Multivariate adaptive regression splines and neural network models for prediction of pile drivability
Piles are long, slender structural elements used to transfer the loads from the superstructure through weak strata onto stiffer soils or rocks. For driven piles, the impact of the piling hammer induces compression and tension stresses in the piles. Hence, an important design consideration is to chec...
Saved in:
Published in | Di xue qian yuan. Vol. 7; no. 1; pp. 45 - 52 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2016
School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore |
Subjects | |
Online Access | Get full text |
ISSN | 1674-9871 2588-9192 |
DOI | 10.1016/j.gsf.2014.10.003 |
Cover
Abstract | Piles are long, slender structural elements used to transfer the loads from the superstructure through weak strata onto stiffer soils or rocks. For driven piles, the impact of the piling hammer induces compression and tension stresses in the piles. Hence, an important design consideration is to check that the strength of the pile is sufficient to resist the stresses caused by the impact of the pile hammer. Due to its complexity, pile drivability lacks a precise analytical solution with regard to the phenomena involved.In situations where measured data or numerical hypothetical results are available, neural networks stand out in mapping the nonlinear interactions and relationships between the system’s predictors and dependent responses. In addition, unlike most computational tools, no mathematical relationship assumption between the dependent and independent variables has to be made. Nevertheless, neural networks have been criticized for their long trial-and-error training process since the optimal configuration is not known a priori. This paper investigates the use of a fairly simple nonparametric regression algorithm known as multivariate adaptive regression splines(MARS), as an alternative to neural networks, to approximate the relationship between the inputs and dependent response, and to mathematically interpret the relationship between the various parameters. In this paper, the Back propagation neural network(BPNN) and MARS models are developed for assessing pile drivability in relation to the prediction of the Maximum compressive stresses(MCS), Maximum tensile stresses(MTS), and Blow per foot(BPF). A database of more than four thousand piles is utilized for model development and comparative performance between BPNN and MARS predictions. |
---|---|
AbstractList | Piles are long, slender structural elements used to transfer the loads from the superstructure through weak strata onto stiffer soils or rocks. For driven piles, the impact of the piling hammer induces compression and tension stresses in the piles. Hence, an important design consideration is to check that the strength of the pile is sufficient to resist the stresses caused by the impact of the pile hammer. Due to its complexity, pile drivability lacks a precise analytical solution with regard to the phenomena involved. In situations where measured data or numerical hypothetical results are available, neural networks stand out in mapping the nonlinear interactions and relationships between the system's predictors and dependent responses. In addition, unlike most computational tools, no mathematical relationship assumption between the dependent and independent variables has to be made. Nevertheless, neural networks have been criticized for their long trial-and-error training process since the optimal configuration is not known a priori. This paper investigates the use of a fairly simple nonparametric regression algorithm known as multivariate adaptive regression splines (MARS), as an alternative to neural networks, to approximate the relationship between the inputs and dependent response, and to mathematically interpret the relationship between the various parameters. In this paper, the Back propagation neural network (BPNN) and MARS models are developed for assessing pile drivability in relation to the prediction of the Maximum compressive stresses (MCS), Maximum tensile stresses (MTS), and Blow per foot (BPF). A database of more than four thousand piles is utilized for model development and comparative performance between BPNN and MARS predictions.
[Display omitted]
•Pile drivability models by both MARS and BPNN are presented.•Comprehensive comparison between MARS and BPNN in terms of modeling accuracy and computational efficiency etc.•MARS outperforms BPNN in computational efficiency and model interpretability. Piles are long, slender structural elements used to transfer the loads from the superstructure through weak strata onto stiffer soils or rocks. For driven piles, the impact of the piling hammer induces compression and tension stresses in the piles. Hence, an important design consideration is to check that the strength of the pile is sufficient to resist the stresses caused by the impact of the pile hammer. Due to its complexity, pile drivability lacks a precise analytical solution with regard to the phenomena involved.In situations where measured data or numerical hypothetical results are available, neural networks stand out in mapping the nonlinear interactions and relationships between the system’s predictors and dependent responses. In addition, unlike most computational tools, no mathematical relationship assumption between the dependent and independent variables has to be made. Nevertheless, neural networks have been criticized for their long trial-and-error training process since the optimal configuration is not known a priori. This paper investigates the use of a fairly simple nonparametric regression algorithm known as multivariate adaptive regression