Multivariate adaptive regression splines and neural network models for prediction of pile drivability

Piles are long, slender structural elements used to transfer the loads from the superstructure through weak strata onto stiffer soils or rocks. For driven piles, the impact of the piling hammer induces compression and tension stresses in the piles. Hence, an important design consideration is to chec...

Full description

Saved in:
Bibliographic Details
Published inDi xue qian yuan. Vol. 7; no. 1; pp. 45 - 52
Main Authors Zhang, Wengang, Goh, Anthony T.C.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2016
School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
Subjects
Online AccessGet full text
ISSN1674-9871
2588-9192
DOI10.1016/j.gsf.2014.10.003

Cover

Abstract Piles are long, slender structural elements used to transfer the loads from the superstructure through weak strata onto stiffer soils or rocks. For driven piles, the impact of the piling hammer induces compression and tension stresses in the piles. Hence, an important design consideration is to check that the strength of the pile is sufficient to resist the stresses caused by the impact of the pile hammer. Due to its complexity, pile drivability lacks a precise analytical solution with regard to the phenomena involved.In situations where measured data or numerical hypothetical results are available, neural networks stand out in mapping the nonlinear interactions and relationships between the system’s predictors and dependent responses. In addition, unlike most computational tools, no mathematical relationship assumption between the dependent and independent variables has to be made. Nevertheless, neural networks have been criticized for their long trial-and-error training process since the optimal configuration is not known a priori. This paper investigates the use of a fairly simple nonparametric regression algorithm known as multivariate adaptive regression splines(MARS), as an alternative to neural networks, to approximate the relationship between the inputs and dependent response, and to mathematically interpret the relationship between the various parameters. In this paper, the Back propagation neural network(BPNN) and MARS models are developed for assessing pile drivability in relation to the prediction of the Maximum compressive stresses(MCS), Maximum tensile stresses(MTS), and Blow per foot(BPF). A database of more than four thousand piles is utilized for model development and comparative performance between BPNN and MARS predictions.
AbstractList Piles are long, slender structural elements used to transfer the loads from the superstructure through weak strata onto stiffer soils or rocks. For driven piles, the impact of the piling hammer induces compression and tension stresses in the piles. Hence, an important design consideration is to check that the strength of the pile is sufficient to resist the stresses caused by the impact of the pile hammer. Due to its complexity, pile drivability lacks a precise analytical solution with regard to the phenomena involved. In situations where measured data or numerical hypothetical results are available, neural networks stand out in mapping the nonlinear interactions and relationships between the system's predictors and dependent responses. In addition, unlike most computational tools, no mathematical relationship assumption between the dependent and independent variables has to be made. Nevertheless, neural networks have been criticized for their long trial-and-error training process since the optimal configuration is not known a priori. This paper investigates the use of a fairly simple nonparametric regression algorithm known as multivariate adaptive regression splines (MARS), as an alternative to neural networks, to approximate the relationship between the inputs and dependent response, and to mathematically interpret the relationship between the various parameters. In this paper, the Back propagation neural network (BPNN) and MARS models are developed for assessing pile drivability in relation to the prediction of the Maximum compressive stresses (MCS), Maximum tensile stresses (MTS), and Blow per foot (BPF). A database of more than four thousand piles is utilized for model development and comparative performance between BPNN and MARS predictions. [Display omitted] •Pile drivability models by both MARS and BPNN are presented.•Comprehensive comparison between MARS and BPNN in terms of modeling accuracy and computational efficiency etc.•MARS outperforms BPNN in computational efficiency and model interpretability.
Piles are long, slender structural elements used to transfer the loads from the superstructure through weak strata onto stiffer soils or rocks. For driven piles, the impact of the piling hammer induces compression and tension stresses in the piles. Hence, an important design consideration is to check that the strength of the pile is sufficient to resist the stresses caused by the impact of the pile hammer. Due to its complexity, pile drivability lacks a precise analytical solution with regard to the phenomena involved.In situations where measured data or numerical hypothetical results are available, neural networks stand out in mapping the nonlinear interactions and relationships between the system’s predictors and dependent responses. In addition, unlike most computational tools, no mathematical relationship assumption between the dependent and independent variables has to be made. Nevertheless, neural networks have been criticized for their long trial-and-error training process since the optimal configuration is not known a priori. This paper investigates the use of a fairly simple nonparametric regression algorithm known as multivariate adaptive regression splines(MARS), as an alternative to neural networks, to approximate the relationship between the inputs and dependent response, and to mathematically interpret the relationship between the various parameters. In this paper, the Back propagation neural network(BPNN) and MARS models are developed for assessing pile drivability in relation to the prediction of the Maximum compressive stresses(MCS), Maximum tensile stresses(MTS), and Blow per foot(BPF). A database of more than four thousand piles is utilized for model development and comparative performance between BPNN and MARS predictions.
Piles are long, slender structural elements used to transfer the loads from the superstructure through weak strata onto stiffer soils or rocks. For driven piles, the impact of the piling hammer induces compression and tension stresses in the piles. Hence, an important design consideration is to check that the strength of the pile is sufficient to resist the stresses caused by the impact of the pile hammer. Due to its complexity, pile drivability lacks a precise analytical solution with regard to the phenomena involved. In situations where measured data or numerical hypothetical results are available, neural networks stand out in mapping the nonlinear interactions and relationships between the system’s predictors and dependent responses. In addition, unlike most computational tools, no mathematical relationship assumption between the dependent and independent variables has to be made. Nevertheless, neural networks have been criticized for their long trial-and-error training process since the optimal configu-ration is not known a priori. This paper investigates the use of a fairly simple nonparametric regression algorithm known as multivariate adaptive regression splines (MARS), as an alternative to neural net-works, to approximate the relationship between the inputs and dependent response, and to mathe-matically interpret the relationship between the various parameters. In this paper, the Back propagation neural network (BPNN) and MARS models are developed for assessing pile drivability in relation to the prediction of the Maximum compressive stresses (MCS), Maximum tensile stresses (MTS), and Blow per foot (BPF). A database of more than four thousand piles is utilized for model development and comparative performance between BPNN and MARS predictions.
