Streamflow Intermittence in Europe: Estimating High‐Resolution Monthly Time Series by Downscaling of Simulated Runoff and Random Forest Modeling

Knowing where and when rivers cease to flow provides an important basis for evaluating riverine biodiversity, biogeochemistry and ecosystem services. We present a novel modeling approach to estimate monthly time series of streamflow intermittence at high spatial resolution at the continental scale....

Full description

Saved in:
Bibliographic Details
Published inWater resources research Vol. 60; no. 8
Main Authors Döll, Petra, Abbasi, Mahdi, Messager, Mathis Loïc, Trautmann, Tim, Lehner, Bernhard, Lamouroux, Nicolas
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 01.08.2024
American Geophysical Union
Wiley
Subjects
Online AccessGet full text
ISSN0043-1397
1944-7973
1944-7973
DOI10.1029/2023WR036900

Cover

Abstract Knowing where and when rivers cease to flow provides an important basis for evaluating riverine biodiversity, biogeochemistry and ecosystem services. We present a novel modeling approach to estimate monthly time series of streamflow intermittence at high spatial resolution at the continental scale. Streamflow intermittence is quantified at more than 1.5 million river reaches in Europe as the number of no‐flow days grouped into five classes (0, 1–5, 6–15, 16–29, 30–31 no‐flow days) for each month from 1981 to 2019. Daily time series of observed streamflow at 3706 gauging stations were used to train and validate a two‐step random forest modeling approach. Important predictors were derived from time series of monthly streamflow at 73 million 15 arc‐sec (∼500 m) grid cells that were computed by downscaling the 0.5 arc‐deg (∼55 km) output of the global hydrological model WaterGAP, which accounts for human water use. Of the observed perennial and non‐perennial station‐months, 97.8% and 86.4%, respectively, were correctly predicted. Interannual variations of the number of non‐perennial months at non‐perennial reaches were satisfactorily simulated, with a median Pearson correlation of 0.5. While the spatial prevalence of non‐perennial reaches is underestimated, the number of non‐perennial months is overestimated in dry regions of Europe where artificial storage abounds. Our model estimates that 3.8% of all European reach‐months and 17.2% of all reaches were non‐perennial during 1981–2019, predominantly with 30–31 no‐flow days. Although estimation uncertainty is high, our study provides, for the first time, information on the continent‐wide dynamics of non‐perennial rivers and streams. Plain Language Summary Even in wet climates, small streams can seasonally dry up. In drier areas, large rivers might not carry water for weeks or months. However, as streamflow observations are lacking for most drying rivers, we know little about when, where, and how long rivers experience such a streamflow intermittence that is crucial for both river life and human water supply. We developed and applied a novel approach to estimate, for the first time, the temporal dynamics of streamflow intermittence across European rivers and streams, including small ones. This approach combines the output of a global hydrological model with streamflow observations and other data. We refined the global model output available for 50 km cells to monthly streamflow in 500 m cells. We then applied a machine learning model to predict the number of days without water flow in each month during the period 1981–2019 for over 1.5 million river segments. We found that 17% of all European segments and 4% of all months at all segments experienced at least one day without flow. In the future, the model will be used to estimate the impact of climate change on streamflow intermittence. Key Points Streamflow intermittence at more than 1.5 million European reaches was estimated for every month during 1981–2019 18.7% of the European river network length and 3.8% of all reach‐months are non‐perennial, predominantly with 30–31 no‐flow days 15 arc‐sec monthly streamflow obtained by downscaling the output of a global hydrological model serves as input to random forest modeling
AbstractList Knowing where and when rivers cease to flow provides an important basis for evaluating riverine biodiversity, biogeochemistry and ecosystem services. We present a novel modeling approach to estimate monthly time series of streamflow intermittence at high spatial resolution at the continental scale. Streamflow intermittence is quantified at more than 1.5 million river reaches in Europe as the number of no‐flow days grouped into five classes (0, 1–5, 6–15, 16–29, 30–31 no‐flow days) for each month from 1981 to 2019. Daily time series of observed streamflow at 3706 gauging stations were used to train and validate a two‐step random forest modeling approach. Important predictors were derived from time series of monthly streamflow at 73 million 15 arc‐sec (∼500 m) grid cells that were computed by downscaling the 0.5 arc‐deg (∼55 km) output of the global hydrological model WaterGAP, which accounts for human water use. Of the observed perennial and non‐perennial station‐months, 97.8% and 86.4%, respectively, were correctly predicted. Interannual variations of the number of non‐perennial months at non‐perennial reaches were satisfactorily simulated, with a median Pearson correlation of 0.5. While the spatial prevalence of non‐perennial reaches is underestimated, the number of non‐perennial months is overestimated in dry regions of Europe where artificial storage abounds. Our model estimates that 3.8% of all European reach‐months and 17.2% of all reaches were non‐perennial during 1981–2019, predominantly with 30–31 no‐flow days. Although estimation uncertainty is high, our study provides, for the first time, information on the continent‐wide dynamics of non‐perennial rivers and streams. Plain Language Summary Even in wet climates, small streams can seasonally dry up. In drier areas, large rivers might not carry water for weeks or months. However, as streamflow observations are lacking for most drying rivers, we know little about when, where, and how long rivers experience such a streamflow intermittence that is crucial for both river life and human water supply. We developed and applied a novel approach to estimate, for the first time, the temporal dynamics of streamflow intermittence across European rivers and streams, including small ones. This approach combines the output of a global hydrological model with streamflow observations and other data. We refined the global model output available for 50 km cells to monthly streamflow in 500 m cells. We then applied a machine learning model to predict the number of days without water flow in each month during the period 1981–2019 for over 1.5 million river segments. We found that 17% of all European segments and 4% of all months at all segments experienced at least one day without flow. In the future, the model will be used to estimate the impact of climate change on streamflow intermittence. Key Points Streamflow intermittence at more than 1.5 million European reaches was estimated for every month during 1981–2019 18.7% of the European river network length and 3.8% of all reach‐months are non‐perennial, predominantly with 30–31 no‐flow days 15 arc‐sec monthly streamflow obtained by downscaling the output of a global hydrological model serves as input to random forest modeling
Knowing where and when rivers cease to flow provides an important basis for evaluating riverine biodiversity, biogeochemistry and ecosystem services. We present a novel modeling approach to estimate monthly time series of streamflow intermittence at high spatial resolution at the continental scale. Streamflow intermittence is quantified at more than 1.5 million river reaches in Europe as the number of no‐flow days grouped into five classes (0, 1–5, 6–15, 16–29, 30–31 no‐flow days) for each month from 1981 to 2019. Daily time series of observed streamflow at 3706 gauging stations were used to train and validate a two‐step random forest modeling approach. Important predictors were derived from time series of monthly streamflow at 73 million 15 arc‐sec (∼500 m) grid cells that were computed by downscaling the 0.5 arc‐deg (∼55 km) output of the global hydrological model WaterGAP, which accounts for human water use. Of the observed perennial and non‐perennial station‐months, 97.8% and 86.4%, respectively, were correctly predicted. Interannual variations of the number of non‐perennial months at non‐perennial reaches were satisfactorily simulated, with a median Pearson correlation of 0.5. While the spatial prevalence of non‐perennial reaches is underestimated, the number of non‐perennial months is overestimated in dry regions of Europe where artificial storage abounds. Our model estimates that 3.8% of all European reach‐months and 17.2% of all reaches were non‐perennial during 1981–2019, predominantly with 30–31 no‐flow days. Although estimation uncertainty is high, our study provides, for the first time, information on the continent‐wide dynamics of non‐perennial rivers and streams.
