Derivation, Validation, and Potential Treatment Implications of Novel Clinical Phenotypes for Sepsis

IMPORTANCE: Sepsis is a heterogeneous syndrome. Identification of distinct clinical phenotypes may allow more precise therapy and improve care. OBJECTIVE: To derive sepsis phenotypes from clinical data, determine their reproducibility and correlation with host-response biomarkers and clinical outcom...

Full description

Saved in:
Bibliographic Details
Published inJAMA : the journal of the American Medical Association Vol. 321; no. 20; pp. 2003 - 2017
Main Authors Seymour, Christopher W, Kennedy, Jason N, Wang, Shu, Chang, Chung-Chou H, Elliott, Corrine F, Xu, Zhongying, Berry, Scott, Clermont, Gilles, Cooper, Gregory, Gomez, Hernando, Huang, David T, Kellum, John A, Mi, Qi, Opal, Steven M, Talisa, Victor, van der Poll, Tom, Visweswaran, Shyam, Vodovotz, Yoram, Weiss, Jeremy C, Yealy, Donald M, Yende, Sachin, Angus, Derek C
Format Journal Article
LanguageEnglish
Published United States American Medical Association 28.05.2019
Subjects
Online AccessGet full text
ISSN0098-7484
1538-3598
1538-3598
DOI10.1001/jama.2019.5791

Cover

Abstract IMPORTANCE: Sepsis is a heterogeneous syndrome. Identification of distinct clinical phenotypes may allow more precise therapy and improve care. OBJECTIVE: To derive sepsis phenotypes from clinical data, determine their reproducibility and correlation with host-response biomarkers and clinical outcomes, and assess the potential causal relationship with results from randomized clinical trials (RCTs). DESIGN, SETTINGS, AND PARTICIPANTS: Retrospective analysis of data sets using statistical, machine learning, and simulation tools. Phenotypes were derived among 20 189 total patients (16 552 unique patients) who met Sepsis-3 criteria within 6 hours of hospital presentation at 12 Pennsylvania hospitals (2010-2012) using consensus k means clustering applied to 29 variables. Reproducibility and correlation with biological parameters and clinical outcomes were assessed in a second database (2013-2014; n = 43 086 total patients and n = 31 160 unique patients), in a prospective cohort study of sepsis due to pneumonia (n = 583), and in 3 sepsis RCTs (n = 4737). EXPOSURES: All clinical and laboratory variables in the electronic health record. MAIN OUTCOMES AND MEASURES: Derived phenotype (α, β, γ, and δ) frequency, host-response biomarkers, 28-day and 365-day mortality, and RCT simulation outputs. RESULTS: The derivation cohort included 20 189 patients with sepsis (mean age, 64 [SD, 17] years; 10 022 [50%] male; mean maximum 24-hour Sequential Organ Failure Assessment [SOFA] score, 3.9 [SD, 2.4]). The validation cohort included 43 086 patients (mean age, 67 [SD, 17] years; 21 993 [51%] male; mean maximum 24-hour SOFA score, 3.6 [SD, 2.0]). Of the 4 derived phenotypes, the α phenotype was the most common (n = 6625; 33%) and included patients with the lowest administration of a vasopressor; in the β phenotype (n = 5512; 27%), patients were older and had more chronic illness and renal dysfunction; in the γ phenotype (n = 5385; 27%), patients had more inflammation and pulmonary dysfunction; and in the δ phenotype (n = 2667; 13%), patients had more liver dysfunction and septic shock. Phenotype distributions were similar in the validation cohort. There were consistent differences in biomarker patterns by phenotype. In the derivation cohort, cumulative 28-day mortality was 287 deaths of 5691 unique patients (5%) for the α phenotype; 561 of 4420 (13%) for the β phenotype; 1031 of 4318 (24%) for the γ phenotype; and 897 of 2223 (40%) for the δ phenotype. Across all cohorts and trials, 28-day and 365-day mortality were highest among the δ phenotype vs the other 3 phenotypes (P < .001). In simulation models, the proportion of RCTs reporting benefit, harm, or no effect changed considerably (eg, varying the phenotype frequencies within an RCT of early goal-directed therapy changed the results from >33% chance of benefit to >60% chance of harm). CONCLUSIONS AND RELEVANCE: In this retrospective analysis of data sets from patients with sepsis, 4 clinical phenotypes were identified that correlated with host-response patterns and clinical outcomes, and simulations suggested these phenotypes may help in understanding heterogeneity of treatment effects. Further research is needed to determine the utility of these phenotypes in clinical care and for informing trial design and interpretation.
AbstractList IMPORTANCE: Sepsis is a heterogeneous syndrome. Identification of distinct clinical phenotypes may allow more precise therapy and improve care. OBJECTIVE: To derive sepsis phenotypes from clinical data, determine their reproducibility and correlation with host-response biomarkers and clinical outcomes, and assess the potential causal relationship with results from randomized clinical trials (RCTs). DESIGN, SETTINGS, AND PARTICIPANTS: Retrospective analysis of data sets using statistical, machine learning, and simulation tools. Phenotypes were derived among 20 189 total patients (16 552 unique patients) who met Sepsis-3 criteria within 6 hours of hospital presentation at 12 Pennsylvania hospitals (2010-2012) using consensus k means clustering applied to 29 variables. Reproducibility and correlation with biological parameters and clinical outcomes were assessed in a second database (2013-2014; n = 43 086 total patients and n = 31 160 unique patients), in a prospective cohort study of sepsis due to pneumonia (n = 583), and in 3 sepsis RCTs (n = 4737). EXPOSURES: All clinical and laboratory variables in the electronic health record. MAIN OUTCOMES AND MEASURES: Derived phenotype (α, β, γ, and δ) frequency, host-response biomarkers, 28-day and 365-day mortality, and RCT simulation outputs. RESULTS: The derivation cohort included 20 189 patients with sepsis (mean age, 64 [SD, 17] years; 10 022 [50%] male; mean maximum 24-hour Sequential Organ Failure Assessment [SOFA] score, 3.9 [SD, 2.4]). The validation cohort included 43 086 patients (mean age, 67 [SD, 17] years; 21 993 [51%] male; mean maximum 24-hour SOFA score, 3.6 [SD, 2.0]). Of the 4 derived phenotypes, the α phenotype was the most common (n = 6625; 33%) and included patients with the lowest administration of a vasopressor; in the β phenotype (n = 5512; 27%), patients were older and had more chronic illness and renal dysfunction; in the γ phenotype (n = 5385; 27%), patients had more inflammation and pulmonary dysfunction; and in the δ phenotype (n = 2667; 13%), patients had more liver dysfunction and septic shock. Phenotype distributions were similar in the validation cohort. There were consistent differences in biomarker patterns by phenotype. In the derivation cohort, cumulative 28-day mortality was 287 deaths of 5691 unique patients (5%) for the α phenotype; 561 of 4420 (13%) for the β phenotype; 1031 of 4318 (24%) for the γ phenotype; and 897 of 2223 (40%) for the δ phenotype. Across all cohorts and trials, 28-day and 365-day mortality were highest among the δ phenotype vs the other 3 phenotypes (P < .001). In simulation models, the proportion of RCTs reporting benefit, harm, or no effect changed considerably (eg, varying the phenotype frequencies within an RCT of early goal-directed therapy changed the results from >33% chance of benefit to >60% chance of harm). CONCLUSIONS AND RELEVANCE: In this retrospective analysis of data sets from patients with sepsis, 4 clinical phenotypes were identified that correlated with host-response patterns and clinical outcomes, and simulations suggested these phenotypes may help in understanding heterogeneity of treatment effects. Further research is needed to determine the utility of these phenotypes in clinical care and for informing trial design and interpretation.
In this study, Sepsis-3 investigators use electronic health record and trial data from patients with sepsis within 6 hours of hospital presentation to define clinical phenotypes that correlate with host-response patterns, sepsis biomarkers, mortality, and treatment effects.
Sepsis is a heterogeneous syndrome. Identification of distinct clinical phenotypes may allow more precise therapy and improve care. To derive sepsis phenotypes from clinical data, determine their reproducibility and correlation with host-response biomarkers and clinical outcomes, and assess the potential causal relationship with results from randomized clinical trials (RCTs). Retrospective analysis of data sets using statistical, machine learning, and simulation tools. Phenotypes were derived among 20 189 total patients (16 552 unique patients) who met Sepsis-3 criteria within 6 hours of hospital presentation at 12 Pennsylvania hospitals (2010-2012) using consensus k means clustering applied to 29 variables. Reproducibility and correlation with biological parameters and clinical outcomes were assessed in a second database (2013-2014; n = 43 086 total patients and n = 31 160 unique patients), in a prospective cohort study of sepsis due to pneumonia (n = 583), and in 3 sepsis RCTs (n = 4737). All clinical and laboratory variables in the electronic health record. Derived phenotype (α, β, γ, and δ) frequency, host-response biomarkers, 28-day and 365-day mortality, and RCT simulation outputs. The derivation cohort included 20 189 patients with sepsis (mean age, 64 [SD, 17] years; 10 022 [50%] male; mean maximum 24-hour Sequential Organ Failure Assessment [SOFA] score, 3.9 [SD, 2.4]). The validation cohort included 43 086 patients (mean age, 67 [SD, 17] years; 21 993 [51%] male; mean maximum 24-hour SOFA score, 3.6 [SD, 2.0]). Of the 4 derived phenotypes, the α phenotype was the most common (n = 6625; 33%) and included patients with the lowest administration of a vasopressor; in the β phenotype (n = 5512; 27%), patients were older and had more chronic illness and renal dysfunction; in the γ phenotype (n = 5385; 27%), patients had more inflammation and pulmonary dysfunction; and in the δ phenotype (n = 2667; 13%), patients had more liver dysfunction and septic shock. Phenotype distributions were similar in the validation cohort. There were consistent differences in biomarker patterns by phenotype. In the derivation cohort, cumulative 28-day mortality was 287 deaths of 5691 unique patients (5%) for the α phenotype; 561 of 4420 (13%) for the β phenotype; 1031 of 4318 (24%) for the γ phenotype; and 897 of 2223 (40%) for the δ phenotype. Across all cohorts and trials, 28-day and 365-day mortality were highest among the δ phenotype vs the other 3 phenotypes (P < .001). In simulation models, the proportion of RCTs reporting benefit, harm, or no effect changed considerably (eg, varying the phenotype frequencies within an RCT of early goal-directed therapy changed the results from >33% chance of benefit to >60% chance of harm). In this retrospective analysis of data sets from patients with sepsis, 4 clinical phenotypes were identified that correlated with host-response patterns and clinical outcomes, and simulations suggested these phenotypes may help in understanding heterogeneity of treatment effects. Further research is needed to determine the utility of these phenotypes in clinical care and for informing trial design and interpretation.
