Development of Robust Calibration Models Using Support Vector Machines for Spectroscopic Monitoring of Blood Glucose
Sample-to-sample variability has proven to be a major challenge in achieving calibration transfer in quantitative biological Raman spectroscopy. Multiple morphological and optical parameters, such as tissue absorption and scattering, physiological glucose dynamics and skin heterogeneity, vary signif...
Saved in:
Published in | Analytical chemistry (Washington) Vol. 82; no. 23; pp. 9719 - 9726 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
01.12.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 0003-2700 1520-6882 1520-6882 |
DOI | 10.1021/ac101754n |
Cover
Abstract | Sample-to-sample variability has proven to be a major challenge in achieving calibration transfer in quantitative biological Raman spectroscopy. Multiple morphological and optical parameters, such as tissue absorption and scattering, physiological glucose dynamics and skin heterogeneity, vary significantly in a human population introducing nonanalyte specific features into the calibration model. In this paper, we show that fluctuations of such parameters in human subjects introduce curved (nonlinear) effects in the relationship between the concentrations of the analyte of interest and the mixture Raman spectra. To account for these curved effects, we propose the use of support vector machines (SVM) as a nonlinear regression method over conventional linear regression techniques such as partial least-squares (PLS). Using transcutaneous blood glucose detection as an example, we demonstrate that application of SVM enables a significant improvement (at least 30%) in cross-validation accuracy over PLS when measurements from multiple human volunteers are employed in the calibration set. Furthermore, using physical tissue models with randomized analyte concentrations and varying turbidities, we show that the fluctuations in turbidity alone causes curved effects which can only be adequately modeled using nonlinear regression techniques. The enhanced levels of accuracy obtained with the SVM based calibration models opens up avenues for prospective prediction in humans and thus for clinical translation of the technology. |
---|---|
AbstractList | Sample-to-sample variability has proven to be a major challenge in achieving calibration transfer in quantitative biological Raman spectroscopy. Multiple morphological and optical parameters, such as tissue absorption and scattering, physiological glucose dynamics and skin heterogeneity, vary significantly in a human population introducing nonanalyte specific features into the calibration model. In this paper, we show that fluctuations of such parameters in human subjects introduce curved (nonlinear) effects in the relationship between the concentrations of the analyte of interest and the mixture Raman spectra. To account for these curved effects, we propose the use of support vector machines (SVM) as a nonlinear regression method over conventional linear regression techniques such as partial least-squares (PLS). Using transcutaneous blood glucose detection as an example, we demonstrate that application of SVM enables a significant improvement (at least 30%) in cross-validation accuracy over PLS when measurements from multiple human volunteers are employed in the calibration set. Furthermore, using physical tissue models with randomized