Abstract Knowing where and when rivers cease to flow provides an important basis for evaluating riverine biodiversity, biogeochemistry and ecosystem services. We present a novel modeling approach to estimate monthly time series of streamflow intermittence at high spatial resolution at the continental scale. Streamflow intermittence is quantified at more than 1.5 million river reaches in Europe as the number of no‐flow days grouped into five classes (0, 1–5, 6–15, 16–29, 30–31 no‐flow days) for each month from 1981 to 2019. Daily time series of observed streamflow at 3706 gauging stations were used to train and validate a two‐step random forest modeling approach. Important predictors were derived from time series of monthly streamflow at 73 million 15 arc‐sec (∼500 m) grid cells that were computed by downscaling the 0.5 arc‐deg (∼55 km) output of the global hydrological model WaterGAP, which accounts for human water use. Of the observed perennial and non‐perennial station‐months, 97.8% and 86.4%, respectively, were correctly predicted. Interannual variations of the number of non‐perennial months at non‐perennial reaches were satisfactorily simulated, with a median Pearson correlation of 0.5. While the spatial prevalence of non‐perennial reaches is underestimated, the number of non‐perennial months is overestimated in dry regions of Europe where artificial storage abounds. Our model estimates that 3.8% of all European reach‐months and 17.2% of all reaches were non‐perennial during 1981–2019, predominantly with 30–31 no‐flow days. Although estimation uncertainty is high, our study provides, for the first time, information on the continent‐wide dynamics of non‐perennial rivers and streams.
Knowing where and when rivers cease to flow provides an important basis for evaluating riverine biodiversity, biogeochemistry and ecosystem services. We present a novel modeling approach to estimate monthly time series of streamflow intermittence at high spatial resolution at the continental scale. Streamflow intermittence is quantified at more than 1.5 million river reaches in Europe as the number of no‐flow days grouped into five classes (0, 1–5, 6–15, 16–29, 30–31 no‐flow days) for each month from 1981 to 2019. Daily time series of observed streamflow at 3706 gauging stations were used to train and validate a two‐step random forest modeling approach. Important predictors were derived from time series of monthly streamflow at 73 million 15 arc‐sec (∼500 m) grid cells that were computed by downscaling the 0.5 arc‐deg (∼55 km) output of the global hydrological model WaterGAP, which accounts for human water use. Of the observed perennial and non‐perennial station‐months, 97.8% and 86.4%, respectively, were correctly predicted. Interannual variations of the number of non‐perennial months at non‐perennial reaches were satisfactorily simulated, with a median Pearson correlation of 0.5. While the spatial prevalence of non‐perennial reaches is underestimated, the number of non‐perennial months is overestimated in dry regions of Europe where artificial storage abounds. Our model estimates that 3.8% of all European reach‐months and 17.2% of all reaches were non‐perennial during 1981–2019, predominantly with 30–31 no‐flow days. Although estimation uncertainty is high, our study provides, for the first time, information on the continent‐wide dynamics of non‐perennial rivers and streams. Even in wet climates, small streams can seasonally dry up. In drier areas, large rivers might not carry water for weeks or months. However, as streamflow observations are lacking for most drying rivers, we know little about when, where, and how long rivers experience such a streamflow intermittence that is crucial for both river life and human water supply. We developed and applied a novel approach to estimate, for the first time, the temporal dynamics of streamflow intermittence across European rivers and streams, including small ones. This approach combines the output of a global hydrological model with streamflow observations and other data. We refined the global model output available for 50 km cells to monthly streamflow in 500 m cells. We then applied a machine learning model to predict the number of days without water flow in each month during the period 1981–2019 for over 1.5 million river segments. We found that 17% of all European segments and 4% of all months at all segments experienced at least one day without flow. In the future, the model will be used to estimate the impact of climate change on streamflow intermittence. Streamflow intermittence at more than 1.5 million European reaches was estimated for every month during 1981–2019 18.7% of the European river network length and 3.8% of all reach‐months are non‐perennial, predominantly with 30–31 no‐flow days 15 arc‐sec monthly streamflow obtained by downscaling the output of a global hydrological model serves as input to random forest modeling