Sepsis is a heterogeneous syndrome. Identification of distinct clinical phenotypes may allow more precise therapy and improve care.ImportanceSepsis is a heterogeneous syndrome. Identification of distinct clinical phenotypes may allow more precise therapy and improve care.To derive sepsis phenotypes from clinical data, determine their reproducibility and correlation with host-response biomarkers and clinical outcomes, and assess the potential causal relationship with results from randomized clinical trials (RCTs).ObjectiveTo derive sepsis phenotypes from clinical data, determine their reproducibility and correlation with host-response biomarkers and clinical outcomes, and assess the potential causal relationship with results from randomized clinical trials (RCTs).Retrospective analysis of data sets using statistical, machine learning, and simulation tools. Phenotypes were derived among 20 189 total patients (16 552 unique patients) who met Sepsis-3 criteria within 6 hours of hospital presentation at 12 Pennsylvania hospitals (2010-2012) using consensus k means clustering applied to 29 variables. Reproducibility and correlation with biological parameters and clinical outcomes were assessed in a second database (2013-2014; n = 43 086 total patients and n = 31 160 unique patients), in a prospective cohort study of sepsis due to pneumonia (n = 583), and in 3 sepsis RCTs (n = 4737).Design, Settings, and ParticipantsRetrospective analysis of data sets using statistical, machine learning, and simulation tools. Phenotypes were derived among 20 189 total patients (16 552 unique patients) who met Sepsis-3 criteria within 6 hours of hospital presentation at 12 Pennsylvania hospitals (2010-2012) using consensus k means clustering applied to 29 variables. Reproducibility and correlation with biological parameters and clinical outcomes were assessed in a second database (2013-2014; n = 43 086 total patients and n = 31 160 unique patients), in a prospective cohort study of sepsis due to pneumonia (n = 583), and in 3 sepsis RCTs (n = 4737).All clinical and laboratory variables in the electronic health record.ExposuresAll clinical and laboratory variables in the electronic health record.Derived phenotype (α, β, γ, and δ) frequency, host-response biomarkers, 28-day and 365-day mortality, and RCT simulation outputs.Main Outcomes and MeasuresDerived phenotype (α, β, γ, and δ) frequency, host-response biomarkers, 28-day and 365-day mortality, and RCT simulation outputs.The derivation cohort included 20 189 patients with sepsis (mean age, 64 [SD, 17] years; 10 022 [50%] male; mean maximum 24-hour Sequential Organ Failure Assessment [SOFA] score, 3.9 [SD, 2.4]). The validation cohort included 43 086 patients (mean age, 67 [SD, 17] years; 21 993 [51%] male; mean maximum 24-hour SOFA score, 3.6 [SD, 2.0]). Of the 4 derived phenotypes, the α phenotype was the most common (n = 6625; 33%) and included patients with the lowest administration of a vasopressor; in the β phenotype (n = 5512; 27%), patients were older and had more chronic illness and renal dysfunction; in the γ phenotype (n = 5385; 27%), patients had more inflammation and pulmonary dysfunction; and in the δ phenotype (n = 2667; 13%), patients had more liver dysfunction and septic shock. Phenotype distributions were similar in the validation cohort. There were consistent differences in biomarker patterns by phenotype. In the derivation cohort, cumulative 28-day mortality was 287 deaths of 5691 unique patients (5%) for the α phenotype; 561 of 4420 (13%) for the β phenotype; 1031 of 4318 (24%) for the γ phenotype; and 897 of 2223 (40%) for the δ phenotype. Across all cohorts and trials, 28-day and 365-day mortality were highest among the δ phenotype vs the other 3 phenotypes (P < .001). In simulation models, the proportion of RCTs reporting benefit, harm, or no effect changed considerably (eg, varying the phenotype frequencies within an RCT of early goal-directed therapy changed the results from >33% chance of benefit to >60% chance of harm).ResultsThe derivation cohort included 20 189 patients with sepsis (mean age, 64 [SD, 17] years; 10 022 [50%] male; mean maximum 24-hour Sequential Organ Failure Assessment [SOFA] score, 3.9 [SD, 2.4]). The validation cohort included 43 086 patients (mean age, 67 [SD, 17] years; 21 993 [51%] male; mean maximum 24-hour SOFA score, 3.6 [SD, 2.0]). Of the 4 derived phenotypes, the α phenotype was the most common (n = 6625; 33%) and included patients with the lowest administration of a vasopressor; in the β phenotype (n = 5512; 27%), patients were older and had more chronic illness and renal dysfunction; in the γ phenotype (n = 5385; 27%), patients had more inflammation and pulmonary dysfunction; and in the δ phenotype (n = 2667; 13%), patients had more liver dysfunction and septic shock. Phenotype distributions were similar in the validation cohort. There were consistent differences in biomarker patterns by phenotype. In the derivation cohort, cumulative 28-day mortality was 287 deaths of 5691 unique patients (5%) for the α phenotype; 561 of 4420 (13%) for the β phenotype; 1031 of 4318 (24%) for the γ phenotype; and 897 of 2223 (40%) for the δ phenotype. Across all cohorts and trials, 28-day and 365-day mortality were highest among the δ phenotype vs the other 3 phenotypes (P < .001). In simulation models, the proportion of RCTs reporting benefit, harm, or no effect changed considerably (eg, varying the phenotype frequencies within an RCT of early goal-directed therapy changed the results from >33% chance of benefit to >60% chance of harm).In this retrospective analysis of data sets from patients with sepsis, 4 clinical phenotypes were identified that correlated with host-response patterns and clinical outcomes, and simulations suggested these phenotypes may help in understanding heterogeneity of treatment effects. Further research is needed to determine the utility of these phenotypes in clinical care and for informing trial design and interpretation.Conclusions and RelevanceIn this retrospective analysis of data sets from patients with sepsis, 4 clinical phenotypes were identified that correlated with host-response patterns and clinical outcomes, and simulations suggested these phenotypes may help in understanding heterogeneity of treatment effects. Further research is needed to determine the utility of these phenotypes in clinical care and for informing trial design and interpretation.
Author Seymour, Christopher W
Chang, Chung-Chou H
Vodovotz, Yoram
Cooper, Gregory
Gomez, Hernando
Elliott, Corrine F
Berry, Scott
Wang, Shu
Kellum, John A
Mi, Qi
Huang, David T
Clermont, Gilles
Opal, Steven M
Weiss, Jeremy C
Visweswaran, Shyam
Yende, Sachin
Angus, Derek C
Kennedy, Jason N
van der Poll, Tom
Talisa, Victor
Yealy, Donald M
Xu, Zhongying
AuthorAffiliation 12 Machine Learning Department, Carnegie Mellon University, Pittsburgh, Pennsylvania
4 Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
7 Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania
1 Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
8 Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
10 Center of Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
2 Department of Emergency Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
3 Clinical Research, Investigation, and Systems Modeling of Acute Illness Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
5 Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
9 Departmen
AuthorAffiliation_xml – name: 5 Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
– name: 6 Berry Consultants, Austin, Texas
– name: 13 Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
– name: 12 Machine Learning Department, Carnegie Mellon University, Pittsburgh, Pennsylvania
– name: 3 Clinical Research, Investigation, and Systems Modeling of Acute Illness Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
– name: 7 Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania
– name: 1 Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
– name: 2 Department of Emergency Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
– name: 4 Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
– name: 9 Department of Medicine, Infectious Disease Division, Rhode Island Hospital, Providence
– name: 10 Center of Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
– name: 8 Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
– name: 11 Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
Author_xml – sequence: 1
  givenname: Christopher W
  surname: Seymour
  fullname: Seymour, Christopher W
– sequence: 2
  givenname: Jason N
  surname: Kennedy
  fullname: Kennedy, Jason N