Author Wengang Zhang Anthony T.C.Goh
AuthorAffiliation School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
AuthorAffiliation_xml – name: School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
Author_xml – sequence: 1
  givenname: Wengang
  orcidid: 0000-0001-6051-1388
  surname: Zhang
  fullname: Zhang, Wengang
– sequence: 2
  givenname: Anthony T.C.
  surname: Goh
  fullname: Goh, Anthony T.C.
  email: ctcgoh@ntu.edu.sg
BookMark eNqNkD9vFDEQxV0EiRDyAegsGqo7bO-uvSsqFPFPCqKB2hqvx4cPx97Yvhz37fHqQkMR4WY01nvzZn4vyEVMEQl5xdmWMy7f7re74raC8b71W8a6C3LJpeo306j4c3Jdyp61p9SoFLsk-PUQqn-A7KEiBQtL65Bm3GUsxadIyxJ8xEIhWhrxkCG0Uo8p_6J3yWIo1KVMl4zWz3U1JEcXH5Da3OYaH3w9vSTPHISC14_1ivz4-OH7zefN7bdPX27e326gn0TdwGQmRA5c9lLaYVTjMHNnJMdxxM4IbibLBzcIzroJ537kaMQklHPKGOlMd0XEee4hLnA6Qgh6yf4O8klzplc-eq8bH73yWb8an2Z6czYdITqIO71Phxzbmtr-vj9pbFrJOGOyKdVZOedUSkanZ19hPbpm8OHJDP6P83_2enf2NMb44DHrMnuMcwOdca7aJv-k-_Vj4s8Ud_e-3fU3UkolBzEo0f0Briivcg
CitedBy_id crossref_primary_10_1140_epjp_s13360_022_02398_z
crossref_primary_10_1016_j_jhydrol_2024_131816
crossref_primary_10_3390_chemosensors9070183
crossref_primary_10_1016_j_compag_2022_107077
crossref_primary_10_1007_s00521_021_05925_8
crossref_primary_10_1016_j_scitotenv_2024_171684
crossref_primary_10_1007_s12205_019_0884_6
crossref_primary_10_1016_j_coldregions_2022_103662
crossref_primary_10_1088_1742_6596_2680_1_012030
crossref_primary_10_1016_j_energy_2021_120090
crossref_primary_10_1007_s40808_022_01489_1
crossref_primary_10_61186_NMCE_2309_1030
crossref_primary_10_1016_j_tust_2019_103093
crossref_primary_10_1016_j_measurement_2017_08_043
crossref_primary_10_3390_w12041041
crossref_primary_10_1016_j_tust_2021_103946
crossref_primary_10_17221_97_2022_RAE
crossref_primary_10_1016_j_gsf_2020_03_003
crossref_primary_10_1007_s11250_021_02811_2
crossref_primary_10_1007_s12517_020_06348_w
crossref_primary_10_1016_j_tust_2019_04_019
crossref_primary_10_1016_j_apm_2024_115783
crossref_primary_10_1016_j_oceaneng_2024_117914
crossref_primary_10_1007_s00024_023_03426_4
crossref_primary_10_1007_s41062_022_00845_5
crossref_primary_10_1016_j_jhydrol_2019_03_004
crossref_primary_10_1007_s11053_023_10259_4
crossref_primary_10_1016_j_engappai_2023_107344
crossref_primary_10_1016_j_jrmge_2021_11_008
crossref_primary_10_1016_j_autcon_2021_103987
crossref_primary_10_1029_2020WR028827
crossref_primary_10_1016_j_ijggc_2024_104072
crossref_primary_10_1016_j_resourpol_2021_102522
crossref_primary_10_1016_j_apenergy_2022_119775
crossref_primary_10_1139_cgj_2019_0031
crossref_primary_10_1007_s00500_023_09551_5
crossref_primary_10_1007_s12205_018_1157_5
crossref_primary_10_1016_j_amc_2023_128166
crossref_primary_10_1080_1064119X_2018_1458167
crossref_primary_10_2166_wst_2023_108
crossref_primary_10_1007_s41748_018_0069_3
crossref_primary_10_1016_j_powtec_2022_117439
crossref_primary_10_1016_j_undsp_2020_03_003
crossref_primary_10_3390_infrastructures7090121
crossref_primary_10_1016_j_engappai_2023_107676
crossref_primary_10_1016_j_undsp_2020_03_001
crossref_primary_10_1007_s41062_021_00706_7
crossref_primary_10_1371_journal_pone_0300293
crossref_primary_10_21205_deufmd_2023257405
crossref_primary_10_1002_gj_5049
crossref_primary_10_1016_j_conbuildmat_2021_124072
crossref_primary_10_1016_j_chemosphere_2021_132251
crossref_primary_10_1016_j_ecoinf_2023_102107
crossref_primary_10_1016_j_asoc_2016_11_019
crossref_primary_10_1007_s10064_017_1116_2
crossref_primary_10_15832_ankutbd_818397
crossref_primary_10_1016_j_measurement_2019_03_001
crossref_primary_10_1139_cgj_2022_0131
crossref_primary_10_3390_rs12182926
crossref_primary_10_1007_s11269_016_1475_7
crossref_primary_10_1088_1742_2140_aaca44
crossref_primary_10_1038_s41598_020_75476_w
crossref_primary_10_1016_j_gsf_2019_12_003
crossref_primary_10_1080_10739149_2023_2252497
crossref_primary_10_1016_j_csbj_2022_09_029
crossref_primary_10_1016_j_gsf_2020_03_007
crossref_primary_10_1016_j_oceaneng_2021_110361
crossref_primary_10_1007_s12040_017_0807_1
crossref_primary_10_1111_mice_12503
crossref_primary_10_2139_ssrn_4178232
crossref_primary_10_1051_e3sconf_20172200174
crossref_primary_10_1007_s00034_020_01572_x
crossref_primary_10_1016_j_gsf_2017_07_001
crossref_primary_10_1007_s00366_020_01159_9
crossref_primary_10_1007_s10661_019_7253_2
crossref_primary_10_2166_hydro_2018_087
crossref_primary_10_1007_s11069_023_06106_7
crossref_primary_10_1002_vzj2_20217
crossref_primary_10_1137_23M1577122
crossref_primary_10_1016_j_tust_2021_104329
crossref_primary_10_1016_j_compgeo_2020_103460
crossref_primary_10_1007_s10853_024_09645_x
crossref_primary_10_31590_ejosat_916012
crossref_primary_10_1007_s11269_023_03618_6
crossref_primary_10_1520_GTJ20210149
crossref_primary_10_1016_j_gsf_2020_03_017
crossref_primary_10_24237_djes_2022_15109
crossref_primary_10_3389_fbuil_2024_1373092
crossref_primary_10_1007_s11440_019_00902_x
crossref_primary_10_1080_19386362_2021_1968649
crossref_primary_10_1016_j_apenergy_2022_119689
crossref_primary_10_1155_2020_8528304
crossref_primary_10_1016_j_jobe_2024_109184
crossref_primary_10_1108_ECAM_06_2019_0296
crossref_primary_10_53570_jnt_1147323
crossref_primary_10_1007_s11269_016_1408_5
crossref_primary_10_1007_s13369_024_09258_1
crossref_primary_10_1016_j_jrmge_2021_09_004
crossref_primary_10_1080_17499518_2020_1815215
crossref_primary_10_3390_ma15072610
crossref_primary_10_1007_s10462_021_09967_1
crossref_primary_10_1016_j_jclepro_2017_05_192
crossref_primary_10_1007_s11440_022_01651_0