Author Messager, Mathis Loïc
Lehner, Bernhard
Abbasi, Mahdi
Lamouroux, Nicolas
Trautmann, Tim
Döll, Petra
Author_xml – sequence: 1
  givenname: Petra
  orcidid: 0000-0003-2238-4546
  surname: Döll
  fullname: Döll, Petra
  email: p.doell@em.uni-frankfurt.de
  organization: Senckenberg Leibniz Biodiversity and Climate Research Centre (SBiK‐F) Frankfurt
– sequence: 2
  givenname: Mahdi
  orcidid: 0000-0002-9504-9426
  surname: Abbasi
  fullname: Abbasi, Mahdi
  organization: Goethe University Frankfurt
– sequence: 3
  givenname: Mathis Loïc
  orcidid: 0000-0002-3051-8068
  surname: Messager
  fullname: Messager, Mathis Loïc
  organization: McGill University
– sequence: 4
  givenname: Tim
  surname: Trautmann
  fullname: Trautmann, Tim
  organization: Goethe University Frankfurt
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0003-3712-2581
  surname: Lehner
  fullname: Lehner, Bernhard
  organization: McGill University
– sequence: 6
  givenname: Nicolas
  orcidid: 0000-0002-9184-2558
  surname: Lamouroux
  fullname: Lamouroux, Nicolas
  organization: Lyon‐Villeurbanne
BackLink https://hal.science/hal-04667183$$DView record in HAL
BookMark eNp9ks-O0zAQxiO0SHQXbjyAJS4gEXDiJI65rUqXVipC6i7ao-XEk9aVYxfboeqNR0A8Ik-CQwCxK8TFf0a_-WbGn8-TM2MNJMnTDL_KcM5e5zgntxtMKobxg2SWsaJIKaPkLJlhXJA0I4w-Ss6932OcFWVFZ8m36-BA9J22R7QyAVyvQgDTAlIGLQZnD_AGLXxQvQjKbNFSbXffv3zdgLd6CMoa9N6asNMndKN6QNfgFHjUnNBbezS-FXpMsh26Vv2gRQCJNoOxXYeEice42B5dWQc-RCEJI_44edgJ7eHJr_0i-Xi1uJkv0_WHd6v55ToVJc6qtATRigazhjFW5MCqqpB5B0Q0dSVb2TYsKwHXOUhGRS7rRsh4BSnzQsTRG3KRrCZdacWeH1wc0Z24FYr_DFi35cIF1WrgXVtkgDvWFGVdyC5WrihuyqqgNaNMyqiVTlqDOYjTUWj9RzDDfDSHj-Yc3WRO5F9M_E7oO6WXl2s-xnBRVTSryecsss8n9uDspyG-FO-Vb0FrYcAOnpOsJDSndVlG9Nk9dG8HZ-IrcoIZjd3WlEYqn6jWWe8ddLxVQYxmBieUvtPx7-8Uk17eS_rXgH_hZMKPSsPpvyy_3cw3OSVlRX4ACb_cwg
CitedBy_id crossref_primary_10_1016_j_jastp_2024_106381
crossref_primary_10_1016_j_ejrh_2024_102014
crossref_primary_10_5194_hess_29_1615_2025
crossref_primary_10_1016_j_jhydrol_2025_132910
Cites_doi 10.1038/s41597‐022‐01493‐1
10.18637/jss.v077.i01
10.25716/GUDE.0TNY‐KJPG
10.1002/hyp.13912
10.1038/ncomms13603
10.1016/j.jhydrol.2021.126170
10.48550/arXiv.1106.1813
10.3390/w13030380
10.1016/j.isprsjprs.2013.11.002
10.1016/B978-0-12-803835-2.00017-6
10.1029/2019WR025287
10.1088/1748‐9326/aac547
10.5194/hess‐24‐5279‐2020
10.1007/s10712‐015‐9343‐1
10.1038/s41586‐021‐03565‐5
10.1023/A:1010933404324
10.1002/eco.2390
10.1002/hyp.9740
10.6084/m9.figshare.24591807
10.1029/2008eo100001
10.1088/1748‐9326/7/1/014037
10.1007/s10040‐016‐1519‐3
10.5194/gmd‐14‐5155‐2021
10.1002/hyp.13979
10.1007/s12065‐015‐0128‐8
10.1890/100125
10.3390/w11050910
10.1093/biosci/biac098
10.1111/1365‐2664.12941
10.1046/J.1365‐2427.1997.00153.X
10.1016/S0022‐1694(01)00565‐0
10.5194/gmd‐14‐1037‐2021
10.1038/s41597‐023‐02618‐w
10.3414/ME00‐01‐0052
10.5194/hess‐19‐1521‐2015
10.5194/essd‐10‐787‐2018
10.1038/s41893‐022‐00873‐0
10.1007/698_2009_24
10.5194/essd‐10‐765‐2018
10.5194/gmd‐14‐3843‐2021
10.1029/1999GB900046
10.5281/zenodo.10301003
10.1029/2020GL090794
10.1002/hyp.10391
10.1162/EVCO_a_00069
10.3233/ida‐2002‐6504
10.1038/s41597‐019‐0300‐6
10.1002/wat2.1436
10.3390/w12071980
10.4296/cwrj2011‐903
10.1093/biosci/bit027
10.5194/hess‐17‐2685‐2013
10.1002/eco.1712
10.1080/01431160412331291297
10.5194/hess‐22‐3033‐2018
10.1016/j.jhydrol.2023.129422
10.1002/2017WR021119
10.1080/02626667.2021.1963444
10.1002/wat2.1504
ContentType Journal Article
Copyright 2024. The Author(s).
2024. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2024. The Author(s).
– notice: 2024. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 24P
AAYXX
CITATION
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
1XC
ADTOC
UNPAY
DOA
DOI 10.1029/2023WR036900
DatabaseName Wiley Online Library Open Access
CrossRef
Aqualine
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Civil Engineering Abstracts
AGRICOLA

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Openly Available Collection - DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
Environmental Sciences
EISSN 1944-7973
EndPage n/a
ExternalDocumentID oai_doaj_org_article_fc41e0f9b4584dfeac670b56478979dd
10.1029/2023wr036900
oai:HAL:hal-04667183v1
10_1029_2023WR036900
WRCR27356
Genre researchArticle
GeographicLocations Europe
GeographicLocations_xml – name: Europe
GrantInformation_xml – fundername: Agence Nationale de la Recherche
  funderid: ANR‐17‐EURE‐0018
– fundername: Natural Sciences and Engineering Research Council of Canada
– fundername: European Union Horizon 2020
  funderid: 869226
GroupedDBID -~X
..I
.DC
05W
0R~
123
1OB
1OC
24P
31~
33P
3V.