– sequence: 3
  givenname: Shu
  surname: Wang
  fullname: Wang, Shu
– sequence: 4
  givenname: Chung-Chou H
  surname: Chang
  fullname: Chang, Chung-Chou H
– sequence: 5
  givenname: Corrine F
  surname: Elliott
  fullname: Elliott, Corrine F
– sequence: 6
  givenname: Zhongying
  surname: Xu
  fullname: Xu, Zhongying
– sequence: 7
  givenname: Scott
  surname: Berry
  fullname: Berry, Scott
– sequence: 8
  givenname: Gilles
  surname: Clermont
  fullname: Clermont, Gilles
– sequence: 9
  givenname: Gregory
  surname: Cooper
  fullname: Cooper, Gregory
– sequence: 10
  givenname: Hernando
  surname: Gomez
  fullname: Gomez, Hernando
– sequence: 11
  givenname: David T
  surname: Huang
  fullname: Huang, David T
– sequence: 12
  givenname: John A
  surname: Kellum
  fullname: Kellum, John A
– sequence: 13
  givenname: Qi
  surname: Mi
  fullname: Mi, Qi
– sequence: 14
  givenname: Steven M
  surname: Opal
  fullname: Opal, Steven M
– sequence: 15
  givenname: Victor
  surname: Talisa
  fullname: Talisa, Victor
– sequence: 16
  givenname: Tom
  surname: van der Poll
  fullname: van der Poll, Tom
– sequence: 17
  givenname: Shyam
  surname: Visweswaran
  fullname: Visweswaran, Shyam
– sequence: 18
  givenname: Yoram
  surname: Vodovotz
  fullname: Vodovotz, Yoram
– sequence: 19
  givenname: Jeremy C
  surname: Weiss
  fullname: Weiss, Jeremy C
– sequence: 20
  givenname: Donald M
  surname: Yealy
  fullname: Yealy, Donald M
– sequence: 21
  givenname: Sachin
  surname: Yende
  fullname: Yende, Sachin
– sequence: 22
  givenname: Derek C
  surname: Angus
  fullname: Angus, Derek C
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31104070$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1vFCEYxompsdvq1YMHQ-LFQ2flYxjgYmJW-5E0tYnVK2EYxrJhYITZTfrfy3S3jTYpF-Dl97w8b54jcBBisAC8xWiJEcKf1nrQS4KwXDIu8QuwwIyKijIpDsACISkqXov6EBzlvEZlYcpfgUOKMaoRRwvQfbXJbfXkYjiBv7R33f6sQwev42TD5LSHN8nqaSgXeDGM3pl7KMPYw6u4tR6uvAul6uH1rQ1xuhtthn1M8Icds8uvwcte-2zf7Pdj8PP0283qvLr8fnax-nJZaYboVAnTMcGMlFT3kraiJm1Hett2LcEGa4osayTrMCbFe28KJDmyNRYt0m0jLT0Gn3d9x0072M4Uv0l7NSY36HSnonbq_5fgbtXvuFUNo1xgURp83DdI8c_G5kkNLhvrvQ42brIihBLEOeYz-uEJuo6bFMp4hWK8EYhwXKj3_zp6tPIQQAGWO8CkmHOy_SOCkZoTVnPCak5YzQkXQf1EYNx0H0eZyPnnZe92srn88AXhlErZ0L8ySbQi
CitedBy_id crossref_primary_10_1186_s12879_022_07210_y
crossref_primary_10_1371_journal_pone_0271667
crossref_primary_10_1016_j_ccc_2023_02_003
crossref_primary_10_1097_SHK_0000000000002506
crossref_primary_10_1002_rth2_12465
crossref_primary_10_3389_fmed_2021_617486
crossref_primary_10_3390_medicina58121843
crossref_primary_10_1172_JCI158348
crossref_primary_10_3390_diagnostics14242845
crossref_primary_10_1016_j_surg_2024_08_037
crossref_primary_10_1186_s13054_023_04690_5
crossref_primary_10_3390_diagnostics12102498
crossref_primary_10_1016_j_ccc_2019_08_002
crossref_primary_10_1016_j_cell_2022_01_012
crossref_primary_10_1016_j_thromres_2021_03_017
crossref_primary_10_3390_jcm14062113
crossref_primary_10_1097_PCC_0000000000003314
crossref_primary_10_1080_14737159_2020_1851199
crossref_primary_10_1001_jamasurg_2022_2761
crossref_primary_10_3390_cells13141172
crossref_primary_10_1016_j_ccc_2023_02_001
crossref_primary_10_1097_ALN_0000000000003600
crossref_primary_10_1002_ams2_944
crossref_primary_10_1186_s13054_020_02917_3
crossref_primary_10_1186_s40560_024_00747_x
crossref_primary_10_1016_j_isci_2024_109325
crossref_primary_10_1186_s13054_021_03734_y
crossref_primary_10_3389_fped_2021_743544
crossref_primary_10_1016_j_ajem_2023_10_045
crossref_primary_10_1016_j_resplu_2023_100435
crossref_primary_10_5492_wjccm_v11_i1_1
crossref_primary_10_1513_AnnalsATS_202211_946OC
crossref_primary_10_1016_j_jss_2020_03_046
crossref_primary_10_1097_CCM_0000000000006621
crossref_primary_10_1177_10600280221096886
crossref_primary_10_1016_j_xcrm_2022_100823
crossref_primary_10_1016_j_ibmed_2023_100089
crossref_primary_10_2147_JIR_S418697
crossref_primary_10_1097_SHK_0000000000001864
crossref_primary_10_3310_eme08100
crossref_primary_10_3390_geriatrics9020045
crossref_primary_10_1080_14787210_2021_1846522
crossref_primary_10_1097_CCM_0000000000004676
crossref_primary_10_1016_j_ejim_2019_07_008
crossref_primary_10_1097_CCE_0000000000001087
crossref_primary_10_1126_scitranslmed_abq4433
crossref_primary_10_1161_CIRCRESAHA_121_319969
crossref_primary_10_1016_j_ccc_2019_08_014
crossref_primary_10_1097_CCE_0000000000001085
crossref_primary_10_1039_D2MO00171C
crossref_primary_10_3389_fmed_2022_880896
crossref_primary_10_3390_jcm11185332
crossref_primary_10_1186_s13054_019_2655_7
crossref_primary_10_1056_CAT_20_0094
crossref_primary_10_3389_fmed_2022_878337
crossref_primary_10_1097_CCM_0000000000004617
crossref_primary_10_1097_ACO_0000000000000964
crossref_primary_10_1097_CCM_0000000000004856
crossref_primary_10_1016_j_ccc_2023_03_002
crossref_primary_10_1159_000525548
crossref_primary_10_1016_j_ccc_2023_03_006
crossref_primary_10_1016_j_ccc_2023_03_005
crossref_primary_10_1253_circj_CJ_21_0675
crossref_primary_10_1136_thorax_2022_219016
crossref_primary_10_1186_s13054_022_04106_w
crossref_primary_10_3389_fcimb_2020_00236
crossref_primary_10_1007_s41030_020_00110_z
crossref_primary_10_1080_0886022X_2025_2459349
crossref_primary_10_7759_cureus_72255
crossref_primary_10_3390_cells13110892
crossref_primary_10_1055_s_0044_1787992
crossref_primary_10_1055_s_0044_1787991
crossref_primary_10_1055_s_0044_1787990
crossref_primary_10_1186_s40635_023_00491_w
crossref_primary_10_1001_jamainternmed_2020_0183
crossref_primary_10_1186_s13054_022_03907_3
crossref_primary_10_3389_fimmu_2024_1495260
crossref_primary_10_1186_s40635_020_00338_8
crossref_primary_10_1093_jamia_ocz211
crossref_primary_10_12677_acm_2025_153844
crossref_primary_10_1038_s41746_024_01194_6
crossref_primary_10_14814_phy2_15048
crossref_primary_10_3390_biomedicines8110494
crossref_primary_10_1097_MCC_0000000000001066
crossref_primary_10_1136_emermed_2019_209239
crossref_primary_10_1016_j_jcrc_2024_154932
crossref_primary_10_4330_wjc_v15_i3_76
crossref_primary_10_1001_jama_2023_18591
crossref_primary_10_3390_jpm14020149
crossref_primary_10_1186_s12967_021_03051_6
crossref_primary_10_1007_s00108_020_00862_5
crossref_primary_10_1186_s13054_024_04876_5
crossref_primary_10_1097_MCC_0000000000001078
crossref_primary_10_3389_fcvm_2023_1200441
crossref_primary_10_1001_jamanetworkopen_2024_34197
crossref_primary_10_1161_JAHA_122_028882
crossref_primary_10_1001_jama_2020_2278
crossref_primary_10_1186_s13613_021_00952_z
crossref_primary_10_1093_burnst_tkaf001
crossref_primary_10_1002_alz_13419
crossref_primary_10_1007_s11908_024_00833_z
crossref_primary_10_1097_PCC_0000000000002870
crossref_primary_10_3390_cells11182833
crossref_primary_10_1016_j_jscai_2024_102047
crossref_primary_10_1186_s13054_022_04013_0
crossref_primary_10_1186_s12874_024_02440_x
crossref_primary_10_1186_s13613_023_01143_8
crossref_primary_10_1007_s00134_019_05662_6
crossref_primary_10_3390_jcm12041513
crossref_primary_10_1007_s11886_024_02149_9
crossref_primary_10_1159_000539081
crossref_primary_10_1007_s10916_022_01825_z
crossref_primary_10_1109_OJEMB_2024_3367236
crossref_primary_10_3390_medicina60111740
crossref_primary_10_18231_j_ijmr_2024_029
crossref_primary_10_1186_s40635_021_00400_z
crossref_primary_10_1080_07853890_2023_2197290
crossref_primary_10_1038_s41598_020_67864_z
crossref_primary_10_3389_fimmu_2024_1413560
crossref_primary_10_1016_j_accpm_2019_09_003
crossref_primary_10_1186_s12967_024_05975_1
crossref_primary_10_1097_SHK_0000000000001486
crossref_primary_10_1038_s41598_020_77319_0
crossref_primary_10_3389_fmed_2021_628302
crossref_primary_10_3390_antibiotics13010046
crossref_primary_10_1007_s12185_022_03337_5
crossref_primary_10_1080_0886022X_2024_2325640
crossref_primary_10_1097_PCC_0000000000003708
crossref_primary_10_1097_CCE_0000000000001228
crossref_primary_10_1186_s13049_020_00745_6
crossref_primary_10_1002_emp2_13149
crossref_primary_10_1055_a_1557_3201
crossref_primary_10_1016_j_kint_2020_02_013
crossref_primary_10_1186_s12967_022_03655_6
crossref_primary_10_3389_fmed_2022_915224
crossref_primary_10_1097_CCM_0000000000004842
crossref_primary_10_1155_2024_6699274
crossref_primary_10_1186_s43054_023_00240_4
crossref_primary_10_1186_s40635_025_00744_w
crossref_primary_10_14789_jmj_JMJ23_0042_P
crossref_primary_10_1097_SHK_0000000000002316
crossref_primary_10_1016_j_ebiom_2021_103697
crossref_primary_10_1515_dx_2020_0142
crossref_primary_10_3389_fimmu_2024_1445858
crossref_primary_10_3390_antiox12030561
crossref_primary_10_54205_ccc_v32_267616
crossref_primary_10_1513_AnnalsATS_202105_547OC
crossref_primary_10_1007_s00134_023_07156_y
crossref_primary_10_1016_j_mpmed_2021_08_010