analyte concentrations and varying turbidities, we show that the fluctuations in turbidity alone causes curved effects which can only be adequately modeled using nonlinear regression techniques. The enhanced levels of accuracy obtained with the SVM based calibration models opens up avenues for prospective prediction in humans and thus for clinical translation of the technology. Sample-to-sample variability has proven to be a major challenge in achieving calibration transfer in quantitative biological Raman spectroscopy. Multiple morphological and optical parameters, such as tissue absorption and scattering, physiological glucose dynamics and skin heterogeneity, vary significantly in a human population introducing non-analyte specific features into the calibration model. In this paper, we show that fluctuations of such parameters in human subjects introduce curved (non-linear) effects in the relationship between the concentrations of the analyte of interest and the mixture Raman spectra. To account for these curved effects, we propose the use of support vector machines (SVM) as a non-linear regression method over conventional linear regression techniques such as partial least squares (PLS). Using transcutaneous blood glucose detection as an example, we demonstrate that application of SVM enables a significant improvement (at least 30%) in cross-validation accuracy over PLS when measurements from multiple human volunteers are employed in the calibration set. Furthermore, using physical tissue models with randomized analyte concentrations and varying turbidities, we show that the fluctuations in turbidity alone causes curved effects which can only be adequately modeled using non-linear regression techniques. The enhanced levels of accuracy obtained with the SVM based calibration models opens up avenues for prospective prediction in humans and thus for clinical translation of the technology. Sample-to-sample variability has proven to be a major challenge in achieving calibration transfer in quantitative biological Raman spectroscopy. Multiple morphological and optical parameters, such as tissue absorption and scattering, physiological glucose dynamics and skin heterogeneity, vary significantly in a human population introducing nonanalyte specific features into the calibration model. In this paper, we show that fluctuations of such parameters in human subjects introduce curved (nonlinear) effects in the relationship between the concentrations of the analyte of interest and the mixture Raman spectra. To account for these curved effects, we propose the use of support vector machines (SVM) as a nonlinear regression method over conventional linear regression techniques such as partial least-squares (PLS). Using transcutaneous blood glucose detection as an example, we demonstrate that application of SVM enables a significant improvement (at least 30%) in cross-validation accuracy over PLS when measurements from multiple human volunteers are employed in the calibration set. Furthermore, using physical tissue models with randomized analyte concentrations and varying turbidities, we show that the fluctuations in turbidity alone causes curved effects which can only be adequately modeled using nonlinear regression techniques. The enhanced levels of accuracy obtained with the SVM based calibration models opens up avenues for prospective prediction in humans and