50Y
5VS
6TJ
7WY
7XC
8-1
8CJ
8FE
8FG
8FH
8FL
8G5
8R4
8R5
8WZ
A00
A6W
AAESR
AAHBH
AAHHS
AAIHA
AAIKC
AAMNW
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
AAYOK
AAZKR
ABCUV
ABJCF
ABJNI
ABPPZ
ABTAH
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYN
AEUYR
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AFZJQ
AIDBO
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BEZIV
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D0L
D1J
DCZOG
DDYGU
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FEDTE
FRNLG
G-S
GNUQQ
GODZA
GROUPED_ABI_INFORM_COMPLETE
GUQSH
HCIFZ
HVGLF
HZ~
K60
K6~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M0C
M2O
M7R
M7S
MEWTI
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
MY~
O9-
OHT
OK1
P-X
P2P
P2W
PALCI
PATMY
PCBAR
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TAE
TN5
TWZ
UQL
VJK
VOH
WBKPD
WXSBR
WYJ
XOL
XSW
YHZ
YV5
ZCG
ZY4
ZZTAW
~02
~KM
~OA
~~A
AAMMB
AAYXX
ADXHL
AEFGJ
AETEA
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
GROUPED_DOAJ
PHGZM
PHGZT
PQGLB
PUEGO
WIN
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
1XC
ADTOC
UNPAY
ID FETCH-LOGICAL-a5016-5eacab09b99942e9664d2fe3ab86dcdcb915e082ed97a2d8bade08edd24a567b3
IEDL.DBID UNPAY
ISSN 0043-1397
1944-7973
IngestDate Fri Oct 03 12:50:57 EDT 2025
Sun Sep 07 11:29:46 EDT 2025
Tue Oct 14 20:43:23 EDT 2025
Fri Oct 03 00:14:47 EDT 2025
Sat Aug 23 12:30:50 EDT 2025
Thu Apr 24 23:12:46 EDT 2025
Wed Oct 01 05:43:15 EDT 2025
Wed Jan 22 17:14:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords random forest
global hydrological model
no-flow days
Europe
streamflow
Language English
License Attribution
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a5016-5eacab09b99942e9664d2fe3ab86dcdcb915e082ed97a2d8bade08edd24a567b3
Notes Petra Döll and Mahdi Abbasi contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9504-9426
0000-0003-2238-4546
0000-0003-3712-2581
0000-0002-3051-8068
0000-0002-9184-2558
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1029/2023wr036900
PQID 3097789877
PQPubID 105507
PageCount 28
ParticipantIDs doaj_primary_oai_doaj_org_article_fc41e0f9b4584dfeac670b56478979dd
unpaywall_primary_10_1029_2023wr036900
hal_primary_oai_HAL_hal_04667183v1
proquest_miscellaneous_3153727855
proquest_journals_3097789877
crossref_citationtrail_10_1029_2023WR036900
crossref_primary_10_1029_2023WR036900
wiley_primary_10_1029_2023WR036900_WRCR27356
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2024
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Water resources research
PublicationYear 2024
Publisher John Wiley & Sons, Inc
American Geophysical Union
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: American Geophysical Union
– name: Wiley
References 2002; 16
2023; 73
2013; 27
2021; 66
2019; 55
2019; 11
2023; 620
2023b
2020; 12
2023a
2005; 26
2001; 45
2016; 37
2014; 64
2012; 51
2020; 7
2013; 17
2021; 597
2017; 77
1999; 13
2021; 594
2012; 20
2023; 10
2021; 8
2021; 48
2019; 6
2015; 19
2012
2017; 25
2002; 6
2009
2002; 258
2020; 34
2012; 37
2018; 22
2015; 8
2014; 87
2011; 9
2021; 14
2021; 13
2017; 53
2016; 7
2015; 29
2023
2022; 5
2020
1997; 37
2022; 9
2008; 89
2017
2022; 15
2020; 24
2018; 55
2012; 7
2018; 10
2016; 9
2018; 13
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_66_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
Bondarenko M. (e_1_2_9_8_1) 2020
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
GLIMS & NSIDC (e_1_2_9_26_1) 2012
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
Müller Schmied H. (e_1_2_9_43_1) 2023
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 258
  start-page: 214
  issue: 1–4
  year: 2002
  end-page: 231
  article-title: Validation of a new global 30‐min drainage direction map
  publication-title: Journal of Hydrology
– volume: 9
  start-page: 409
  issue: 1
  year: 2022
  article-title: Version 3 of the global aridity index and potential evapotranspiration database
  publication-title: Scientific Data
– volume: 15
  issue: 5
  year: 2022
  article-title: Drought in non‐perennial river and ephemeral stream networks
  publication-title: Ecohydrology
– volume: 24
  start-page: 5279
  issue: 11
  year: 2020
  end-page: 5295
  article-title: Evaluating a landscape‐scale daily water balance model to support spatially continuous representation of flow intermittency throughout stream networks
  publication-title: Hydrology and Earth System Sciences
– volume: 26
  start-page: 1959
  issue: 9
  year: 2005
  end-page: 1977
  article-title: GLC2000: A new approach to global land cover mapping from Earth observation data
  publication-title: International Journal of Remote Sensing
– volume: 10
  start-page: 787
  issue: 2
  year: 2018
  end-page: 804
  article-title: The global streamflow Indices and metadata archive (GSIM)—Part 2: Quality control, time‐series indices and homogeneity assessment
  publication-title: Earth System Science Data
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Machine Learning
– volume: 53
  start-page: 8781
  issue: 11
  year: 2017
  end-page: 8794
  article-title: Prediction of hydrologic characteristics for ungauged catchments to support hydroecological modeling
  publication-title: Water Resources Research
– volume: 12
  issue: 7
  year: 2020
  article-title: What's in a name? Patterns, trends, and suggestions for defining non‐perennial rivers and streams
  publication-title: Water
– volume: 7
  issue: 1
  year: 2016
  article-title: Estimating the volume and age of water stored in global lakes using a geo‐statistical approach
  publication-title: Nature Communications
– volume: 87
  start-page: 57
  year: 2014
  end-page: 67
  article-title: EarthEnv‐DEM90: A nearly‐global, void‐free, multi‐scale smoothed, 90m digital elevation model from fused ASTER and SRTM data
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– volume: 55
  start-page: 6499
  issue: 8
  year: 2019
  end-page: 6516
  article-title: Global reconstruction of naturalized river flows at 2.94 million reaches
  publication-title: Water Resources Research
– volume: 5
  start-page: 586
  issue: 7
  year: 2022
  end-page: 592
  article-title: Assessing placement bias of the global river gauge network
  publication-title: Nature Sustainability
– volume: 48
  issue: 2
  year: 2021
  article-title: Spatial patterns and drivers of nonperennial flow regimes in the contiguous United States
  publication-title: Geophysical Research Letters
– volume: 7
  issue: 3
  year: 2020
  article-title: Zero or not? Causes and consequences of zero‐flow stream gage readings
  publication-title: WIREs. Water
– volume: 89
  start-page: 93
  issue: 10
  year: 2008
  end-page: 94
  article-title: New global hydrography derived from spaceborne elevation data
  publication-title: Eos, Transactions American Geophysical Union
– start-page: 15
  year: 2009
  end-page: 39
– volume: 19
  start-page: 1521
  issue: 3
  year: 2015
  end-page: 1545
  article-title: A global data set of the extent of irrigated land from 1900 to 2005
  publication-title: Hydrology and Earth System Sciences
– volume: 37
  start-page: 195
  issue: 2
  year: 2016
  end-page: 221
  article-title: Modelling freshwater resources at the global scale: Challenges and prospects
  publication-title: Surveys in Geophysics
– volume: 64
  start-page: 229
  issue: 3
  year: 2014
  end-page: 235
  article-title: Non‐perennial rivers: A challenge for freshwater ecology
  publication-title: BioScience
– volume: 51
  start-page: 74
  issue: 1
  year: 2012
  end-page: 81
  article-title: Probability machines: Consistent probability estimation using nonparametric learning machines
  publication-title: Methods of Information in Medicine
– volume: 9
  start-page: 494
  issue: 9
  year: 2011
  end-page: 502
  article-title: High‐resolution mapping of the world's reservoirs and dams for sustainable river‐flow management
  publication-title: Frontiers in Ecology and the Environment
– volume: 8
  start-page: 89
  issue: 2–3
  year: 2015
  end-page: 116
  article-title: ExSTraCS 2.0: Description and evaluation of a scalable learning classifier system
  publication-title: Evolutionary Intelligence
– volume: 37
  start-page: 231
  issue: 1
  year: 1997
  end-page: 249
  article-title: How much water does a river need?