crossref_primary_10_1016_j_jhydrol_2017_01_018
crossref_primary_10_1007_s10479_023_05691_x
crossref_primary_10_1016_j_sandf_2024_101523
crossref_primary_10_1007_s11250_021_02700_8
crossref_primary_10_1016_j_gsf_2021_101222
crossref_primary_10_1007_s11440_021_01299_2
crossref_primary_10_1080_19386362_2016_1169009
crossref_primary_10_1007_s10100_018_0531_1
crossref_primary_10_3390_geosciences10090330
crossref_primary_10_5937_jaes16_17331
crossref_primary_10_3390_en12152992
crossref_primary_10_1007_s10462_024_11099_1
crossref_primary_10_3390_app122010397
crossref_primary_10_3390_buildings13020347
crossref_primary_10_1007_s11440_020_00962_4
crossref_primary_10_1016_j_compgeo_2019_103099
crossref_primary_10_1007_s41208_019_00173_z
crossref_primary_10_1007_s10706_022_02174_x
crossref_primary_10_1016_j_measurement_2023_113106
crossref_primary_10_1002_mma_6030
crossref_primary_10_5194_tc_15_835_2021
crossref_primary_10_1007_s40808_021_01201_9
crossref_primary_10_1016_j_aeolia_2018_10_002
crossref_primary_10_1080_19942060_2020_1861987
crossref_primary_10_1007_s11709_019_0516_8
crossref_primary_10_1016_j_geogeo_2022_100038
crossref_primary_10_1016_j_gsf_2020_12_015
crossref_primary_10_1080_00396265_2019_1665615
crossref_primary_10_1016_j_hazadv_2024_100480
crossref_primary_10_1007_s11356_020_07802_8
crossref_primary_10_1016_j_scitotenv_2020_136511
crossref_primary_10_1016_j_undsp_2020_02_007
crossref_primary_10_1111_vcp_12835
crossref_primary_10_1371_journal_pone_0206825
crossref_primary_10_1016_j_undsp_2020_02_006
crossref_primary_10_1016_j_jenvman_2018_03_089
crossref_primary_10_1007_s11250_022_03174_y
crossref_primary_10_1016_j_rser_2017_05_249
crossref_primary_10_1016_j_engfailanal_2024_109191
crossref_primary_10_1007_s00107_019_01416_9
crossref_primary_10_1007_s10479_017_2405_7
crossref_primary_10_1007_s00531_019_01727_5
crossref_primary_10_1016_j_sedgeo_2019_03_019
crossref_primary_10_1016_j_scitotenv_2018_05_153
crossref_primary_10_1007_s10973_020_09373_9
crossref_primary_10_1007_s42452_019_0938_x
crossref_primary_10_1007_s11440_021_01358_8
crossref_primary_10_1016_j_gsf_2020_02_012
crossref_primary_10_3390_pr10030536
crossref_primary_10_1007_s40891_023_00446_x
crossref_primary_10_1002_cem_3009
crossref_primary_10_1007_s11440_021_01373_9
crossref_primary_10_1016_j_acme_2017_12_008
crossref_primary_10_3390_ijerph17228614
crossref_primary_10_1007_s10614_024_10703_4
crossref_primary_10_1007_s11356_021_16916_6
crossref_primary_10_1007_s12040_016_0708_8
crossref_primary_10_1007_s42976_024_00615_2
crossref_primary_10_1016_j_autcon_2021_103779
crossref_primary_10_1016_j_eswa_2019_112966
crossref_primary_10_1007_s11069_024_06588_z
crossref_primary_10_1016_j_rsase_2023_101131
crossref_primary_10_5937_jemc2102115T
crossref_primary_10_1080_00207543_2022_2093683
crossref_primary_10_3389_fpls_2024_1373318
crossref_primary_10_1007_s00704_024_05066_7
crossref_primary_10_1016_j_geoen_2023_212584
crossref_primary_10_1080_10106049_2022_2060323
crossref_primary_10_1007_s41062_021_00631_9
crossref_primary_10_1016_j_autcon_2019_103038
crossref_primary_10_31466_kfbd_1446997
crossref_primary_10_1002_ece3_7731
crossref_primary_10_1007_s10661_020_08724_1
crossref_primary_10_1007_s40891_022_00390_2
crossref_primary_10_3389_fpubh_2017_00303
crossref_primary_10_1016_j_apr_2018_12_017
crossref_primary_10_3390_jmse11061163
crossref_primary_10_1016_j_procs_2019_08_162
crossref_primary_10_1080_17499518_2019_1658881
crossref_primary_10_2139_ssrn_3281538
crossref_primary_10_1016_j_cherd_2024_04_033
crossref_primary_10_1007_s40789_023_00579_4
crossref_primary_10_1016_j_enggeo_2020_105651
crossref_primary_10_1016_j_gsf_2020_05_004
crossref_primary_10_1016_j_gsf_2020_05_003
crossref_primary_10_1061_AJRUA6_0001277
crossref_primary_10_1109_ACCESS_2020_3035263
crossref_primary_10_1007_s11440_019_00843_5
crossref_primary_10_1007_s11440_021_01319_1
crossref_primary_10_1080_17499518_2021_1957484
crossref_primary_10_3390_e23040477
crossref_primary_10_1007_s00366_020_01118_4
crossref_primary_10_1016_j_soildyn_2020_106097
crossref_primary_10_1007_s10836_024_06117_7
crossref_primary_10_1007_s13201_024_02224_0
crossref_primary_10_3390_agriengineering5010004
crossref_primary_10_3390_ma17091994
crossref_primary_10_1007_s10706_023_02472_y
crossref_primary_10_1007_s41062_022_00962_1
crossref_primary_10_1016_j_asoc_2024_111408
crossref_primary_10_3390_en12081416
crossref_primary_10_1155_2021_8324272
crossref_primary_10_1007_s11205_020_02527_0
crossref_primary_10_1007_s11356_022_22601_z
crossref_primary_10_1007_s12665_020_09327_2
crossref_primary_10_1016_j_jhazmat_2024_133859
crossref_primary_10_1007_s12517_021_08192_y
crossref_primary_10_1016_j_seta_2024_104057
crossref_primary_10_1016_j_trc_2018_03_018
crossref_primary_10_1007_s12145_024_01342_2
crossref_primary_10_1016_j_scitotenv_2019_135983
crossref_primary_10_1007_s11440_020_00916_w
crossref_primary_10_1080_17486025_2022_2103187
crossref_primary_10_1007_s00500_020_05435_0
crossref_primary_10_1016_j_autcon_2020_103530
crossref_primary_10_3390_s19163451
crossref_primary_10_1007_s10706_019_01085_8
crossref_primary_10_1016_j_gsf_2017_09_011
crossref_primary_10_1016_j_undsp_2022_01_003
crossref_primary_10_1061__ASCE_ST_1943_541X_0003022
crossref_primary_10_1002_ese3_1412
crossref_primary_10_1007_s11440_022_01495_8
crossref_primary_10_1016_j_eswa_2021_116413
crossref_primary_10_1007_s41939_023_00195_4
crossref_primary_10_1016_j_trgeo_2024_101436
crossref_primary_10_1016_j_gsf_2017_09_009