thus for clinical translation of the technology. [PUBLICATION ABSTRACT] Sample-to-sample variability has proven to be a major challenge in achieving calibration transfer in quantitative biological Raman spectroscopy. Multiple morphological and optical parameters, such as tissue absorption and scattering, physiological glucose dynamics and skin heterogeneity, vary significantly in a human population introducing nonanalyte specific features into the calibration model. In this paper, we show that fluctuations of such parameters in human subjects introduce curved (nonlinear) effects in the relationship between the concentrations of the analyte of interest and the mixture Raman spectra. To account for these curved effects, we propose the use of support vector machines (SVM) as a nonlinear regression method over conventional linear regression techniques such as partial least-squares (PLS). Using transcutaneous blood glucose detection as an example, we demonstrate that application of SVM enables a significant improvement (at least 30%) in cross-validation accuracy over PLS when measurements from multiple human volunteers are employed in the calibration set. Furthermore, using physical tissue models with randomized analyte concentrations and varying turbidities, we show that the fluctuations in turbidity alone causes curved effects which can only be adequately modeled using nonlinear regression techniques. The enhanced levels of accuracy obtained with the SVM based calibration models opens up avenues for prospective prediction in humans and thus for clinical translation of the technology.Sample-to-sample variability has proven to be a major challenge in achieving calibration transfer in quantitative biological Raman spectroscopy. Multiple morphological and optical parameters, such as tissue absorption and scattering, physiological glucose dynamics and skin heterogeneity, vary significantly in a human population introducing nonanalyte specific features into the calibration model. In this paper, we show that fluctuations of such parameters in human subjects introduce curved (nonlinear) effects in the relationship between the concentrations of the analyte of interest and the mixture Raman spectra. To account for these curved effects, we propose the use of support vector machines (SVM) as a nonlinear regression method over conventional linear regression techniques such as partial least-squares (PLS). Using transcutaneous blood glucose detection as an example, we demonstrate that application of SVM enables a significant improvement (at least 30%) in cross-validation accuracy over PLS when measurements from multiple human volunteers are employed in the calibration set. Furthermore, using physical tissue models with randomized analyte concentrations and varying turbidities, we show that the fluctuations in turbidity alone causes curved effects which can only be adequately modeled using nonlinear regression techniques. The enhanced levels of accuracy obtained with the SVM based calibration models opens up avenues for prospective prediction in humans and thus for clinical translation of the technology. |
Author | Feld, Michael S Kong, Chae-Ryon Barman, Ishan Dasari, Ramachandra R Dingari, Narahara Chari |