  publication-title: Freshwater Biology
– volume: 22
  start-page: 3033
  issue: 5
  year: 2018
  end-page: 3051
  article-title: Extrapolating regional probability of drying of headwater streams using discrete observations and gauging networks
  publication-title: Hydrology and Earth System Sciences
– volume: 6
  start-page: 429
  issue: 5
  year: 2002
  end-page: 449
  article-title: The class imbalance problem: A systematic study
  publication-title: Intelligent Data Analysis
– year: 2023b
– volume: 25
  start-page: 771
  issue: 3
  year: 2017
  end-page: 785
  article-title: The world karst aquifer mapping project: Concept, mapping procedure and map of Europe
  publication-title: Hydrogeology Journal
– volume: 34
  start-page: 5704
  issue: 26
  year: 2020
  end-page: 5711
  article-title: Aqua temporaria incognita
  publication-title: Hydrological Processes
– volume: 66
  start-page: 2046
  issue: 14
  year: 2021
  end-page: 2059
  article-title: Predicting flow intermittence in France under climate change
  publication-title: Hydrological Sciences Journal
– volume: 17
  start-page: 2685
  issue: 7
  year: 2013
  end-page: 2699
  article-title: Regionalization of patterns of flow intermittence from gauging station records
  publication-title: Hydrology and Earth System Sciences
– volume: 11
  issue: 5
  year: 2019
  article-title: A brief review of random forests for water scientists and practitioners and their recent history in water resources
  publication-title: Water
– volume: 20
  start-page: 249
  issue: 2
  year: 2012
  end-page: 275
  article-title: Resampling methods for meta‐model validation with recommendations for evolutionary computation
  publication-title: Evolutionary Computation
– volume: 10
  issue: 1
  year: 2023
  article-title: Hydrological model‐based streamflow reconstruction for Indian sub‐continental river basins, 1951–2021
  publication-title: Scientific Data
– volume: 10
  start-page: 765
  issue: 2
  year: 2018
  end-page: 785
  article-title: The Global Streamflow Indices and Metadata Archive (GSIM) – Part 1: The production of a daily streamflow archive and metadata
  publication-title: Earth System Science Data
– volume: 13
  issue: 3
  year: 2021
  article-title: Classification and prediction of natural streamflow regimes in arid regions of the USA
  publication-title: Water
– volume: 13
  issue: 6
  year: 2018
  article-title: Worldwide evaluation of mean and extreme runoff from six global‐scale hydrological models that account for human impacts
  publication-title: Environmental Research Letters
– volume: 7
  issue: 1
  year: 2012
  article-title: How is the impact of climate change on river flow regimes related to the impact on mean annual runoff? A global‐scale analysis
  publication-title: Environmental Research Letters
– volume: 597
  year: 2021
  article-title: Classification and trends in non‐perennial river flow regimes in Australia, northwestern Europe and USA: A global perspective
  publication-title: Journal of Hydrology
– volume: 73
  start-page: 9
  issue: 1
  year: 2023
  end-page: 22
  article-title: Causes, responses, and implications of anthropogenic versus natural flow intermittence in river networks
  publication-title: BioScience
– volume: 77
  issue: 1
  year: 2017
  article-title: Ranger: A fast implementation of random forests for high dimensional data in C++ and R
  publication-title: Journal of Statistical Software
– year: 2023a
  article-title: The global water resources and use model WaterGAP v2.2e: Description and evaluation of modifications and new features
  publication-title: Geoscientific Model Development Discussions
– volume: 6
  start-page: 283
  issue: 1
  year: 2019
  article-title: Global hydro‐environmental sub‐basin and river reach characteristics at high spatial resolution
  publication-title: Scientific Data
– volume: 34
  start-page: 4727
  issue: 24
  year: 2020
  end-page: 4739
  article-title: Impact of physico‐geographical factors and climate variability on flow intermittency in the rivers of water surplus zone
  publication-title: Hydrological Processes
– volume: 27
  start-page: 2171
  issue: 15
  year: 2013
  end-page: 2186
  article-title: Global river hydrography and network routing: Baseline data and new approaches to study the world's large river systems
  publication-title: Hydrological Processes
– volume: 14
  start-page: 3843
  issue: 6
  year: 2021
  end-page: 3878
  article-title: Understanding each other's models: An introduction and a standard representation of 16 global water models to support intercomparison, improvement, and communication
  publication-title: Geoscientific Model Development
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  article-title: SMOTE: Synthetic minority oversampling technique
  publication-title: Journal of Artificial Intelligence Research
– volume: 8
  issue: 2
  year: 2021
  article-title: An overview of the hydrology of non‐perennial rivers and streams
  publication-title: WIREs Water
– year: 2012
– start-page: 433
  year: 2017
  end-page: 454
– volume: 55
  start-page: 353
  issue: 1
  year: 2018
  end-page: 364
  article-title: Flow intermittence and ecosystem services in rivers of the Anthropocene
  publication-title: Journal of Applied Ecology
– volume: 594
  start-page: 391
  issue: 7863
  year: 2021
  end-page: 397
  article-title: Global prevalence of non‐perennial rivers and streams
  publication-title: Nature
– volume: 37
  start-page: 279
  issue: 4
  year: 2012
  end-page: 310
  article-title: An overview of temporary stream hydrology in Canada
  publication-title: Canadian Water Resources Journal
– volume: 620
  year: 2023
  article-title: Dynamics of streamflow permanence in a headwater network: Insights from catchment‐scale model simulations
  publication-title: Journal of Hydrology
– year: 2020
– year: 2023
– volume: 14
  start-page: 5155
  issue: 8
  year: 2021
  end-page: 5181
  article-title: Hydrostreamer v1.0 – Improved streamflow predictions for local applications from an ensemble of downscaled global runoff products
  publication-title: Geoscientific Model Development
– volume: 29
  start-page: 310
  issue: 2
  year: 2015
  end-page: 320
  article-title: Hyper‐resolution global hydrological modelling: What is next?