crossref_primary_10_1016_j_cmi_2020_02_003
crossref_primary_10_1016_j_amjms_2024_07_022
crossref_primary_10_3389_fimmu_2024_1434688
crossref_primary_10_1001_jamainternmed_2023_0257
crossref_primary_10_1016_j_jcrc_2020_11_006
crossref_primary_10_7759_cureus_73508
crossref_primary_10_1016_S2589_7500_24_00141_9
crossref_primary_10_1016_j_intimp_2024_113246
crossref_primary_10_1097_MCC_0000000000000834
crossref_primary_10_1097_PCC_0000000000002422
crossref_primary_10_1038_s41598_021_87668_z
crossref_primary_10_1002_ams2_740
crossref_primary_10_1513_AnnalsATS_202205_399ED
crossref_primary_10_1038_s41598_022_23032_z
crossref_primary_10_1097_CCE_0000000000000178
crossref_primary_10_1097_CCE_0000000000000191
crossref_primary_10_1038_s41591_021_01614_0
crossref_primary_10_3389_fimmu_2022_829210
crossref_primary_10_3389_fsci_2025_1557323
crossref_primary_10_1016_j_pcl_2022_01_015
crossref_primary_10_1016_j_cpcardiol_2022_101337
crossref_primary_10_1007_s00380_020_01640_x
crossref_primary_10_1097_SHK_0000000000001675
crossref_primary_10_1016_S2213_2600_23_00237_0
crossref_primary_10_1007_s12028_023_01712_6
crossref_primary_10_1186_s13054_023_04717_x
crossref_primary_10_2147_IDR_S499643
crossref_primary_10_1016_j_ebiom_2023_104942
crossref_primary_10_1016_j_bja_2021_08_007
crossref_primary_10_1186_s40560_023_00672_5
crossref_primary_10_1097_CCM_0000000000003932
crossref_primary_10_2196_37928
crossref_primary_10_1164_rccm_202001_0003LE
crossref_primary_10_2478_rjim_2020_0012
crossref_primary_10_1038_s41598_022_11061_7
crossref_primary_10_1002_ams2_760
crossref_primary_10_3389_fphar_2021_765435
crossref_primary_10_1016_S2213_2600_23_00468_X
crossref_primary_10_1093_ndt_gfad142
crossref_primary_10_3390_microorganisms11051119
crossref_primary_10_1093_aje_kwad107
crossref_primary_10_1001_jama_2019_12591
crossref_primary_10_3389_fimmu_2023_1257572
crossref_primary_10_1016_j_jointm_2024_10_003
crossref_primary_10_1038_s41598_021_99828_2
crossref_primary_10_17352_2455_5363_000057
crossref_primary_10_1016_j_jaim_2020_11_010
crossref_primary_10_1016_j_resuscitation_2024_110196
crossref_primary_10_21292_2078_5658_2020_17_6_54_62
crossref_primary_10_1001_jama_2019_12587
crossref_primary_10_1186_s40635_022_00433_y
crossref_primary_10_3390_biomedicines10020198
crossref_primary_10_3390_ijms242417429
crossref_primary_10_1002_cyto_b_22232
crossref_primary_10_1016_j_jcrc_2024_154793
crossref_primary_10_1186_s12871_024_02838_6
crossref_primary_10_2196_54621
crossref_primary_10_1186_s13054_020_03393_5
crossref_primary_10_1186_s13054_023_04762_6
crossref_primary_10_1016_S2213_2600_23_00266_7
crossref_primary_10_1038_s41598_023_42657_2
crossref_primary_10_1136_archdischild_2019_317789
crossref_primary_10_3389_fmed_2021_775511
crossref_primary_10_1186_s13054_024_05046_3
crossref_primary_10_1136_bmjhci_2021_100458
crossref_primary_10_1038_s41598_025_86664_x
crossref_primary_10_1186_s13054_022_03977_3
crossref_primary_10_1016_j_ecoenv_2024_117238
crossref_primary_10_1016_j_jss_2022_10_030
crossref_primary_10_1007_s00101_020_00849_9
crossref_primary_10_1007_s00134_021_06363_9
crossref_primary_10_1186_s13054_022_04020_1
crossref_primary_10_37990_medr_1348817
crossref_primary_10_1016_j_clim_2020_108660
crossref_primary_10_1186_s13054_019_2528_0
crossref_primary_10_3390_jcm11020336
crossref_primary_10_1016_j_idc_2022_08_001
crossref_primary_10_2147_IDR_S390947
crossref_primary_10_31083_j_rcm2508303
crossref_primary_10_24884_2078_5658_2023_20_6_12_18
crossref_primary_10_1186_s13054_021_03586_6
crossref_primary_10_1097_SHK_0000000000002151
crossref_primary_10_1164_rccm_202407_1394OC
crossref_primary_10_1186_s13054_024_04837_y
crossref_primary_10_1186_s13023_022_02315_8
crossref_primary_10_4103_JTCCM_D_22_00016
crossref_primary_10_3390_jcm11216545
crossref_primary_10_4103_JTCCM_D_22_00015
crossref_primary_10_1097_CCE_0000000000000550
crossref_primary_10_1080_21548331_2020_1720215
crossref_primary_10_1093_ajhp_zxae139
crossref_primary_10_3389_fimmu_2022_867625
crossref_primary_10_21320_1818_474X_2024_3_152_160
crossref_primary_10_1136_bmj_2023_076175
crossref_primary_10_1093_ajhp_zxae134
crossref_primary_10_1164_rccm_202006_2522OC
crossref_primary_10_2196_46807
crossref_primary_10_1055_s_0040_1701988
crossref_primary_10_1097_TA_0000000000003691
crossref_primary_10_1007_s00134_024_07593_3
crossref_primary_10_1097_CCM_0000000000005034
crossref_primary_10_1097_CCM_0000000000006362
crossref_primary_10_1016_j_ceh_2021_09_002
crossref_primary_10_1186_s40779_022_00422_y
crossref_primary_10_1016_j_eclinm_2021_100898
crossref_primary_10_1038_s41598_024_70522_3
crossref_primary_10_1007_s00134_019_05898_2
crossref_primary_10_1001_jamanetworkopen_2020_37739
crossref_primary_10_1007_s11739_023_03223_w
crossref_primary_10_3390_ijms22094933
crossref_primary_10_3389_fgene_2024_1294381
crossref_primary_10_3390_cells13050439
crossref_primary_10_3389_fimmu_2021_622601
crossref_primary_10_1002_ped4_12405
crossref_primary_10_1164_rccm_202311_2086SO
crossref_primary_10_1007_s11908_023_00815_7
crossref_primary_10_1016_j_jtha_2024_02_006
crossref_primary_10_1016_j_jad_2023_12_005
crossref_primary_10_1097_MCC_0000000000000772
crossref_primary_10_3389_fimmu_2021_792448
crossref_primary_10_3389_fmed_2020_598621
crossref_primary_10_5694_mja2_50338
crossref_primary_10_1097_CCM_0000000000005054
crossref_primary_10_1186_s13054_020_02866_x
crossref_primary_10_1371_journal_pdig_0000334
crossref_primary_10_1097_01_CCN_0000654796_79252_dc
crossref_primary_10_1007_s00068_023_02358_x
crossref_primary_10_1542_peds_2023_062967
crossref_primary_10_1542_peds_2021_052565
crossref_primary_10_1016_j_respe_2023_102176
crossref_primary_10_1016_j_surg_2024_03_042
crossref_primary_10_1186_s13054_021_03682_7
crossref_primary_10_1038_s41746_022_00580_2
crossref_primary_10_1097_SHK_0000000000002115
crossref_primary_10_1097_CCE_0000000000000116
crossref_primary_10_1097_CCM_0000000000005046
crossref_primary_10_1097_CCM_0000000000006135
crossref_primary_10_1186_s13054_024_05004_z
crossref_primary_10_1001_jama_2019_12595
crossref_primary_10_1111_ijcp_14376
crossref_primary_10_6339_21_JDS996
crossref_primary_10_1007_s44231_024_00064_9
crossref_primary_10_1080_17512433_2019_1643235
crossref_primary_10_3389_fphys_2022_1050849
crossref_primary_10_1007_s40262_024_01424_w
crossref_primary_10_1016_j_heliyon_2023_e20714
crossref_primary_10_1007_s00134_021_06587_9
crossref_primary_10_1097_SHK_0000000000001935
crossref_primary_10_1097_ACO_0000000000001216
crossref_primary_10_1186_s12931_023_02476_5
crossref_primary_10_3389_fimmu_2021_795052
crossref_primary_10_1186_s13054_020_2778_x
crossref_primary_10_1016_j_coviro_2020_07_010
crossref_primary_10_1016_j_ajem_2019_158460
crossref_primary_10_3390_life14101257
crossref_primary_10_1016_j_pharmthera_2020_107529
crossref_primary_10_4103_jpgm_jpgm_357_24
crossref_primary_10_15360_1813_9779_2024_2_29_40
crossref_primary_10_1097_CCM_0000000000006560
crossref_primary_10_51893_2022_1_OA3
crossref_primary_10_1177_1753425920980078
crossref_primary_10_1002_jpen_1945
crossref_primary_10_1038_s41420_023_01766_7
crossref_primary_10_1038_s41598_022_08032_3
crossref_primary_10_1016_j_jss_2022_10_096
crossref_primary_10_3389_fmed_2020_00117
crossref_primary_10_1186_s40001_024_01866_9
crossref_primary_10_1007_s11739_024_03836_9
crossref_primary_10_1186_s12929_024_01043_4
crossref_primary_10_1097_CCM_0000000000004132
crossref_primary_10_4274_balkanmedj_galenos_2023_2023_4_6
crossref_primary_10_1172_jci_insight_135350
crossref_primary_10_1038_s41746_021_00481_w
crossref_primary_10_1186_s13054_023_04437_2
crossref_primary_10_1007_s11596_024_2870_6
crossref_primary_10_1002_phar_2448
crossref_primary_10_1016_j_eclinm_2023_101970
crossref_primary_10_1177_08850666231153393
crossref_primary_10_1186_s12874_023_02138_6
crossref_primary_10_3390_ijms23158399
crossref_primary_10_1002_phar_2683
crossref_primary_10_1161_ATVBAHA_119_312754
crossref_primary_10_2217_fmb_2022_0170
crossref_primary_10_1080_14787210_2020_1812384
crossref_primary_10_31260_RepertMedCir_01217273_973
crossref_primary_10_1097_SHK_0000000000001906
crossref_primary_10_3390_pathogens13010089
crossref_primary_10_1016_j_compbiomed_2019_103488
crossref_primary_10_1097_MEJ_0000000000000893
crossref_primary_10_1016_j_medin_2024_02_006
crossref_primary_10_1136_thorax_2023_220538
crossref_primary_10_1097_CCM_0000000000005247
crossref_primary_10_1007_s00134_023_07171_z
crossref_primary_10_1038_s41390_021_01673_6
crossref_primary_10_1152_ajprenal_00402_2023
crossref_primary_10_1016_j_ajem_2023_03_022
crossref_primary_10_1097_CCE_0000000000000955
crossref_primary_10_3389_fmed_2020_598652
crossref_primary_10_1016_j_biopha_2023_115719
crossref_primary_10_3389_fped_2023_1035576
crossref_primary_10_1177_10760296211047231
crossref_primary_10_1007_s00464_024_10756_4
crossref_primary_10_1007_s11606_020_05653_0
crossref_primary_10_1161_JAHA_120_020085
crossref_primary_10_36290_aim_2020_059
crossref_primary_10_1080_13543784_2022_2102477
crossref_primary_10_1093_jleuko_qiae107
crossref_primary_10_1016_j_eclinm_2022_101639
crossref_primary_10_1111_exsy_12806
crossref_primary_10_1016_j_bja_2021_10_050
crossref_primary_10_1097_QCO_0000000000000583
crossref_primary_10_1097_CCM_0000000000005675
crossref_primary_10_3389_fcell_2023_1330433
crossref_primary_10_1002_emp2_12660
crossref_primary_10_3390_biomedicines10092260
crossref_primary_10_1097_pq9_0000000000000483
crossref_primary_10_1186_s13054_022_03915_3
crossref_primary_10_3389_fsci_2024_1469417
crossref_primary_10_12998_wjcc_v8_i18_3920
crossref_primary_10_1007_s00134_024_07586_2
crossref_primary_10_1097_CCM_0000000000004568
crossref_primary_10_1055_a_1105_0572
crossref_primary_10_3389_fgene_2022_884762
crossref_primary_10_1007_s11908_021_00747_0
crossref_primary_10_21320_1818_474X_2023_4_7_42
crossref_primary_10_1097_CCE_0000000000000974
crossref_primary_10_3389_fimmu_2024_1441838
crossref_primary_10_1172_jci_insight_145108
crossref_primary_10_1164_rccm_201912_2441OC
crossref_primary_10_1038_s41598_020_74906_z
crossref_primary_10_1186_s12879_023_08147_6
crossref_primary_10_1007_s12325_022_02280_5
crossref_primary_10_1186_s13054_023_04533_3
crossref_primary_10_1183_13993003_02011_2024
crossref_primary_10_1016_j_cca_2023_117738
crossref_primary_10_3389_fimmu_2021_592303
crossref_primary_10_1016_j_jcrc_2020_09_002
crossref_primary_10_1111_bjh_18835
crossref_primary_10_36290_aim_2021_060
crossref_primary_10_1007_s11306_024_02089_z
crossref_primary_10_1038_s41598_021_84860_z
crossref_primary_10_1017_S0950268824000645
crossref_primary_10_1016_j_bspc_2023_105146
crossref_primary_10_1016_j_ccc_2021_07_003
crossref_primary_10_1016_S1293_8505_20_30145_7
crossref_primary_10_1016_j_medine_2024_02_006
crossref_primary_10_1097_CCM_0000000000005203
crossref_primary_10_1016_j_heliyon_2024_e28520
crossref_primary_10_1111_jth_14812
crossref_primary_10_1016_j_immuni_2021_10_012
crossref_primary_10_1038_s41598_021_88970_6
crossref_primary_10_2196_16912
crossref_primary_10_1007_s00134_020_05934_6
crossref_primary_10_1016_j_jbi_2021_103789
crossref_primary_10_1038_s41598_025_94483_3
crossref_primary_10_3389_fimmu_2020_558898
crossref_primary_10_1164_rccm_202312_2265ED
crossref_primary_10_1016_j_medine_2025_502172
crossref_primary_10_1007_s00134_020_06000_x
crossref_primary_10_1155_2020_8032806
crossref_primary_10_1038_s41598_024_55667_5
crossref_primary_10_1097_CCE_0000000000000083
crossref_primary_10_2139_ssrn_4001802
crossref_primary_10_3389_fimmu_2024_1391395
crossref_primary_10_1097_CCE_0000000000001176
crossref_primary_10_1097_TA_0000000000002613
crossref_primary_10_1371_journal_pone_0246332
crossref_primary_10_1007_s12519_023_00689_8
crossref_primary_10_1001_jamanetworkopen_2020_16209
crossref_primary_10_1016_j_artmed_2024_102905
crossref_primary_10_1186_s13054_019_2521_7
crossref_primary_10_1371_journal_pone_0232175
crossref_primary_10_3389_fphar_2024_1475414
crossref_primary_10_18621_eurj_1333071
crossref_primary_10_1186_s13005_025_00492_y
crossref_primary_10_1016_j_jtha_2022_11_013
crossref_primary_10_1097_CCE_0000000000001183
crossref_primary_10_1016_j_chest_2024_04_035
crossref_primary_10_1016_j_jbi_2021_103762
crossref_primary_10_1080_10903127_2024_2386445
crossref_primary_10_1186_s13054_025_05256_3
crossref_primary_10_1016_j_chest_2024_04_018
crossref_primary_10_1155_2022_5351137
crossref_primary_10_2196_58779
crossref_primary_10_1186_s13054_024_05061_4
crossref_primary_10_1152_ajplung_00090_2020
crossref_primary_10_1097_CCM_0000000000005406
crossref_primary_10_1097_CCM_0000000000004320
crossref_primary_10_3390_jcm12041499
crossref_primary_10_1093_cei_uxae019
crossref_primary_10_1213_ANE_0000000000006753
crossref_primary_10_1227_neu_0000000000003249
crossref_primary_10_1055_a_1200_4662
crossref_primary_10_1097_SHK_0000000000001980
crossref_primary_10_1097_CCM_0000000000004305
crossref_primary_10_1002_ccd_30103
crossref_primary_10_1016_j_atherosclerosis_2019_12_009
crossref_primary_10_1177_0310057X231195098
crossref_primary_10_1007_s40121_022_00684_y
crossref_primary_10_3390_cells9010120
crossref_primary_10_1007_s11739_023_03512_4
crossref_primary_10_1002_ams2_843
crossref_primary_10_1016_j_intimp_2020_107143
crossref_primary_10_1186_s13054_023_04571_x
crossref_primary_10_3390_nu13072366
crossref_primary_10_1093_burnst_tkae073
crossref_primary_10_3389_fphys_2022_1094199
crossref_primary_10_1016_j_mib_2020_02_005
crossref_primary_10_1097_AS9_0000000000000429
crossref_primary_10_1097_PCC_0000000000003244
crossref_primary_10_1111_cts_13088
crossref_primary_10_7554_eLife_58142
crossref_primary_10_1038_s44161_023_00391_y
crossref_primary_10_1172_jci_insight_141277
crossref_primary_10_1093_ckj_sfab207
crossref_primary_10_9778_cmajo_20220193
crossref_primary_10_1038_s41598_021_99581_6
crossref_primary_10_1111_sdi_12915
crossref_primary_10_1038_s41590_023_01660_5
crossref_primary_10_1097_MCO_0000000000000628
crossref_primary_10_3390_ijms25020962
crossref_primary_10_2147_JIR_S492902
crossref_primary_10_1111_eci_14159
crossref_primary_10_1186_s40560_020_0435_8
crossref_primary_10_3389_fimmu_2020_624279
crossref_primary_10_1186_s13054_022_03972_8
crossref_primary_10_1016_S2213_2600_20_30124_7
crossref_primary_10_1097_CCM_0000000000005816
crossref_primary_10_1038_s41598_023_42081_6
crossref_primary_10_3390_metabo14100521
crossref_primary_10_3389_fpubh_2024_1330606
crossref_primary_10_3390_electronics11091507
crossref_primary_10_1016_j_mpaic_2024_06_010
crossref_primary_10_1056_NEJMra2403213
crossref_primary_10_1186_s13054_024_04877_4
crossref_primary_10_1111_jgh_16038
crossref_primary_10_1002_cyto_b_21987
crossref_primary_10_3390_jcm10081693
crossref_primary_10_1097_PCC_0000000000003263
crossref_primary_10_1186_s12967_022_03469_6
crossref_primary_10_1186_s13054_022_04118_6
crossref_primary_10_3390_microorganisms11092165
crossref_primary_10_1016_j_jcrc_2022_154221
crossref_primary_10_1186_s13054_022_04071_4
crossref_primary_10_1016_j_chest_2024_03_006
crossref_primary_10_1038_s41581_019_0199_3
crossref_primary_10_1097_MCC_0000000000001186
crossref_primary_10_1186_s12931_020_01337_9
crossref_primary_10_1097_QCO_0000000000000767
crossref_primary_10_1111_liv_15141
crossref_primary_10_1186_s40635_019_0286_6
crossref_primary_10_1007_s00595_021_02380_9
crossref_primary_10_1016_j_ebiom_2021_103776
crossref_primary_10_1513_AnnalsATS_202102_209ST
crossref_primary_10_1097_01_NPR_0000884868_44595_f6
crossref_primary_10_3389_fphys_2021_678540
crossref_primary_10_1016_j_bbe_2021_06_009
crossref_primary_10_1093_jamia_ocz106
crossref_primary_10_1186_s13054_024_05030_x
crossref_primary_10_1016_j_ijmedinf_2023_105286
crossref_primary_10_1001_jamanetworkopen_2020_9271
crossref_primary_10_3389_fendo_2024_1452993
crossref_primary_10_1016_j_ijbiomac_2024_136578
crossref_primary_10_1186_s40635_020_00304_4
crossref_primary_10_1016_j_compbiomed_2020_104182
crossref_primary_10_1093_burnst_tkae080
crossref_primary_10_1016_j_jcrc_2024_154848
crossref_primary_10_1016_j_annemergmed_2021_03_003
crossref_primary_10_1016_j_ebiom_2020_103081
crossref_primary_10_23736_S0375_9393_20_14866_1
crossref_primary_10_4103_jisppd_jisppd_478_20
crossref_primary_10_1007_s00134_022_06928_2
crossref_primary_10_1038_s41581_021_00489_1
crossref_primary_10_36290_aim_2019_074
crossref_primary_10_1016_j_semnephrol_2022_10_011
crossref_primary_10_1371_journal_pdig_0000110
crossref_primary_10_1016_j_imed_2021_09_001
crossref_primary_10_1055_s_0040_1715827
crossref_primary_10_1371_journal_pone_0256790
crossref_primary_10_1371_journal_pone_0268547
crossref_primary_10_15360_1813_9779_2024_6_2470
crossref_primary_10_26779_2522_1396_2019_06_60
crossref_primary_10_1038_s44321_023_00004_y
crossref_primary_10_26508_lsa_202101091
crossref_primary_10_3389_fmed_2021_762198
crossref_primary_10_1111_sdi_12963
crossref_primary_10_1186_s13054_020_03351_1
crossref_primary_10_1097_NNR_0000000000000521
crossref_primary_10_26565_3083_5615_2024_13_09
crossref_primary_10_1097_CCE_0000000000000251
crossref_primary_10_36290_vnl_2019_082
crossref_primary_10_1002_emp2_13264
crossref_primary_10_1016_j_jbi_2021_103949
crossref_primary_10_1038_s41591_020_0752_4
crossref_primary_10_31033_ijrasb_7_2_1
crossref_primary_10_1016_j_jbi_2024_104615
crossref_primary_10_1161_CIR_0000000000001219
crossref_primary_10_1542_peds_2021_052888P
crossref_primary_10_1177_08850666241301689
crossref_primary_10_1097_SLA_0000000000004360
crossref_primary_10_1097_PCC_0000000000002532
crossref_primary_10_1182_blood_2020009774
crossref_primary_10_3389_fimmu_2022_966329
crossref_primary_10_1164_rccm_202007_2728ED
crossref_primary_10_1542_peds_2021_052888D
crossref_primary_10_7759_cureus_15531
crossref_primary_10_1016_j_csbj_2020_11_009
crossref_primary_10_1513_AnnalsATS_202305_497IP
crossref_primary_10_1186_s12871_021_01552_x
crossref_primary_10_2196_45614
crossref_primary_10_15252_emmm_201810128
crossref_primary_10_3390_antibiotics13020187
crossref_primary_10_1038_s41598_021_95431_7
crossref_primary_10_1097_CCM_0000000000004948
crossref_primary_10_1371_journal_pone_0265052
crossref_primary_10_1016_j_eclinm_2023_102252
crossref_primary_10_1016_j_cmpb_2023_107772
crossref_primary_10_1016_j_ajem_2020_09_013
crossref_primary_10_1002_alz_14624
crossref_primary_10_1016_j_chest_2021_04_038
crossref_primary_10_3389_fimmu_2020_589304
crossref_primary_10_1089_sur_2021_007
crossref_primary_10_1017_ice_2019_354
crossref_primary_10_1097_MLR_0000000000001997
crossref_primary_10_1186_s40635_023_00592_6
crossref_primary_10_1016_j_jbi_2024_104671
crossref_primary_10_1186_s12967_020_02620_5
crossref_primary_10_1016_j_bj_2021_08_006
crossref_primary_10_1093_ofid_ofae722
crossref_primary_10_1080_13102818_2024_2349587
crossref_primary_10_1038_s41598_024_59047_x
crossref_primary_10_1177_10760296231218711
crossref_primary_10_1016_j_ebiom_2020_103044
crossref_primary_10_1097_SHK_0000000000002413
crossref_primary_10_1155_2023_2081588
crossref_primary_10_1186_s13054_023_04507_5
crossref_primary_10_1016_j_ajem_2025_01_054
crossref_primary_10_1136_tsaco_2020_000462
crossref_primary_10_1007_s00134_022_06908_6
crossref_primary_10_1093_ofid_ofaa596
crossref_primary_10_3389_fimmu_2023_1325020
crossref_primary_10_1038_s41591_022_01843_x
crossref_primary_10_3389_fimmu_2025_1431066
crossref_primary_10_1038_s41467_023_39269_9
crossref_primary_10_1097_SHK_0000000000002402
crossref_primary_10_1097_EA9_0000000000000014
crossref_primary_10_3389_fimmu_2024_1341752
crossref_primary_10_1007_s00068_021_01750_9
crossref_primary_10_1039_D4FO00350K
crossref_primary_10_1042_CS20220709
crossref_primary_10_1097_CCE_0000000000001153
crossref_primary_10_1053_j_ajkd_2023_01_449
crossref_primary_10_1016_S1473_3099_21_00019_0
crossref_primary_10_23736_S0375_9393_21_15992_9
crossref_primary_10_1186_s13054_022_04003_2
crossref_primary_10_3389_fmed_2023_1174429
crossref_primary_10_1186_s12967_023_04002_z
crossref_primary_10_1042_CS20220713
crossref_primary_10_1097_PCC_0000000000002560
crossref_primary_10_1186_s13054_022_04103_z
crossref_primary_10_1097_MCP_0000000000000669
crossref_primary_10_1016_j_bjane_2024_844480
crossref_primary_10_1016_j_chest_2024_01_028
crossref_primary_10_3390_jpm14030225
crossref_primary_10_2174_2666796701999200701132336
crossref_primary_10_1093_jamia_ocad228
crossref_primary_10_1016_j_ebiom_2022_104335
crossref_primary_10_3389_fmed_2022_1043589
crossref_primary_10_3390_jcm12103493
crossref_primary_10_1016_S2213_2600_23_00330_2
crossref_primary_10_1089_tmj_2024_0281
crossref_primary_10_1038_s41598_021_84003_4
crossref_primary_10_1016_j_clim_2024_110301
crossref_primary_10_1097_SHK_0000000000002067
crossref_primary_10_1097_SHK_0000000000002068
crossref_primary_10_1111_joim_13220
crossref_primary_10_1007_s11908_023_00818_4
crossref_primary_10_3389_fcell_2021_756340
crossref_primary_10_1186_s13063_023_07644_y
crossref_primary_10_3389_fcimb_2023_1274842
crossref_primary_10_1111_anae_15369
crossref_primary_10_15252_emmm_202114436
crossref_primary_10_1097_CCE_0000000000000881
crossref_primary_10_1186_s12879_024_09203_5
crossref_primary_10_3389_fdgth_2023_1142822
crossref_primary_10_1007_s00134_021_06595_9
crossref_primary_10_1001_jama_2024_0179
crossref_primary_10_1016_S2213_2600_20_30404_5
crossref_primary_10_1186_s13054_021_03541_5
crossref_primary_10_1186_s13054_021_03750_y
crossref_primary_10_3389_fimmu_2021_733537
crossref_primary_10_1186_s40635_022_00445_8
crossref_primary_10_1038_s41598_024_69185_x
crossref_primary_10_1002_advs_202303090
crossref_primary_10_1097_SHK_0000000000002047
crossref_primary_10_1186_s12911_021_01460_7
crossref_primary_10_2139_ssrn_4160045
crossref_primary_10_2478_jccm_2023_0022
crossref_primary_10_1515_mr_2023_0039
crossref_primary_10_1016_j_ajem_2024_07_030
crossref_primary_10_1183_23120541_00121_2024
crossref_primary_10_1016_j_pharmthera_2024_108684
crossref_primary_10_1152_ajplung_00369_2020
crossref_primary_10_1016_j_arth_2020_06_063
crossref_primary_10_3389_fmed_2023_1252021
crossref_primary_10_3390_antibiotics12050925
crossref_primary_10_3389_fimmu_2020_01391
crossref_primary_10_1007_s10877_021_00664_6
crossref_primary_10_3389_fmed_2021_627830
crossref_primary_10_1213_ANE_0000000000007170
crossref_primary_10_1097_CCE_0000000000000672
crossref_primary_10_1093_ofid_ofac381
crossref_primary_10_1213_ANE_0000000000006247
crossref_primary_10_1007_s41666_024_00184_3
crossref_primary_10_1097_SHK_0000000000002264
crossref_primary_10_1055_a_1813_2057
crossref_primary_10_3892_etm_2024_12689
crossref_primary_10_1002_ams2_477
crossref_primary_10_1016_j_scitotenv_2025_179018
crossref_primary_10_1371_journal_pone_0252793
crossref_primary_10_1097_MNH_0000000000000604
crossref_primary_10_1007_s10875_022_01386_3
crossref_primary_10_1164_rccm_202108_1908ST
crossref_primary_10_1007_s00134_019_05909_2
crossref_primary_10_1186_s13054_022_04121_x
crossref_primary_10_3389_fmed_2021_681336
crossref_primary_10_1016_j_chest_2021_04_062
crossref_primary_10_1016_j_ebiom_2022_104387
crossref_primary_10_3389_fimmu_2023_1277033
crossref_primary_10_1016_j_ccc_2021_11_013
crossref_primary_10_1016_j_lers_2024_02_001
crossref_primary_10_1007_s00134_022_06868_x
crossref_primary_10_3390_jcm12031185
crossref_primary_10_1002_alz_70017
crossref_primary_10_1007_s00134_020_06109_z
crossref_primary_10_1097_CCM_0000000000004053
crossref_primary_10_2217_fmb_2022_0044
crossref_primary_10_1186_s13613_021_00977_4
crossref_primary_10_1530_VB_22_0003
crossref_primary_10_2139_ssrn_3731426
crossref_primary_10_1007_s00101_023_01366_1
crossref_primary_10_1097_SHK_0000000000002482
crossref_primary_10_1186_s13613_020_00740_1
crossref_primary_10_1097_MCC_0000000000000641
crossref_primary_10_1111_tri_13818
crossref_primary_10_4187_respcare_07405
crossref_primary_10_2147_JIR_S369703
crossref_primary_10_1111_apt_18274
crossref_primary_10_1186_s12931_024_03018_3
crossref_primary_10_1002_jpen_2539
crossref_primary_10_5492_wjccm_v11_i5_311
crossref_primary_10_1164_rccm_202106_1350OC
crossref_primary_10_1007_s00134_020_05960_4
crossref_primary_10_1016_j_isci_2021_102752
crossref_primary_10_1126_scitranslmed_adh0185
crossref_primary_10_3390_ijms26051894
crossref_primary_10_1016_j_annemergmed_2020_04_042
crossref_primary_10_3389_fmed_2024_1431791
crossref_primary_10_1016_S2352_4642_24_00017_8
crossref_primary_10_1093_bmb_ldac001
crossref_primary_10_1097_MS9_0000000000002773
crossref_primary_10_1016_j_jointm_2023_10_001
crossref_primary_10_1007_s00134_024_07572_8
crossref_primary_10_1186_s13054_024_04871_w
crossref_primary_10_1097_CCM_0000000000004018
crossref_primary_10_1007_s12028_021_01260_x
crossref_primary_10_1164_rccm_201908_1595WS
crossref_primary_10_1371_journal_pone_0265818
crossref_primary_10_3390_jcm8111869
crossref_primary_10_17116_anaesthesiology20190515
crossref_primary_10_1097_CCE_0000000000000800
crossref_primary_10_1186_s12879_024_10415_y
crossref_primary_10_1513_AnnalsATS_202011_1372OC
crossref_primary_10_1007_s00134_023_07226_1
crossref_primary_10_1371_journal_pone_0240753
crossref_primary_10_1097_PEC_0000000000002865
crossref_primary_10_3389_fimmu_2022_882774
crossref_primary_10_1186_s12871_023_02265_z
crossref_primary_10_1513_AnnalsATS_202004_399OC
crossref_primary_10_1056_EVIDe2300105
crossref_primary_10_1007_s00134_021_06479_y
crossref_primary_10_1186_s40560_022_00602_x
crossref_primary_10_1002_ncp_11194
crossref_primary_10_1186_s13049_025_01350_1
crossref_primary_10_3389_fmed_2021_770343
crossref_primary_10_1002_jhm_13078
crossref_primary_10_1186_s13054_021_03487_8
crossref_primary_10_1111_jgs_16194
crossref_primary_10_3390_biomedicines12122892
crossref_primary_10_3390_jcm13206044
crossref_primary_10_1016_j_jss_2022_04_052
crossref_primary_10_1097_CCM_0000000000006463
crossref_primary_10_3389_fimmu_2024_1500734
crossref_primary_10_1089_ars_2020_8062
crossref_primary_10_3389_fnetp_2021_730385
crossref_primary_10_1016_j_ebiom_2022_104394
crossref_primary_10_3389_fimmu_2025_1546474
crossref_primary_10_1097_PCC_0000000000003292
crossref_primary_10_1055_a_2181_1018
crossref_primary_10_3390_microorganisms11092231
crossref_primary_10_1001_jamasurg_2023_0819
crossref_primary_10_1007_s00134_023_07239_w
crossref_primary_10_1016_j_jacadv_2022_100126