Author_xml | – sequence: 1 givenname: Ishan surname: Barman fullname: Barman, Ishan email: ishan@mit.edu – sequence: 2 givenname: Chae-Ryon surname: Kong fullname: Kong, Chae-Ryon – sequence: 3 givenname: Narahara Chari surname: Dingari fullname: Dingari, Narahara Chari – sequence: 4 givenname: Ramachandra R surname: Dasari fullname: Dasari, Ramachandra R – sequence: 5 givenname: Michael S surname: Feld fullname: Feld, Michael S |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23624585$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21050004$$D View this record in MEDLINE/PubMed |
BookMark | eNptklFPFTEQhRuDkQv44B8wjYkxPqy03Xa7vJDoVdEEQgLoazPb7UJJb7u2uyT-ewe5XhR5atr55uSczuyQrZiiI-QFZ-84E3wfLGdcKxmfkAVXglVN24otsmCM1ZXQjG2TnVKuGePINc_ItuBMYVEuyPTR3biQxpWLE00DPUvdXCa6hOC7DJNPkZ6k3oVCvxUfL-n5PI4pT_S7s1PK9ATslY-u0AEv5yM-5lRsGr3FtugRuW1C3Q8hpZ4ehdmm4vbI0wFCcc_X5y65-PzpYvmlOj49-rp8f1yBPBBTJQahBnCdtLpuoAXgmttWKC4HTOKUY03dYGxtgcle97XUXd-6XvWSSy3qXXJ4JzvO3cr1FiNmCGbMfgX5p0ngzb-V6K_MZboxNVNaaokCb9YCOf2YXZnMyhfrQoDo0lxMy5VS4qDmSL56QF6nOUcMZ1rBFXJNjdDLv_1sjPyZBgKv1wAUC2HIEK0v91zdCKlahdzbO87ib5fshg3CmbndCLPZCGT3H7DWT78Hi5F9eLRj7QJsuY_xP_cLUCPEXA |
CODEN | ANCHAM |
CitedBy_id | crossref_primary_10_1364_OE_21_006346 crossref_primary_10_1364_BOE_3_003012 crossref_primary_10_1371_journal_pone_0032406 crossref_primary_10_1021_acs_jpcc_5b11894 crossref_primary_10_1016_j_chemolab_2013_04_011 crossref_primary_10_1016_j_saa_2024_125584 crossref_primary_10_1002_jbio_201200098 crossref_primary_10_1016_j_postharvbio_2018_01_019 crossref_primary_10_1016_j_sab_2015_09_021 crossref_primary_10_1021_ac2030199 crossref_primary_10_1080_05704928_2019_1584567 crossref_primary_10_1371_journal_pone_0197134 crossref_primary_10_3389_fchem_2022_994272 crossref_primary_10_56530_spectroscopy_sl5185z2 crossref_primary_10_1002_jrs_5410 crossref_primary_10_1039_C5AY00208G crossref_primary_10_1016_j_trac_2014_09_005 crossref_primary_10_1364_BOE_2_000592 crossref_primary_10_1039_C4AY02665A crossref_primary_10_1364_BOE_2_001243 crossref_primary_10_4155_bio_2015_0030 crossref_primary_10_1016_j_chemolab_2014_04_004 crossref_primary_10_1016_j_fuel_2013_07_122 crossref_primary_10_1021_ac301200n crossref_primary_10_1021_ac202755e crossref_primary_10_1088_2058_6272_ab7eda crossref_primary_10_4236_jbm_2015_36007 crossref_primary_10_1007_s11696_018_0638_9 crossref_primary_10_1366_13_07292 crossref_primary_10_1366_13_07250 crossref_primary_10_1002_jrs_4334 crossref_primary_10_1364_BOE_9_000289 crossref_primary_10_1039_c2an15972d crossref_primary_10_1039_c2ay25102g crossref_primary_10_1039_C4AY02462A crossref_primary_10_1088_1361_6463_ac4723 crossref_primary_10_1021_acs_accounts_6b00472 crossref_primary_10_1039_C4AN01849D crossref_primary_10_3233_JIFS_171979 crossref_primary_10_1016_j_infrared_2019_103177 crossref_primary_10_1016_j_infrared_2022_104049 crossref_primary_10_1088_1757_899X_104_1_012036 crossref_primary_10_1080_05704928_2018_1509344 crossref_primary_10_1007_s11306_011_0331_2 crossref_primary_10_1117_1_JBO_19_11_111603 crossref_primary_10_1002_jbio_201700397 crossref_primary_10_1177_1179597220948100 crossref_primary_10_1063_1_3646524 crossref_primary_10_1021_ac203266a crossref_primary_10_1016_j_chemolab_2011_09_007 crossref_primary_10_1021_acsabm_8b00267 crossref_primary_10_1117_1_3611006 crossref_primary_10_3389_fbioe_2022_876672 crossref_primary_10_3389_fbioe_2024_1399938 crossref_primary_10_1142_S1793545818500384 crossref_primary_10_1002_cem_2867 crossref_primary_10_1016_j_infrared_2021_103762 crossref_primary_10_1007_s00216_011_5004_5 crossref_primary_10_1016_j_ijleo_2018_05_050 crossref_primary_10_1117_1_JBO_22_7_077001 crossref_primary_10_1002_elsc_201600229 crossref_primary_10_1186_1756_0381_5_10 crossref_primary_10_1002_jrs_6258 |