  publication-title: Hydrological Processes
– volume: 14
  start-page: 1037
  issue: 2
  year: 2021
  end-page: 1079
  article-title: The global water resources and use model WaterGAP v2.2d: Model description and evaluation
  publication-title: Geoscientific Model Development
– volume: 9
  start-page: 1141
  issue: 7
  year: 2016
  end-page: 1153
  article-title: Understanding controls on flow permanence in intermittent rivers to aid ecological research: Integrating meteorology, geology and land cover
  publication-title: Ecohydrology
– volume: 13
  start-page: 997
  issue: 4
  year: 1999
  end-page: 1027
  article-title: Estimating historical changes in global land cover: Croplands from 1700 to 1992
  publication-title: Global Biogeochemical Cycles
– year: 2023
  ident: e_1_2_9_43_1
  article-title: The global water resources and use model WaterGAP v2.2e: Description and evaluation of modifications and new features
  publication-title: Geoscientific Model Development Discussions
– ident: e_1_2_9_67_1
  doi: 10.1038/s41597‐022‐01493‐1
– ident: e_1_2_9_63_1
  doi: 10.18637/jss.v077.i01
– ident: e_1_2_9_44_1
  doi: 10.25716/GUDE.0TNY‐KJPG
– ident: e_1_2_9_50_1
  doi: 10.1002/hyp.13912
– ident: e_1_2_9_41_1
  doi: 10.1038/ncomms13603
– ident: e_1_2_9_54_1
  doi: 10.1016/j.jhydrol.2021.126170
– ident: e_1_2_9_12_1
  doi: 10.48550/arXiv.1106.1813
– ident: e_1_2_9_39_1
  doi: 10.3390/w13030380
– ident: e_1_2_9_48_1
  doi: 10.1016/j.isprsjprs.2013.11.002
– ident: e_1_2_9_14_1
  doi: 10.1016/B978-0-12-803835-2.00017-6
– ident: e_1_2_9_35_1
  doi: 10.1029/2019WR025287
– ident: e_1_2_9_65_1
  doi: 10.1088/1748‐9326/aac547
– ident: e_1_2_9_64_1
  doi: 10.5194/hess‐24‐5279‐2020
– ident: e_1_2_9_2_1
– ident: e_1_2_9_23_1
  doi: 10.1007/s10712‐015‐9343‐1
– ident: e_1_2_9_40_1
  doi: 10.1038/s41586‐021‐03565‐5
– ident: e_1_2_9_52_1
– ident: e_1_2_9_9_1
  doi: 10.1023/A:1010933404324
– ident: e_1_2_9_51_1
  doi: 10.1002/eco.2390
– ident: e_1_2_9_32_1
  doi: 10.1002/hyp.9740
– ident: e_1_2_9_22_1
  doi: 10.6084/m9.figshare.24591807
– ident: e_1_2_9_34_1
  doi: 10.1029/2008eo100001
– ident: e_1_2_9_25_1
  doi: 10.1088/1748‐9326/7/1/014037
– ident: e_1_2_9_13_1
  doi: 10.1007/s10040‐016‐1519‐3
– ident: e_1_2_9_30_1
  doi: 10.5194/gmd‐14‐5155‐2021
– ident: e_1_2_9_62_1
  doi: 10.1002/hyp.13979
– ident: e_1_2_9_61_1
  doi: 10.1007/s12065‐015‐0128‐8
– volume-title: Global land ice measurements form space (GLIMS) glacier dataset: v1
  year: 2012
  ident: e_1_2_9_26_1
– ident: e_1_2_9_33_1
  doi: 10.1890/100125
– ident: e_1_2_9_60_1
  doi: 10.3390/w11050910
– ident: e_1_2_9_19_1
  doi: 10.1093/biosci/biac098
– ident: e_1_2_9_17_1
  doi: 10.1111/1365‐2664.12941
– ident: e_1_2_9_47_1
  doi: 10.1046/J.1365‐2427.1997.00153.X
– ident: e_1_2_9_24_1
  doi: 10.1016/S0022‐1694(01)00565‐0
– ident: e_1_2_9_42_1
  doi: 10.5194/gmd‐14‐1037‐2021
– ident: e_1_2_9_15_1
  doi: 10.1038/s41597‐023‐02618‐w
– ident: e_1_2_9_38_1
  doi: 10.3414/ME00‐01‐0052
– ident: e_1_2_9_56_1
  doi: 10.5194/hess‐19‐1521‐2015
– ident: e_1_2_9_27_1
  doi: 10.5194/essd‐10‐787‐2018
– ident: e_1_2_9_31_1
  doi: 10.1038/s41893‐022‐00873‐0
– ident: e_1_2_9_49_1
  doi: 10.1007/698_2009_24
– ident: e_1_2_9_20_1
  doi: 10.5194/essd‐10‐765‐2018
– ident: e_1_2_9_58_1
  doi: 10.5194/gmd‐14‐3843‐2021
– ident: e_1_2_9_46_1
  doi: 10.1029/1999GB900046
– ident: e_1_2_9_59_1
  doi: 10.5281/zenodo.10301003
– ident: e_1_2_9_21_1
– ident: e_1_2_9_28_1
  doi: 10.1029/2020GL090794
– ident: e_1_2_9_5_1
  doi: 10.1002/hyp.10391
– ident: e_1_2_9_6_1
  doi: 10.1162/EVCO_a_00069
– ident: e_1_2_9_29_1
  doi: 10.3233/ida‐2002‐6504
– ident: e_1_2_9_36_1
  doi: 10.1038/s41597‐019‐0300‐6
– volume-title: Census/projection‐disaggregated gridded population datasets for 189 countries in 2020 using Built‐Settlement Growth Model (BSGM) outputs
  year: 2020
  ident: e_1_2_9_8_1
– ident: e_1_2_9_66_1
  doi: 10.1002/wat2.1436
– ident: e_1_2_9_10_1
  doi: 10.3390/w12071980
– ident: e_1_2_9_11_1
  doi: 10.4296/cwrj2011‐903
– ident: e_1_2_9_18_1
  doi: 10.1093/biosci/bit027
– ident: e_1_2_9_57_1
  doi: 10.5194/hess‐17‐2685‐2013
– ident: e_1_2_9_16_1
  doi: 10.1002/eco.1712
– ident: e_1_2_9_3_1
  doi: 10.1080/01431160412331291297
– ident: e_1_2_9_4_1
  doi: 10.5194/hess‐22‐3033‐2018
– ident: e_1_2_9_37_1
  doi: 10.1016/j.jhydrol.2023.129422
– ident: e_1_2_9_7_1
  doi: 10.1002/2017WR021119
– ident: e_1_2_9_53_1
  doi: 10.1080/02626667.2021.1963444
– ident: e_1_2_9_55_1
  doi: 10.1002/wat2.1504
– ident: e_1_2_9_45_1
SSID ssj0014567
Score 2.5133426
Snippet Knowing where and when rivers cease to flow provides an important basis for evaluating riverine biodiversity, biogeochemistry and ecosystem services. We...
