Tectonophysics
– volume: 18
  start-page: 1
  year: 1969
  end-page: 32
  article-title: Speculations on consequences and causes of plate motions
  publication-title: Geophys. J. R. Astron. Soc.
– volume: 31
  start-page: 713
  year: 2003
  end-page: 716
  article-title: Dating of zircon from Ti‐clinohumite‐bearing garnet peridotite: Implication for timing of mantle metasomatism
  publication-title: Geology
– volume: 105
  start-page: 21,795
  year: 2000
  end-page: 21,817
  article-title: Scaling of time‐dependent stagnant lid convection: Application to small‐scale convection on Earth and other terrestrial planets
  publication-title: Geophys. Res. Lett.
– volume: 110
  year: 2005
  article-title: Comment on “Subduction factory: 1. Theoretical mineralogy, densities, seismic wave speeds, and H O contents,”
  publication-title: J. Geophys. Res.
– volume: 104
  start-page: 12,759
  year: 1999
  end-page: 12,778
  article-title: Heat transport in stagnant lid convection with temperature‐ and pressure‐dependent Newtonian or non‐Newtonian rheology
  publication-title: J. Geophys. Res.
– year: 1975
– volume: 32
  start-page: 89
  year: 2004
  end-page: 92
  article-title: Dynamical causes for incipient magma chambers above slabs
  publication-title: Geology
– volume: 16
  start-page: 309
  year: 1998
  end-page: 343
  article-title: An internally consistent thermodynamic data set for phases of petrological interest
  publication-title: J. Metamorph. Geol.
– volume: 15
  start-page: 4
  year: 2005
  end-page: 10
  article-title: Subduction zone backarcs, mobile belts, and orogenic heat
  publication-title: GSA Today
– volume: 202
  start-page: 303
  year: 2002
  end-page: 320
  article-title: Convective destabilization of a thickened continental lithosphere
  publication-title: Earth Planet. Sci. Lett.
– volume: 21
  start-page: 715
  year: 1984
  end-page: 726
  article-title: Heat flow in a back‐arc environment: Intermontane and Omineca crystalline belts, southern Canadian Cordillera
  publication-title: Can. J. Earth Sci.
– volume: 77
  start-page: 343
  year: 1984
  end-page: 384
  article-title: Convection with pressure‐ and temperature‐dependent non‐Newtonian rheology
  publication-title: Geophys. J. R. Astron. Soc.
– volume: 30
  start-page: 207
  year: 2002
  end-page: 235
  article-title: Petrology of subducted slabs
  publication-title: Annu. Rev. Earth Planet. Sci.
– volume: 44
  start-page: 1
  year: 1991
  end-page: 19
  article-title: The effect of bulk rock composition on the stability of amphibole in the upper mantle: Implications for solidus positions and mantle metasomatism
  publication-title: Mineral. Petrol.
– volume: 46
  start-page: 555
  year: 2005
  end-page: 578
  article-title: Experimentally determined phase relations in hydrous peridotites to 6.5 GPa and their consequences on the dynamics of subduction zones
  publication-title: J. Petrol.
– volume: 273
  start-page: 105
  year: 1997
  end-page: 127
  article-title: Kinematic, thermal and petrological model of the Central Alps: Lepontine metamorphism in the upper crust and eclogitisation of the lower crust
  publication-title: Tectonophysics
– volume: 149
  start-page: 133
  year: 2005
  end-page: 153
  article-title: Numerical simulations of subduction zones: Effect of slab dehydration on the mantle wedge dynamics
  publication-title: Phys. Earth Planet. Inter.
– volume: 137
  start-page: 439
  year: 1991
  end-page: 460
  article-title: Shear localisation in upper mantle peridotites
  publication-title: Pure Appl. Geophys.
– volume: 21
  issue: 6
  year: 2002
  article-title: Exhumation of high‐pressure metamorphic rocks in a subduction channel: A numerical simulation
  publication-title: Tectonics
– year: 1982
– volume: 38
  start-page: 237
  year: 1974
  end-page: 241
  article-title: Numerical modelling of tectonic flow behind island arcs
  publication-title: Geophys. J. R. Astron. Soc.
– volume: 223
  start-page: 35
  year: 2004
  end-page: 48
  article-title: The thermal effects of steady‐state slab‐driven mantle flow above a subducting plate: The Cascadia subduction zone and backarc
  publication-title: Earth Planet. Sci. Lett.