Cites_doi | 10.1021/ac050429e 10.1021/ac970721p 10.1117/1.3520131 10.1088/0022-3727/38/15/020 10.1089/dia.2004.6.660 10.1038/414813a 10.1039/b712389b 10.1021/ac9709920 10.1137/1.9780898719697 10.1002/9780470057780 10.1364/OE.16.012726 10.1142/5089 10.1021/ac8025509 10.1021/ac100810e 10.1073/pnas.211566398 10.1007/s00216-006-0971-7 10.1364/OE.11.003320 10.1364/OL.25.001451 10.1364/AO.38.002916 10.1007/s00125-005-1852-x 10.1364/AO.32.003585 10.1111/j.1751-1097.1998.tb05160.x 10.1364/OL.27.002004 10.1021/ac991076k 10.1364/OE.16.012737 10.1088/0031-9155/45/2/201 10.2337/diacare.10.5.622 10.1021/cr0204653 10.1007/978-1-4757-2440-0 10.1021/ac060732v 10.1364/AO.46.001726 10.1117/1.1914843 10.1021/ac035522m |
ContentType | Journal Article |
Copyright | Copyright © 2010 American Chemical Society 2015 INIST-CNRS Copyright American Chemical Society Dec 1, 2010 |
Copyright_xml | – notice: Copyright © 2010 American Chemical Society – notice: 2015 INIST-CNRS – notice: Copyright American Chemical Society Dec 1, 2010 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
DOI | 10.1021/ac101754n |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-6882 |
EndPage | 9726 |
ExternalDocumentID | PMC3057474 2224063251 21050004 23624585 10_1021_ac101754n c993786108 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NCRR NIH HHS grantid: P41-RR02594 – fundername: NCRR NIH HHS grantid: P41 RR002594 |
GroupedDBID | - .K2 02 1AW 23M 3O- 4.4 53G 53T 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABOCM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACNCT ACPRK ACS AEESW AENEX AETEA AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 D0L DZ EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 LG6 P2P PQEST PQQKQ ROL RXW TAE TAF TN5 UHB UI2 UKR VF5 VG9 VQA W1F WH7 X X6Y XFK YZZ --- -DZ -~X .DC 6J9 AAHBH AAYXX ABBLG ABHFT ABHMW ABJNI ABLBI ABQRX ACBEA ACGFO ACKOT ADHLV AGXLV AHGAQ CITATION CUPRZ GGK KZ1 LMP XSW ZCA ~02 .GJ .HR 186 1WB 2KS 3EH 6TJ AAUTI ABDPE ACKIV ACPVT ACQAM ACRPL ADNMO ADXHL AEYZD AFFDN AFFNX AGQPQ AIDAL ANPPW ANTXH IQODW MVM NHB OHT OMK RNS UBC UBX VOH XOL YQI YQJ YR5 YXE YYP ZCG ZE2 ZGI CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
ID | FETCH-LOGICAL-a492t-2f25faeb4c736a8aa171c82514f011e5e06367547ca04d7d347bd8ed5d414723 |
IEDL.DBID | ACS |
ISSN | 0003-2700 1520-6882 |
IngestDate | Thu Aug 21 14:20:52 EDT 2025 Fri Jul 11 04:13:38 EDT 2025 Mon Jun 30 10:27:01 EDT 2025 Mon Jul 21 06:04:11 EDT 2025 Mon Jul 21 09:14:17 EDT 2025 Tue Jul 01 04:21:13 EDT 2025 Thu Apr 24 22:50:41 EDT 2025 Thu Aug 27 13:44:48 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | Glucose Support vector machine Mixture Blood Heterogeneity Tissue Improvement Accuracy Absorption Dynamics Raman spectrometry Vector Monitoring Human Linear regression Sample Prediction Concentration Calibration PLS regression Regression model Morphology Transfer Parameter Skin Technique Detection Application |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a492t-2f25faeb4c736a8aa171c82514f011e5e06367547ca04d7d347bd8ed5d414723 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Deceased |
PMID | 21050004 |
PQID | 821515563 |
