Overriding plate thinning in subduction zones: Localized convection induced by slab dehydration
In subduction zones, many observations indicate that the backarc thermal state is particularly hot and that the upper lithosphere is thin, even if no recent extension episode has occurred. This might result from free thermal convection favored by low viscosities in the hydrated mantle wedge. We perf...
Saved in:
Published in | Geochemistry, geophysics, geosystems : G3 Vol. 7; no. 2; pp. np - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Blackwell Publishing Ltd
01.02.2006
AGU and the Geochemical Society |
Subjects | |
Online Access | Get full text |
ISSN | 1525-2027 1525-2027 |
DOI | 10.1029/2005GC001061 |
Cover
Abstract | In subduction zones, many observations indicate that the backarc thermal state is particularly hot and that the upper lithosphere is thin, even if no recent extension episode has occurred. This might result from free thermal convection favored by low viscosities in the hydrated mantle wedge. We perform 2‐D numerical experiments of the convective mantle wedge interaction with both the downgoing slab and the overriding plate to test this hypothesis, explore its physical mechanism, and assess its dependencies on some relevant rock properties. Water transfers across the subducting plate and the mantle wedge are explicitly modeled by including in the calculation realistic hydration/dehydration reaction boundaries for a water‐saturated mantle and oceanic crust. The rheology is non‐Newtonian and temperature‐, pressure‐, and water content‐dependent. For low strength reduction associated to water content, the upper plate is locally thinned by an enhanced corner flow. For larger strength reductions, small convection cells rapidly thin the upper plate (in less than 15 Myr) over the area in the overriding lithosphere hydrated by slab‐derived water fluxes. As a result, the thinned region location depends on the subducting plate thermal state, and it increases with high convergence rates and low subduction dip angles. Other simulations are performed to test the sole effect of hydrous rock weakening on the upper plate/mantle convective interaction. They show that the thinning process is not influenced by the corner flow, but develops at the favor of a decoupling level induced by the formation of hydroxylated minerals inside the hydrated lithosphere. The erosion mechanism identified in these simulations allows us to explain the characteristic duration of erosion as a function of the hydrous strength reduction. We find that the presence of amphibole in the upper lithosphere in significant proportions is required down to a temperature of about 980°C, corresponding to an initial depth of ∼70 km, to strongly decrease the strength of the base of the lithosphere and trigger a rapid erosion (<15 Myr). |
---|---|
AbstractList | In subduction zones, many observations indicate that the backarc thermal state is particularly hot and that the upper lithosphere is thin, even if no recent extension episode has occurred. This might result from free thermal convection favored by low viscosities in the hydrated mantle wedge. We perform 2‐D numerical experiments of the convective mantle wedge interaction with both the downgoing slab and the overriding plate to test this hypothesis, explore its physical mechanism, and assess its dependencies on some relevant rock properties. Water transfers across the subducting plate and the mantle wedge are explicitly modeled by including in the calculation realistic hydration/dehydration reaction boundaries for a water‐saturated mantle and oceanic crust. The rheology is non‐Newtonian and temperature‐, pressure‐, and water content‐dependent. For low strength reduction associated to water content, the upper plate is locally thinned by an enhanced corner flow. For larger strength reductions, small convection cells rapidly thin the upper plate (in less than 15 Myr) over the area in the overriding lithosphere hydrated by slab‐derived water fluxes. As a result, the thinned region location depends on the subducting plate thermal state, and it increases with high convergence rates and low subduction dip angles. Other simulations are performed to test the sole effect of hydrous rock weakening on the upper plate/mantle convective interaction. They show that the thinning process is not influenced by the corner flow, but develops at the favor of a decoupling level induced by the formation of hydroxylated minerals inside the hydrated lithosphere. The erosion mechanism identified in these simulations allows us to explain the characteristic duration of erosion as a function of the hydrous strength reduction. We find that the presence of amphibole in the upper lithosphere in significant proportions is required down to a temperature of about 980°C, corresponding to an initial depth of ∼70 km, to strongly decrease the strength of the base of the lithosphere and trigger a rapid erosion (<15 Myr). In subduction zones, many observations indicate that the backarc thermal state is particularly hot and that the upper lithosphere is thin, even if no recent extension episode has occurred. This might result from free thermal convection favored by low viscosities in the hydrated mantle wedge. We perform 2-D numerical experiments of the convective mantle wedge interaction with both the downgoing slab and the overriding plate to test this hypothesis, explore its physical mechanism, and assess its dependencies on some relevant rock properties. Water transfers across the subducting plate and the mantle wedge are explicitly modeled by including in the calculation realistic hydration/dehydration reaction boundaries for a water-saturated mantle and oceanic crust. The rheology is non-Newtonian and temperature-, pressure-, and water content-dependent. For low strength reduction associated to water content, the upper plate is locally thinned by an enhanced corner flow. For larger strength reductions, small convection cells rapidly thin the upper plate (in less than 15 Myr) over the area in the overriding lithosphere hydrated by slab-derived water fluxes. As a result, the thinned region location depends on the subducting plate thermal state, and it increases with high convergence rates and low subduction dip angles. Other simulations are performed to test the sole effect of hydrous rock weakening on the upper plate/mantle convective interaction. They show that the thinning process is not influenced by the corner flow, but develops at the favor of a decoupling level induced by the formation of hydroxylated minerals inside the hydrated lithosphere. The erosion mechanism identified in these simulations allows us to explain the characteristic duration of erosion as a function of the hydrous strength reduction. We find that the presence of amphibole in the upper lithosphere in significant proportions is required down to a temperature of about 980 degree C, corresponding to an initial depth of 70 km, to strongly decrease the strength of the base of the lithosphere and trigger a rapid erosion (<15 Myr). |