– volume: 176
  start-page: 339
  year: 2000
  end-page: 356
  article-title: The effect of deep damp melting on mantle flow and melt generation beneath mid‐ocean ridge
  publication-title: Earth Planet. Sci. Lett.
– volume: 227
  start-page: 57
  year: 2004
  end-page: 71
  article-title: Phase relations of peridotites under H O‐saturated conditions and ability of subducting plates for transportation of H O
  publication-title: Earth Planet. Sci. Lett.
– volume: 6
  year: 2005
  article-title: Application of the model of small‐scale convection under the island arc to the NE Honshu subduction zone
  publication-title: Geochem. Geophys. Geosyst.
– volume: 144
  start-page: 93
  year: 1996
  end-page: 108
  article-title: Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere
  publication-title: Earth Planet. Sci. Lett.
– volume: 134
  start-page: 191
  year: 2002
  end-page: 202
  article-title: A numerical study of the interaction between the mantle wedge, the subducting slab, and overriding plate
  publication-title: Phys. Earth Planet. Inter.
– volume: 85
  issue: 47
  year: 2004
  article-title: The thermal structure of subduction zone backarcs
  publication-title: Eos Trans. AGU
– volume: 201
  start-page: 491
  year: 2002
  end-page: 507
  article-title: Influence of melt on the creep behavior of olivine‐basalt aggregates under hydrous conditions
  publication-title: Earth Planet. Sci. Lett.
– volume: 253
  start-page: 141
  year: 1993
  end-page: 166
  article-title: Transient high‐Rayleigh number thermal convection with large viscosity variations
  publication-title: J. Fluid. Mech.
– volume: 70
  start-page: 359
  year: 2003
  end-page: 379
  article-title: Titanian clinohumite‐garnet‐pyroxene rock from the Su‐Lu UHP metamorphic terrane, China: Chemical evolution and tectonic implications
  publication-title: Lithos
– volume: 29
  start-page: 1197
  year: 1992
  end-page: 1214
  article-title: Crustal temperatures near the Lithoprobe Southern Canadian Cordillera Transect
  publication-title: Can. J. Earth Sci.
– volume: 99
  start-page: 19,853
  year: 1994
  end-page: 19,866
  article-title: Onset of thermal convection in fluids with temperature‐dependent viscosity: Application to the oceanic mantle
  publication-title: J. Geophys. Res.
– volume: 342
  start-page: 163
  year: 2001
  end-page: 191
  article-title: Subduction initiation and continental crust recycling: The roles of rheology and eclogitization
  publication-title: Tectonophysics
– volume: 319
  start-page: 225
  year: 2000
  end-page: 239
  article-title: Seismic activity and deformation process of the overriding plate in the northeastern Japan subduction zone
  publication-title: Tectonophysics
– volume: 138
  start-page: 284
  year: 2000
  end-page: 291
  article-title: Stability of clinohumite in the system MgO‐SiO ‐H O
  publication-title: Contrib. Mineral. Petrol.
– volume: 124
  start-page: 90
  year: 1996
  end-page: 97
  article-title: The low‐pressure stability of phase A: Mg Si O (OH)
  publication-title: Contrib. Mineral. Petrol.
– volume: 143
  start-page: 525
  year: 2002
  end-page: 536
  article-title: Water solubility in orthopyroxene
  publication-title: Contrib. Mineral. Petrol.
– volume: 93
  start-page: 15,207
  year: 1988
  end-page: 15,227
  article-title: Subduction of the Juan de Fuca Plate: Thermal consequence
  publication-title: J. Geophys. Res.
– start-page: 571
  year: 1986
  end-page: 581
– volume: 164
  start-page: 175
  year: 1989
  end-page: 187
  article-title: Thermal state under the Tohoko Arc with consideration of crustal heat generation
  publication-title: Tectonophysics
– volume: 319
  start-page: 241
  year: 2000
  end-page: 260
  article-title: Three‐dimensional attenuation structure beneath the northeastern Japan arc estimated from spectra of small earthquakes
  publication-title: Tectonophysics
– volume: 186
  start-page: 125
  year: 2001
  end-page: 141
  article-title: The 10Å phase: A high‐pressure expandable sheet silicate stable during subduction of hydrated lithosphere
  publication-title: Earth Planet. Sci. Lett.