PQPubID | 45400 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3057474 proquest_miscellaneous_815552931 proquest_journals_821515563 pubmed_primary_21050004 pascalfrancis_primary_23624585 crossref_primary_10_1021_ac101754n crossref_citationtrail_10_1021_ac101754n acs_journals_10_1021_ac101754n |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-12-01 |
PublicationDateYYYYMMDD | 2010-12-01 |
PublicationDate_xml | – month: 12 year: 2010 text: 2010-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Washington |
PublicationTitle | Analytical chemistry (Washington) |
PublicationTitleAlternate | Anal. Chem |
PublicationYear | 2010 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 Tuchin V. V. (ref26/cit26) 2000 Vapnik V. (ref20/cit20) 1995 Lambert J. L. (ref6/cit6) 2005; 10 Roe J. N. (ref30/cit30) 1998; 15 Barman I. (ref13/cit13) 2009; 81 Cortes C. (ref19/cit19) 1995; 20 Clarke W. L. (ref31/cit31) 1987; 10 ref29/cit29 Brownlee M. (ref1/cit1) 2001; 414 Borin A. (ref40/cit40) 2007; 387 Arnold M. A. (ref8/cit8) 2005; 77 Qi D. (ref28/cit28) 2007; 46 ref39/cit39 Zhang Q. G. (ref35/cit35) 2000; 25 Biswal N. C. (ref36/cit36) 2003; 11 Hanlon E. B. (ref17/cit17) 2000; 45 Liu R. (ref27/cit27) 2005; 38 Enejder A. M. K. (ref5/cit5) 2002; 27 Thissen U. (ref23/cit23) 2004; 76 Christianini N. (ref25/cit25) 2000 Bechtel K. L. (ref12/cit12) 2008; 16 Ramaswamy S. (ref21/cit21) 2001; 98 Wülfert F. (ref32/cit32) 1998; 70 Scholkopf B. (ref24/cit24) 2002 Steil G. M. (ref10/cit10) 2005; 48 Shih W.-C. (ref16/cit16) 2007; 79 Widjaja E. (ref22/cit22) 2008; 133 Enejder A. M. K. (ref7/cit7) 2005; 10 Wu J. (ref34/cit34) 1993; 32 Despagne F. (ref33/cit33) 2000; 72 Berger A. J. (ref15/cit15) 1998; 70 Hansen P. C. (ref38/cit38) 1998 Manoharan R. (ref18/cit18) 1998; 67 Shih W. C. (ref37/cit37) 2008; 16 Ross S. A. (ref2/cit2) 2004; 104 Barman I. (ref11/cit11) 2010; 82 Brereton R. G. (ref14/cit14) 2007 Khalil O. S. (ref3/cit3) 2004; 6 Berger A. J. (ref4/cit4) 1999; 38 |
References_xml | – volume: 77 start-page: 5429 year: 2005 ident: ref8/cit8 publication-title: Anal. Chem. doi: 10.1021/ac050429e – volume: 70 start-page: 623 year: 1998 ident: ref15/cit15 publication-title: Anal. Chem. doi: 10.1021/ac970721p – volume: 15 start-page: 199 year: 1998 ident: ref30/cit30 publication-title: Crit. Rev. Ther. Drug. – ident: ref9/cit9 doi: 10.1117/1.3520131 – volume: 38 start-page: 2675 year: 2005 ident: ref27/cit27 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/38/15/020 – volume: 6 start-page: 660 year: 2004 ident: ref3/cit3 publication-title: Diabetes Technol. Ther. doi: 10.1089/dia.2004.6.660 – volume: 414 start-page: 813 year: 2001 ident: ref1/cit1 publication-title: Nature. doi: 10.1038/414813a – volume: 133 start-page: 493 year: 2008 ident: ref22/cit22 publication-title: Analyst. doi: 10.1039/b712389b – volume: 70 start-page: 1761 year: 1998 ident: ref32/cit32 publication-title: Anal. Chem. doi: 10.1021/ac9709920 – volume-title: Rank-Deficient and Discrete ill—Posed Problems: Numerical Aspects of Linear Inversion year: 1998 ident: ref38/cit38 doi: 10.1137/1.9780898719697 – volume: 10 start-page: 031114−9 year: 2005 ident: ref7/cit7 publication-title: J. Biomed. Opt. – volume-title: Applied Chemometrics for Scientists year: 2007 ident: ref14/cit14 doi: 10.1002/9780470057780 – volume: 16 start-page: 12726 year: 2008 ident: ref37/cit37 publication-title: Opt. Exp. doi: 10.1364/OE.16.012726 – ident: ref39/cit39 doi: 10.1142/5089 – volume: 81 