Author | Tric, E. de Capitani, C. Arcay, D. Doin, M.-P. Bousquet, R. |
Author_xml | – sequence: 1 givenname: D. surname: Arcay fullname: Arcay, D. email: arcay@geoazur.unice.fr organization: Laboratoire Géosciences Azur, Université de Nice-Sophia Antipolis, 250 Rue Albert Einstein,, F-06560, Valbonne, France – sequence: 2 givenname: M.-P. surname: Doin fullname: Doin, M.-P. organization: Laboratoire de Géologie, Ecole Normale Supérieure, 24 Rue Lhomond,, F-75231, Paris Cedex 05, France – sequence: 3 givenname: E. surname: Tric fullname: Tric, E. organization: Laboratoire Géosciences Azur, Université de Nice-Sophia Antipolis, 250 Rue Albert Einstein,, F-06560, Valbonne, France – sequence: 4 givenname: R. surname: Bousquet fullname: Bousquet, R. organization: Institut für Geowissenschaften, Universität Potsdam, Karl Liebnechtstrasse 24-25,, D-14476, Potsdam-Golm, Germany – sequence: 5 givenname: C. surname: de Capitani fullname: de Capitani, C. organization: Mineralogisch-Petrographisches Institut, Universität Basel, Bernoullistrasse 30,, CH-4056, Basel, Switzerland |
BackLink | https://hal.science/hal-00407579$$DView record in HAL |
BookMark | eNqFkcFu1DAQQC1UJNrCjQ_IESQC9sQTJ9yqVZsFRfRSxNFyHJs1uM5iZxe2X4-XAKqQgJPHM--NrZkzchKmYAh5yuhLRqF9BZRit6KU0Zo9IKcMAUugIE7uxY_IWUqfMsMRm1Mir_cmRje68LHYejWbYt64EI5XF4q0G8adnt0Uirv8VHpd9JNW3t2ZsdBT2Jul5kKmcmo4FMmroRjN5jBGdaw9Jg-t8sk8-Xmek_dXlzerddlfd29WF32pkHIoG4tQARViHDXYStuhaRtWCWOQWYUChUVKa-Qw1LYBqxhqzYUFymrWCl2dk-dL343ychvdrYoHOSkn1xe9POYo5TS3afcss88WdhunLzuTZnnrkjbeq2CmXZKs5gBtWzX4fxSBc4actxmFBdVxSikaK7Wbf8xgjsp5yag8LkneX1KWXvwh_fr7X3C24F-dN4d_srLrukshIDvl4rg0m2-_HRU_y1pUAuWHd518y_gNrnsur6rvJeKvxA |
CitedBy_id | crossref_primary_10_1007_s11430_015_5107_5 crossref_primary_10_1016_j_jvolgeores_2009_11_004 crossref_primary_10_1016_j_epsl_2007_06_026 crossref_primary_10_1139_cjes_2024_0020 crossref_primary_10_1007_s00531_021_01982_5 crossref_primary_10_1029_2010GC003262 crossref_primary_10_1029_2021GL093201 crossref_primary_10_1002_2015GC006125 crossref_primary_10_1029_2020GC009304 crossref_primary_10_1016_j_jog_2007_06_002 crossref_primary_10_1029_2009GC002625 crossref_primary_10_1016_j_lithos_2019_105323 crossref_primary_10_1002_2017TC004689 crossref_primary_10_1016_j_epsl_2011_07_016 crossref_primary_10_1016_j_pepi_2019_106274 crossref_primary_10_1016_j_tecto_2017_03_014 crossref_primary_10_1029_2024GC011897 crossref_primary_10_1016_j_tecto_2010_03_005 crossref_primary_10_1111_j_1365_246X_2012_05426_x crossref_primary_10_1016_j_epsl_2006_12_027 crossref_primary_10_1093_petrology_egp010 crossref_primary_10_1016_j_tecto_2014_11_021 crossref_primary_10_1029_2007JB005415 crossref_primary_10_1029_2018JB016697 crossref_primary_10_1029_2007GC001786 crossref_primary_10_1016_j_lithos_2024_107550 crossref_primary_10_1016_j_tecto_2010_09_014 crossref_primary_10_1002_2017JB014046 crossref_primary_10_1016_j_jog_2022_101958 crossref_primary_10_1016_j_pepi_2017_05_008 crossref_primary_10_3389_feart_2021_743163 crossref_primary_10_1016_j_epsl_2010_06_029 crossref_primary_10_1038_s41561_024_01473_7 crossref_primary_10_1016_j_epsl_2008_06_009 crossref_primary_10_1016_j_epsl_2008_02_037 crossref_primary_10_1016_j_jseaes_2017_03_039 crossref_primary_10_1029_2021TC006795 crossref_primary_10_1029_2011JB008431 crossref_primary_10_1029_2020GC009009 crossref_primary_10_1029_2007GC001875 crossref_primary_10_1029_2018JB017097 crossref_primary_10_1029_2005JB004024 crossref_primary_10_1144_SP311_10 crossref_primary_10_1002_2013GC005022 crossref_primary_10_1016_j_pepi_2018_03_001 crossref_primary_10_1029_2023GC011155 crossref_primary_10_1111_j_1365_246X_2009_04372_x crossref_primary_10_1016_j_jog_2011_06_005 crossref_primary_10_1016_j_tecto_2007_06_001 crossref_primary_10_1007_s00024_010_0207_9 crossref_primary_10_1016_j_epsl_2012_09_010 crossref_primary_10_5194_se_3_467_2012 crossref_primary_10_1111_j_1440_1738_2007_00567_x crossref_primary_10_1016_j_tecto_2023_229906 crossref_primary_10_1029_2018GC007650 |
Cites_doi | 10.1029/93JB02020 10.1007/s004100050321 10.1111/j.1365-246X.1974.tb04118.x 10.1016/S0012-821X(98)00142-3 10.1007/BF01167097 10.1029/1999JB900110 10.1007/s004100050495 10.1029/ME001p0137 10.1016/S0012-821X(00)00015-7 10.1016/S0040-1951(01)00161-5 10.1029/138GM07 10.1016/0012-821X(96)00154-9 10.1029/2003JB002414 10.1111/j.1365-246X.1984.tb01939.x 10.1016/S0040-1951(99)00296-6 10.1029/95JB01460 10.1007/s004100050176 10.1029/97JB01353 10.1007/BF00879044 10.1111/j.1525-1314.1998.00140.x 10.1029/91JB02642 10.1016/0040-1951(89)90011-5 10.1016/S0040-1951(99)00068-2 10.1029/2004GC000785 10.1016/S0012-821X(03)00537-5 10.2138/am-1995-9-1015 10.1029/2004JB003450 10.1016/S0040-1951(98)00035-3 10.1016/S0040-1951(96)00290-9 10.1029/2002TC001406 10.1007/s005310050121 10.1016/S0040-1951(99)00297-8 10.1007/s004100050563 10.1016/S0012-821X(01)00238-2 10.1016/S0012-821X(03)00265-6 10.1016/S0031-9201(02)00157-7 10.1016/j.epsl.2004.08.013 10.1029/138GM13 10.1130/1052-5173(2005)015<4:SZBMBA>2.0.CO;2 10.1016/S0012-821X(02)00745-8 10.1016/j.epsl.2004.04.020 10.1139/e92-096 10.1007/s00410-002-0365-6 10.1093/petrology/egh088 10.1017/S0022112093001740 10.1029/98JB01492 10.1111/j.1365-246X.1969.tb00259.x 10.1016/S0012-821X(02)00753-7 10.1093/petrology/29.3.625 10.1130/G19525.1 10.1029/JB093iB12p15207 10.1016/j.pepi.2004.08.020 10.1139/e84-077 10.1029/2002GL015853 10.1146/annurev.earth.30.091201.140550 10.1016/S0024-4937(03)00106-3 10.1029/94JB01405 10.1016/0016-7037(87)90145-1 10.1130/G20018.1 10.1029/2000JB900197 |
ContentType | Journal Article |
Copyright | Copyright 2006 by the American Geophysical Union. Copyright |
Copyright_xml | – notice: Copyright 2006 by the American Geophysical Union. – notice: Copyright |
DBID | BSCLL AAYXX CITATION 7TN F1W H96 L.G 8FD FR3 H8D KR7 L7M 1XC VOOES |
DOI | 10.1029/2005GC001061 |
DatabaseName | Istex CrossRef Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1525-2027 |
EndPage | n/a |
ExternalDocumentID | oai_HAL_hal_00407579v1 10_1029_2005GC001061 GGGE772 ark_67375_WNG_J14T5HL4_F |
Genre | article |