Abstract Knowing where and when rivers cease to flow provides an important basis for evaluating riverine biodiversity, biogeochemistry and ecosystem services....
SourceID doaj
unpaywall
hal
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Annual variations
Biodiversity
Biogeochemistry
Climate change
Creeks & streams
Discharge measurement
Drying
Ecosystem services
ecosystems
Environmental impact
Environmental Sciences
Estimation
Europe
Gaging stations
global hydrological model
humans
Hydrologic models
Hydrology
Interannual variations
M cells
Machine learning
Modelling
Monthly
no‐flow days
Perennial streams
Railway stations
random forest
riparian areas
Rivers
runoff
Segments
Spatial discrimination
Spatial resolution
Stream discharge
Stream flow
streamflow
Streams
Time series
time series analysis
uncertainty
Water flow
Water supply
Water use
Wet climates
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hXsoFQQFhKNWCgAtYOOtde5dbKa0iBBwCVXuz9tlEcuyqcYhy4ycgfiK_hBk_olTiceESOc7Eye7Oznw7T0KeBWeZNkHGAJVtzB0PsQTcGvsQuPOjDDQu5jt__JSNT_n7c3G-1eoLY8K68sDdxL0Olo98EpRBh54LICeyPDECUyRVrpxD6ZtINRymev8BwIJ88C0jxulD3hOm8LSfnk1AcCvMattSRm3NflAxU4yI3IKbu8vqUq9XuiyvA9hWA53cJrd66EgPu798h9zw1R7ZHTKLF3DddzSfru-SH-hu1vNQ1ivaWv3ms6aFx3RW0c4E_4Yew_5GxFpdUIz3-PntO1rzO16ksNubabmmmCRC0YjmF9Ss6Ts0R8PC4pfqQD_P5tgAzDs6WVZ1CFRXcAkv9Zxi289FQ7HdGpLfI6cnx1-OxnHffyHWApBgLGCytUmUARDJmYeDEXcs-FQbmTnrrFEj4QFCeKdyzZw02sFb7xzjGubfpPfJTlVX_gGhlmVWOOGsYprLxCstHfwECAuAj1mQEXk5LERh--Lk2COjLFonOVPF9rJF5PmG-rIryvEHure4phsaLKXd3gAGK3oGK_7FYBF5Chxx7Rnjww8F3kt4loFuT7-OIrI_MEzRC4FFkSYArqWSeR6RJ5uPYfuiT0ZXvl4CDWgcgJBSiIi82DDab0e1uhpG9arlwr8OvTibHE0Amors4f-YhEfkJjydd5GP-2SnuVr6x4DGGnPQbrxf9hgvbg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQOZQL4ilSCnIr4AIRSdZObG6ltFohQGiham-RHdvdlbJJtcmy2hs_AfUn9pcwk5d2JUDiEuUxzso7M54vM54ZQl44k0VKO-EDVM58ZpjzBeBW3zrHjA1jsLiY7_z5Szw-Yx8v-EXncMNcmLY-xOBwQ81o1mtUcKWrrtgA1sjEvt_nE1iAZQCf7LdDgDIo4RH7OkQRABwkfYQZkU638R3Gv90cvWWSmsr9YGimuC9yA3TuLosrtV6pPN-GsY0dOr1H7nYAkh61HL9PbtniAdnt84srOO_6mk_XD8k1Bp3V3OXlija-v_msbkAynRW0dcS_oyeg5Yhbi0uKuz5ufv5Cn34rkRR0vp7ma4qpIhRdabaiek0_oFMa2IuDSke_zebYBswaOlkWpXNUFXAKh3JOsflnVVNsuobkj8jZ6cn347HfdWHwFQc86HNYmpUOpAYoySILn0fMRM6OlBaxyUymZcgtAAlrZKIiI7QycGmNiZiC_1-PHpOdoizsE0KzKM644SaTkWIisFIJAz8BSwaAyNgJj7zuGZFmXYly7JSRp02oPJLpJts88nKgvmpLc_yF7j3ydKDBgtrNjXJxmXb6mbqMhTZwUmPc2DiYc5wEmmMmrkykMR45BInYesf46FOK9wIWx2DhRz9Cj-z3ApN2S0GVjgKA2EKKJPHIwfAYlBgjM6qw5RJowO4AkBSce-TVIGh_nNVq0c_qTSOF_5x6ej45ngBA5fHe_5E_JXfgAWt3Ou6TnXqxtM8AfdX6eaNivwF1Xyb_
  priority: 102
  providerName: Wiley-Blackwell
Title Streamflow Intermittence in Europe: Estimating High‐Resolution Monthly Time Series by Downscaling of Simulated Runoff and Random Forest Modeling
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023WR036900
https://www.proquest.com/docview/3097789877
https://www.proquest.com/docview/3153727855
https://hal.science/hal-04667183
https://doi.org/10.1029/2023wr036900
https://doaj.org/article/fc41e0f9b4584dfeac670b56478979dd
UnpaywallVersion publishedVersion
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Openly Available Collection - DOAJ
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: DOA
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: 24P