– volume: 102
  start-page: 22,477
  year: 1997
  end-page: 22,495
  article-title: A comparison of methods for the modeling of thermochemical convection
  publication-title: J. Geophys. Res.
– volume: 86
  start-page: 56
  year: 1997
  end-page: 68
  article-title: Strain localization mechanisms in deep‐seated layered rocks
  publication-title: Geol. Rundsch.
– volume: 100
  start-page: 17,587
  year: 1995
  end-page: 17,602
  article-title: Solubility of water in the α, β and γ phases of (Mg,Fe) SiO
  publication-title: J. Geophys. Res.
– volume: 138
  start-page: 107
  year: 2003
  end-page: 134
– volume: 135
  start-page: 18
  year: 1999
  end-page: 40
  article-title: Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions
  publication-title: Contrib. Mineral. Petrol.
– volume: 291
  start-page: 123
  year: 1998
  end-page: 129
  article-title: Heat‐flow density across the Central Andean subduction zone
  publication-title: Tectonophysics
– volume: 98
  start-page: 20,005
  year: 1993
  end-page: 20,013
  article-title: Depth of the decoupling plate interface and thermal structure under arcs
  publication-title: J. Geophys. Res.
– volume: 103
  start-page: 18,171
  year: 1998
  end-page: 18,181
  article-title: Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature‐dependent viscosity: Implications for planetary thermal evolution
  publication-title: J. Geophys. Res.
– volume: 212
  start-page: 47
  year: 2003
  end-page: 62
  article-title: Rayleigh‐Taylor instabilities from hydration and melting propel ‘cold plumes’ at subduction zones
  publication-title: Earth Planet. Sci. Lett.
– volume: 138
  start-page: 293
  year: 2003
  end-page: 311
– volume: 129
  start-page: 35
  year: 1997
  end-page: 42
  article-title: Water solubility in pyrope to 100 kbar
  publication-title: Contrib. Mineral. Petrol.
– volume: 163
  start-page: 361
  year: 1998
  end-page: 379
  article-title: Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation
  publication-title: Earth Planet. Sci. Lett.
– volume: 80
  start-page: 998
  year: 1995
  end-page: 1003
  article-title: The high‐pressure stability of talc and 10Å phase: Potential storage sites for H O in subduction zones
  publication-title: Am. Mineral.
– volume: 51
  start-page: 2639
  year: 1987
  end-page: 2652
  article-title: The computation of chemical equilibrium in complex systems containing non‐ideal solutions
  publication-title: Geochim. Cosmochim. Acta
– volume: 1
  start-page: 137
  year: 1977
  end-page: 161
– volume: 216
  start-page: 703
  year: 2003
  end-page: 715
  article-title: Small‐scale convection under the back‐arc occurring in the low viscosity wedge
  publication-title: Earth Planet. Sci. Lett.
– volume: 109
  year: 2004
  article-title: Numerical simulations of the mantle lithosphere delamination
  publication-title: J. Geophys. Res.
– volume: 29
  start-page: 625
  year: 1988
  end-page: 679
  article-title: The volume and composition of melt generated by extension of the lithosphere
  publication-title: J. Petrol.
– volume: 97
  start-page: 2015
  year: 1992
  end-page: 2036
  article-title: An Eulerian technique for thermomechanical modeling
  publication-title: J. Geophys. Res.
– ident: e_1_2_9_22_1
  doi: 10.1029/93JB02020
– ident: e_1_2_9_43_1
  doi: 10.1007/s004100050321
– ident: e_1_2_9_56_1
– ident: e_1_2_9_3_1
  doi: 10.1111/j.1365-246X.1974.tb04118.x
– ident: e_1_2_9_57_1
  doi: 10.1016/S0012-821X(98)00142-3
– ident: e_1_2_9_63_1
  doi: 10.1007/BF01167097
– ident: e_1_2_9_18_1
  doi: 10.1029/1999JB900110
– ident: e_1_2_9_50_1
  doi: 10.1007/s004100050495
– ident: e_1_2_9_64_1
  doi: 10.1029/ME001p0137
– ident: e_1_2_9_7_1
  doi: 10.1016/S0012-821X(00)00015-7
– ident: e_1_2_9_16_1
  doi: 10.1016/S0040-1951(01)00161-5
– ident: e_1_2_9_24_1
  doi: 10.1029/138GM07
– ident: e_1_2_9_30_1
  doi: 10.1016/0012-821X(96)00154-9
– ident: e_1_2_9_48_1
  doi: 10.1029/2003JB002414
– ident: e_1_2_9_8_1
  doi: 10.1111/j.1365-246X.1984.tb01939.x
– ident: e_1_2_9_29_1
  doi: 10.1016/S0040-1951(99)00296-6
– ident: e_1_2_9_40_1
  doi: 10.1029/95JB01460
– ident: e_1_2_9_53_1
  doi: 10.1007/s004100050176
– ident: e_1_2_9_62_1
  doi: 10.1029/97JB01353
– ident: e_1_2_9_17_1
  doi: 10.1007/BF00879044
– ident: e_1_2_9_31_1
  doi: 10.1111/j.1525-1314.1998.00140.x
– start-page: 571
  volume-title: Kimberlites and Related Rocks
  year: 1986
  ident: e_1_2_9_47_1
– ident: e_1_2_9_9_1
  doi: 10.1029/91JB02642
– ident: e_1_2_9_23_1
  doi: 10.1016/0040-1951(89)90011-5
– ident: e_1_2_9_35_1
  doi: 10.1016/S0040-1951(99)00068-2
– ident: e_1_2_9_33_1
  doi: 10.1029/2004GC000785
– ident: e_1_2_9_32_1
  doi: 10.1016/S0012-821X(03)00537-5
– ident: e_1_2_9_52_1
  doi: 10.2138/am-1995-9-1015
– ident: e_1_2_9_6_1
  doi: 10.1029/2004JB003450
– ident: e_1_2_9_59_1
  doi: 10.1016/S0040-1951(98)00035-3
– ident: e_1_2_9_5_1
  doi: 10.1016/S0040-1951(96)00290-9
– ident: e_1_2_9_26_1
  doi: 10.1029/2002TC001406
– ident: e_1_2_9_2_1
  doi: 10.1007/s005310050121
– ident: e_1_2_9_60_1
  doi: 10.1016/S0040-1951(99)00297-8
– ident: e_1_2_9_51_1
  doi: 10.1007/s004100050563
– ident: e_1_2_9_21_1
  doi: 10.1016/S0012-821X(01)00238-2
– ident: e_1_2_9_25_1
  doi: 10.1016/S0012-821X(03)00265-6
– ident: e_1_2_9_19_1
  doi: 10.1016/S0031-9201(02)00157-7
– ident: e_1_2_9_37_1
  doi: 10.1016/j.epsl.2004.08.013
– ident: e_1_2_9_39_1
  doi: 10.1029/138GM13
– ident: e_1_2_9_36_1
  doi: 10.1130/1052-5173(2005)015<4:SZBMBA>2.0.CO;2
– ident: e_1_2_9_46_1
  doi: 10.1016/S0012-821X(02)00745-8
– ident: e_1_2_9_10_1
  doi: 10.1016/j.epsl.2004.04.020
– ident: e_1_2_9_42_1
  doi: 10.1139/e92-096
– ident: e_1_2_9_55_1
  doi: 10.1007/s00410-002-0365-6
– ident: e_1_2_9_20_1
  doi: 10.1093/petrology/egh088
– ident: e_1_2_9_12_1
  doi: 10.1017/S0022112093001740
– ident: e_1_2_9_28_1
  doi: 10.1029/98JB01492
– ident: e_1_2_9_44_1
  doi: 10.1111/j.1365-246X.1969.tb00259.x
– ident: e_1_2_9_49_1
  doi: 10.1016/S0012-821X(02)00753-7
– ident: e_1_2_9_45_1
  doi: 10.1093/petrology/29.3.625
– ident: e_1_2_9_38_1
  doi: 10.1130/G19525.1
– ident: e_1_2_9_41_1
  doi: 10.1029/JB093iB12p15207
– ident: e_1_2_9_4_1
  doi: 10.1016/j.pepi.2004.08.020
– ident: e_1_2_9_14_1
  doi: 10.1139/e84-077
– ident: e_1_2_9_34_1
  doi: 10.1029/2002GL015853
– ident: e_1_2_9_54_1
  doi: 10.1146/annurev.earth.30.091201.140550
– ident: e_1_2_9_65_1
  doi: 10.1016/S0024-4937(03)00106-3
– ident: e_1_2_9_13_1
  doi: 10.1029/94JB01405
– ident: e_1_2_9_61_1
– volume: 85
  issue: 47
  year: 2004
  ident: e_1_2_9_11_1
  article-title: The thermal structure of subduction zone backarcs
  publication-title: Eos Trans. AGU
– ident: e_1_2_9_15_1
  doi: 10.1016/0016-7037(87)90145-1
– ident: e_1_2_9_27_1
  doi: 10.1130/G20018.1
– ident: e_1_2_9_58_1
  doi: 10.1029/2000JB900197
SSID ssj0014558
Score 2.092456
Snippet In subduction zones, many observations indicate that the backarc thermal state is particularly hot and that the upper lithosphere is thin, even if no recent...
SourceID hal
proquest
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage np
SubjectTerms dehydration
hydration
Lithosphere
Mantle
Mathematical models
Reduction
Rock
Sciences of the Universe
Strength
subduction
thermal convection
Thinning
Wedges
Title Overriding plate thinning in subduction zones: Localized convection induced by slab dehydration
URI https://api.istex.fr/ark:/67375/WNG-J14T5HL4-F/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2005GC001061
https://www.proquest.com/docview/1524415449
https://www.proquest.com/docview/1642299385
https://hal.science/hal-00407579
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1525-2027
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014558
  issn: 1525-2027
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB6lrZC4IFYRNg0IeiAyjZfJ2NxKSRxVaXpJRG4jz2IaUSUhS0UixG_nvbFjO6JUhYsVj57sid8385Z5CyFvdRQq0IuBA74yYKBIz4lkkztKGy4DFUolbbXPfqs7DE5HbFSr_axmlyzlB7W5Nq_kf7gKY8BXzJL9B84WD4UB-A38hStwGK634vH5FdZVtGkps0tQGkGLHNsWROjFWKykzkrDNja2ID_Y_j2UXOON0Vm0ucojHYEuU0QBH7KhzcVaz0uO5aprbLC5VtYdDhnz1Uwzt8giv8uKQi-skyH2SySpZL0TWvx5mtUtOHOK3LIB7MY7aRGfpqsFSKxlGdJY8UwUUR75ZuoxB50rmay5ZizfgXkFaF5lN53MKnI5u_ljx296WDAVfWPxSWbglpJte5rfPxedYa8nBu3R4HD23cGeY3g2nzdg2SMHHm-1sP_F2a92cQYVMNvdtZhxnjYBLzyqvm5Hodm7wHDaA1yhP3ZslqrlY1WXwX1yL7c56HEGoAekZiYPyZ3Y9nRePyKihBG1MKJbGNHxhJYwohZGH2kBIlqCiOYgonJNEUS0AqLHZNhpD066Tt53w0kYZmuFKQM9u8m51spLfZXKMApdnxvD3DQB_Z6nzCYle7KVhl6auEypgKcemg8RV_4Tsj-BGT0l1E00DOqEM9kKIp0mHihMTcVcHbgGbJU6aWw_nlB5UXrsjXIpbHCEF4nqp66TdwX1LCvG8he6N8CHggQrqHePewLHUGjBH4iugOjQsqkgS-bfMMqRM_GlH4tTNxiwbi8QnTp5veWjgEWGB2rJxMAyEAANdEcEQXQDDRj4oPL5IauT9xYEN05dxHHcBov32S0e-JzcLZfdC7K_nK_MS1CRl_KVRfJv5X65Lw
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overriding+plate+thinning+in+subduction+zones%3A+Localized+convection+induced+by+slab+dehydration&rft.jtitle=Geochemistry%2C+geophysics%2C+geosystems+%3A+G3&rft.au=Arcay%2C+D&rft.au=Doin%2C+M-P&rft.au=Tric%2C+E&rft.au=Bousquet%2C+R&rft.date=2006-02-01&rft.issn=1525-2027&rft.eissn=1525-2027&rft.volume=7&rft.issue=2&rft.spage=np&rft.epage=np&rft_id=info:doi/10.1029%2F2005GC001061&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-2027&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-2027&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-2027&client=summon