GroupedDBID | 05W 0R~ 1OC 24P 31~ 50Y 5GY 8-1 88I 8CJ 8FE 8FH 8G5 8R4 8R5 AAESR AAFWJ AAMMB AANHP AAYCA AAZKR ABCUV ABUWG ACAHQ ACBWZ ACCMX ACGFS ACGOD ACPOU ACRPL ACXQS ACYXJ ADBBV ADEOM ADIYS ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AENEX AEUYN AFBPY AFGKR AFKRA AFPKN AGQPQ AGXDD AIDQK AIDYY AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BFHJK BHPHI BKSAR BMXJE BPHCQ BRXPI BSCLL CCPQU CS3 D1J DCZOG DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD FEDTE G-S GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HVGLF HZ~ LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M2O M2P M7R MSFUL MSSTM MXFUL MXSTM MY~ M~E O9- OK1 P-X P2W PCBAR PHGZM PHGZT PQQKQ PROAC PUEGO Q2X R.K ROL SUPJJ UB1 WBKPD WIN ZZTAW ~02 ~OA AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION 7TN F1W H96 L.G 8FD FR3 H8D KR7 L7M 1XC VOOES |
ID | FETCH-LOGICAL-a5042-8f5232077ddc2f3cfb898137ee51fa5757f5006542b6f82fa15cc47f2016197c3 |
ISSN | 1525-2027 |
IngestDate | Fri Sep 12 12:39:48 EDT 2025 Thu Sep 04 20:47:51 EDT 2025 Thu Sep 04 20:43:31 EDT 2025 Tue Jul 01 02:31:33 EDT 2025 Thu Apr 24 23:00:47 EDT 2025 Wed Aug 20 07:27:05 EDT 2025 Sun Sep 21 06:19:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright: http://hal.archives-ouvertes.fr/licences/copyright |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a5042-8f5232077ddc2f3cfb898137ee51fa5757f5006542b6f82fa15cc47f2016197c3 |
Notes | ark:/67375/WNG-J14T5HL4-F ArticleID:2005GC001061 istex:8F2597FB06D0337003EBB8A22D796D4C0E87DC86 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9546-4005 0000-0001-6773-0807 |
OpenAccessLink | https://hal.science/hal-00407579 |
PQID | 1524415449 |
PQPubID | 23462 |
PageCount | 26 |
ParticipantIDs | hal_primary_oai_HAL_hal_00407579v1 proquest_miscellaneous_1642299385 proquest_miscellaneous_1524415449 crossref_citationtrail_10_1029_2005GC001061 crossref_primary_10_1029_2005GC001061 wiley_primary_10_1029_2005GC001061_GGGE772 istex_primary_ark_67375_WNG_J14T5HL4_F |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2006 |
PublicationDateYYYYMMDD | 2006-02-01 |
PublicationDate_xml | – month: 02 year: 2006 text: February 2006 |
PublicationDecade | 2000 |
PublicationTitle | Geochemistry, geophysics, geosystems : G3 |
PublicationTitleAlternate | Geochem. Geophys. Geosyst |
PublicationYear | 2006 |
Publisher | Blackwell Publishing Ltd AGU and the Geochemical Society |
Publisher_xml | – name: Blackwell Publishing Ltd – name: AGU and the Geochemical Society |
References | Niida, K., and D. Green (1999), Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions, Contrib. Mineral. Petrol., 135, 18-40. Wallace, M., and D. Green (1991), The effect of bulk rock composition on the stability of amphibole in the upper mantle: Implications for solidus positions and mantle metasomatism, Mineral. Petrol., 44, 1-19. Katayama, I., A. Muko, T. Iizuka, S. Maruyama, K. Terada, Y. Tsutsumi, Y. Sano, R. Zhang, and J. Liou (2003), Dating of zircon from Ti-clinohumite-bearing garnet peridotite: Implication for timing of mantle metasomatism, Geology, 31, 713-716. Springer, M., and A. Forster (1998), Heat-flow density across the Central Andean subduction zone, Tectonophysics, 291, 123-129. Altenberger, U. (1997), Strain localization mechanisms in deep-seated layered rocks, Geol. Rundsch., 86, 56-68. Honda, S., and T. Yoshida (2005), Application of the model of small-scale convection under the island arc to the NE Honshu subduction zone, Geochem. Geophys. Geosyst., 6, Q01002, doi:10.1029/2004GC000785. McKenzie, D., and M. Bickle (1988), The volume and composition of melt generated by extension of the lithosphere, J. Petrol., 29, 625-679. Mei, S., W. Bai, T. Hiraga, and D. Kohlstedt (2002), Influence of melt on the creep behavior of olivine-basalt aggregates under hydrous conditions, Earth Planet. Sci. Lett., 201, 491-507. Poli, S., and M. Schmidt (2002), Petrology of subducted slabs, Annu. Rev. Earth Planet. Sci., 30, 207-235. Christensen, U. R. (1992), An Eulerian technique for thermomechanical modeling, J. Geophys. Res., 97, 2015-2036. Bousquet, R., B. Goff, X. Le Pichon, C. de Capitani, C. Chopin, and P. Henry (2005), Comment on "Subduction factory: 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents,", J. Geophys. Res., 110, B02206, doi:10.1029/2004JB003450. Morency, C., and M.-P. Doin (2004), Numerical simulations of the mantle lithosphere delamination, J. Geophys. Res., 109, B03410, doi:10.1029/2003JB002414. Tsumura, N., S. Matsumoto, S. Horiuchi, and A. Hasegawa (2000), Three-dimensional attenuation structure beneath the northeastern Japan arc estimated from spectra of small earthquakes, Tectonophysics, 319, 241-260. Hasegawa, A., A. Yamamoto, N. Umino, S. Miura, S. Horiuchi, D. Zhao, and H. Sato (2000), Seismic activity and deformation process of the overriding plate in the northeastern Japan subduction zone, Tectonophysics, 319, 225-239. Hirth, G., and D. Kohlstedt (1996), Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere, Earth Planet. Sci. Lett., 144, 93-108. Furukawa, Y. (1993), Depth of the decoupling plate interface and thermal structure under arcs, J. Geophys. Res., 98, 20,005-20,013. McKenzie, D. (1969), Speculations on consequences and causes of plate motions, Geophys. J. R. Astron. Soc., 18, 1-32. Davies, E., and T. Lewis (1984), Heat flow in a back-arc environment: Intermontane and Omineca crystalline belts, southern Canadian Cordillera, Can. J. Earth Sci., 21, 715-726. Holland, T., and R. Powell (1998), An internally consistent thermodynamic data set for phases of petrological interest, J. Metamorph. Geol., 16, 309-343. Van Keken, P., S. King, H. Schmeling, U. Christensen, D. Neumeister, and M.-P. Doin (1997), A comparison of methods for the modeling of thermochemical convection, J. Geophys. Res., 102, 22,477-22,495. Furukawa, Y., and S. Uyeda (1989), Thermal state under the Tohoko Arc with consideration of crustal heat generation, Tectonophysics, 164, 175-187. Christensen, U. R. (1984), Convection with pressure- and temperature-dependent non-Newtonian rheology, Geophys. J. R. Astron. Soc., 77, 343-384. Dumoulin, C., M.-P. Doin, and L. Fleitout (1999), Heat transport in stagnant lid convection with temperature- and pressure-dependent Newtonian or non-Newtonian rheology, J. Geophys. Res., 104, 12,759-12,778. Andrews, D., and N. Sleep (1974), Numerical modelling of tectonic flow behind island arcs, Geophys. J. R. Astron. Soc., 38, 237-241. Kohlstedt, D., H. Keppler, and D. Rubie (1995), Solubility of water in the α, β and γ phases of (Mg,Fe)2SiO4, J. Geophys. Res., 100, 17,587-17,602. Lewis, T., W. Bentkowski, and R. Hyndman (1992), Crustal temperatures near the Lithoprobe Southern Canadian Cordillera Transect, Can. J. Earth Sci., 29, 1197-1214. Fumagalli, P., and S. Poli (2005), Experimentally determined phase relations in hydrous peridotites to 6.5 GPa and their consequences on the dynamics of subduction zones, J. Petrol., 46, 555-578. Pawley, A., and B. Wood (1995), The high-pressure stability of talc and 10Å phase: Potential storage sites for H2O in subduction zones, Am. Mineral., 80, 998-1003. Arcay, D., E. Tric, and M.-P. Doin (2005), Numerical simulations of subduction zones: Effect of slab dehydration on the mantle wedge dynamics, Phys. Earth Planet. Inter., 149, 133-153. Morency, C., M.-P. Doin, and C. Dumoulin (2002), Convective destabilization of a thickened continental lithosphere, Earth Planet. Sci. Lett., 202, 303-320. Schmidt, M., and S. Poli (1998), Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation, Earth Planet. Sci. Lett., 163, 361-379. Gerya, T., D. Yuen, and E. Sevre (2004), Dynamical causes for incipient magma chambers above slabs, Geology, 32, 89-92. Honda, S., and M. Saito (2003), Small-scale convection under the back-arc occurring in the low viscosity wedge, Earth Planet. Sci. Lett., 216, 703-715. Hyndman, R., C. Currie, and S. Mazzotti (2005), Subduction zone backarcs, mobile belts, and orogenic heat, GSA Today, 15, 4-10. Hyndman, R., and T. Lewis (1999), Geophysical consequences of the Cordillera-Craton thermal transition in southwestern Canada, Tectonophysics, 306, 397-422. Lu, R., and H. Keppler (1997), Water solubility in pyrope to 100 kbar, Contrib. Mineral. Petrol., 129, 35-42. Honda, S., M. Saito, and T. Nakakuki (2002), Possible existence of small-scale convection under the back arc, Geophys. Res. Lett., 29(21), 2043, doi:10.1029/2002GL015853. Gerya, T., B. Stöckert, and A. Perchuk (2002), Exhumation of high-pressure metamorphic rocks in a subduction channel: A numerical simulation, Tectonics, 21(6), 1056, doi:10.1029/2002TC001406. Rauch, M., and H. Keppler (2002), Water solubility in orthopyroxene, Contrib. Mineral. Petrol., 143, 525-536. Grasset, O., and E. Parmentier (1998), Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature-dependent viscosity: Implications for planetary thermal evolution, J. Geophys. Res., 103, 18,171-18,181. Pawley, A. (2000), Stability of clinohumite in the system MgO-SiO2-H2O, Contrib. Mineral. Petrol., 138, 284-291. Lewis, T., W. Bentkowski, E. Davis, R. Hyndman, J. Souther, and J. Wright (1988), Subduction of the Juan de Fuca Plate: Thermal consequence, J. Geophys. Res., 93, 15,207-15,227. Doin, M.-P., and P. Henry (2001), Subduction initiation and continental crust recycling: The roles of rheology and eclogitization, Tectonophysics, 342, 163-191. Gerya, T., and D. Yuen (2003), Rayleigh-Taylor instabilities from hydration and melting propel 'cold plumes' at subduction zones, Earth Planet. Sci. Lett., 212, 47-62. Pawley, A., and B. Wood (1996), The low-pressure stability of phase A: Mg7Si2O8(OH)6, Contrib. Mineral. Petrol., 124, 90-97. Currie, C., R. Hyndman, and K. Wang (2004b), The thermal structure of subduction zone backarcs, Eos Trans. AGU, 85(47), Fall Meet. Suppl., Abstract T23B-1320. Solomatov, V., and L.-N. Moresi (2000), Scaling of time-dependent stagnant lid convection: Application to small-scale convection on Earth and other terrestrial planets, Geophys. Res. Lett., 105, 21,795-21,817. de Capitani, C., and T. Brown (1987), The computation of chemical equilibrium in complex systems containing non-ideal solutions, Geochim. Cosmochim. Acta, 51, 2639-2652. Iwamori, H. (2004), Phase relations of peridotites under H2O-saturated conditions and ability of subducting plates for transportation of H2O, Earth Planet. Sci. Lett., 227, 57-71. Drury, M., R. Vissers, D. van der Wal, and E. Hoogerduijn Strating (1991), Shear localisation in upper mantle peridotites, Pure Appl. Geophys., 137, 439-460. Davaille, A., and C. Jaupart (1993), Transient high-Rayleigh number thermal convection with large viscosity variations, J. Fluid. Mech., 253, 141-166. Yang, J.-J. (2003), Titanian clinohumite-garnet-pyroxene rock from the Su-Lu UHP metamorphic terrane, China: Chemical evolution and tectonic implications, Lithos, 70, 359-379. Davaille, A., and C. Jaupart (1994), Onset of thermal convection in fluids with temperature-dependent viscosity: Application to the oceanic mantle, J. Geophys. Res., 99, 19,853-19,866. Fumagalli, P., L. Stixrude, S. Poli, and D. Snyder (2001), The 10Å phase: A high-pressure expandable sheet silicate stable during subduction of hydrated lithosphere, Earth Planet. Sci. Lett., 186, 125-141. Braun, M., G. Hirth, and E. Parmentier (2000), The effect of deep damp melting on mantle flow and melt generation beneath mid-ocean ridge, Earth Planet. Sci. Lett., 176, 339-356. Currie, C., K. Wang, R. Hyndman, and J. He (2004a), The thermal effects of steady-state slab-driven mantle flow above a subducting plate: The Cascadia subduction zone and backarc, Earth Planet. Sci. Lett., 223, 35-48. Eberle, M., O. Grasset, and C. Sotin (2002), A numerical study of the interaction between the mantle wedge, the subducting slab, and overriding plate, Phys. Earth Planet. Inter., 134, 191-202. Bousquet, R., B. Goffé, P. Henry, X. L. Pichon, and C. Chopin (1997), Kinematic, thermal and petrological model of the Central Alps: Lepontine metamorphism in the upper crust and eclogitisation of the lower crust, Tectonophysics, 273, 105-127. 2001; 342 2001; 186 1997; 86 1997; 273 2000; 138 1984; 21 1975 1996; 144 2000; 176 1992; 97 2004; 32 1998; 16 1997; 102 1998; 291 2002; 143 1991; 44 2005; 149 1986 1999; 135 1982 1993; 253 1998; 163 1974; 38 2000; 319 2004; 85 1987; 51 2003; 216 2004; 223 2003; 138 2005; 110 2002; 30 2002; 134 1969; 18 2004; 109 1999; 104 2003; 212 1996; 124 1991; 137 2004; 227 1988; 93 2003; 31 2005; 46 1999; 306 1997; 129 2002; 29 1995; 80 2003; 70 1988; 29 2000; 105 2002; 201 1984; 77 1993; 98 1989; 164 2002; 202 2002; 21 1994; 99 1992; 29 1977; 1 2005; 6 1998; 103 1995; 100 2005; 15 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 Currie C. (e_1_2_9_11_1) 2004; 85 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 Mengel K. (e_1_2_9_47_1) 1986 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – reference: Fumagalli, P., and S. Poli (2005), Experimentally determined phase relations in hydrous peridotites to 6.5 GPa and their consequences on the dynamics of subduction zones, J. Petrol., 46, 555-578. – reference: Furukawa, Y., and S. Uyeda (1989), Thermal state under the Tohoko Arc with consideration of crustal heat generation, Tectonophysics, 164, 175-187. – reference: Niida, K., and D. Green (1999), Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions, Contrib. Mineral. Petrol., 135, 18-40. – reference: Eberle, M., O. Grasset, and C. Sotin (2002), A numerical study of the interaction between the mantle wedge, the subducting slab, and overriding plate, Phys. Earth Planet. Inter., 134, 191-202. – reference: Doin, M.-P., and P. Henry (2001), Subduction initiation and continental crust recycling: The roles of rheology and eclogitization, Tectonophysics, 342, 163-191. – reference: Currie, C., R. Hyndman, and K. Wang (2004b), The thermal structure of subduction zone backarcs, Eos Trans. AGU, 85(47), Fall Meet. Suppl., Abstract T23B-1320. – reference: Wallace, M., and D. Green (1991), The effect of bulk rock composition on the stability of amphibole in the upper mantle: Implications for solidus positions and mantle metasomatism, Mineral. Petrol., 44, 1-19. – reference: Hyndman, R., C. Currie, and S. Mazzotti (2005), Subduction zone backarcs, mobile belts, and orogenic heat, GSA Today, 15, 4-10. – reference: Hyndman, R., and T. Lewis (1999), Geophysical consequences of the Cordillera-Craton thermal transition in southwestern Canada, Tectonophysics, 306, 397-422. – reference: Rauch, M., and H. Keppler (2002), Water solubility in orthopyroxene, Contrib. Mineral. Petrol., 143, 525-536. – reference: Fumagalli, P., L. Stixrude, S. Poli, and D. Snyder (2001), The 10Å phase: A high-pressure expandable sheet silicate stable during subduction of hydrated lithosphere, Earth Planet. Sci. Lett., 186, 125-141. – reference: Yang, J.-J. (2003), Titanian clinohumite-garnet-pyroxene rock from the Su-Lu UHP metamorphic terrane, China: Chemical evolution and tectonic implications, Lithos, 70, 359-379. – reference: Christensen, U. R. (1984), Convection with pressure- and temperature-dependent non-Newtonian rheology, Geophys. J. R. Astron. Soc., 77, 343-384. – reference: Lu, R., and H. Keppler (1997), Water solubility in pyrope to 100 kbar, Contrib. Mineral. Petrol., 129, 35-42. – reference: Davies, E., and T. Lewis (1984), Heat flow in a back-arc environment: Intermontane and Omineca crystalline belts, southern Canadian Cordillera, Can. J. Earth Sci., 21, 715-726. – reference: Christensen, U. R. (1992), An Eulerian technique for thermomechanical modeling, J. Geophys. Res., 97, 2015-2036. – reference: Tsumura, N., S. Matsumoto, S. Horiuchi, and A. Hasegawa (2000), Three-dimensional attenuation structure beneath the northeastern Japan arc estimated from spectra of small earthquakes, Tectonophysics, 319, 241-260. – reference: Drury, M., R. Vissers, D. van der Wal, and E. Hoogerduijn Strating (1991), Shear localisation in upper mantle peridotites, Pure Appl. Geophys., 137, 439-460. – reference: Davaille, A., and C. Jaupart (1994), Onset of thermal convection in fluids with temperature-dependent viscosity: Application to the oceanic mantle, J. Geophys. Res., 99, 19,853-19,866. – reference: Iwamori, H. (2004), Phase relations of peridotites under H2O-saturated conditions and ability of subducting plates for transportation of H2O, Earth Planet. Sci. Lett., 227, 57-71. – reference: Springer, M., and A. Forster (1998), Heat-flow density across the Central Andean subduction zone, Tectonophysics, 291, 123-129. – reference: Pawley, A. (2000), Stability of clinohumite in the system MgO-SiO2-H2O, Contrib. Mineral. Petrol., 138, 284-291. – reference: Poli, S., and M. Schmidt (2002), Petrology of subducted slabs, Annu. Rev. Earth Planet. Sci., 30, 207-235. – reference: Pawley, A., and B. Wood (1995), The high-pressure stability of talc and 10Å phase: Potential storage sites for H2O in subduction zones, Am. Mineral., 80, 998-1003. – reference: Braun, M., G. Hirth, and E. Parmentier (2000), The effect of deep damp melting on mantle flow and melt generation beneath mid-ocean ridge, Earth Planet. Sci. Lett., 176, 339-356. – reference: Lewis, T., W. Bentkowski, E. Davis, R. Hyndman, J. Souther, and J. Wright (1988), Subduction of the Juan de Fuca Plate: Thermal consequence, J. Geophys. Res., 93, 15,207-15,227. – reference: McKenzie, D., and M. Bickle (1988), The volume and composition of melt generated by extension of the lithosphere, J. Petrol., 29, 625-679. – reference: Hirth, G., and D. Kohlstedt (1996), Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere, Earth Planet. Sci. Lett., 144, 93-108. – reference: Honda, S., and M. Saito (2003), Small-scale convection under the back-arc occurring in the low viscosity wedge, Earth Planet. Sci. Lett., 216, 703-715. – reference: Altenberger, U. (1997), Strain localization mechanisms in deep-seated layered rocks, Geol. Rundsch., 86, 56-68. – reference: Davaille, A., and C. Jaupart (1993), Transient high-Rayleigh number thermal convection with large viscosity variations, J. Fluid. Mech., 253, 141-166. – reference: Morency, C., M.-P. Doin, and C. Dumoulin (2002), Convective destabilization of a thickened continental lithosphere, Earth Planet. Sci. Lett., 202, 303-320. – reference: Furukawa, Y. (1993), Depth of the decoupling plate interface and thermal structure under arcs, J. Geophys. Res., 98, 20,005-20,013. – reference: de Capitani, C., and T. Brown (1987), The computation of chemical equilibrium in complex systems containing non-ideal solutions, Geochim. Cosmochim. Acta, 51, 2639-2652. – reference: Gerya, T., B. Stöckert, and A. Perchuk (2002), Exhumation of high-pressure metamorphic rocks in a subduction channel: A numerical simulation, Tectonics, 21(6), 1056, doi:10.1029/2002TC001406. – reference: Mei, S., W. Bai, T. Hiraga, and D. Kohlstedt (2002), Influence of melt on the creep behavior of olivine-basalt aggregates under hydrous conditions, Earth Planet. Sci. Lett., 201, 491-507. – reference: Kohlstedt, D., H. Keppler, and D. Rubie (1995), Solubility of water in the α, β and γ phases of (Mg,Fe)2SiO4, J. Geophys. Res., 100, 17,587-17,602. – reference: Solomatov, V., and L.-N. Moresi (2000), Scaling of time-dependent stagnant lid convection: Application to small-scale convection on Earth and other terrestrial planets, Geophys. Res. Lett., 105, 21,795-21,817. – reference: Honda, S., M. Saito, and T. Nakakuki (2002), Possible existence of small-scale convection under the back arc, Geophys. Res. Lett., 29(21), 2043, doi:10.1029/2002GL015853. – reference: Pawley, A., and B. Wood (1996), The low-pressure stability of phase A: Mg7Si2O8(OH)6, Contrib. Mineral. Petrol., 124, 90-97. – reference: Grasset, O., and E. Parmentier (1998), Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature-dependent viscosity: Implications for planetary thermal evolution, J. Geophys. Res., 103, 18,171-18,181. – reference: Honda, S., and T. Yoshida (2005), Application of the model of small-scale convection under the island arc to the NE Honshu subduction zone, Geochem. Geophys. Geosyst., 6, Q01002, doi:10.1029/2004GC000785. – reference: Schmidt, M., and S. Poli (1998), Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation, Earth Planet. Sci. Lett., 163, 361-379. – reference: Hasegawa, A., A. Yamamoto, N. Umino, S. Miura, S. Horiuchi, D. Zhao, and H. Sato (2000), Seismic activity and deformation process of the overriding plate in the northeastern Japan subduction zone, Tectonophysics, 319, 225-239. – reference: Holland, T., and R. Powell (1998), An internally consistent thermodynamic data set for phases of petrological interest, J. Metamorph. Geol., 16, 309-343. – reference: Morency, C., and M.-P. Doin (2004), Numerical simulations of the mantle lithosphere delamination, J. Geophys. Res., 109, B03410, doi:10.1029/2003JB002414. – reference: Dumoulin, C., M.-P. Doin, and L. Fleitout (1999), Heat transport in stagnant lid convection with temperature- and pressure-dependent Newtonian or non-Newtonian rheology, J. Geophys. Res., 104, 12,759-12,778. – reference: Arcay, D., E. Tric, and M.-P. Doin (2005), Numerical simulations of subduction zones: Effect of slab dehydration on the mantle wedge dynamics, Phys. Earth Planet. Inter., 149, 133-153. – reference: Bousquet, R., B. Goffé, P. Henry, X. L. Pichon, and C. Chopin (1997), Kinematic, thermal and petrological model of the Central Alps: Lepontine metamorphism in the upper crust and eclogitisation of the lower crust, Tectonophysics, 273, 105-127. – reference: Bousquet, R., B. Goff, X. Le Pichon, C. de Capitani, C. Chopin, and P. Henry (2005), Comment on "Subduction factory: 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents,", J. Geophys. Res., 110, B02206, doi:10.1029/2004JB003450. – reference: Andrews, D., and N. Sleep (1974), Numerical modelling of tectonic flow behind island arcs, Geophys. J. R. Astron. Soc., 38, 237-241. – reference: Katayama, I., A. Muko, T. Iizuka, S. Maruyama, K. Terada, Y. Tsutsumi, Y. Sano, R. Zhang, and J. Liou (2003), Dating of zircon from Ti-clinohumite-bearing garnet peridotite: Implication for timing of mantle metasomatism, Geology, 31, 713-716. – reference: Gerya, T., D. Yuen, and E. Sevre (2004), Dynamical causes for incipient magma chambers above slabs, Geology, 32, 89-92. – reference: Lewis, T., W. Bentkowski, and R. Hyndman (1992), Crustal temperatures near the Lithoprobe Southern Canadian Cordillera Transect, Can. J. Earth Sci., 29, 1197-1214. – reference: Gerya, T., and D. Yuen (2003), Rayleigh-Taylor instabilities from hydration and melting propel 'cold plumes' at subduction zones, Earth Planet. Sci. Lett., 212, 47-62. – reference: McKenzie, D. (1969), Speculations on consequences and causes of plate motions, Geophys. J. R. Astron. Soc., 18, 1-32. – reference: Currie, C., K. Wang, R. Hyndman, and J. He (2004a), The thermal effects of steady-state slab-driven mantle flow above a subducting plate: The Cascadia subduction zone and backarc, Earth Planet. Sci. Lett., 223, 35-48. – reference: Van Keken, P., S. King, H. Schmeling, U. Christensen, D. Neumeister, and M.-P. Doin (1997), A comparison of methods for the modeling of thermochemical convection, J. Geophys. Res., 102, 22,477-22,495. – volume: 29 issue: 21 year: 2002 article-title: Possible existence of small‐scale convection under the back arc publication-title: Geophys. Res. Lett. – volume: 306 start-page: 397 year: 1999 end-page: 422 article-title: Geophysical consequences of the Cordillera‐Craton thermal transition in southwestern Canada publication-title: Tectonophysics – volume: 18 start-page: 1 year: 1969 end-page: 32 article-title: Speculations on consequences and causes of plate motions publication-title: Geophys. J. R. Astron. Soc. – volume: 31 start-page: 713 year: 2003 end-page: 716 article-title: Dating of zircon from Ti‐clinohumite‐bearing garnet peridotite: Implication for timing of mantle metasomatism publication-title: Geology – volume: 105 start-page: 21,795 year: 2000 end-page: 21,817 article-title: Scaling of time‐dependent stagnant lid convection: Application to small‐scale convection on Earth and other terrestrial planets publication-title: Geophys. Res. Lett. – volume: 110 year: 2005 article-title: Comment on “Subduction factory: 1. Theoretical mineralogy, densities, seismic wave speeds, and H O contents,” publication-title: J. Geophys. Res. – volume: 104 start-page: 12,759 year: 1999 end-page: 12,778 article-title: Heat transport in stagnant lid convection with temperature‐ and pressure‐dependent Newtonian or non‐Newtonian rheology publication-title: J. Geophys. Res. – year: 1975 – volume: 32 start-page: 89 year: 2004 end-page: 92 article-title: Dynamical causes for incipient magma chambers above slabs publication-title: Geology – volume: 16 start-page: 309 year: 1998 end-page: 343 article-title: An internally consistent thermodynamic data set for phases of petrological interest publication-title: J. Metamorph. Geol. – volume: 15 start-page: 4 year: 2005 end-page: 10 article-title: Subduction zone backarcs, mobile belts, and orogenic heat publication-title: GSA Today – volume: 202 start-page: 303 year: 2002 end-page: 320 article-title: Convective destabilization of a thickened continental lithosphere publication-title: Earth Planet. Sci. Lett. – volume: 21 start-page: 715 year: 1984 end-page: 726 article-title: Heat flow in a back‐arc environment: Intermontane and Omineca crystalline belts, southern Canadian Cordillera publication-title: Can. J. Earth Sci. – volume: 77 start-page: 343 year: 1984 end-page: 384 article-title: Convection with pressure‐ and temperature‐dependent non‐Newtonian rheology publication-title: Geophys. J. R. Astron. Soc. – volume: 30 start-page: 207 year: 2002 end-page: 235 article-title: Petrology of subducted slabs publication-title: Annu. Rev. Earth Planet. Sci. – volume: 44 start-page: 1 year: 1991 end-page: 19 article-title: The effect of bulk rock composition on the stability of amphibole in the upper mantle: Implications for solidus positions and mantle metasomatism publication-title: Mineral. Petrol. – volume: 46 start-page: 555 year: 2005 end-page: 578 article-title: Experimentally determined phase relations in hydrous peridotites to 6.5 GPa and their consequences on the dynamics of subduction zones publication-title: J. Petrol. – volume: 273 start-page: 105 year: 1997 end-page: 127 article-title: Kinematic, thermal and petrological model of the Central Alps: Lepontine metamorphism in the upper crust and eclogitisation of the lower crust publication-title: Tectonophysics – volume: 149 start-page: 133 year: 2005 end-page: 153 article-title: Numerical simulations of subduction zones: Effect of slab dehydration on the mantle wedge dynamics publication-title: Phys. Earth Planet. Inter. – volume: 137 start-page: 439 year: 1991 end-page: 460 article-title: Shear localisation in upper mantle peridotites publication-title: Pure Appl. Geophys. – volume: 21 issue: 6 year: 2002 article-title: Exhumation of high‐pressure metamorphic rocks in a subduction channel: A numerical simulation publication-title: Tectonics – year: 1982 – volume: 38 start-page: 237 year: 1974 end-page: 241 article-title: Numerical modelling of tectonic flow behind island arcs publication-title: Geophys. J. R. Astron. Soc. – volume: 223 start-page: 35 year: 2004 end-page: 48 article-title: The thermal effects of steady‐state slab‐driven mantle flow above a subducting plate: The Cascadia subduction zone and backarc publication-title: Earth Planet. Sci. Lett. – volume: 176 start-page: 339 year: 2000 end-page: 356 article-title: The effect of deep damp melting on mantle flow and melt generation beneath mid‐ocean ridge publication-title: Earth Planet. Sci. Lett. – volume: 227 start-page: 57 year: 2004 end-page: 71 article-title: Phase relations of peridotites under H O‐saturated conditions and ability of subducting plates for transportation of H O publication-title: Earth Planet. Sci. Lett. – volume: 6 year: 2005 article-title: Application of the model of small‐scale convection under the island arc to the NE Honshu subduction zone publication-title: Geochem. Geophys. Geosyst. – volume: 144 start-page: 93 year: 1996 end-page: 108 article-title: Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere publication-title: Earth Planet. Sci. Lett. – volume: 134 start-page: 191 year: 2002 end-page: 202 article-title: A numerical study of the interaction between the mantle wedge, the subducting slab, and overriding plate publication-title: Phys. Earth Planet. Inter. – volume: 85 issue: 47 year: 2004 article-title: The thermal structure of subduction zone backarcs publication-title: Eos Trans. AGU – volume: 201 start-page: 491 year: 2002 end-page: 507 article-title: Influence of melt on the creep behavior of olivine‐basalt aggregates under hydrous conditions publication-title: Earth Planet. Sci. Lett. – volume: 253 start-page: 141 year: 1993 end-page: 166 article-title: Transient high‐Rayleigh number thermal convection with large viscosity variations publication-title: J. Fluid. Mech. – volume: 70 start-page: 359 year: 2003 end-page: 379 article-title: Titanian clinohumite‐garnet‐pyroxene rock from the Su‐Lu UHP metamorphic terrane, China: Chemical evolution and tectonic implications publication-title: Lithos – volume: 29 start-page: 1197 year: 1992 end-page: 1214 article-title: Crustal temperatures near the Lithoprobe Southern Canadian Cordillera Transect publication-title: Can. J. Earth Sci. – volume: 99 start-page: 19,853 year: 1994 end-page: 19,866 article-title: Onset of thermal convection in fluids with temperature‐dependent viscosity: Application to the oceanic mantle publication-title: J. Geophys. Res. – volume: 342 start-page: 163 year: 2001 end-page: 191 article-title: Subduction initiation and continental crust recycling: The roles of rheology and eclogitization publication-title: Tectonophysics – volume: 319 start-page: 225 year: 2000 end-page: 239 article-title: Seismic activity and deformation process of the overriding plate in the northeastern Japan subduction zone publication-title: Tectonophysics – volume: 138 start-page: 284 year: 2000 end-page: 291 article-title: Stability of clinohumite in the system MgO‐SiO ‐H O publication-title: Contrib. Mineral. Petrol. – volume: 124 start-page: 90 year: 1996 end-page: 97 article-title: The low‐pressure stability of phase A: Mg Si O (OH) publication-title: Contrib. Mineral. Petrol. – volume: 143 start-page: 525 year: 2002 end-page: 536 article-title: Water solubility in orthopyroxene publication-title: Contrib. Mineral. Petrol. – volume: 93 start-page: 15,207 year: 1988 end-page: 15,227 article-title: Subduction of the Juan de Fuca Plate: Thermal consequence publication-title: J. Geophys. Res. – start-page: 571 year: 1986 end-page: 581 – volume: 164 start-page: 175 year: 1989 end-page: 187 article-title: Thermal state under the Tohoko Arc with consideration of crustal heat generation publication-title: Tectonophysics – volume: 319 start-page: 241 year: 2000 end-page: 260 article-title: Three‐dimensional attenuation structure beneath the northeastern Japan arc estimated from spectra of small earthquakes publication-title: Tectonophysics – volume: 186 start-page: 125 year: 2001 end-page: 141 article-title: The 10Å phase: A high‐pressure expandable sheet silicate stable during subduction of hydrated lithosphere publication-title: Earth Planet. Sci. Lett. – volume: 102 start-page: 22,477 year: 1997 end-page: 22,495 article-title: A comparison of methods for the modeling of thermochemical convection publication-title: J. Geophys. Res. – volume: 86 start-page: 56 year: 1997 end-page: 68 article-title: Strain localization mechanisms in deep‐seated layered rocks publication-title: Geol. Rundsch. – volume: 100 start-page: 17,587 year: 1995 end-page: 17,602 article-title: Solubility of water in the α, β and γ phases of (Mg,Fe) SiO publication-title: J. Geophys. Res. – volume: 138 start-page: 107 year: 2003 end-page: 134 – volume: 135 start-page: 18 year: 1999 end-page: 40 article-title: Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions publication-title: Contrib. Mineral. Petrol. – volume: 291 start-page: 123 year: 1998 end-page: 129 article-title: Heat‐flow density across the Central Andean subduction zone publication-title: Tectonophysics – volume: 98 start-page: 20,005 year: 1993 end-page: 20,013 article-title: Depth of the decoupling plate interface and thermal structure under arcs publication-title: J. Geophys. Res. – volume: 103 start-page: 18,171 year: 1998 end-page: 18,181 article-title: Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature‐dependent viscosity: Implications for planetary thermal evolution publication-title: J. Geophys. Res. – volume: 212 start-page: 47 year: 2003 end-page: 62 article-title: Rayleigh‐Taylor instabilities from hydration and melting propel ‘cold plumes’ at subduction zones publication-title: Earth Planet. Sci. Lett. – volume: 138 start-page: 293 year: 2003 end-page: 311 – volume: 129 start-page: 35 year: 1997 end-page: 42 article-title: Water solubility in pyrope to 100 kbar publication-title: Contrib. Mineral. Petrol. – volume: 163 start-page: 361 year: 1998 end-page: 379 article-title: Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation publication-title: Earth Planet. Sci. Lett. – volume: 80 start-page: 998 year: 1995 end-page: 1003 article-title: The high‐pressure stability of talc and 10Å phase: Potential storage sites for H O in subduction zones publication-title: Am. Mineral. – volume: 51 start-page: 2639 year: 1987 end-page: 2652 article-title: The computation of chemical equilibrium in complex systems containing non‐ideal