crossref_primary_10_1007_s10238_024_01545_3
crossref_primary_10_1148_radiol_212830
crossref_primary_10_3389_fneur_2024_1366307
crossref_primary_10_1007_s00134_020_06038_x
crossref_primary_10_1016_j_jacadv_2022_100120
crossref_primary_10_1002_hsr2_70288
crossref_primary_10_1055_a_2114_8333
crossref_primary_10_1016_j_cmpb_2022_106655
crossref_primary_10_1186_s40635_023_00531_5
crossref_primary_10_1186_s12982_024_00216_8
crossref_primary_10_1186_s40635_023_00555_x
crossref_primary_10_1186_s13054_021_03578_6
crossref_primary_10_1055_s_0044_1785504
crossref_primary_10_1097_PCC_0000000000003070
crossref_primary_10_3389_fmed_2025_1502628
crossref_primary_10_1016_j_eclinm_2024_103013
crossref_primary_10_1016_j_jchf_2023_06_024
crossref_primary_10_1097_CCM_0000000000004451
crossref_primary_10_3346_jkms_2024_39_e53
crossref_primary_10_1186_s12916_021_01940_7
crossref_primary_10_3389_fgene_2023_1100352
crossref_primary_10_1038_s41467_024_48713_3
crossref_primary_10_3389_fimmu_2024_1287415
crossref_primary_10_1097_MD_0000000000028219
crossref_primary_10_1136_bmjopen_2020_042921
crossref_primary_10_1007_s00134_022_06890_z
crossref_primary_10_1007_s12028_021_01199_z
crossref_primary_10_3389_fmed_2022_794423
crossref_primary_10_3389_frai_2022_842306
crossref_primary_10_1097_MEJ_0000000000000705
crossref_primary_10_1515_biol_2022_0999
crossref_primary_10_1038_s41419_024_07072_z
crossref_primary_10_1016_j_phymed_2024_155710
crossref_primary_10_1016_j_bbe_2022_12_008
crossref_primary_10_1016_j_ccc_2022_09_013
crossref_primary_10_1136_annrheumdis_2019_215959
crossref_primary_10_1136_bmjopen_2023_078763
crossref_primary_10_1097_SHK_0000000000002081
crossref_primary_10_3389_fmed_2024_1510792
crossref_primary_10_1016_j_jinf_2024_106156
crossref_primary_10_1016_S2589_7500_23_00094_8
crossref_primary_10_1111_apt_16014
crossref_primary_10_1097_CCE_0000000000000865
crossref_primary_10_1093_jleuko_qiad163
crossref_primary_10_3390_antibiotics10080930
crossref_primary_10_1038_s41598_021_93635_5
crossref_primary_10_1186_s13054_022_04163_1
crossref_primary_10_17816_medjrf545995
crossref_primary_10_1016_j_jchf_2023_05_007
crossref_primary_10_1097_CCM_0000000000004229
crossref_primary_10_1186_s13054_024_04929_9
crossref_primary_10_1002_adbi_202300673
crossref_primary_10_1136_bmjpo_2024_003100
crossref_primary_10_3389_fimmu_2024_1345321
crossref_primary_10_1002_lrh2_10315
crossref_primary_10_1111_acem_14265
Cites_doi 10.1056/NEJM200103083441001
10.1097/01.CCM.0000050454.01978.3B
10.1056/NEJMoa010307
10.1097/00003246-200107000-00002
10.1093/bioinformatics/btq170
10.1097/CCM.0000000000003084
10.1001/archinte.167.15.1655
10.1126/science.1214935
10.1002/(ISSN)1097-0258
10.1056/NEJMoa1401602
10.1001/jama.2013.2194
10.1056/NEJMoa1202290
10.1007/BF01709751
10.4049/jimmunol.1300496
10.1001/jama.2015.2316
10.1378/chest.100.6.1619
10.1001/jama.2016.0288
10.1145/304181
10.1056/NEJMoa1101549
10.1097/CCM.0000000000000541
10.1001/jama.298.10.1209
10.1056/NEJMoa050935
10.1016/S2213-2600(17)30294-1
10.1016/S2213-2600(16)00046-1
10.1001/jama.2017.13836
10.1016/S2213-2600(14)70097-9
ContentType Journal Article
Copyright Copyright American Medical Association May 28, 2019
Copyright 2019 American Medical Association. All Rights Reserved.
Copyright_xml – notice: Copyright American Medical Association May 28, 2019
– notice: Copyright 2019 American Medical Association. All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7TK
7TS
7U7
7U9
8FD
C1K
FR3
H94
K9.
M7N
NAPCQ
P64
RC3
7X8
5PM
DOI 10.1001/jama.2019.5791
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Toxicology Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Nursing & Allied Health Premium
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
Virology and AIDS Abstracts

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Derivation, Validation, and Potential Treatment Implications of Novel Clinical Phenotypes for Sepsis
EISSN 1538-3598
EndPage 2017
ExternalDocumentID PMC6537818
31104070
10_1001_jama_2019_5791
2733996
Genre Validation Study
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R34 GM102696
– fundername: NIGMS NIH HHS
  grantid: R01 GM107231
– fundername: NIGMS NIH HHS
  grantid: P50 GM076659
– fundername: NIGMS NIH HHS
  grantid: K08 GM117310
– fundername: NIGMS NIH HHS
  grantid: R35 GM119519
– fundername: NIGMS NIH HHS
  grantid: R01 GM061992
– fundername: NIGMS NIH HHS
  grantid: R01 GM105728
– fundername: NIGMS NIH HHS
  grantid: R01 GM101197
– fundername: NLM NIH HHS
  grantid: R01 LM012095
– fundername: National Institutes of Health
– fundername: GlaxoSmithKline
– fundername: National Institute of General Medical Sciences
GroupedDBID ---
-ET
-~X
.55
.XZ
0R~
0WA
186
18M
29J
2CT
2FS
2KS
2WC
354
39C
4.4
53G
5GY
5RE
6TJ
85S
AAIKC
AAMNW
AAQOH
AAQQT
AAWTL
ABBLC
ABCQX
ABEHJ
ABIVO
ABOCM
ABPMR
ABPPZ
ABRSH
ABWJO
ACGFS
ACNCT
ACPRK
ACQAM
ADBBV
ADUKH
AETEA
AFCHL
AFFDN
AFFNX
AFRAH
AGFXO
AGHSJ
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AMJDE
ANMPU
BKOMP
BRYMA
C45
CJ0
CS3
EAM
EBD
EBS
EJD
EMOBN
EX3
F5P
GX1
HF~
KOO
KQ8
L7B
MVM
N4W
N9A
NEJ
NYF
OBH
OCB
OGEVE
OHH
OK1
OMK
OVD
P2P
PQQKQ
QJJ
RAJ
RNS
SJN
SV3
TEORI
TN5
UHB
UKR
UPT
VVN
WH7
WOW
X7M
XHN
XSW
XZL
YCJ
YFH
YOC
YPV
YQT
YQY
YR2
YSK
YYM
YZZ
ZA5
ZCA
~H1
AAYXX
ACAHW
ADXHL
ARBJA
CITATION
H13
YR5
CGR
CUY
CVF
ECM
EIF
NPM
PKN
UIG
YIF
YIN
7QL
7QP
7TK
7TS
7U7
7U9
8FD
C1K
FR3
H94
K9.
M7N
NAPCQ
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-a503t-8cd585c993af93b842bd2febdb21c1a30e5695d112407fcaf9970e418b0ab69e3
ISSN 0098-7484
1538-3598
IngestDate Thu Aug 21 18:18:57 EDT 2025
Thu Sep 04 23:48:39 EDT 2025
Fri Jul 25 22:22:05 EDT 2025
Wed Feb 19 02:24:42 EST 2025
Tue Jul 01 01:54:47 EDT 2025
Thu Apr 24 23:01:27 EDT 2025
Fri Jul 05 02:04:00 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a503t-8cd585c993af93b842bd2febdb21c1a30e5695d112407fcaf9970e418b0ab69e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://jamanetwork.com/journals/jama/articlepdf/2733996/jama_seymour_2019_oi_190047.pdf
PMID 31104070
PQID 2257680271
PQPubID 42339
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6537818
proquest_miscellaneous_2232077178
proquest_journals_2257680271
pubmed_primary_31104070
crossref_primary_10_1001_jama_2019_5791
crossref_citationtrail_10_1001_jama_2019_5791
ama_primary_2733996
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-28
PublicationDateYYYYMMDD 2019-05-28
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Chicago
PublicationSubtitle The Journal of the American Medical Association
PublicationTitle JAMA : the journal of the American Medical Association
PublicationTitleAlternate JAMA
PublicationYear 2019
Publisher American Medical Association
Publisher_xml – name: American Medical Association
References Yealy (joi190047r7) 2014; 370
Rindskopf (joi190047r19) 1986; 5
Deng (joi190047r21) 2013; 190
Ranieri (joi190047r23) 2012; 366
Angus (joi190047r14) 2013; 369
Sweeney (joi190047r4) 2018; 46
Vincent (joi190047r11) 1996; 22
Ankerst (joi190047r16) 1999; 28
Scicluna (joi190047r3) 2017; 5
Wilkerson (joi190047r17) 2010; 26
Abraham (joi190047r22) 2005; 353
Rhee (joi190047r1) 2017; 318
Berry (joi190047r28) 2015; 313
Angus (joi190047r13) 2001; 29
Calfee (joi190047r18) 2014; 2
Kellum (joi190047r9) 2007; 167
Bernard (joi190047r8) 2001; 344
Seymour (joi190047r2) 2016; 315
Maitland (joi190047r24) 2011; 364
Rivers (joi190047r26) 2001; 345
Knaus (joi190047r20) 1991; 100
Andrews (joi190047r25) 2014; 42
Davenport (joi190047r5) 2016; 4
Medzhitov (joi190047r12) 2012; 335
Opal (joi190047r6) 2013; 309
Levy (joi190047r10) 2003; 31
Kent (joi190047r27) 2007; 298
Newgard (joi190047r15) 2007; 14
31104067 - JAMA. 2019 May 28;321(20):1981-1982
31593266 - JAMA. 2019 Oct 8;322(14):1416-1417
31656636 - J Thorac Dis. 2019 Sep;11(9):3672-3675
31593265 - JAMA. 2019 Oct 8;322(14):1416
36470827 - EBioMedicine. 2022 Dec;86:104335
References_xml – volume: 369
  start-page: 2063
  issue: 21
  year: 2013
  ident: joi190047r14
  article-title: Severe sepsis and septic shock.
  publication-title: N Engl J Med
– volume: 344
  start-page: 699
  issue: 10
  year: 2001
  ident: joi190047r8
  article-title: Efficacy and safety of recombinant human activated protein C for severe sepsis.
  publication-title: N Engl J Med
  doi: 10.1056/NEJM200103083441001
– volume: 31
  start-page: 1250
  issue: 4
  year: 2003
  ident: joi190047r10
  article-title: 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference.
  publication-title: Crit Care Med
  doi: 10.1097/01.CCM.0000050454.01978.3B
– volume: 345
  start-page: 1368
  issue: 19
  year: 2001
  ident: joi190047r26
  article-title: Early goal-directed therapy in the treatment of severe sepsis and septic shock.
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa010307
– volume: 29
  start-page: 1303
  issue: 7
  year: 2001
  ident: joi190047r13
  article-title: Epidemiology of severe sepsis in the United States.
  publication-title: Crit Care Med
  doi: 10.1097/00003246-200107000-00002
– volume: 26
  start-page: 1572
  issue: 12
  year: 2010
  ident: joi190047r17
  article-title: ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq170
– volume: 46
  start-page: 915
  issue: 6
  year: 2018
  ident: joi190047r4
  article-title: Unsupervised analysis of transcriptomics in bacterial sepsis across multiple datasets reveals three robust clusters.
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0000000000003084
– volume: 167
  start-page: 1655
  issue: 15
  year: 2007
  ident: joi190047r9
  article-title: Understanding the inflammatory cytokine response in pneumonia and sepsis.
  publication-title: Arch Intern Med
  doi: 10.1001/archinte.167.15.1655
– volume: 335
  start-page: 936
  issue: 6071
  year: 2012
  ident: joi190047r12
  article-title: Disease tolerance as a defense strategy.
  publication-title: Science
  doi: 10.1126/science.1214935
– volume: 5
  start-page: 21
  issue: 1
  year: 1986
  ident: joi190047r19
  article-title: The value of latent class analysis in medical diagnosis.
  publication-title: Stat Med
  doi: 10.1002/(ISSN)1097-0258
– volume: 370
  start-page: 1683
  issue: 18
  year: 2014
  ident: joi190047r7
  article-title: A randomized trial of protocol-based care for early septic shock.
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1401602
– volume: 309
  start-page: 1154
  issue: 11
  year: 2013
  ident: joi190047r6
  article-title: Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis.
  publication-title: JAMA
  doi: 10.1001/jama.2013.2194
– volume: 366
  start-page: 2055
  issue: 22
  year: 2012
  ident: joi190047r23
  article-title: Drotrecogin alfa (activated) in adults with septic shock.
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1202290
– volume: 22
  start-page: 707
  issue: 7
  year: 1996
  ident: joi190047r11
  article-title: The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure.
  publication-title: Intensive Care Med
  doi: 10.1007/BF01709751
– volume: 190
  start-page: 5152
  issue: 10
  year: 2013
  ident: joi190047r21
  article-title: Lipopolysaccharide clearance, bacterial clearance, and systemic inflammatory responses are regulated by cell type-specific functions of TLR4 during sepsis.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1300496
– volume: 313
  start-page: 1619
  issue: 16
  year: 2015
  ident: joi190047r28
  article-title: The platform trial: an efficient strategy for evaluating multiple treatments.
  publication-title: JAMA
  doi: 10.1001/jama.2015.2316
– volume: 100
  start-page: 1619
  issue: 6
  year: 1991
  ident: joi190047r20
  article-title: The APACHE III prognostic system: risk prediction of hospital mortality for critically ill hospitalized adults.
  publication-title: Chest
  doi: 10.1378/chest.100.6.1619
– volume: 315
  start-page: 762
  issue: 8
  year: 2016
  ident: joi190047r2
  article-title: Assessment of clinical criteria for sepsis: for the third international consensus definitions for sepsis and septic shock (Sepsis-3).
  publication-title: JAMA
  doi: 10.1001/jama.2016.0288
– volume: 28
  start-page: 49
  issue: 2
  year: 1999
  ident: joi190047r16
  article-title: OPTICS: ordering points to identify the clustering structure.
  publication-title: SIGMOD Rec
  doi: 10.1145/304181
– volume: 364
  start-page: 2483
  issue: 26
  year: 2011
  ident: joi190047r24
  article-title: Mortality after fluid bolus in African children with severe infection.
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1101549
– volume: 42
  start-page: 2315
  issue: 11
  year: 2014
  ident: joi190047r25
  article-title: Simplified severe sepsis protocol: a randomized controlled trial of modified early goal-directed therapy in Zambia.
  publication-title: Crit Care Med
  doi: 10.1097/CCM.0000000000000541
– volume: 14
  start-page: 669
  issue: 7
  year: 2007
  ident: joi190047r15
  article-title: Advanced statistics: missing data in clinical research—part 2: multiple imputation.
  publication-title: Acad Emerg Med
– volume: 298
  start-page: 1209
  issue: 10
  year: 2007
  ident: joi190047r27
  article-title: Limitations of applying summary results of clinical trials to individual patients: the need for risk stratification.
  publication-title: JAMA
  doi: 10.1001/jama.298.10.1209
– volume: 353
  start-page: 1332
  issue: 13
  year: 2005
  ident: joi190047r22
  article-title: Drotrecogin alfa (activated) for adults with severe sepsis and a low risk of death.
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa050935
– volume: 5
  start-page: 816
  issue: 10
  year: 2017
  ident: joi190047r3
  article-title: Classification of patients with sepsis according to blood genomic endotype.
  publication-title: Lancet Respir Med
  doi: 10.1016/S2213-2600(17)30294-1
– volume: 4
  start-page: 259
  issue: 4
  year: 2016
  ident: joi190047r5
  article-title: Genomic landscape of the individual host response and outcomes in sepsis: a prospective cohort study.
  publication-title: Lancet Respir Med
  doi: 10.1016/S2213-2600(16)00046-1
– volume: 318
  start-page: 1241
  issue: 13
  year: 2017
  ident: joi190047r1
  article-title: Incidence and trends of sepsis in US hospitals using clinical vs claims data, 2009-2014.
  publication-title: JAMA
  doi: 10.1001/jama.2017.13836
– volume: 2
  start-page: 611
  issue: 8
  year: 2014
  ident: joi190047r18
  article-title: Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials.
  publication-title: Lancet Respir Med
  doi: 10.1016/S2213-2600(14)70097-9
– reference: 31656636 - J Thorac Dis. 2019 Sep;11(9):3672-3675
– reference: 36470827 - EBioMedicine. 2022 Dec;86:104335
– reference: 31593266 - JAMA. 2019 Oct 8;322(14):1416-1417
– reference: 31593265 - JAMA. 2019 Oct 8;322(14):1416
– reference: 31104067 - JAMA. 2019 May 28;321(20):1981-1982
SSID ssj0000137
Score 2.719639
Snippet IMPORTANCE: Sepsis is a heterogeneous syndrome. Identification of distinct clinical phenotypes may allow more precise therapy and improve care. OBJECTIVE: To...
Sepsis is a heterogeneous syndrome. Identification of distinct clinical phenotypes may allow more precise therapy and improve care. To derive sepsis phenotypes...
Importance Sepsis is a heterogeneous syndrome. Identification of distinct clinical phenotypes may allow more precise therapy and improve care. Objective To...
Sepsis is a heterogeneous syndrome. Identification of distinct clinical phenotypes may allow more precise therapy and improve care.ImportanceSepsis is a...
In this study, Sepsis-3 investigators use electronic health record and trial data from patients with sepsis within 6 hours of hospital presentation to define...
SourceID pubmedcentral
proquest
pubmed
crossref
ama
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2003
SubjectTerms Algorithms
Biomarkers
Biomarkers - blood
Caring for the Critically Ill Patient
Clinical outcomes
Clinical trials
Cluster Analysis
Clustering
Computer simulation
Correlation
Data analysis
Datasets
Datasets as Topic
Derivation
Electronic health records
Electronic medical records
Genotype & phenotype
Heterogeneity
Hospital Mortality
Humans
Learning algorithms
Liver diseases
Machine Learning
Medical research
Mortality
Online First
Organ Dysfunction Scores
Original Investigation
Patients
Phenotype
Phenotypes
Renal function
Reproducibility
Reproducibility of Results
Retrospective Studies
Sepsis
Sepsis - classification
Sepsis - mortality
Sepsis - therapy
Septic shock
Therapeutic applications
Therapy
Uniqueness
Title Derivation, Validation, and Potential Treatment Implications of Novel Clinical Phenotypes for Sepsis
URI http://dx.doi.org/10.1001/jama.2019.5791
https://www.ncbi.nlm.nih.gov/pubmed/31104070
https://www.proquest.com/docview/2257680271
https://www.proquest.com/docview/2232077178
https://pubmed.ncbi.nlm.nih.gov/PMC6537818
Volume 321
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBXbFEIupU2_3KZFhUIPGwdZsi37WLYtaSClhYTkZixbxoHEXrJ2D_kp-bUdyZas3STQ9mJ2JVkCzdN4NJp5QuhjHoCSC5THPSDCD3lMfFhFuU8DKRkVpCiZShQ-_hEfnoZH59H5bHbrRC31nTgobu7NK_kfqUIZyFVlyf6DZG2nUAC_Qb7wBAnD869k_AUGGVyqOlwVTOrS_tNZAG2ngoFUCr6NJ__uhpArd0H7W17OFyZB8mctm1b5ZTVPA6iS5epitWbBgpaem2gQh3fCSVGZjn82ha8Di5W34XqD2GB-do_mP8rV9Yj2rOjMuLbr3glKGMoWNSgtf1G3_ZhtMToyVO5UZBLD5aR8FaOgq53ZkEA9wpASV9kSTY9w9yvg3D6gBjqI-HAjmAOJ5ZXGBAPrB7a0ZPoa2hhFU_UIPaYc7DJ14P8rcajJGDckoBOL1TjYDto2r7sMvsbqubOV2YzIdUyck6foybg3wZ8HoD1DM9nsou3jMfriOSonvO3jCW37GLCGLdawxRp2sYbbCmusYYM1PGENA9bwgLUX6PTb15PFoT_e0uHnEWGdnxQlbDkLsHPzKmUiCakoaSVFKWhQBDkjMorTqAS7HqajKqBRyokMg0SQXMSpZC_RVtM28jXCRSxoTEMZVbSCD0slaCKiioc5DVMmo9xDuzCX2XLgYcnA8gbzOvaQb-Y2K0Zie3W_ymU2UHLDBle9pYSTKeF46JNtb7p6qOWeEVU2LqhVRvUWnVAO1R9sNShlddKWN7LtVRtGCecBTzz0apCsHcoAw0N8Tea2gSJ8X69pLmpN_B5HjIOB_ebBPt-inWll7aGt7rqX78Bo7sR7jd4_rqjDCA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Derivation%2C+Validation%2C+and+Potential+Treatment+Implications+of+Novel+Clinical+Phenotypes+for+Sepsis&rft.jtitle=JAMA+%3A+the+journal+of+the+American+Medical+Association&rft.au=Seymour%2C+Christopher+W&rft.au=Kennedy%2C+Jason+N&rft.au=Wang%2C+Shu&rft.au=Chang%2C+Chung-Chou+H&rft.date=2019-05-28&rft.eissn=1538-3598&rft.volume=321&rft.issue=20&rft.spage=2003&rft_id=info:doi/10.1001%2Fjama.2019.5791&rft_id=info%3Apmid%2F31104070&rft.externalDocID=31104070
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-7484&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-7484&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-7484&client=summon