splines(MARS), as an alternative to neural networks, to approximate the relationship between the inputs and dependent response, and to mathematically interpret the relationship between the various parameters. In this paper, the Back propagation neural network(BPNN) and MARS models are developed for assessing pile drivability in relation to the prediction of the Maximum compressive stresses(MCS), Maximum tensile stresses(MTS), and Blow per foot(BPF). A database of more than four thousand piles is utilized for model development and comparative performance between BPNN and MARS predictions. Piles are long, slender structural elements used to transfer the loads from the superstructure through weak strata onto stiffer soils or rocks. For driven piles, the impact of the piling hammer induces compression and tension stresses in the piles. Hence, an important design consideration is to check that the strength of the pile is sufficient to resist the stresses caused by the impact of the pile hammer. Due to its complexity, pile drivability lacks a precise analytical solution with regard to the phenomena involved. In situations where measured data or numerical hypothetical results are available, neural networks stand out in mapping the nonlinear interactions and relationships between the system’s predictors and dependent responses. In addition, unlike most computational tools, no mathematical relationship assumption between the dependent and independent variables has to be made. Nevertheless, neural networks have been criticized for their long trial-and-error training process since the optimal configu-ration is not known a priori. This paper investigates the use of a fairly simple nonparametric regression algorithm known as multivariate adaptive regression splines (MARS), as an alternative to neural net-works, to approximate the relationship between the inputs and dependent response, and to mathe-matically interpret the relationship between the various parameters. In this paper, the Back propagation neural network (BPNN) and MARS models are developed for assessing pile drivability in relation to the prediction of the Maximum compressive stresses (MCS), Maximum tensile stresses (MTS), and Blow per foot (BPF). A database of more than four thousand piles is utilized for model development and comparative performance between BPNN and MARS predictions. |
Author | Wengang Zhang Anthony T.C.Goh |
AuthorAffiliation | School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore |
AuthorAffiliation_xml | – name: School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore |
Author_xml | – sequence: 1 givenname: Wengang orcidid: 0000-0001-6051-1388 surname: Zhang fullname: Zhang, Wengang – sequence: 2 givenname: Anthony T.C. surname: Goh fullname: Goh, Anthony T.C. email: ctcgoh@ntu.edu.sg |
BookMark | eNqNkD9vFDEQxV0EiRDyAegsGqo7bO-uvSsqFPFPCqKB2hqvx4cPx97Yvhz37fHqQkMR4WY01nvzZn4vyEVMEQl5xdmWMy7f7re74raC8b71W8a6C3LJpeo306j4c3Jdyp61p9SoFLsk-PUQqn-A7KEiBQtL65Bm3GUsxadIyxJ8xEIhWhrxkCG0Uo8p_6J3yWIo1KVMl4zWz3U1JEcXH5Da3OYaH3w9vSTPHISC14_1ivz4-OH7zefN7bdPX27e326gn0TdwGQmRA5c9lLaYVTjMHNnJMdxxM4IbibLBzcIzroJ537kaMQklHPKGOlMd0XEee4hLnA6Qgh6yf4O8klzplc-eq8bH73yWb8an2Z6czYdITqIO71Phxzbmtr-vj9pbFrJOGOyKdVZOedUSkanZ19hPbpm8OHJDP6P83_2enf2NMb44DHrMnuMcwOdca7aJv-k-_Vj4s8Ud_e-3fU3UkolBzEo0f0Briivcg |
CitedBy_id | crossref_primary_10_1140_epjp_s13360_022_02398_z crossref_primary_10_1016_j_jhydrol_2024_131816 crossref_primary_10_3390_chemosensors9070183 crossref_primary_10_1016_j_compag_2022_107077 crossref_primary_10_1007_s00521_021_05925_8 crossref_primary_10_1016_j_scitotenv_2024_171684 crossref_primary_10_1007_s12205_019_0884_6 crossref_primary_10_1016_j_coldregions_2022_103662 crossref_primary_10_1088_1742_6596_2680_1_012030 crossref_primary_10_1016_j_energy_2021_120090 crossref_primary_10_1007_s40808_022_01489_1 crossref_primary_10_61186_NMCE_2309_1030 crossref_primary_10_1016_j_tust_2019_103093 crossref_primary_10_1016_j_measurement_2017_08_043 crossref_primary_10_3390_w12041041 crossref_primary_10_1016_j_tust_2021_103946 crossref_primary_10_17221_97_2022_RAE crossref_primary_10_1016_j_gsf_2020_03_003 crossref_primary_10_1007_s11250_021_02811_2 crossref_primary_10_1007_s12517_020_06348_w crossref_primary_10_1016_j_tust_2019_04_019 crossref_primary_10_1016_j_apm_2024_115783 crossref_primary_10_1016_j_oceaneng_2024_117914 crossref_primary_10_1007_s00024_023_03426_4 crossref_primary_10_1007_s41062_022_00845_5 crossref_primary_10_1016_j_jhydrol_2019_03_004 crossref_primary_10_1007_s11053_023_10259_4 crossref_primary_10_1016_j_engappai_2023_107344 crossref_primary_10_1016_j_jrmge_2021_11_008 crossref_primary_10_1016_j_autcon_2021_103987 crossref_primary_10_1029_2020WR028827 crossref_primary_10_1016_j_ijggc_2024_104072 crossref_primary_10_1016_j_resourpol_2021_102522 crossref_primary_10_1016_j_apenergy_2022_119775 crossref_primary_10_1139_cgj_2019_0031 crossref_primary_10_1007_s00500_023_09551_5 crossref_primary_10_1007_s12205_018_1157_5 crossref_primary_10_1016_j_amc_2023_128166 crossref_primary_10_1080_1064119X_2018_1458167 crossref_primary_10_2166_wst_2023_108 crossref_primary_10_1007_s41748_018_0069_3 crossref_primary_10_1016_j_powtec_2022_117439 crossref_primary_10_1016_j_undsp_2020_03_003 crossref_primary_10_3390_infrastructures7090121 crossref_primary_10_1016_j_engappai_2023_107676 crossref_primary_10_1016_j_undsp_2020_03_001 crossref_primary_10_1007_s41062_021_00706_7 crossref_primary_10_1371_journal_pone_0300293 crossref_primary_10_21205_deufmd_2023257405 crossref_primary_10_1002_gj_5049 crossref_primary_10_1016_j_conbuildmat_2021_124072 crossref_primary_10_1016_j_chemosphere_2021_132251 crossref_primary_10_1016_j_ecoinf_2023_102107 crossref_primary_10_1016_j_asoc_2016_11_019 crossref_primary_10_1007_s10064_017_1116_2 crossref_primary_10_15832_ankutbd_818397 crossref_primary_10_1016_j_measurement_2019_03_001 crossref_primary_10_1139_cgj_2022_0131 crossref_primary_10_3390_rs12182926 crossref_primary_10_1007_s11269_016_1475_7 crossref_primary_10_1088_1742_2140_aaca44 crossref_primary_10_1038_s41598_020_75476_w crossref_primary_10_1016_j_gsf_2019_12_003 crossref_primary_10_1080_10739149_2023_2252497 crossref_primary_10_1016_j_csbj_2022_09_029 crossref_primary_10_1016_j_gsf_2020_03_007 crossref_primary_10_1016_j_oceaneng_2021_110361 crossref_primary_10_1007_s12040_017_0807_1 crossref_primary_10_1111_mice_12503 crossref_primary_10_2139_ssrn_4178232 crossref_primary_10_1051_e3sconf_20172200174 crossref_primary_10_1007_s00034_020_01572_x crossref_primary_10_1016_j_gsf_2017_07_001 crossref_primary_10_1007_s00366_020_01159_9 crossref_primary_10_1007_s10661_019_7253_2 crossref_primary_10_2166_hydro_2018_087 crossref_primary_10_1007_s11069_023_06106_7 crossref_primary_10_1002_vzj2_20217 crossref_primary_10_1137_23M1577122 crossref_primary_10_1016_j_tust_2021_104329 crossref_primary_10_1016_j_compgeo_2020_103460 crossref_primary_10_1007_s10853_024_09645_x crossref_primary_10_31590_ejosat_916012 crossref_primary_10_1007_s11269_023_03618_6 crossref_primary_10_1520_GTJ20210149 crossref_primary_10_1016_j_gsf_2020_03_017 crossref_primary_10_24237_djes_2022_15109 crossref_primary_10_3389_fbuil_2024_1373092 crossref_primary_10_1007_s11440_019_00902_x crossref_primary_10_1080_19386362_2021_1968649 crossref_primary_10_1016_j_apenergy_2022_119689 crossref_primary_10_1155_2020_8528304 crossref_primary_10_1016_j_jobe_2024_109184 crossref_primary_10_1108_ECAM_06_2019_0296 crossref_primary_10_53570_jnt_1147323 crossref_primary_10_1007_s11269_016_1408_5 crossref_primary_10_1007_s13369_024_09258_1 crossref_primary_10_1016_j_jrmge_2021_09_004 crossref_primary_10_1080_17499518_2020_1815215 crossref_primary_10_3390_ma15072610 crossref_primary_10_1007_s10462_021_09967_1 crossref_primary_10_1016_j_jclepro_2017_05_192 crossref_primary_10_1007_s11440_022_01651_0 crossref_primary_10_1016_j_jhydrol_2017_01_018 crossref_primary_10_1007_s10479_023_05691_x crossref_primary_10_1016_j_sandf_2024_101523 crossref_primary_10_1007_s11250_021_02700_8 crossref_primary_10_1016_j_gsf_2021_101222 crossref_primary_10_1007_s11440_021_01299_2 crossref_primary_10_1080_19386362_2016_1169009 crossref_primary_10_1007_s10100_018_0531_1 crossref_primary_10_3390_geosciences10090330 crossref_primary_10_5937_jaes16_17331 crossref_primary_10_3390_en12152992 crossref_primary_10_1007_s10462_024_11099_1 crossref_primary_10_3390_app122010397 crossref_primary_10_3390_buildings13020347 crossref_primary_10_1007_s11440_020_00962_4 crossref_primary_10_1016_j_compgeo_2019_103099 crossref_primary_10_1007_s41208_019_00173_z crossref_primary_10_1007_s10706_022_02174_x crossref_primary_10_1016_j_measurement_2023_113106 crossref_primary_10_1002_mma_6030 crossref_primary_10_5194_tc_15_835_2021 crossref_primary_10_1007_s40808_021_01201_9 crossref_primary_10_1016_j_aeolia_2018_10_002 crossref_primary_10_1080_19942060_2020_1861987 crossref_primary_10_1007_s11709_019_0516_8 crossref_primary_10_1016_j_geogeo_2022_100038 crossref_primary_10_1016_j_gsf_2020_12_015 crossref_primary_10_1080_00396265_2019_1665615 crossref_primary_10_1016_j_hazadv_2024_100480 crossref_primary_10_1007_s11356_020_07802_8 crossref_primary_10_1016_j_scitotenv_2020_136511 crossref_primary_10_1016_j_undsp_2020_02_007 crossref_primary_10_1111_vcp_12835 crossref_primary_10_1371_journal_pone_0206825 crossref_primary_10_1016_j_undsp_2020_02_006 crossref_primary_10_1016_j_jenvman_2018_03_089 crossref_primary_10_1007_s11250_022_03174_y crossref_primary_10_1016_j_rser_2017_05_249 crossref_primary_10_1016_j_engfailanal_2024_109191 crossref_primary_10_1007_s00107_019_01416_9 crossref_primary_10_1007_s10479_017_2405_7 crossref_primary_10_1007_s00531_019_01727_5 crossref_primary_10_1016_j_sedgeo_2019_03_019 crossref_primary_10_1016_j_scitotenv_2018_05_153 crossref_primary_10_1007_s10973_020_09373_9 crossref_primary_10_1007_s42452_019_0938_x crossref_primary_10_1007_s11440_021_01358_8 crossref_primary_10_1016_j_gsf_2020_02_012 crossref_primary_10_3390_pr10030536 crossref_primary_10_1007_s40891_023_00446_x crossref_primary_10_1002_cem_3009 crossref_primary_10_1007_s11440_021_01373_9 crossref_primary_10_1016_j_acme_2017_12_008 crossref_primary_10_3390_ijerph17228614 crossref_primary_10_1007_s10614_024_10703_4 crossref_primary_10_1007_s11356_021_16916_6 crossref_primary_10_1007_s12040_016_0708_8 crossref_primary_10_1007_s42976_024_00615_2 crossref_primary_10_1016_j_autcon_2021_103779 crossref_primary_10_1016_j_eswa_2019_112966 crossref_primary_10_1007_s11069_024_06588_z crossref_primary_10_1016_j_rsase_2023_101131 crossref_primary_10_5937_jemc2102115T crossref_primary_10_1080_00207543_2022_2093683 crossref_primary_10_3389_fpls_2024_1373318 crossref_primary_10_1007_s00704_024_05066_7 crossref_primary_10_1016_j_geoen_2023_212584 crossref_primary_10_1080_10106049_2022_2060323 crossref_primary_10_1007_s41062_021_00631_9 crossref_primary_10_1016_j_autcon_2019_103038 crossref_primary_10_31466_kfbd_1446997 crossref_primary_10_1002_ece3_7731 crossref_primary_10_1007_s10661_020_08724_1 crossref_primary_10_1007_s40891_022_00390_2 crossref_primary_10_3389_fpubh_2017_00303 crossref_primary_10_1016_j_apr_2018_12_017 crossref_primary_10_3390_jmse11061163 crossref_primary_10_1016_j_procs_2019_08_162 crossref_primary_10_1080_17499518_2019_1658881 crossref_primary_10_2139_ssrn_3281538 crossref_primary_10_1016_j_cherd_2024_04_033 crossref_primary_10_1007_s40789_023_00579_4 crossref_primary_10_1016_j_enggeo_2020_105651 crossref_primary_10_1016_j_gsf_2020_05_004 crossref_primary_10_1016_j_gsf_2020_05_003 crossref_primary_10_1061_AJRUA6_0001277 crossref_primary_10_1109_ACCESS_2020_3035263 crossref_primary_10_1007_s11440_019_00843_5 crossref_primary_10_1007_s11440_021_01319_1 crossref_primary_10_1080_17499518_2021_1957484 crossref_primary_10_3390_e23040477 crossref_primary_10_1007_s00366_020_01118_4 crossref_primary_10_1016_j_soildyn_2020_106097 crossref_primary_10_1007_s10836_024_06117_7 crossref_primary_10_1007_s13201_024_02224_0 crossref_primary_10_3390_agriengineering5010004 crossref_primary_10_3390_ma17091994 crossref_primary_10_1007_s10706_023_02472_y crossref_primary_10_1007_s41062_022_00962_1 crossref_primary_10_1016_j_asoc_2024_111408 crossref_primary_10_3390_en12081416 crossref_primary_10_1155_2021_8324272 crossref_primary_10_1007_s11205_020_02527_0 crossref_primary_10_1007_s11356_022_22601_z crossref_primary_10_1007_s12665_020_09327_2 crossref_primary_10_1016_j_jhazmat_2024_133859 crossref_primary_10_1007_s12517_021_08192_y crossref_primary_10_1016_j_seta_2024_104057 crossref_primary_10_1016_j_trc_2018_03_018 crossref_primary_10_1007_s12145_024_01342_2 crossref_primary_10_1016_j_scitotenv_2019_135983 crossref_primary_10_1007_s11440_020_00916_w crossref_primary_10_1080_17486025_2022_2103187 crossref_primary_10_1007_s00500_020_05435_0 crossref_primary_10_1016_j_autcon_2020_103530 crossref_primary_10_3390_s19163451 crossref_primary_10_1007_s10706_019_01085_8 crossref_primary_10_1016_j_gsf_2017_09_011 crossref_primary_10_1016_j_undsp_2022_01_003 crossref_primary_10_1061__ASCE_ST_1943_541X_0003022 crossref_primary_10_1002_ese3_1412 crossref_primary_10_1007_s11440_022_01495_8 crossref_primary_10_1016_j_eswa_2021_116413 crossref_primary_10_1007_s41939_023_00195_4 crossref_primary_10_1016_j_trgeo_2024_101436 crossref_primary_10_1016_j_gsf_2017_09_009 crossref_primary_10_1038_s41598_022_17983_6 crossref_primary_10_3390_geosciences11050218 crossref_primary_10_21449_ijate_982666 crossref_primary_10_1007_s12205_022_0488_4 crossref_primary_10_3390_app11146278 crossref_primary_10_1007_s40515_025_00569_w crossref_primary_10_1007_s00603_022_02948_y crossref_primary_10_3390_buildings14040954 crossref_primary_10_1061__ASCE_HE_1943_5584_0001550 crossref_primary_10_1016_j_undsp_2018_07_001 crossref_primary_10_1139_cgj_2020_0644 crossref_primary_10_1016_j_ecolind_2024_112594 crossref_primary_10_1016_j_jrmge_2021_05_009 crossref_primary_10_1016_j_rsase_2022_100917 crossref_primary_10_1007_s12008_024_01890_3 crossref_primary_10_1080_09715010_2016_1201782 crossref_primary_10_1016_j_conbuildmat_2018_09_047 crossref_primary_10_1016_j_compgeo_2019_103280 crossref_primary_10_1016_j_istruc_2023_01_059 crossref_primary_10_1016_j_undsp_2020_05_007 crossref_primary_10_1016_j_gsf_2020_01_011 crossref_primary_10_1080_23248378_2024_2326514 crossref_primary_10_1016_j_jhydrol_2020_124786 crossref_primary_10_3390_su11123328 crossref_primary_10_1080_14680629_2021_1995471 crossref_primary_10_1177_03611981241278354 crossref_primary_10_1016_j_gsd_2020_100479 crossref_primary_10_3390_en13081967 crossref_primary_10_1007_s11053_021_09968_5 crossref_primary_10_1007_s13738_024_03170_z crossref_primary_10_1016_j_compgeo_2022_104744 crossref_primary_10_1007_s10064_020_01730_0 crossref_primary_10_1016_j_paerosci_2017_11_003 crossref_primary_10_1016_j_compgeo_2020_103869 crossref_primary_10_1029_2018WR023378 crossref_primary_10_1007_s00366_020_01241_2 crossref_primary_10_1016_j_ecoinf_2021_101348 crossref_primary_10_1016_j_undsp_2019_12_002 crossref_primary_10_5194_nhess_18_1451_2018 crossref_primary_10_1016_j_undsp_2019_12_003 crossref_primary_10_1139_cgj_2020_0193 crossref_primary_10_1016_j_asoc_2023_110066 crossref_primary_10_1016_j_scitotenv_2023_161973 crossref_primary_10_1080_02626667_2019_1661417 crossref_primary_10_1016_j_cities_2021_103393 crossref_primary_10_1016_j_gsf_2015_10_006 crossref_primary_10_3390_su15043482 crossref_primary_10_5382_econgeo_5023 crossref_primary_10_1002_est2_147 crossref_primary_10_3390_app11125411 crossref_primary_10_1016_j_ecoleng_2016_05_047 crossref_primary_10_1016_j_tust_2023_105135 crossref_primary_10_3390_en15145247 crossref_primary_10_1080_10298436_2021_1990920 crossref_primary_10_1007_s11831_021_09615_5 crossref_primary_10_1080_14680629_2022_2117063 crossref_primary_10_3390_modelling4040025 crossref_primary_10_1007_s40515_023_00327_w crossref_primary_10_1007_s10064_021_02353_9 crossref_primary_10_1016_j_gsf_2017_11_014 crossref_primary_10_1016_j_jrmge_2021_12_018 crossref_primary_10_1007_s11240_019_01763_8 crossref_primary_10_1002_nag_3679 crossref_primary_10_1155_2018_3719703 crossref_primary_10_1016_j_gsf_2017_08_007 crossref_primary_10_1016_j_ijhydene_2021_01_222 crossref_primary_10_1016_j_saa_2023_122944 crossref_primary_10_3390_ma12132169 crossref_primary_10_1111_tgis_12891 crossref_primary_10_1186_s40645_018_0185_6 crossref_primary_10_3390_app10041355 crossref_primary_10_36899_JAPS_2023_4_0694 crossref_primary_10_2166_nh_2019_090 crossref_primary_10_1016_j_jrmge_2022_04_012 crossref_primary_10_32604_cmes_2024_052830 crossref_primary_10_1016_j_jrmge_2021_07_005 crossref_primary_10_1007_s13369_019_04095_z crossref_primary_10_1080_17499518_2022_2046790 crossref_primary_10_3390_rs13051025 crossref_primary_10_1016_j_jhydrol_2019_03_046 crossref_primary_10_1007_s40808_022_01637_7 crossref_primary_10_1016_j_conbuildmat_2023_132789 crossref_primary_10_1002_hyp_15201 crossref_primary_10_1016_j_jrmge_2021_06_015 crossref_primary_10_3390_ijgi8050240 crossref_primary_10_3390_rs16071132 crossref_primary_10_1038_s41598_022_18366_7 crossref_primary_10_1016_j_jrmge_2021_06_013 crossref_primary_10_1007_s10064_018_01445_3 crossref_primary_10_1139_cgj_2022_0365 crossref_primary_10_1007_s12517_022_09941_3 crossref_primary_10_1016_j_compenvurbsys_2017_04_002 crossref_primary_10_1016_j_geodrs_2023_e00628 crossref_primary_10_1007_s11440_021_01370_y crossref_primary_10_18016_ksutarimdoga_vi_716880 crossref_primary_10_1080_19386362_2016_1269043 crossref_primary_10_19171_uefad_932207 crossref_primary_10_1007_s10706_021_01994_7 crossref_primary_10_1080_1064119X_2019_1566297 crossref_primary_10_1155_2018_3425461 crossref_primary_10_1007_s12040_020_01508_8 crossref_primary_10_1007_s12517_021_08319_1 crossref_primary_10_1016_j_trgeo_2024_101288 crossref_primary_10_1007_s12046_024_02545_5 crossref_primary_10_1007_s11440_021_01257_y crossref_primary_10_1007_s12205_024_2613_z crossref_primary_10_3390_app12157757 crossref_primary_10_1016_j_engfailanal_2019_06_049 crossref_primary_10_1061__ASCE_GM_1943_5622_0002057 crossref_primary_10_3390_w11020353 crossref_primary_10_1007_s00500_021_06123_3 crossref_primary_10_1016_j_conbuildmat_2022_129518 crossref_primary_10_47115_bsagriculture_1181444 crossref_primary_10_3390_agriculture13030596 crossref_primary_10_1016_j_jclepro_2020_120223 crossref_primary_10_1080_17480930_2019_1577940 crossref_primary_10_1002_gj_4729 crossref_primary_10_1016_j_tws_2020_106744 crossref_primary_10_1080_02626667_2025_2461081 crossref_primary_10_19111_bulletinofmre_502794 crossref_primary_10_1080_02626667_2020_1732983 crossref_primary_10_1016_j_tust_2021_104133 crossref_primary_10_1117_1_JRS_13_034520 crossref_primary_10_1016_j_agrformet_2019_107647 crossref_primary_10_1371_journal_pone_0307037 crossref_primary_10_1007_s11269_020_02484_w crossref_primary_10_1016_j_tust_2018_11_046 crossref_primary_10_1016_j_gsf_2020_04_011 crossref_primary_10_1016_j_geogeo_2024_100253 crossref_primary_10_1080_15481603_2022_2026636 crossref_primary_10_1007_s11069_023_06210_8 crossref_primary_10_1016_j_jenvman_2020_111713 crossref_primary_10_1007_s13762_022_04202_y crossref_primary_10_1109_ACCESS_2021_3075159 crossref_primary_10_3390_rs13050942 crossref_primary_10_3390_su15129404 crossref_primary_10_1007_s10064_017_1201_6 crossref_primary_10_1016_j_asoc_2020_107048 crossref_primary_10_1007_s10064_018_1281_y |
Cites_doi | 10.1016/j.eswa.2010.11.002 10.1016/j.compgeo.2012.09.016 10.1016/j.enggeo.2013.12.003 10.12989/gae.2014.7.4.431 10.1016/j.conbuildmat.2009.04.010 10.4018/jamc.2012040103 10.1214/aos/1176347963 10.1016/j.oceaneng.2011.09.036 10.1002/nag.1076 10.1002/nag.1129 10.12989/gae.2011.3.4.291 10.1016/j.compgeo.2006.08.006 |
ContentType | Journal Article |
Copyright | 2014 China University of Geosciences (Beijing) and Peking University Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2014 China University of Geosciences (Beijing) and Peking University – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W94 ~WA 6I. AAFTH AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ ADTOC UNPAY |
DOI | 10.1016/j.gsf.2014.10.003 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-自然科学 中文科技期刊数据库- 镜像站点 ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
DocumentTitleAlternate | Multivariate adaptive regression splines and neural network models for prediction of pile drivability |
EndPage | 52 |
ExternalDocumentID | 10.1016/j.gsf.2014.10.003 dxqy_e201601006 10_1016_j_gsf_2014_10_003 S1674987114001364 667652572 |
GrantInformation_xml | – fundername: The authors would like to express their appreciation to Jeon and Rahman for making the pile drivability database available for this work funderid: (2008) for making the pile drivability database available for this work |
GroupedDBID | --K -01 -0A -SA -S~ 0R~ 0SF 2B. 2C. 2RA 4.4 457 5SA 5VR 5VS 6I. 92E 92I 92L 92M 92Q 93N 9D9 9DA AACTN AAEDT AAEDW AAFTH AAFWJ AAIKJ AALRI AAXUO ABMAC ACGFS ADEZE AEXQZ AFPKN AFTJW AFUIB AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ CAJEA CAJUS CCEZO CCVFK CHBEP CQIGP E3Z EBS EJD FA0 FDB GROUPED_DOAJ HZ~ IPNFZ IXB JUIAU KQ8 M41 NCXOZ O-L O9- OK1 Q-- Q-0 R-A RIG ROL RT1 S.. SES SSZ T8Q TCJ TGP U1F U1G U5A U5K W94 XH2 ~LI ~WA AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP CITATION 4A8 PSX ADTOC UNPAY |
ID | FETCH-LOGICAL-a492t-a9b9ee1a16466d58785c1fb61e88e3b21b9d15f521039ec481eb2927ff7bb6fb3 |
IEDL.DBID | IXB |
ISSN | 1674-9871 2588-9192 |
IngestDate | Tue Aug 19 22:47:04 EDT 2025 Thu May 29 04:00:36 EDT 2025 Thu Apr 24 23:05:43 EDT 2025 Wed Oct 01 04:27:44 EDT 2025 Thu Jul 20 19:57:07 EDT 2023 Wed Feb 14 10:25:45 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Nonlinearity Pile drivability Back propagation neural network Computational efficiency Multivariate adaptive regression splines |
Language | English |
License | http://creativecommons.org/licenses/by-nc-nd/3.0 cc-by-nc-nd |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a492t-a9b9ee1a16466d58785c1fb61e88e3b21b9d15f521039ec481eb2927ff7bb6fb3 |
Notes | Piles are long, slender structural elements used to transfer the loads from the superstructure through weak strata onto stiffer soils or rocks. For driven piles, the impact of the piling hammer induces compression and tension stresses in the piles. Hence, an important design consideration is to check that the strength of the pile is sufficient to resist the stresses caused by the impact of the pile hammer. Due to its complexity, pile drivability lacks a precise analytical solution with regard to the phenomena involved.In situations where measured data or numerical hypothetical results are available, neural networks stand out in mapping the nonlinear interactions and relationships between the system’s predictors and dependent responses. In addition, unlike most computational tools, no mathematical relationship assumption between the dependent and independent variables has to be made. Nevertheless, neural networks have been criticized for their long trial-and-error training process since the optimal configuration is not known a priori. This paper investigates the use of a fairly simple nonparametric regression algorithm known as multivariate adaptive regression splines(MARS), as an alternative to neural networks, to approximate the relationship between the inputs and dependent response, and to mathematically interpret the relationship between the various parameters. In this paper, the Back propagation neural network(BPNN) and MARS models are developed for assessing pile drivability in relation to the prediction of the Maximum compressive stresses(MCS), Maximum tensile stresses(MTS), and Blow per foot(BPF). A database of more than four thousand piles is utilized for model development and comparative performance between BPNN and MARS predictions. 11-5920/P Back propagation neural network;Multivariate adaptive regression splines;Pile drivability;Computational efficiency;Nonlinearity |
ORCID | 0000-0001-6051-1388 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1674987114001364 |
PageCount | 8 |
ParticipantIDs | unpaywall_primary_10_1016_j_gsf_2014_10_003 wanfang_journals_dxqy_e201601006 crossref_citationtrail_10_1016_j_gsf_2014_10_003 crossref_primary_10_1016_j_gsf_2014_10_003 elsevier_sciencedirect_doi_10_1016_j_gsf_2014_10_003 chongqing_primary_667652572 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-01 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Di xue qian yuan. |
PublicationTitleAlternate | Geoscience Frontiers |
PublicationTitle_FL | GEOSCIENCE FRONTIERS |
PublicationYear | 2016 |
Publisher | Elsevier B.V School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore |
Publisher_xml | – name: Elsevier B.V – name: School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore |
References | Hastie, Tibshirani, Friedman (bib8) 2009 Jekabsons (bib9) 2010 Smith (bib17) 1960; 86 Samui, Das, Kim (bib15) 2011; 38 Zhang, Goh (bib21) 2014 Lashkari (bib11) 2012; 37 Zarnani, El-Emam, Bathurst (bib18) 2011; 3 Samui (bib14) 2011; 36 Mirzahosseini, Aghaeifar, Alavi, Gandomi, Seyednour (bib12) 2011; 38 Goh, Zhang (bib7) 2014; 170 Jeon, Rahman (bib10) 2008 Zhang, Goh (bib20) 2014; 7 Attoh-Okine, Cooger, Mensah (bib1) 2009; 23 Rumelhart, Hinton, Williams (bib13) 1986; vol. 1 Das, Basudhar (bib2) 2006; 33 Zhang, Goh (bib19) 2013; 48 Garson (bib6) 1991; 6 Friedman (bib4) 1991; 19 Gandomi, Roke (bib5) 2013 Samui, Karup (bib16) 2011; 3 Demuth, Beale (bib3) 2003 Gandomi (10.1016/j.gsf.2014.10.003_bib5) 2013 Zhang (10.1016/j.gsf.2014.10.003_bib19) 2013; 48 Rumelhart (10.1016/j.gsf.2014.10.003_bib13) 1986; vol. 1 Jekabsons (10.1016/j.gsf.2014.10.003_bib9) 2010 Hastie (10.1016/j.gsf.2014.10.003_bib8) 2009 Das (10.1016/j.gsf.2014.10.003_bib2) 2006; 33 Zarnani (10.1016/j.gsf.2014.10.003_bib18) 2011; 3 Zhang (10.1016/j.gsf.2014.10.003_bib21) 2014 Samui (10.1016/j.gsf.2014.10.003_bib14) 2011; 36 Samui (10.1016/j.gsf.2014.10.003_bib16) 2011; 3 Smith (10.1016/j.gsf.2014.10.003_bib17) 1960; 86 Friedman (10.1016/j.gsf.2014.10.003_bib4) 1991; 19 Mirzahosseini (10.1016/j.gsf.2014.10.003_bib12) 2011; 38 Samui (10.1016/j.gsf.2014.10.003_bib15) 2011; 38 Attoh-Okine (10.1016/j.gsf.2014.10.003_bib1) 2009; 23 Demuth (10.1016/j.gsf.2014.10.003_bib3) 2003 Garson (10.1016/j.gsf.2014.10.003_bib6) 1991; 6 Zhang (10.1016/j.gsf.2014.10.003_bib20) 2014; 7 Lashkari (10.1016/j.gsf.2014.10.003_bib11) 2012; 37 Goh (10.1016/j.gsf.2014.10.003_bib7) 2014; 170 Jeon (10.1016/j.gsf.2014.10.003_bib10) 2008 |
References_xml | – volume: 86 start-page: 35 year: 1960 end-page: 61 ident: bib17 article-title: Pile driving analysis by the wave equation publication-title: Journal of the Engineering Mechanics Division ASCE – volume: 6 start-page: 47 year: 1991 end-page: 51 ident: bib6 article-title: Interpreting neural-network connection weights publication-title: AI Expert – volume: 38 start-page: 6081 year: 2011 end-page: 6100 ident: bib12 article-title: Permanent deformation analysis of asphalt mixtures using soft computing techniques publication-title: Expert Systems with Applications – volume: 36 start-page: 1434 year: 2011 end-page: 1439 ident: bib14 article-title: Determination of ultimate capacity of driven piles in cohesionless soil: a Multivariate Adaptive Regression Spline approach publication-title: International Journal for Numerical and Analytical Methods in Geomechanics – volume: 7 start-page: 431 year: 2014 end-page: 458 ident: bib20 article-title: Multivariate adaptive regression splines model for reliability assessment of serviceability limit state of twin caverns publication-title: Geomechanics and Engineering – volume: 38 start-page: 2123 year: 2011 end-page: 2127 ident: bib15 article-title: Uplift capacity of suction caisson in clay using multivariate adaptive regression splines publication-title: Ocean Engineering – year: 2010 ident: bib9 article-title: VariReg: a Software Tool for Regression Modelling Using Various Modeling Methods – volume: 23 start-page: 3020 year: 2009 end-page: 3023 ident: bib1 article-title: Multivariate adaptive regression (MARS) and hinged hyperplanes (HHP) for doweled pavement performance modeling publication-title: Journal of Construction and Building Materials – year: 2013 ident: bib5 article-title: Intelligent formulation of structural engineering systems publication-title: Seventh MIT Conference on Computational Fluid and Solid Mechanics- Focus: Multiphysics and Multiscale, 12–14 Jun., Cambridge, USA – volume: 33 start-page: 454 year: 2006 end-page: 459 ident: bib2 article-title: Undrained lateral load capacity of piles in clay using artificial neural network publication-title: Computer and Geotechnics – year: 2009 ident: bib8 article-title: The Elements of Statistical Learning: Data Mining, Inference and Prediction – year: 2008 ident: bib10 article-title: Fuzzy Neural Network Models for Geotechnical Problems – volume: 3 start-page: 33 year: 2011 end-page: 42 ident: bib16 article-title: Multivariate adaptive regression splines and least square support vector machine for prediction of undrained shear strength of clay publication-title: Applied Metaheuristic Computing – volume: 48 start-page: 82 year: 2013 end-page: 95 ident: bib19 article-title: Multivariate adaptive regression splines for analysis of geotechnical engineering systems publication-title: Computers and Geotechnics – year: 2014 ident: bib21 article-title: Reliability assessment of ultimate limit state of twin cavern publication-title: Geomechanics and Geoengineering – volume: 170 start-page: 1 year: 2014 end-page: 10 ident: bib7 article-title: An improvement to MLR model for predicting liquefaction-induced lateral spread using Multivariate Adaptive Regression Splines publication-title: Engineering Geology – year: 2003 ident: bib3 article-title: Neural Network Toolbox for MATLAB-user Guide Version 4.1 – volume: 19 start-page: 1 year: 1991 end-page: 141 ident: bib4 article-title: Multivariate adaptive regression splines publication-title: The Annals of Statistics – volume: vol. 1 start-page: 318 year: 1986 end-page: 362 ident: bib13 article-title: Learning internal representation by error propagation publication-title: Parallel Distributed Processing – volume: 37 start-page: 904 year: 2012 end-page: 931 ident: bib11 article-title: Prediction of the shaft resistance of non-displacement piles in sand publication-title: International Journal for Numerical and Analytical Methods in Geomechanics – volume: 3 start-page: 291 year: 2011 end-page: 321 ident: bib18 article-title: Comparison of numerical and analytical solutions for reinforced soil wall shaking table tests publication-title: Geomechanics and Engineering – volume: 38 start-page: 6081 issue: 5 year: 2011 ident: 10.1016/j.gsf.2014.10.003_bib12 article-title: Permanent deformation analysis of asphalt mixtures using soft computing techniques publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2010.11.002 – volume: 48 start-page: 82 year: 2013 ident: 10.1016/j.gsf.2014.10.003_bib19 article-title: Multivariate adaptive regression splines for analysis of geotechnical engineering systems publication-title: Computers and Geotechnics doi: 10.1016/j.compgeo.2012.09.016 – year: 2008 ident: 10.1016/j.gsf.2014.10.003_bib10 – volume: 170 start-page: 1 year: 2014 ident: 10.1016/j.gsf.2014.10.003_bib7 article-title: An improvement to MLR model for predicting liquefaction-induced lateral spread using Multivariate Adaptive Regression Splines publication-title: Engineering Geology doi: 10.1016/j.enggeo.2013.12.003 – volume: vol. 1 start-page: 318 year: 1986 ident: 10.1016/j.gsf.2014.10.003_bib13 article-title: Learning internal representation by error propagation – volume: 86 start-page: 35 year: 1960 ident: 10.1016/j.gsf.2014.10.003_bib17 article-title: Pile driving analysis by the wave equation publication-title: Journal of the Engineering Mechanics Division ASCE – year: 2014 ident: 10.1016/j.gsf.2014.10.003_bib21 article-title: Reliability assessment of ultimate limit state of twin cavern publication-title: Geomechanics and Geoengineering doi: 10.12989/gae.2014.7.4.431 – volume: 7 start-page: 431 issue: 4 year: 2014 ident: 10.1016/j.gsf.2014.10.003_bib20 article-title: Multivariate adaptive regression splines model for reliability assessment of serviceability limit state of twin caverns publication-title: Geomechanics and Engineering doi: 10.12989/gae.2014.7.4.431 – volume: 23 start-page: 3020 year: 2009 ident: 10.1016/j.gsf.2014.10.003_bib1 article-title: Multivariate adaptive regression (MARS) and hinged hyperplanes (HHP) for doweled pavement performance modeling publication-title: Journal of Construction and Building Materials doi: 10.1016/j.conbuildmat.2009.04.010 – volume: 3 start-page: 33 issue: 2 year: 2011 ident: 10.1016/j.gsf.2014.10.003_bib16 article-title: Multivariate adaptive regression splines and least square support vector machine for prediction of undrained shear strength of clay publication-title: Applied Metaheuristic Computing doi: 10.4018/jamc.2012040103 – year: 2010 ident: 10.1016/j.gsf.2014.10.003_bib9 – volume: 19 start-page: 1 year: 1991 ident: 10.1016/j.gsf.2014.10.003_bib4 article-title: Multivariate adaptive regression splines publication-title: The Annals of Statistics doi: 10.1214/aos/1176347963 – volume: 38 start-page: 2123 issue: 17–18 year: 2011 ident: 10.1016/j.gsf.2014.10.003_bib15 article-title: Uplift capacity of suction caisson in clay using multivariate adaptive regression splines publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2011.09.036 – volume: 36 start-page: 1434 year: 2011 ident: 10.1016/j.gsf.2014.10.003_bib14 article-title: Determination of ultimate capacity of driven piles in cohesionless soil: a Multivariate Adaptive Regression Spline approach publication-title: International Journal for Numerical and Analytical Methods in Geomechanics doi: 10.1002/nag.1076 – volume: 37 start-page: 904 year: 2012 ident: 10.1016/j.gsf.2014.10.003_bib11 article-title: Prediction of the shaft resistance of non-displacement piles in sand publication-title: International Journal for Numerical and Analytical Methods in Geomechanics doi: 10.1002/nag.1129 – year: 2003 ident: 10.1016/j.gsf.2014.10.003_bib3 – volume: 6 start-page: 47 issue: 7 year: 1991 ident: 10.1016/j.gsf.2014.10.003_bib6 article-title: Interpreting neural-network connection weights publication-title: AI Expert – volume: 3 start-page: 291 issue: 4 year: 2011 ident: 10.1016/j.gsf.2014.10.003_bib18 article-title: Comparison of numerical and analytical solutions for reinforced soil wall shaking table tests publication-title: Geomechanics and Engineering doi: 10.12989/gae.2011.3.4.291 – volume: 33 start-page: 454 issue: 8 year: 2006 ident: 10.1016/j.gsf.2014.10.003_bib2 article-title: Undrained lateral load capacity of piles in clay using artificial neural network publication-title: Computer and Geotechnics doi: 10.1016/j.compgeo.2006.08.006 – year: 2013 ident: 10.1016/j.gsf.2014.10.003_bib5 article-title: Intelligent formulation of structural engineering systems – year: 2009 ident: 10.1016/j.gsf.2014.10.003_bib8 |
SSID | ssj0000778770 |
Score | 2.5531952 |
Snippet | Piles are long, slender structural elements used to transfer the loads from the superstructure through weak strata onto stiffer soils or rocks. For driven... |
SourceID | unpaywall wanfang crossref elsevier chongqing |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 45 |
SubjectTerms | Back propagation neural network BPNN Computational efficiency Multivariate adaptive regression splines Nonlinearity Pile drivability 反向传播神经网络 数学关系 样条回归 桩长 神经网络模型 神经网络预测 自适应 |
SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxQxFA66ReyLd3GtSh58UjLdZOf6WMRaBIugC_UpJJNkartmpzOzteuv95zMzCKCRcHXIckQ5su5TL7zHUJexgI1UzLDMpE4FvNSs0JrzWDwPE11osugpffhOD1axO9PkpOB_4S1MJDNReAUWGl8X9GAGk2-2__6DY7XPmetiGbsE1LnIVmGWD5ojsXMXXG5bKrorK5ukp0UL5smZGdx_PHgC2ZcMJzheOw0l-R4wgsxXnEGslfVBjnPOApMrzkKLZyufHUB7uNPDuv22tdq810tl6Hexzvlq19c0-Fdcj5uqmeknEfrTkflj9_0Hv_Pru-RO0MESw96yN0nN6x_QG69Cx2CNw-JDSW9l5CCQxRLlVE1GlTa2Kpn3HraYhGwbanyhqKcJizmezI6DX15WgqBNK0bvEJC2NCVozUYL2oaWDeQeTePyOLw7ec3R2zo5cBUXIiOqUIX1nKFcmapSfIsT0rudMptntu5FlwXhicOgonZvLBlnHNI-QuROZdpnTo9f0wmfuXtE0J5psBAg08VACSwJ9oYSItsZlxpuLBmSva2H0_WvWaHRCovCr-KKZmNn1OWgww6duNYypHvdiYBDRLRgI8ADVPyajtlXO-awfGIETkEMX1wIsFHXTft9RZPf_MSOiBODianlebqYiOtQMVADqb06T8tuEd2cWb_b-kZmXTN2j6HaKvTL4Zj9BOJaCU- priority: 102 providerName: Unpaywall |
Title | Multivariate adaptive regression splines and neural network models for prediction of pile drivability |
URI | http://lib.cqvip.com/qk/71129X/201601/667652572.html https://dx.doi.org/10.1016/j.gsf.2014.10.003 https://d.wanfangdata.com.cn/periodical/dxqy-e201601006 https://ars.els-cdn.com/content/image/1-s2.0-S1674987114001364-fx1_lrg.jpg |
UnpaywallVersion | publishedVersion |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library issn: 1674-9871 databaseCode: KQ8 dateStart: 20101001 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html omitProxy: true ssIdentifier: ssj0000778770 providerName: Colorado Alliance of Research Libraries – providerCode: PRVESC databaseName: ScienceDirect Free and Delayed Access Journal issn: 1674-9871 databaseCode: IXB dateStart: 20101001 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000778770 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 1674-9871 databaseCode: AKRWK dateStart: 20101001 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778770 providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYQCJVL1VIqUkrkAyeqJbH3fQTUgEAgKoiUnix7bQeqyFmyoZB_z4x3NyoHUMVlD5YfK489M7a_-YaQvYgjZ0qqg5THNohYoYJcKRVA5TBJVKwKz6V3cZmcDqOzUTxaIcdtLAzCKhvdX-t0r62bkl4zm73y7q53jfh5ODGDQ--Jx5ATFEb1QXyjo-U9Sz-FJelzxmH9ABu0j5se5jWuPJFndOAxXiFSLNxO3fgeDMdrpurDgyvl4lFOJj7Sx1npxv8YpcEn8rHxJulh_cOfyYpxm2T9xGfrXXwhxofX_oXjMHiUVGpZonKjMzOu0a-OVhiQayoqnaZIbQmduRoYTn2OnIqCU0vLGT7noAjp1NISFAnVM-jXA2sXW2Q4-HlzfBo0eRUCGeV8Hshc5cYwidRiiY6zNIsLZlXCTJaZUHGmcs1iC4a9H-amiDIGx--cp9amSiVWhV_Jqps6s00oSyUoS7BvHIQKe1tpDUcUk2pbaMaN7pCd5XSKsubPEAirRRJW3iH9doJF0VCSY2aMiWixZ38EyEegfLAI5NMh-8smbX9vVI5aqYkXi0qAvXir2Y-lhP9nENqsAdFs_0rop_uFMBzZ-xiotW_v-48dsoFd1Bc-38nqfPZgdsEFmquuX-PwPf-Vdcna8PLq8PczNUMGZg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VVqhcEOWhhgL1gRNoSex9H6GipKXthVbKzbLXdtoqcrbZFMi_Z8a7G8GBqurVsr2Wx57H-ptvAN4ngjhTchPlInVRwisdlVrrCDvHWaZTXQUuvdOzbHyRHE_SyQYc9LkwBKvsdH-r04O27lqG3W4O66ur4Q_Cz2PEjA59IB5LHsEWegMjwnUdTb6sf7SMcjyToWgcDYhoRP-6GXBe0yYweSafAsgrJo6Fy7mf3qDl-J-t2r71tVr9UrNZSPXxTvnpX1bp8Bk87dxJ9rld8Q5sWP8cHn8L5XpXL8CG_NqfGA-jS8mUUTVpN7aw0xb-6llDGbm2YcobRtyWOJlvkeEsFMlpGHq1rF7Qew7JkM0dq1GTMLPAeQOydvUSLg6_nh-Mo66wQqSSUiwjVerSWq6IWywzaZEXacWdzrgtChtrwXVpeOrQso_i0lZJwTH-LkXuXK515nT8Cjb93NtdYDxXqC3RwAmUKl5ubQzGKDY3rjJcWDOAvfV2yrol0JCEqyUWVjGAUb_Bsuo4yak0xkz24LNrifKRJB9qQvkM4MN6SD_fHZ2TXmryn1Ml0WDcNezjWsL3-QjrzoDs7n8jze-blbSC6Ps46rXXD1vHPmyPz09P5MnR2fc9eELTtX9_3sDmcnFr36I_tNTvwnn_AwXxBuI |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxQxFA66ReyLd3GtSh58UjLdZOf6WMRaBIugC_UpJJNkartmpzOzteuv95zMzCKCRcHXIckQ5su5TL7zHUJexgI1UzLDMpE4FvNSs0JrzWDwPE11osugpffhOD1axO9PkpOB_4S1MJDNReAUWGl8X9GAGk2-2__6DY7XPmetiGbsE1LnIVmGWD5ojsXMXXG5bKrorK5ukp0UL5smZGdx_PHgC2ZcMJzheOw0l-R4wgsxXnEGslfVBjnPOApMrzkKLZyufHUB7uNPDuv22tdq810tl6Hexzvlq19c0-Fdcj5uqmeknEfrTkflj9_0Hv_Pru-RO0MESw96yN0nN6x_QG69Cx2CNw-JDSW9l5CCQxRLlVE1GlTa2Kpn3HraYhGwbanyhqKcJizmezI6DX15WgqBNK0bvEJC2NCVozUYL2oaWDeQeTePyOLw7ec3R2zo5cBUXIiOqUIX1nKFcmapSfIsT0rudMptntu5FlwXhicOgonZvLBlnHNI-QuROZdpnTo9f0wmfuXtE0J5psBAg08VACSwJ9oYSItsZlxpuLBmSva2H0_WvWaHRCovCr-KKZmNn1OWgww6duNYypHvdiYBDRLRgI8ADVPyajtlXO-awfGIETkEMX1wIsFHXTft9RZPf_MSOiBODianlebqYiOtQMVADqb06T8tuEd2cWb_b-kZmXTN2j6HaKvTL4Zj9BOJaCU- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+adaptive+regression+splines+and+neural+network+models+for+prediction+of+pile+drivability&rft.jtitle=Di+xue+qian+yuan.&rft.au=Zhang%2C+Wengang&rft.au=Goh%2C+Anthony+T.C.&rft.date=2016-01-01&rft.issn=1674-9871&rft.volume=7&rft.issue=1&rft.spage=45&rft.epage=52&rft_id=info:doi/10.1016%2Fj.gsf.2014.10.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_gsf_2014_10_003 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F71129X%2F71129X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdxqy-e%2Fdxqy-e.jpg |