crossref_primary_10_1038_s41598_022_17983_6
crossref_primary_10_3390_geosciences11050218
crossref_primary_10_21449_ijate_982666
crossref_primary_10_1007_s12205_022_0488_4
crossref_primary_10_3390_app11146278
crossref_primary_10_1007_s40515_025_00569_w
crossref_primary_10_1007_s00603_022_02948_y
crossref_primary_10_3390_buildings14040954
crossref_primary_10_1061__ASCE_HE_1943_5584_0001550
crossref_primary_10_1016_j_undsp_2018_07_001
crossref_primary_10_1139_cgj_2020_0644
crossref_primary_10_1016_j_ecolind_2024_112594
crossref_primary_10_1016_j_jrmge_2021_05_009
crossref_primary_10_1016_j_rsase_2022_100917
crossref_primary_10_1007_s12008_024_01890_3
crossref_primary_10_1080_09715010_2016_1201782
crossref_primary_10_1016_j_conbuildmat_2018_09_047
crossref_primary_10_1016_j_compgeo_2019_103280
crossref_primary_10_1016_j_istruc_2023_01_059
crossref_primary_10_1016_j_undsp_2020_05_007
crossref_primary_10_1016_j_gsf_2020_01_011
crossref_primary_10_1080_23248378_2024_2326514
crossref_primary_10_1016_j_jhydrol_2020_124786
crossref_primary_10_3390_su11123328
crossref_primary_10_1080_14680629_2021_1995471
crossref_primary_10_1177_03611981241278354
crossref_primary_10_1016_j_gsd_2020_100479
crossref_primary_10_3390_en13081967
crossref_primary_10_1007_s11053_021_09968_5
crossref_primary_10_1007_s13738_024_03170_z
crossref_primary_10_1016_j_compgeo_2022_104744
crossref_primary_10_1007_s10064_020_01730_0
crossref_primary_10_1016_j_paerosci_2017_11_003
crossref_primary_10_1016_j_compgeo_2020_103869
crossref_primary_10_1029_2018WR023378
crossref_primary_10_1007_s00366_020_01241_2
crossref_primary_10_1016_j_ecoinf_2021_101348
crossref_primary_10_1016_j_undsp_2019_12_002
crossref_primary_10_5194_nhess_18_1451_2018
crossref_primary_10_1016_j_undsp_2019_12_003
crossref_primary_10_1139_cgj_2020_0193
crossref_primary_10_1016_j_asoc_2023_110066
crossref_primary_10_1016_j_scitotenv_2023_161973
crossref_primary_10_1080_02626667_2019_1661417
crossref_primary_10_1016_j_cities_2021_103393
crossref_primary_10_1016_j_gsf_2015_10_006
crossref_primary_10_3390_su15043482
crossref_primary_10_5382_econgeo_5023
crossref_primary_10_1002_est2_147
crossref_primary_10_3390_app11125411
crossref_primary_10_1016_j_ecoleng_2016_05_047
crossref_primary_10_1016_j_tust_2023_105135
crossref_primary_10_3390_en15145247
crossref_primary_10_1080_10298436_2021_1990920
crossref_primary_10_1007_s11831_021_09615_5
crossref_primary_10_1080_14680629_2022_2117063
crossref_primary_10_3390_modelling4040025
crossref_primary_10_1007_s40515_023_00327_w
crossref_primary_10_1007_s10064_021_02353_9
crossref_primary_10_1016_j_gsf_2017_11_014
crossref_primary_10_1016_j_jrmge_2021_12_018
crossref_primary_10_1007_s11240_019_01763_8
crossref_primary_10_1002_nag_3679
crossref_primary_10_1155_2018_3719703
crossref_primary_10_1016_j_gsf_2017_08_007
crossref_primary_10_1016_j_ijhydene_2021_01_222
crossref_primary_10_1016_j_saa_2023_122944
crossref_primary_10_3390_ma12132169
crossref_primary_10_1111_tgis_12891
crossref_primary_10_1186_s40645_018_0185_6
crossref_primary_10_3390_app10041355
crossref_primary_10_36899_JAPS_2023_4_0694
crossref_primary_10_2166_nh_2019_090
crossref_primary_10_1016_j_jrmge_2022_04_012
crossref_primary_10_32604_cmes_2024_052830
crossref_primary_10_1016_j_jrmge_2021_07_005
crossref_primary_10_1007_s13369_019_04095_z
crossref_primary_10_1080_17499518_2022_2046790
crossref_primary_10_3390_rs13051025
crossref_primary_10_1016_j_jhydrol_2019_03_046
crossref_primary_10_1007_s40808_022_01637_7
crossref_primary_10_1016_j_conbuildmat_2023_132789
crossref_primary_10_1002_hyp_15201
crossref_primary_10_1016_j_jrmge_2021_06_015
crossref_primary_10_3390_ijgi8050240
crossref_primary_10_3390_rs16071132
crossref_primary_10_1038_s41598_022_18366_7
crossref_primary_10_1016_j_jrmge_2021_06_013
crossref_primary_10_1007_s10064_018_01445_3
crossref_primary_10_1139_cgj_2022_0365
crossref_primary_10_1007_s12517_022_09941_3
crossref_primary_10_1016_j_compenvurbsys_2017_04_002
crossref_primary_10_1016_j_geodrs_2023_e00628
crossref_primary_10_1007_s11440_021_01370_y
crossref_primary_10_18016_ksutarimdoga_vi_716880
crossref_primary_10_1080_19386362_2016_1269043
crossref_primary_10_19171_uefad_932207
crossref_primary_10_1007_s10706_021_01994_7
crossref_primary_10_1080_1064119X_2019_1566297
crossref_primary_10_1155_2018_3425461
crossref_primary_10_1007_s12040_020_01508_8
crossref_primary_10_1007_s12517_021_08319_1
crossref_primary_10_1016_j_trgeo_2024_101288
crossref_primary_10_1007_s12046_024_02545_5
crossref_primary_10_1007_s11440_021_01257_y
crossref_primary_10_1007_s12205_024_2613_z
crossref_primary_10_3390_app12157757
crossref_primary_10_1016_j_engfailanal_2019_06_049
crossref_primary_10_1061__ASCE_GM_1943_5622_0002057
crossref_primary_10_3390_w11020353
crossref_primary_10_1007_s00500_021_06123_3
crossref_primary_10_1016_j_conbuildmat_2022_129518
crossref_primary_10_47115_bsagriculture_1181444
crossref_primary_10_3390_agriculture13030596
crossref_primary_10_1016_j_jclepro_2020_120223
crossref_primary_10_1080_17480930_2019_1577940
crossref_primary_10_1002_gj_4729
crossref_primary_10_1016_j_tws_2020_106744
crossref_primary_10_1080_02626667_2025_2461081
crossref_primary_10_19111_bulletinofmre_502794
crossref_primary_10_1080_02626667_2020_1732983
crossref_primary_10_1016_j_tust_2021_104133
crossref_primary_10_1117_1_JRS_13_034520
crossref_primary_10_1016_j_agrformet_2019_107647
crossref_primary_10_1371_journal_pone_0307037
crossref_primary_10_1007_s11269_020_02484_w