start-page: 4233 year: 2009 ident: ref13/cit13 publication-title: Anal. Chem. doi: 10.1021/ac8025509 – volume: 20 start-page: 273 year: 1995 ident: ref19/cit19 publication-title: Mach. Learn. – volume: 82 start-page: 6104 year: 2010 ident: ref11/cit11 publication-title: Anal. Chem. doi: 10.1021/ac100810e – volume: 98 start-page: 15149 year: 2001 ident: ref21/cit21 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.211566398 – volume-title: An Introduction to Support Vector Machines year: 2000 ident: ref25/cit25 – volume: 387 start-page: 1105 year: 2007 ident: ref40/cit40 publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-006-0971-7 – ident: ref29/cit29 – volume: 11 start-page: 3320 year: 2003 ident: ref36/cit36 publication-title: Opt. Express doi: 10.1364/OE.11.003320 – volume: 25 start-page: 1451 year: 2000 ident: ref35/cit35 publication-title: Opt. Lett. doi: 10.1364/OL.25.001451 – volume: 38 start-page: 2916 year: 1999 ident: ref4/cit4 publication-title: Appl. Opt. doi: 10.1364/AO.38.002916 – volume: 48 start-page: 1833 year: 2005 ident: ref10/cit10 publication-title: Diabetologia. doi: 10.1007/s00125-005-1852-x – volume-title: Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis year: 2000 ident: ref26/cit26 – volume: 32 start-page: 3585 year: 1993 ident: ref34/cit34 publication-title: Appl. Opt. doi: 10.1364/AO.32.003585 – volume: 67 start-page: 15 year: 1998 ident: ref18/cit18 publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.1998.tb05160.x – volume: 27 start-page: 2004 year: 2002 ident: ref5/cit5 publication-title: Opt. Lett. doi: 10.1364/OL.27.002004 – volume: 72 start-page: 1657 year: 2000 ident: ref33/cit33 publication-title: Anal. Chem. doi: 10.1021/ac991076k – volume: 16 start-page: 12737 year: 2008 ident: ref12/cit12 publication-title: Opt. Express doi: 10.1364/OE.16.012737 – volume: 45 start-page: R1 year: 2000 ident: ref17/cit17 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/45/2/201 – volume: 10 start-page: 622 year: 1987 ident: ref31/cit31 publication-title: Diabetes Care doi: 10.2337/diacare.10.5.622 – volume: 104 start-page: 1255 year: 2004 ident: ref2/cit2 publication-title: Chem. Rev. doi: 10.1021/cr0204653 – volume-title: The Nature of Statistical Learning Theory year: 1995 ident: ref20/cit20 doi: 10.1007/978-1-4757-2440-0 – volume: 79 start-page: 234 year: 2007 ident: ref16/cit16 publication-title: Anal. Chem. doi: 10.1021/ac060732v – volume-title: Learning with Kernels year: 2002 ident: ref24/cit24 – volume: 46 start-page: 1726 year: 2007 ident: ref28/cit28 publication-title: Appl. Opt. doi: 10.1364/AO.46.001726 – volume: 10 start-page: 1 year: 2005 ident: ref6/cit6 publication-title: J. Biomed. Opt. doi: 10.1117/1.1914843 – volume: 76 start-page: 3099 year: 2004 ident: ref23/cit23 publication-title: Anal. Chem. doi: 10.1021/ac035522m |
SSID | ssj0011016 |
Score | 2.3190224 |
Snippet | Sample-to-sample variability has proven to be a major challenge in achieving calibration transfer in quantitative biological Raman spectroscopy. Multiple... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9719 |
SubjectTerms | Accuracy Analytical chemistry Artificial Intelligence Blood Blood Glucose - analysis Calibration Chemistry Exact sciences and technology Fluctuations Glucose Heterogeneity Human populations Humans Least-Squares Analysis Scattering Spectrometric and optical methods Spectrum analysis Spectrum Analysis, Raman - methods Spectrum Analysis, Raman - standards Turbidity |
Title | Development of Robust Calibration Models Using Support Vector Machines for Spectroscopic Monitoring of Blood Glucose |
URI | http://dx.doi.org/10.1021/ac101754n https://www.ncbi.nlm.nih.gov/pubmed/21050004 https://www.proquest.com/docview/821515563 https://www.proquest.com/docview/815552931 https://pubmed.ncbi.nlm.nih.gov/PMC3057474 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1520-6882 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011016 issn: 0003-2700 databaseCode: ACS dateStart: 19470121 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Nb9NAEB2V9gAVaqFQcD-iFXDg4pJdz9rOsaQtVaVygIJ6i3bXa7VqZUfYufDrmbFjN4EA5504yc549o3m7RuAd5ilsYzzIWW_3IeYpxgaRBMOfUTZT8tIm4bl-zk-_4YX1_p6Dd7-pYOv5AfjOGo0Fo9gQ8Wp5ArrePy1bxVw-dmNxeMuaicftPhRPnpctXT0PJ2ainYhb8dXrMKXv9MkF86ds2046W7vtHSTu6NZbY_czz_FHP_1l57B1hx3iuM2UJ7Dmi924PG4G_e2A5sLyoQvoF4gE4kyF19KO6tqwTe5bBszgqeo3Vei4RwIHg5KQF58b5oA4rKhaPpKECQWPOK-ZtHMcnrrRJtE-Fv4uR-ZNy8-tbz5l3B1dno1Pg_nAxrInyNVhypXOjfeokui2KTGyEQ6vguLOfnFa0_4hwoSTJwZYpZkESY2S32mM5SYqGgX1ouy8K9BeL7wK2OtfGIwcspGeuRSYxWlP4ujNIABOXAyf7-qSdM6V3LS72QA7zvfTtxc3ZyHbNyvMn3Tm05bSY9VRoOlAOktFZ34SDVWAPtdxDz8rJQBFEuuBSD6VfIjN2FM4csZmdC6JowlA3jVhtfDownrMsYOIFkKvN6ApcCXV4rbm0YSnLI21YW4979t2ocnqufjHMB6_WPmDwlV1XbQvFW_ALlHHAQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BORSEeJRXWlgsxIFL2rVjJ9kjXbUs0PYAC-otsh1HVFTJimQv_PrOOI_drVaCsyeOY0_GnzWfvwF4L_M05nExxuhXuFAWqQy1lDocuwijn-KR0p7lexHPfsgvl-qyk8mhuzA4iBp7qn0Sf6UuwI-0JedRsrwL97wCCsGg6fchY0Cn0L46HiVTexWh9UdpB7L1xg70cKFrnIyirWKxDWbeZkuubT-nj9s6Rn7gnnXy-3DZmEP795am4_992RN41KFQ9rF1m6dwx5V7sDvti7_twYM1ncJn0KxRi1hVsG-VWdYNo3tdpvUgRjXVrmvmGQiMSoUirGc_fUqAnXvCpqsZAmRGBe8bktCsFleWtSGF3kL9HhOLnn1qWfTPYX56Mp_Owq5cA67uRDShKIQqtDPSJlGsU615wi3djJUFLo9TDtEQHk9kYvVY5kkeycTkqctVLrlMRPQCdsqqdK-AObr-y2MlXKJlZIWJ1MSm2ggMhkZO0gBGOJFZ97fVmU-kC54NMxnAh36JM9tpnVPJjettpu8G00Ur8LHNaLThJ4OlwP1f4okrgIPecVbDSglOkQBbAGxoxXWklIwuXbVEE2xXiLh4AC9bL1t1jciXEHcAyYb_DQYkDL7ZUl798gLhGMPxlCj3_zVNb2F3Nj8_y84-X3w9gPtiYOq8hp3mz9K9QbzVmJH_0W4A7N4kbw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7BIvEQ4rG8wkKxEAcuWWrHTtIjFMryWhAsaG-R7dhixSqpSHrh1zPjPLZdVYKzp447Ho-_0Yy_AXgmyzzlqZ-i9_Mulj6XsZZSx1OXoPdTPFE6VPkepgff5ftjddwHivQWBhfR4ExNSOLTqV6WvmcY4C-0JQNSsroIlxRRvxEUmn8bswYUiQ4d8iihOjAJrf-UbiHbbNxC15e6QYX4rpPFNqh5vmJy7Qpa3ITP4-JD5cmv_VVr9u2fc7yO___vbsGNHo2yl5353IYLrtqFK_OhCdwuXFvjK7wD7VqJEas9-1qbVdMyet9lOkti1FvttGGhEoFRy1CE9-xHSA2wT6Fw0zUMgTKjxvctUWnWyxPLOtdCX6F5X1E1PXvbVdPfhaPFm6P5Qdy3bcBdnok2Fl4or52RNktSnWvNM27phaz0uEVOOURFGKbIzOqpLLMykZkpc1eqUnKZieQe7FR15R4Ac_QMmKdKuEzLxAqTqJnNtRHoFI2c5RFMUJlFf-qaIiTUBS9GTUbwfNjmwvac59R643Sb6NNRdNkRfWwTmmzYyigpEAdIjLwi2BuM52xZOcEqImKLgI2juI-UmtGVq1coguMKkReP4H5naWdTIwIm5B1BtmGDowARhG-OVCc_A1E4-nKMFuXDf6npCVz-8npRfHx3-GEProqxYOcR7LS_V-4xwq7WTMJZ-wsvhibp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+Robust+Calibration+Models+Using+Support+Vector+Machines+for+Spectroscopic+Monitoring+of+Blood+Glucose&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Barman%2C+Ishan&rft.au=Kong%2C+Chae-Ryon&rft.au=Dingari%2C+Narahara+Chari&rft.au=Dasari%2C+Ramachandra+R&rft.date=2010-12-01&rft.pub=American+Chemical+Society&rft.issn=0003-2700&rft.eissn=1520-6882&rft.volume=82&rft.issue=23&rft.spage=9719&rft.epage=9726&rft_id=info:doi/10.1021%2Fac101754n&rft.externalDocID=c993786108 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon |