Plates and Shells for Smart Structures Classical and Advanced Theories for Modeling and Analysis

Smart structures that contain embedded piezoelectric patches are loaded by both mechanical and electrical fields. Traditional plate and shell theories were developed to analyze structures subject to mechanical loads. However, these often fail when tasked with the evaluation of both electrical and me...

Full description

Saved in:
Bibliographic Details
Main Authors Carrera, Erasmo, Brischetto, Salvatore, Nali, Pietro
Format eBook
LanguageEnglish
Published Newark John Wiley & Sons, Incorporated 2011
Wiley-Blackwell
John Wiley & Sons Ltd
Edition1
Subjects
Online AccessGet full text
ISBN9780470971208
0470971207
9781119951131
1119951135
1119950007
1119950015
1119951127
9781119950011
9781119951124
9781119950004
DOI10.1002/9781119950004

Cover

Table of Contents:
  • 6.1 Unified formulation: refined models -- 6.1.1 ESL theories -- 6.1.2 Murakami zigzag function -- 6.1.3 LW theories -- 6.1.4 Refined models for the electromechanical case -- 6.2 Unified formulation: advanced mixed models -- 6.2.1 Transverse shear/normal stress modeling -- 6.2.2 Advanced mixed models for the electromechanical case -- 6.3 PVD(u, Φ) for the electromechanical plate case -- 6.4 RMVT(u, Φ, σn) for the electromechanical plate case -- 6.5 RMVT(u, Φ, Dn) for the electromechanical plate case -- 6.6 RMVT(u, Φ, σn, Dn) for the electromechanical plate case -- 6.7 Assembly procedure for fundamental nuclei -- 6.8 Acronyms for refined and advanced models -- 6.9 Pure mechanical problems as particular cases, PVD(u) and RMVT(u, σn) -- 6.10 Classical plate theories as particular cases of unified formulation -- References -- 7 Refined and advanced theories for shells -- 7.1 Unified formulation: refined models -- 7.1.1 ESL theories -- 7.1.2 Murakami zigzag function -- 7.1.3 LW theories -- 7.1.4 Refined models for the electromechanical case -- 7.2 Unified formulation: advanced mixed models -- 7.2.1 Transverse shear/normal stress modeling -- 7.2.2 Advanced mixed models for the electromechanical case -- 7.3 PVD(u, Φ) for the electromechanical shell case -- 7.4 RMVT(u, Φ, σn) for the electromechanical shell case -- 7.5 RMVT(u, Φ, Dn) for the electromechanical shell case -- 7.6 RMVT(u, Φ, σn, Dn) for the electromechanical shell case -- 7.7 Assembly procedure for fundamental nuclei -- 7.8 Acronyms for refined and advanced models -- 7.9 Pure mechanical problems as particular cases, PVD(u) and RMVT(u, σn) -- 7.10 Classical shell theories as particular cases of unified formulation -- 7.11 Geometry of shells -- 7.11.1 First quadratic form -- 7.11.2 Second quadratic form -- 7.11.3 Strain-displacement equations
  • Intro -- Plates and Shells for Smart Structures -- Contents -- About the Authors -- Preface -- 1 Introduction -- 1.1 Direct and inverse piezoelectric effects -- 1.2 Some known applications of smart structures -- References -- 2 Basics of piezoelectricity and related principles -- 2.1 Piezoelectric materials -- 2.2 Constitutive equations for piezoelectric problems -- 2.3 Geometrical relations for piezoelectric problems -- 2.4 Principle of virtual displacements -- 2.4.1 PVD for the pure mechanical case -- 2.5 Reissner mixed variational theorem -- 2.5.1 RMVT(u, Φ, σn) -- 2.5.2 RMVT(u, Φ, Dn) -- 2.5.3 RMVT(u, Φ, σn, Dn) -- References -- 3 Classical plate/shell theories -- 3.1 Plate/shell theories -- 3.1.1 Three-dimensional problems -- 3.1.2 Two-dimensional approaches -- 3.2 Complicating effects of layered structures -- 3.2.1 In-plane anisotropy -- 3.2.2 Transverse anisotropy, zigzag effects, and interlaminar continuity -- 3.3 Classical theories -- 3.3.1 Classical lamination theory -- 3.3.2 First-order shear deformation theory -- 3.3.3 Vlasov-Reddy theory -- 3.4 Classical plate theories extended to smart structures -- 3.4.1 CLT plate theory extended to smart structures -- 3.4.2 FSDT plate theory extended to smart structures -- 3.5 Classical shell theories extended to smart structures -- 3.5.1 CLT and FSDT shell theories extended to smart structures -- References -- 4 Finite element applications -- 4.1 Preliminaries -- 4.2 Finite element discretization -- 4.3 FSDT finite element plate theory extended to smart structures -- References -- 5 Numerical evaluation of classical theories and their limitations -- 5.1 Static analysis of piezoelectric plates -- 5.2 Static analysis of piezoelectric shells -- 5.3 Vibration analysis of piezoelectric plates -- 5.4 Vibration analysis of piezoelectric shells -- References -- 6 Refined and advanced theories for plates
  • 7.12 Plate models as particular cases of shell models -- References -- 8 Refined and advanced finite elements for plates -- 8.1 Unified formulation: refined models -- 8.1.1 ESL theories -- 8.1.2 Murakami zigzag function -- 8.1.3 LW theories -- 8.1.4 Refined models for the electromechanical case -- 8.2 Unified formulation: advanced mixed models -- 8.2.1 Transverse shear/normal stress modeling -- 8.2.2 Advanced mixed models for the electromechanical case -- 8.3 PVD(u, Φ) for the electromechanical plate case -- 8.4 RMVT(u, Φ, σn) for the electromechanical plate case -- 8.5 RMVT(u, Φ, Dn) for the electromechanical plate case -- 8.6 RMVT(u, Φ, σn, Dn) for the electromechanical plate case -- 8.7 FE assembly procedure and concluding remarks -- References -- 9 Numerical evaluation and assessment of classical and advanced theories using MUL2 software -- 9.1 The MUL2 software for plates and shells: analytical closed-form solutions -- 9.1.1 Classical plate/shell theories as particular cases in the MUL2 software -- 9.2 The MUL2 software for plates: FE solutions -- 9.3 Analytical closed-form solution for the electromechanical analysis of plates -- 9.4 Analytical closed-form solution for the electromechanical analysis of shells -- 9.5 FE solution for electromechanical analysis of beams -- 9.6 FE solution for electromechanical analysis of plates -- References -- Index