crossref_primary_10_1016_j_tust_2018_11_046
crossref_primary_10_1016_j_gsf_2020_04_011
crossref_primary_10_1016_j_geogeo_2024_100253
crossref_primary_10_1080_15481603_2022_2026636
crossref_primary_10_1007_s11069_023_06210_8
crossref_primary_10_1016_j_jenvman_2020_111713
crossref_primary_10_1007_s13762_022_04202_y
crossref_primary_10_1109_ACCESS_2021_3075159
crossref_primary_10_3390_rs13050942
crossref_primary_10_3390_su15129404
crossref_primary_10_1007_s10064_017_1201_6
crossref_primary_10_1016_j_asoc_2020_107048
crossref_primary_10_1007_s10064_018_1281_y
Cites_doi 10.1016/j.eswa.2010.11.002
10.1016/j.compgeo.2012.09.016
10.1016/j.enggeo.2013.12.003
10.12989/gae.2014.7.4.431
10.1016/j.conbuildmat.2009.04.010
10.4018/jamc.2012040103
10.1214/aos/1176347963
10.1016/j.oceaneng.2011.09.036
10.1002/nag.1076
10.1002/nag.1129
10.12989/gae.2011.3.4.291
10.1016/j.compgeo.2006.08.006
ContentType Journal Article
Copyright 2014 China University of Geosciences (Beijing) and Peking University
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2014 China University of Geosciences (Beijing) and Peking University
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W94
~WA
6I.
AAFTH
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
ADTOC
UNPAY
DOI 10.1016/j.gsf.2014.10.003
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-自然科学
中文科技期刊数据库- 镜像站点
ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Geology
DocumentTitleAlternate Multivariate adaptive regression splines and neural network models for prediction of pile drivability
EndPage 52
ExternalDocumentID 10.1016/j.gsf.2014.10.003
dxqy_e201601006
10_1016_j_gsf_2014_10_003
S1674987114001364
667652572
GrantInformation_xml – fundername: The authors would like to express their appreciation to Jeon and Rahman for making the pile drivability database available for this work
  funderid: (2008) for making the pile drivability database available for this work
GroupedDBID --K
-01
-0A
-SA
-S~
0R~
0SF
2B.
2C.
2RA
4.4
457
5SA
5VR
5VS
6I.
92E
92I
92L
92M
92Q
93N
9D9
9DA
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADEZE
AEXQZ
AFPKN
AFTJW
AFUIB
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
CQIGP
E3Z
EBS
EJD
FA0
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
JUIAU
KQ8
M41
NCXOZ
O-L
O9-
OK1
Q--
Q-0
R-A
RIG
ROL
RT1
S..
SES
SSZ
T8Q
TCJ
TGP
U1F
U1G
U5A
U5K
W94
XH2
~LI
~WA
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
4A8
PSX
ADTOC
UNPAY
ID FETCH-LOGICAL-a492t-a9b9ee1a16466d58785c1fb61e88e3b21b9d15f521039ec481eb2927ff7bb6fb3
IEDL.DBID IXB
ISSN 1674-9871
2588-9192
IngestDate Tue Aug 19 22:47:04 EDT 2025
Thu May 29 04:00:36 EDT 2025
Thu Apr 24 23:05:43 EDT 2025
Wed Oct 01 04:27:44 EDT 2025
Thu Jul 20 19:57:07 EDT 2023
Wed Feb 14 10:25:45 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Nonlinearity
Pile drivability
Back propagation neural network
Computational efficiency
Multivariate adaptive regression splines
Language English
License http://creativecommons.org/licenses/by-nc-nd/3.0
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a492t-a9b9ee1a16466d58785c1fb61e88e3b21b9d15f521039ec481eb2927ff7bb6fb3
Notes Piles are long, slender structural elements used to transfer the loads from the superstructure through weak strata onto stiffer soils or rocks. For driven piles, the impact of the piling hammer induces compression and tension stresses in the piles. Hence, an important design consideration is to check that the strength of the pile is sufficient to resist the stresses caused by the impact of the pile hammer. Due to its complexity, pile drivability lacks a precise analytical solution with regard to the phenomena involved.In situations where measured data or numerical hypothetical results are available, neural networks stand out in mapping the nonlinear interactions and relationships between the system’s predictors and dependent responses. In addition, unlike most computational tools, no mathematical relationship assumption between the dependent and independent variables has to be made. Nevertheless, neural networks have been criticized for their long trial-and-error training process since the optimal configuration is not known a priori. This paper investigates the use of a fairly simple nonparametric regression algorithm known as multivariate adaptive regression splines(MARS), as an alternative to neural networks, to approximate the relationship between the inputs and dependent response, and to mathematically interpret the relationship between the various parameters. In this paper, the Back propagation neural network(BPNN) and MARS models are developed for assessing pile drivability in relation to the prediction of the Maximum compressive stresses(MCS), Maximum tensile stresses(MTS), and Blow per foot(BPF). A database of more than four thousand piles is utilized for model development and comparative performance between BPNN and MARS predictions.
11-5920/P
Back propagation neural network;Multivariate adaptive regression splines;Pile drivability;Computational efficiency;Nonlinearity
ORCID 0000-0001-6051-1388
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1674987114001364
PageCount 8
ParticipantIDs unpaywall_primary_10_1016_j_gsf_2014_10_003
wanfang_journals_dxqy_e201601006
crossref_citationtrail_10_1016_j_gsf_2014_10_003
crossref_primary_10_1016_j_gsf_2014_10_003
elsevier_sciencedirect_doi_10_1016_j_gsf_2014_10_003
chongqing_primary_667652572
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Di xue qian yuan.
PublicationTitleAlternate Geoscience Frontiers
PublicationTitle_FL GEOSCIENCE FRONTIERS
PublicationYear 2016
Publisher Elsevier B.V
School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
Publisher_xml – name: Elsevier B.V
– name: School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
References Hastie, Tibshirani, Friedman (bib8) 2009
Jekabsons (bib9) 2010
Smith (bib17) 1960; 86
Samui, Das, Kim (bib15) 2011; 38
Zhang, Goh (bib21) 2014
Lashkari (bib11) 2012; 37
Zarnani, El-Emam, Bathurst (bib18) 2011; 3
Samui (bib14) 2011; 36
Mirzahosseini, Aghaeifar, Alavi, Gandomi, Seyednour (bib12) 2011; 38
Goh, Zhang (bib7) 2014; 170
Jeon, Rahman (bib10) 2008
Zhang, Goh (bib20) 2014; 7
Attoh-Okine, Cooger, Mensah (bib1) 2009; 23
Rumelhart, Hinton, Williams (bib13) 1986; vol. 1
Das, Basudhar (bib2) 2006; 33
Zhang, Goh (bib19) 2013; 48
Garson (bib6) 1991; 6
Friedman (bib4) 1991; 19
Gandomi, Roke (bib5) 2013
Samui, Karup (bib16) 2011; 3
Demuth, Beale (bib3) 2003
Gandomi (10.1016/j.gsf.2014.10.003_bib5) 2013
Zhang (10.1016/j.gsf.2014.10.003_bib19) 2013; 48
Rumelhart (10.1016/j.gsf.2014.10.003_bib13) 1986; vol. 1
Jekabsons (10.1016/j.gsf.2014.10.003_bib9) 2010
Hastie (10.1016/j.gsf.2014.10.003_bib8) 2009
Das (10.1016/j.gsf.2014.10.003_bib2) 2006; 33
Zarnani (10.1016/j.gsf.2014.10.003_bib18) 2011; 3
Zhang (10.1016/j.gsf.2014.10.003_bib21) 2014
Samui (10.1016/j.gsf.2014.10.003_bib14) 2011; 36
Samui (10.1016/j.gsf.2014.10.003_bib16) 2011; 3
Smith (10.1016/j.gsf.2014.10.003_bib17) 1960; 86
Friedman (10.1016/j.gsf.2014.10.003_bib4) 1991; 19
Mirzahosseini (10.1016/j.gsf.2014.10.003_bib12) 2011; 38
Samui (10.1016/j.gsf.2014.10.003_bib15) 2011; 38
Attoh-Okine (10.1016/j.gsf.2014.10.003_bib1) 2009; 23
Demuth (10.1016/j.gsf.2014.10.003_bib3) 2003
Garson (10.1016/j.gsf.2014.10.003_bib6) 1991; 6
Zhang (10.1016/j.gsf.2014.10.003_bib20) 2014; 7
Lashkari (10.1016/j.gsf.2014.10.003_bib11) 2012; 37
Goh (10.1016/j.gsf.2014.10.003_bib7) 2014; 170
Jeon (10.1016/j.gsf.2014.10.003_bib10) 2008
References_xml – volume: 86
  start-page: 35
  year: 1960
  end-page: 61
  ident: bib17
  article-title: Pile driving analysis by the wave equation
  publication-title: Journal of the Engineering Mechanics Division ASCE
– volume: 6
  start-page: 47
  year: 1991
  end-page: 51
  ident: bib6
  article-title: Interpreting neural-network connection weights
  publication-title: AI Expert
– volume: 38
  start-page: 6081
  year: 2011
  end-page: 6100
  ident: bib12
  article-title: Permanent deformation analysis of asphalt mixtures using soft computing techniques
  publication-title: Expert Systems with Applications
– volume: 36
  start-page: 1434
  year: 2011
  end-page: 1439
  ident: bib14
  article-title: Determination of ultimate capacity of driven piles in cohesionless soil: a Multivariate Adaptive Regression Spline approach
  publication-title: International Journal for Numerical and Analytical Methods in Geomechanics
– volume: 7
  start-page: 431
  year: 2014
  end-page: 458
  ident: bib20
  article-title: Multivariate adaptive regression splines model for reliability assessment of serviceability limit state of twin caverns
  publication-title: Geomechanics and Engineering
– volume: 38
  start-page: 2123
  year: 2011
  end-page: 2127
  ident: bib15
  article-title: Uplift capacity of suction caisson in clay using multivariate adaptive regression splines
  publication-title: Ocean Engineering
– year: 2010
  ident: bib9
  article-title: VariReg: a Software Tool for Regression Modelling Using Various Modeling Methods
– volume: 23
  start-page: 3020
  year: 2009
  end-page: 3023
  ident: bib1
  article-title: Multivariate adaptive regression (MARS) and hinged hyperplanes (HHP) for doweled pavement performance modeling
  publication-title: Journal of Construction and Building Materials
– year: 2013
  ident: bib5
  article-title: Intelligent formulation of structural engineering systems
  publication-title: Seventh MIT Conference on Computational Fluid and Solid Mechanics- Focus: Multiphysics and Multiscale, 12–14 Jun., Cambridge, USA
– volume: 33
  start-page: 454
  year: 2006
  end-page: 459
  ident: bib2
  article-title: Undrained lateral load capacity of piles in clay using artificial neural network
  publication-title: Computer and Geotechnics
– year: 2009
  ident: bib8
  article-title: The Elements of Statistical Learning: Data Mining, Inference and Prediction
– year: 2008
  ident: bib10
  article-title: Fuzzy Neural Network Models for Geotechnical Problems
– volume: 3
  start-page: 33
  year: 2011
  end-page: 42
  ident: bib16
  article-title: Multivariate adaptive regression splines and least square support vector machine for prediction of undrained shear strength of clay
  publication-title: Applied Metaheuristic Computing
– volume: 48
  start-page: 82
  year: 2013
  end-page: 95
  ident: bib19
  article-title: Multivariate adaptive regression splines for analysis of geotechnical engineering systems
  publication-title: Computers and Geotechnics
– year: 2014
  ident: bib21
  article-title: Reliability assessment of ultimate limit state of twin cavern
  publication-title: Geomechanics and Geoengineering
– volume: 170
  start-page: 1
  year: 2014
  end-page: 10
  ident: bib7
  article-title: An improvement to MLR model for predicting liquefaction-induced lateral spread using Multivariate Adaptive Regression Splines
  publication-title: Engineering Geology
– year: 2003
  ident: bib3
  article-title: Neural Network Toolbox for MATLAB-user Guide Version 4.1
– volume: 19
  start-page: 1
  year: 1991
  end-page: 141
  ident: bib4
  article-title: Multivariate adaptive regression splines
  publication-title: The Annals of Statistics
– volume: vol. 1
  start-page: 318
  year: 1986
  end-page: 362
  ident: bib13
  article-title: Learning internal representation by error propagation
  publication-title: Parallel Distributed Processing
– volume: 37
  start-page: 904
  year: 2012
  end-page: 931
  ident: bib11
  article-title: Prediction of the shaft resistance of non-displacement piles in sand
  publication-title: International Journal for Numerical and Analytical Methods in Geomechanics
– volume: 3
  start-page: 291
  year: 2011
  end-page: 321
  ident: bib18
  article-title: Comparison of numerical and analytical solutions for reinforced soil wall shaking table tests
  publication-title: Geomechanics and Engineering
– volume: 38
  start-page: 6081
  issue: 5
  year: 2011
  ident: 10.1016/j.gsf.2014.10.003_bib12
  article-title: Permanent deformation analysis of asphalt mixtures using soft computing techniques
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.11.002
– volume: 48
  start-page: 82
  year: 2013
  ident: 10.1016/j.gsf.2014.10.003_bib19
  article-title: Multivariate adaptive regression splines for analysis of geotechnical engineering systems
  publication-title: Computers and Geotechnics
  doi: 10.1016/j.compgeo.2012.09.016
– year: 2008
  ident: 10.1016/j.gsf.2014.10.003_bib10
– volume: 170
  start-page: 1
  year: 2014
  ident: 10.1016/j.gsf.2014.10.003_bib7
  article-title: An improvement to MLR model for predicting liquefaction-induced lateral spread using Multivariate Adaptive Regression Splines
  publication-title: Engineering Geology
  doi: 10.1016/j.enggeo.2013.12.003
– volume: vol. 1
  start-page: 318
  year: 1986
  ident: 10.1016/j.gsf.2014.10.003_bib13
  article-title: Learning internal representation by error propagation
– volume: 86
  start-page: 35
  year: 1960
  ident: 10.1016/j.gsf.2014.10.003_bib17
  article-title: Pile driving analysis by the wave equation
  publication-title: Journal of the Engineering Mechanics Division ASCE
– year: 2014
  ident: 10.1016/j.gsf.2014.10.003_bib21
  article-title: Reliability assessment of ultimate limit state of twin cavern
  publication-title: Geomechanics and Geoengineering
  doi: 10.12989/gae.2014.7.4.431
– volume: 7
  start-page: 431
  issue: 4
  year: 2014
  ident: 10.1016/j.gsf.2014.10.003_bib20
  article-title: Multivariate adaptive regression splines model for reliability assessment of serviceability limit state of twin caverns
  publication-title: Geomechanics and Engineering
  doi: 10.12989/gae.2014.7.4.431
– volume: 23
  start-page: 3020
  year: 2009
  ident: 10.1016/j.gsf.2014.10.003_bib1
  article-title: Multivariate adaptive regression (MARS) and hinged hyperplanes (HHP) for doweled pavement performance modeling
  publication-title: Journal of Construction and Building Materials
  doi: 10.1016/j.conbuildmat.2009.04.010
– volume: 3
  start-page: 33
  issue: 2
  year: 2011
  ident: 10.1016/j.gsf.2014.10.003_bib16
  article-title: Multivariate adaptive regression splines and least square support vector machine for prediction of undrained shear strength of clay
  publication-title: Applied Metaheuristic Computing
  doi: 10.4018/jamc.2012040103
– year: 2010
  ident: 10.1016/j.gsf.2014.10.003_bib9
– volume: 19
  start-page: 1
  year: 1991
  ident: 10.1016/j.gsf.2014.10.003_bib4
  article-title: Multivariate adaptive regression splines
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1176347963
– volume: 38
  start-page: 2123
  issue: 17–18
  year: 2011
  ident: 10.1016/j.gsf.2014.10.003_bib15
  article-title: Uplift capacity of suction caisson in clay using multivariate adaptive regression splines
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2011.09.036
– volume: 36
  start-page: 1434
  year: 2011
  ident: 10.1016/j.gsf.2014.10.003_bib14
  article-title: Determination of ultimate capacity of driven piles in cohesionless soil: a Multivariate Adaptive Regression Spline approach
  publication-title: International Journal for Numerical and Analytical Methods in Geomechanics
  doi: 10.1002/nag.1076
– volume: 37
  start-page: 904
  year: 2012
  ident: 10.1016/j.gsf.2014.10.003_bib11
  article-title: Prediction of the shaft resistance of non-displacement piles in sand
  publication-title: International Journal for Numerical and Analytical Methods in Geomechanics
  doi: 10.1002/nag.1129
– year: 2003
  ident: 10.1016/j.gsf.2014.10.003_bib3
– volume: 6
  start-page: 47
  issue: 7
  year: 1991
  ident: 10.1016/j.gsf.2014.10.003_bib6
  article-title: Interpreting neural-network connection weights
  publication-title: AI Expert
– volume: 3
  start-page: 291
  issue: 4
  year: 2011
  ident: 10.1016/j.gsf.2014.10.003_bib18
  article-title: Comparison of numerical and analytical solutions for reinforced soil wall shaking table tests
  publication-title: Geomechanics and Engineering
  doi: 10.12989/gae.2011.3.4.291
– volume: 33
  start-page: 454
  issue: 8
  year: 2006
  ident: 10.1016/j.gsf.2014.10.003_bib2
  article-title: Undrained lateral load capacity of piles in clay using artificial neural network
  publication-title: Computer and Geotechnics
  doi: 10.1016/j.compgeo.2006.08.006
– year: 2013
  ident: 10.1016/j.gsf.2014.10.003_bib5
  article-title: Intelligent formulation of structural engineering systems
– year: 2009
  ident: 10.1016/j.gsf.2014.10.003_bib8
SSID ssj0000778770
Score 2.5531952
Snippet Piles are long, slender structural elements used to transfer the loads from the superstructure through weak strata onto stiffer soils or rocks. For driven...
SourceID unpaywall
wanfang
crossref
elsevier
chongqing
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 45
SubjectTerms Back propagation neural network
BPNN
Computational efficiency
Multivariate adaptive regression splines
Nonlinearity
Pile drivability
反向传播神经网络
数学关系
样条回归
桩长
神经网络模型
神经网络预测
自适应
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxQxFA66ReyLd3GtSh58UjLdZOf6WMRaBIugC_UpJJNkartmpzOzteuv95zMzCKCRcHXIckQ5su5TL7zHUJexgI1UzLDMpE4FvNSs0JrzWDwPE11osugpffhOD1axO9PkpOB_4S1MJDNReAUWGl8X9GAGk2-2__6DY7XPmetiGbsE1LnIVmGWD5ojsXMXXG5bKrorK5ukp0UL5smZGdx_PHgC2ZcMJzheOw0l-R4wgsxXnEGslfVBjnPOApMrzkKLZyufHUB7uNPDuv22tdq810tl6Hexzvlq19c0-Fdcj5uqmeknEfrTkflj9_0Hv_Pru-RO0MESw96yN0nN6x_QG69Cx2CNw-JDSW9l5CCQxRLlVE1GlTa2Kpn3HraYhGwbanyhqKcJizmezI6DX15WgqBNK0bvEJC2NCVozUYL2oaWDeQeTePyOLw7ec3R2zo5cBUXIiOqUIX1nKFcmapSfIsT0rudMptntu5FlwXhicOgonZvLBlnHNI-QuROZdpnTo9f0wmfuXtE0J5psBAg08VACSwJ9oYSItsZlxpuLBmSva2H0_WvWaHRCovCr-KKZmNn1OWgww6duNYypHvdiYBDRLRgI8ADVPyajtlXO-awfGIETkEMX1wIsFHXTft9RZPf_MSOiBODianlebqYiOtQMVADqb06T8tuEd2cWb_b-kZmXTN2j6HaKvTL4Zj9BOJaCU-
  priority: 102
  providerName: Unpaywall
Title Multivariate adaptive regression splines and neural network models for prediction of pile drivability
URI http://lib.cqvip.com/qk/71129X/201601/667652572.html
https://dx.doi.org/10.1016/j.gsf.2014.10.003
https://d.wanfangdata.com.cn/periodical/dxqy-e201601006
https://ars.els-cdn.com/content/image/1-s2.0-S1674987114001364-fx1_lrg.jpg
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  issn: 1674-9871
  databaseCode: KQ8
  dateStart: 20101001
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  omitProxy: true
  ssIdentifier: ssj0000778770
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVESC
  databaseName: ScienceDirect Free and Delayed Access Journal
  issn: 1674-9871
  databaseCode: IXB
  dateStart: 20101001
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000778770
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 1674-9871
  databaseCode: AKRWK
  dateStart: 20101001
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000778770
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYQCJVL1VIqUkrkAyeqJbH3fQTUgEAgKoiUnix7bQeqyFmyoZB_z4x3NyoHUMVlD5YfK489M7a_-YaQvYgjZ0qqg5THNohYoYJcKRVA5TBJVKwKz6V3cZmcDqOzUTxaIcdtLAzCKhvdX-t0r62bkl4zm73y7q53jfh5ODGDQ--Jx5ATFEb1QXyjo-U9Sz-FJelzxmH9ABu0j5se5jWuPJFndOAxXiFSLNxO3fgeDMdrpurDgyvl4lFOJj7Sx1npxv8YpcEn8rHxJulh_cOfyYpxm2T9xGfrXXwhxofX_oXjMHiUVGpZonKjMzOu0a-OVhiQayoqnaZIbQmduRoYTn2OnIqCU0vLGT7noAjp1NISFAnVM-jXA2sXW2Q4-HlzfBo0eRUCGeV8Hshc5cYwidRiiY6zNIsLZlXCTJaZUHGmcs1iC4a9H-amiDIGx--cp9amSiVWhV_Jqps6s00oSyUoS7BvHIQKe1tpDUcUk2pbaMaN7pCd5XSKsubPEAirRRJW3iH9doJF0VCSY2aMiWixZ38EyEegfLAI5NMh-8smbX9vVI5aqYkXi0qAvXir2Y-lhP9nENqsAdFs_0rop_uFMBzZ-xiotW_v-48dsoFd1Bc-38nqfPZgdsEFmquuX-PwPf-Vdcna8PLq8PczNUMGZg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VVqhcEOWhhgL1gRNoSex9H6GipKXthVbKzbLXdtoqcrbZFMi_Z8a7G8GBqurVsr2Wx57H-ptvAN4ngjhTchPlInVRwisdlVrrCDvHWaZTXQUuvdOzbHyRHE_SyQYc9LkwBKvsdH-r04O27lqG3W4O66ur4Q_Cz2PEjA59IB5LHsEWegMjwnUdTb6sf7SMcjyToWgcDYhoRP-6GXBe0yYweSafAsgrJo6Fy7mf3qDl-J-t2r71tVr9UrNZSPXxTvnpX1bp8Bk87dxJ9rld8Q5sWP8cHn8L5XpXL8CG_NqfGA-jS8mUUTVpN7aw0xb-6llDGbm2YcobRtyWOJlvkeEsFMlpGHq1rF7Qew7JkM0dq1GTMLPAeQOydvUSLg6_nh-Mo66wQqSSUiwjVerSWq6IWywzaZEXacWdzrgtChtrwXVpeOrQso_i0lZJwTH-LkXuXK515nT8Cjb93NtdYDxXqC3RwAmUKl5ubQzGKDY3rjJcWDOAvfV2yrol0JCEqyUWVjGAUb_Bsuo4yak0xkz24LNrifKRJB9qQvkM4MN6SD_fHZ2TXmryn1Ml0WDcNezjWsL3-QjrzoDs7n8jze-blbSC6Ps46rXXD1vHPmyPz09P5MnR2fc9eELTtX9_3sDmcnFr36I_tNTvwnn_AwXxBuI
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxQxFA66ReyLd3GtSh58UjLdZOf6WMRaBIugC_UpJJNkartmpzOzteuv95zMzCKCRcHXIckQ5su5TL7zHUJexgI1UzLDMpE4FvNSs0JrzWDwPE11osugpffhOD1axO9PkpOB_4S1MJDNReAUWGl8X9GAGk2-2__6DY7XPmetiGbsE1LnIVmGWD5ojsXMXXG5bKrorK5ukp0UL5smZGdx_PHgC2ZcMJzheOw0l-R4wgsxXnEGslfVBjnPOApMrzkKLZyufHUB7uNPDuv22tdq810tl6Hexzvlq19c0-Fdcj5uqmeknEfrTkflj9_0Hv_Pru-RO0MESw96yN0nN6x_QG69Cx2CNw-JDSW9l5CCQxRLlVE1GlTa2Kpn3HraYhGwbanyhqKcJizmezI6DX15WgqBNK0bvEJC2NCVozUYL2oaWDeQeTePyOLw7ec3R2zo5cBUXIiOqUIX1nKFcmapSfIsT0rudMptntu5FlwXhicOgonZvLBlnHNI-QuROZdpnTo9f0wmfuXtE0J5psBAg08VACSwJ9oYSItsZlxpuLBmSva2H0_WvWaHRCovCr-KKZmNn1OWgww6duNYypHvdiYBDRLRgI8ADVPyajtlXO-awfGIETkEMX1wIsFHXTft9RZPf_MSOiBODianlebqYiOtQMVADqb06T8tuEd2cWb_b-kZmXTN2j6HaKvTL4Zj9BOJaCU-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+adaptive+regression+splines+and+neural+network+models+for+prediction+of+pile+drivability&rft.jtitle=Di+xue+qian+yuan.&rft.au=Zhang%2C+Wengang&rft.au=Goh%2C+Anthony+T.C.&rft.date=2016-01-01&rft.issn=1674-9871&rft.volume=7&rft.issue=1&rft.spage=45&rft.epage=52&rft_id=info:doi/10.1016%2Fj.gsf.2014.10.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_gsf_2014_10_003
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F71129X%2F71129X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdxqy-e%2Fdxqy-e.jpg