solutions publication-title: Geochim. Cosmochim. Acta – volume: 1 start-page: 137 year: 1977 end-page: 161 – volume: 216 start-page: 703 year: 2003 end-page: 715 article-title: Small‐scale convection under the back‐arc occurring in the low viscosity wedge publication-title: Earth Planet. Sci. Lett. – volume: 109 year: 2004 article-title: Numerical simulations of the mantle lithosphere delamination publication-title: J. Geophys. Res. – volume: 29 start-page: 625 year: 1988 end-page: 679 article-title: The volume and composition of melt generated by extension of the lithosphere publication-title: J. Petrol. – volume: 97 start-page: 2015 year: 1992 end-page: 2036 article-title: An Eulerian technique for thermomechanical modeling publication-title: J. Geophys. Res. – ident: e_1_2_9_22_1 doi: 10.1029/93JB02020 – ident: e_1_2_9_43_1 doi: 10.1007/s004100050321 – ident: e_1_2_9_56_1 – ident: e_1_2_9_3_1 doi: 10.1111/j.1365-246X.1974.tb04118.x – ident: e_1_2_9_57_1 doi: 10.1016/S0012-821X(98)00142-3 – ident: e_1_2_9_63_1 doi: 10.1007/BF01167097 – ident: e_1_2_9_18_1 doi: 10.1029/1999JB900110 – ident: e_1_2_9_50_1 doi: 10.1007/s004100050495 – ident: e_1_2_9_64_1 doi: 10.1029/ME001p0137 – ident: e_1_2_9_7_1 doi: 10.1016/S0012-821X(00)00015-7 – ident: e_1_2_9_16_1 doi: 10.1016/S0040-1951(01)00161-5 – ident: e_1_2_9_24_1 doi: 10.1029/138GM07 – ident: e_1_2_9_30_1 doi: 10.1016/0012-821X(96)00154-9 – ident: e_1_2_9_48_1 doi: 10.1029/2003JB002414 – ident: e_1_2_9_8_1 doi: 10.1111/j.1365-246X.1984.tb01939.x – ident: e_1_2_9_29_1 doi: 10.1016/S0040-1951(99)00296-6 – ident: e_1_2_9_40_1 doi: 10.1029/95JB01460 – ident: e_1_2_9_53_1 doi: 10.1007/s004100050176 – ident: e_1_2_9_62_1 doi: 10.1029/97JB01353 – ident: e_1_2_9_17_1 doi: 10.1007/BF00879044 – ident: e_1_2_9_31_1 doi: 10.1111/j.1525-1314.1998.00140.x – start-page: 571 volume-title: Kimberlites and Related Rocks year: 1986 ident: e_1_2_9_47_1 – ident: e_1_2_9_9_1 doi: 10.1029/91JB02642 – ident: e_1_2_9_23_1 doi: 10.1016/0040-1951(89)90011-5 – ident: e_1_2_9_35_1 doi: 10.1016/S0040-1951(99)00068-2 – ident: e_1_2_9_33_1 doi: 10.1029/2004GC000785 – ident: e_1_2_9_32_1 doi: 10.1016/S0012-821X(03)00537-5 – ident: e_1_2_9_52_1 doi: 10.2138/am-1995-9-1015 – ident: e_1_2_9_6_1 doi: 10.1029/2004JB003450 – ident: e_1_2_9_59_1 doi: 10.1016/S0040-1951(98)00035-3 – ident: e_1_2_9_5_1 doi: 10.1016/S0040-1951(96)00290-9 – ident: e_1_2_9_26_1 doi: 10.1029/2002TC001406 – ident: e_1_2_9_2_1 doi: 10.1007/s005310050121 – ident: e_1_2_9_60_1 doi: 10.1016/S0040-1951(99)00297-8 – ident: e_1_2_9_51_1 doi: 10.1007/s004100050563 – ident: e_1_2_9_21_1 doi: 10.1016/S0012-821X(01)00238-2 – ident: e_1_2_9_25_1 doi: 10.1016/S0012-821X(03)00265-6 – ident: e_1_2_9_19_1 doi: 10.1016/S0031-9201(02)00157-7 – ident: e_1_2_9_37_1 doi: 10.1016/j.epsl.2004.08.013 – ident: e_1_2_9_39_1 doi: 10.1029/138GM13 – ident: e_1_2_9_36_1 doi: 10.1130/1052-5173(2005)015<4:SZBMBA>2.0.CO;2 – ident: e_1_2_9_46_1 doi: 10.1016/S0012-821X(02)00745-8 – ident: e_1_2_9_10_1 doi: 10.1016/j.epsl.2004.04.020 – ident: e_1_2_9_42_1 doi: 10.1139/e92-096 – ident: e_1_2_9_55_1 doi: 10.1007/s00410-002-0365-6 – ident: e_1_2_9_20_1 doi: 10.1093/petrology/egh088 – ident: e_1_2_9_12_1 doi: 10.1017/S0022112093001740 – ident: e_1_2_9_28_1 doi: 10.1029/98JB01492 – ident: e_1_2_9_44_1 doi: 10.1111/j.1365-246X.1969.tb00259.x – ident: e_1_2_9_49_1 doi: 10.1016/S0012-821X(02)00753-7 – ident: e_1_2_9_45_1 doi: 10.1093/petrology/29.3.625 – ident: e_1_2_9_38_1 doi: 10.1130/G19525.1 – ident: e_1_2_9_41_1 doi: 10.1029/JB093iB12p15207 – ident: e_1_2_9_4_1 doi: 10.1016/j.pepi.2004.08.020 – ident: e_1_2_9_14_1 doi: 10.1139/e84-077 – ident: e_1_2_9_34_1 doi: 10.1029/2002GL015853 – ident: e_1_2_9_54_1 doi: 10.1146/annurev.earth.30.091201.140550 – ident: e_1_2_9_65_1 doi: 10.1016/S0024-4937(03)00106-3 – ident: e_1_2_9_13_1 doi: 10.1029/94JB01405 – ident: e_1_2_9_61_1 – volume: 85 issue: 47 year: 2004 ident: e_1_2_9_11_1 article-title: The thermal structure of subduction zone backarcs publication-title: Eos Trans. AGU – ident: e_1_2_9_15_1 doi: 10.1016/0016-7037(87)90145-1 – ident: e_1_2_9_27_1 doi: 10.1130/G20018.1 – ident: e_1_2_9_58_1 doi: 10.1029/2000JB900197 |
SSID | ssj0014558 |
Score | 2.092456 |
Snippet | In subduction zones, many observations indicate that the backarc thermal state is particularly hot and that the upper lithosphere is thin, even if no recent... |
SourceID | hal proquest crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | np |
SubjectTerms | dehydration hydration Lithosphere Mantle Mathematical models Reduction Rock Sciences of the Universe Strength subduction thermal convection Thinning Wedges |
Title | Overriding plate thinning in subduction zones: Localized convection induced by slab dehydration |
URI | https://api.istex.fr/ark:/67375/WNG-J14T5HL4-F/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2005GC001061 https://www.proquest.com/docview/1524415449 https://www.proquest.com/docview/1642299385 https://hal.science/hal-00407579 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1525-2027 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014558 issn: 1525-2027 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB6lrZC4IFYRNg0IeiAyjZfJ2NxKSRxVaXpJRG4jz2IaUSUhS0UixG_nvbFjO6JUhYsVj57sid8385Z5CyFvdRQq0IuBA74yYKBIz4lkkztKGy4DFUolbbXPfqs7DE5HbFSr_axmlyzlB7W5Nq_kf7gKY8BXzJL9B84WD4UB-A38hStwGK634vH5FdZVtGkps0tQGkGLHNsWROjFWKykzkrDNja2ID_Y_j2UXOON0Vm0ucojHYEuU0QBH7KhzcVaz0uO5aprbLC5VtYdDhnz1Uwzt8giv8uKQi-skyH2SySpZL0TWvx5mtUtOHOK3LIB7MY7aRGfpqsFSKxlGdJY8UwUUR75ZuoxB50rmay5ZizfgXkFaF5lN53MKnI5u_ljx296WDAVfWPxSWbglpJte5rfPxedYa8nBu3R4HD23cGeY3g2nzdg2SMHHm-1sP_F2a92cQYVMNvdtZhxnjYBLzyqvm5Hodm7wHDaA1yhP3ZslqrlY1WXwX1yL7c56HEGoAekZiYPyZ3Y9nRePyKihBG1MKJbGNHxhJYwohZGH2kBIlqCiOYgonJNEUS0AqLHZNhpD066Tt53w0kYZmuFKQM9u8m51spLfZXKMApdnxvD3DQB_Z6nzCYle7KVhl6auEypgKcemg8RV_4Tsj-BGT0l1E00DOqEM9kKIp0mHihMTcVcHbgGbJU6aWw_nlB5UXrsjXIpbHCEF4nqp66TdwX1LCvG8he6N8CHggQrqHePewLHUGjBH4iugOjQsqkgS-bfMMqRM_GlH4tTNxiwbi8QnTp5veWjgEWGB2rJxMAyEAANdEcEQXQDDRj4oPL5IauT9xYEN05dxHHcBov32S0e-JzcLZfdC7K_nK_MS1CRl_KVRfJv5X65Lw |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overriding+plate+thinning+in+subduction+zones%3A+Localized+convection+induced+by+slab+dehydration&rft.jtitle=Geochemistry%2C+geophysics%2C+geosystems+%3A+G3&rft.au=Arcay%2C+D&rft.au=Doin%2C+M-P&rft.au=Tric%2C+E&rft.au=Bousquet%2C+R&rft.date=2006-02-01&rft.issn=1525-2027&rft.eissn=1525-2027&rft.volume=7&rft.issue=2&rft.spage=np&rft.epage=np&rft_id=info:doi/10.1029%2F2005GC001061&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-2027&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-2027&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-2027&client=summon |