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF6V9FAuvBGGEi2ocAFXjr279nILJVWEoKoCVcvJ2vXukojErhqHKJz4CYifyC9hxo-IVLwulh9jJ2vPznw7T0L2nMlCpV3iA1TOfGaY8xPArb51jhnbE6BxMd_57ZEYnrDXZ_xsi-y1uTAb_vtQ4to8Wl6AmJUBLMy3BQfE3SHbJ0fH_Q-t8xhBTOU8ZsyPZRw18e2Xb9_QPFWBftAnYwx__AVb7izyc7Vaqul0E61W6ubwOhm0f7SOMvm0vyj1fvblUg3Hf43kBrnW4E3arxnkJtmy-S2y06Yjz2G_aYM-Xt0m39FHrWZuWixpZSqcTcoKU9NJTmu7_Qs6AKGAMDf_SDFI5MfXb-gCqBmYgogox9MVxcwSipY3O6d6RV-hDRu4AW8qHH03mWHXMGvoaJEXzlGVwy5sihnFXqHzkmKPNiS_Q04OB-8Phn7TtMFXHOCjz0GSKx1IDciThRZWU8yEzkZKJ8JkJtOyxy3gDmtkrEKTaGXg0BoTMsVFrKO7pJMXub1HaBaKjBtuMhkqlgRWqsTAT4CEAcwpXOKRZ-0HTbOmojk21pimlWc9lCm-89NR_c498mRNfV5X8vgD3UvkjTUN1t-uTsDHTJvpnLqM9WzgpEY3s3EwZhEHmmPiroylMR55DJy18Yxh_02K5wImBACC6HPPI7st46WN5JinUQCIPJFJHHvk0foyzHl05KjcFgugATUFuDPh3CNP1wz721G1HOeR5xU3_3Xo6enoYAR4lov7__vcB-QqHLI6JHKXdMqLhX0IMK3UXXIlZMfdysjRbWbsTzW0Njc
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfQ9lBeEONDBAYYBLxARJI6js3bGJsKdBMqm7a3yI7ttVKaTP2g6ht_AuJP5C_hLl9qJUDipUqTcyvn7nw_3_nuCHnhTBYp7YQPUDnzmWHOF4BbfescMzbkYHEx3_nklA_O2afL-LLpc4q5MHV9iM7hhppRrdeo4OiQbqoNYJFMbPx9MYIVWAawZ99lPOS4-4rYly6MAOggaUPMCHWak-8w_u3m6C2bVJXuB0szxoORG6iztyyu1Xql8nwbx1aG6Pg2udUgSHpQs3yP3LDFHdJrE4zncN00Nh-v75KfGHVWU5eXK1o5_6aTRYWS6aSgtSf-HT0CNUfgWlxRPPbx6_sPdOrXIklB6RfjfE0xV4SiL83OqV7TD-iVBv7ioNLRr5Mp9gGzho6WRekcVQVcwkc5pdj9c76g2HUNye-R8-Ojs8OB37Rh8FUMgNCPYW1WOpAasCSLLOyPmImc7SstuMlMpmUYW0AS1shERUZoZeCrNSZiCt6_7t8nO0VZ2AeEZhHPYhObTEaKicBKJQz8BawZgCK5Ex553TIizZoa5dgqI0-rWHkk0022eeRlR31d1-b4C9175GlHgxW1qxvl7CptFDR1GQtt4KTGwLFxMGeeBDrGVFyZSGM88hwkYus3BgfDFO8FjHMw8f1voUf2W4FJm7VgnvYDwNhCiiTxyLPuMWgxhmZUYcsl0IDhASQp4tgjrzpB--OsVrN2Vm8qKfzn1NOL0eEIEGrMH_4f-VPSG5ydDNPhx9PPj8hNIGL1scd9srOYLe1jgGIL_aRSt99Z5Spr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfQkBgviE8RGGAQ8ALR0tROYt7GtqrAmKbCtL1ZdmyvldKkalOqvvEnIP5E_hLu8qVWAiReqjQ9t3Lv65c73x0hL51JQ6Vd4gNUTn1mmPMTwK2-dY4Z24vA42K98-fTaHjOPl7yy2bOKdbC1P0huoAbakZlr1HB7cy4ptsANsnEwd8XI7DAIoBn9uuMgzPE1s7srEsjADqI2xQzQp3m5Dus399cveWTqtb94GnGeDByA3XuLvOZWq9Ulm3j2MoRDW6TWw2CpAc1y--Qaza_S3bbAuMFXDeDzcfre-QnZp3V1GXFilbBv-mkrFAyneS0jsS_o8eg5ghc8yuKxz5-ff-BQf1aJCkofTnO1hRrRSjG0uyC6jU9wqg08BcXFY5-mUxxDpg1dLTMC-eoyuESXoopxemfi5Li1DUkv0_OB8dfD4d-M4bBVxwAoc_BNisdCA1YkoUWno-YCZ3tK51EJjWpFj1uAUlYI2IVmkQrA2-tMSFT8P_r_gOykxe5fUhoGkYpN9ykIlQsCaxQiYGfAJsBKDJyiUfetIyQadOjHEdlZLLKlYdCbrLNI6866lndm-MvdO-Rpx0NdtSubhTzK9koqHQp69nACY2JY-Ngz1EcaI6luCIWxnjkBUjE1ncMD04k3gtYFIGL73_reWSvFRjZ2IKF7AeAsRORxLFHnncfgxZjakbltlgCDTgeQJIJ5x553QnaH3e1mre7eltJ4T-3Li9GhyNAqDx69H_kz8iNs6OBPPlw-ukxuQk0rD71uEd2yvnSPgEkVuqnlbb9Bt64Kfo
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLam7mG8wLiJwEAGDV4gU5rYTsxbGZ0qBBMqVBtPkR3ba0WbTGu6qjzxExA_kV_COblUdOL2EuVy4sTJ8TmffW6E7DuThUq7xAeonPnMMOcngFt96xwztitA42K887tjMRixN6f8dIvst7EwG_b7UOLcPFpegJiVAUzMtwUHxN0h26Pj971PrfEYQUxlPGbMj2UcNf7tV2_f0DxVgn7QJ2N0f_wFW-4s8nO1WqrpdBOtVurm6Abpty9ae5l8PliU-iD7ciWH4796skuuN3iT9moGuUm2bH6L7LThyHPYb8qgj1e3yXe0UauZmxZLWi0VziZlhanpJKf1uv1L2gehgDA3P6PoJPLj6zc0AdQMTEFElOPpimJkCcWVNzunekVf4xo2cAPeVDj6YTLDqmHW0OEiL5yjKodd2BQzirVC5yXFGm1IfoeMjvofDwd-U7TBVxzgo89BkisdSA3Ik4UWZlPMhM5GSifCZCbTssst4A5rZKxCk2hl4NAaEzLFRayju6STF7m9R2gWiowbbjIZKpYEVqrEwCNAwgDmFC7xyPP2h6ZZk9EcC2tM08qyHsoUv_nJsP7mHnm6pj6vM3n8ge4V8saaBvNvVyfgZ6bNcE5dxro2cFKjmdk46LOIA80xcFfG0hiPPAHO2mhj0Hub4rmACQGAILrsemSvZby0kRzzNAoAkScyiWOPPF5fhjGPhhyV22IBNKCmAHcmnHvk2Zphf9urluM88qLi5r92PT0ZHg4Bz3Jx_3_bfUCuwSGrXSL3SKe8WNiHANNK_agZpT8BvOA0aw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Streamflow+Intermittence+in+Europe%3A+Estimating+High%E2%80%90Resolution+Monthly+Time+Series+by+Downscaling+of+Simulated+Runoff+and+Random+Forest+Modeling&rft.jtitle=Water+resources+research&rft.au=D%C3%B6ll%2C+Petra&rft.au=Abbasi%2C+Mahdi&rft.au=Messager%2C+Mathis+Lo%C3%AFc&rft.au=Trautmann%2C+Tim&rft.date=2024-08-01&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=60&rft.issue=8&rft_id=info:doi/10.1029%2F2023WR036900&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2023WR036900
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon