Development of Robust Calibration Models Using Support Vector Machines for Spectroscopic Monitoring of Blood Glucose

Sample-to-sample variability has proven to be a major challenge in achieving calibration transfer in quantitative biological Raman spectroscopy. Multiple morphological and optical parameters, such as tissue absorption and scattering, physiological glucose dynamics and skin heterogeneity, vary signif...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 82; no. 23; pp. 9719 - 9726
Main Authors Barman, Ishan, Kong, Chae-Ryon, Dingari, Narahara Chari, Dasari, Ramachandra R, Feld, Michael S
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 01.12.2010
Subjects
Online AccessGet full text
ISSN0003-2700
1520-6882
1520-6882
DOI10.1021/ac101754n

Cover

Abstract Sample-to-sample variability has proven to be a major challenge in achieving calibration transfer in quantitative biological Raman spectroscopy. Multiple morphological and optical parameters, such as tissue absorption and scattering, physiological glucose dynamics and skin heterogeneity, vary significantly in a human population introducing nonanalyte specific features into the calibration model. In this paper, we show that fluctuations of such parameters in human subjects introduce curved (nonlinear) effects in the relationship between the concentrations of the analyte of interest and the mixture Raman spectra. To account for these curved effects, we propose the use of support vector machines (SVM) as a nonlinear regression method over conventional linear regression techniques such as partial least-squares (PLS). Using transcutaneous blood glucose detection as an example, we demonstrate that application of SVM enables a significant improvement (at least 30%) in cross-validation accuracy over PLS when measurements from multiple human volunteers are employed in the calibration set. Furthermore, using physical tissue models with randomized analyte concentrations and varying turbidities, we show that the fluctuations in turbidity alone causes curved effects which can only be adequately modeled using nonlinear regression techniques. The enhanced levels of accuracy obtained with the SVM based calibration models opens up avenues for prospective prediction in humans and thus for clinical translation of the technology.
AbstractList Sample-to-sample variability has proven to be a major challenge in achieving calibration transfer in quantitative biological Raman spectroscopy. Multiple morphological and optical parameters, such as tissue absorption and scattering, physiological glucose dynamics and skin heterogeneity, vary significantly in a human population introducing nonanalyte specific features into the calibration model. In this paper, we show that fluctuations of such parameters in human subjects introduce curved (nonlinear) effects in the relationship between the concentrations of the analyte of interest and the mixture Raman spectra. To account for these curved effects, we propose the use of support vector machines (SVM) as a nonlinear regression method over conventional linear regression techniques such as partial least-squares (PLS). Using transcutaneous blood glucose detection as an example, we demonstrate that application of SVM enables a significant improvement (at least 30%) in cross-validation accuracy over PLS when measurements from multiple human volunteers are employed in the calibration set. Furthermore, using physical tissue models with randomized analyte concentrations and varying turbidities, we show that the fluctuations in turbidity alone causes curved effects which can only be adequately modeled using nonlinear regression techniques. The enhanced levels of accuracy obtained with the SVM based calibration models opens up avenues for prospective prediction in humans and thus for clinical translation of the technology.
Sample-to-sample variability has proven to be a major challenge in achieving calibration transfer in quantitative biological Raman spectroscopy. Multiple morphological and optical parameters, such as tissue absorption and scattering, physiological glucose dynamics and skin heterogeneity, vary significantly in a human population introducing non-analyte specific features into the calibration model. In this paper, we show that fluctuations of such parameters in human subjects introduce curved (non-linear) effects in the relationship between the concentrations of the analyte of interest and the mixture Raman spectra. To account for these curved effects, we propose the use of support vector machines (SVM) as a non-linear regression method over conventional linear regression techniques such as partial least squares (PLS). Using transcutaneous blood glucose detection as an example, we demonstrate that application of SVM enables a significant improvement (at least 30%) in cross-validation accuracy over PLS when measurements from multiple human volunteers are employed in the calibration set. Furthermore, using physical tissue models with randomized analyte concentrations and varying turbidities, we show that the fluctuations in turbidity alone causes curved effects which can only be adequately modeled using non-linear regression techniques. The enhanced levels of accuracy obtained with the SVM based calibration models opens up avenues for prospective prediction in humans and thus for clinical translation of the technology.
Sample-to-sample variability has proven to be a major challenge in achieving calibration transfer in quantitative biological Raman spectroscopy. Multiple morphological and optical parameters, such as tissue absorption and scattering, physiological glucose dynamics and skin heterogeneity, vary significantly in a human population introducing nonanalyte specific features into the calibration model. In this paper, we show that fluctuations of such parameters in human subjects introduce curved (nonlinear) effects in the relationship between the concentrations of the analyte of interest and the mixture Raman spectra. To account for these curved effects, we propose the use of support vector machines (SVM) as a nonlinear regression method over conventional linear regression techniques such as partial least-squares (PLS). Using transcutaneous blood glucose detection as an example, we demonstrate that application of SVM enables a significant improvement (at least 30%) in cross-validation accuracy over PLS when measurements from multiple human volunteers are employed in the calibration set. Furthermore, using physical tissue models with randomized analyte concentrations and varying turbidities, we show that the fluctuations in turbidity alone causes curved effects which can only be adequately modeled using nonlinear regression techniques. The enhanced levels of accuracy obtained with the SVM based calibration models opens up avenues for prospective prediction in humans and thus for clinical translation of the technology. [PUBLICATION ABSTRACT]
Sample-to-sample variability has proven to be a major challenge in achieving calibration transfer in quantitative biological Raman spectroscopy. Multiple morphological and optical parameters, such as tissue absorption and scattering, physiological glucose dynamics and skin heterogeneity, vary significantly in a human population introducing nonanalyte specific features into the calibration model. In this paper, we show that fluctuations of such parameters in human subjects introduce curved (nonlinear) effects in the relationship between the concentrations of the analyte of interest and the mixture Raman spectra. To account for these curved effects, we propose the use of support vector machines (SVM) as a nonlinear regression method over conventional linear regression techniques such as partial least-squares (PLS). Using transcutaneous blood glucose detection as an example, we demonstrate that application of SVM enables a significant improvement (at least 30%) in cross-validation accuracy over PLS when measurements from multiple human volunteers are employed in the calibration set. Furthermore, using physical tissue models with randomized analyte concentrations and varying turbidities, we show that the fluctuations in turbidity alone causes curved effects which can only be adequately modeled using nonlinear regression techniques. The enhanced levels of accuracy obtained with the SVM based calibration models opens up avenues for prospective prediction in humans and thus for clinical translation of the technology.Sample-to-sample variability has proven to be a major challenge in achieving calibration transfer in quantitative biological Raman spectroscopy. Multiple morphological and optical parameters, such as tissue absorption and scattering, physiological glucose dynamics and skin heterogeneity, vary significantly in a human population introducing nonanalyte specific features into the calibration model. In this paper, we show that fluctuations of such parameters in human subjects introduce curved (nonlinear) effects in the relationship between the concentrations of the analyte of interest and the mixture Raman spectra. To account for these curved effects, we propose the use of support vector machines (SVM) as a nonlinear regression method over conventional linear regression techniques such as partial least-squares (PLS). Using transcutaneous blood glucose detection as an example, we demonstrate that application of SVM enables a significant improvement (at least 30%) in cross-validation accuracy over PLS when measurements from multiple human volunteers are employed in the calibration set. Furthermore, using physical tissue models with randomized analyte concentrations and varying turbidities, we show that the fluctuations in turbidity alone causes curved effects which can only be adequately modeled using nonlinear regression techniques. The enhanced levels of accuracy obtained with the SVM based calibration models opens up avenues for prospective prediction in humans and thus for clinical translation of the technology.
Author Feld, Michael S
Kong, Chae-Ryon
Barman, Ishan
Dasari, Ramachandra R
Dingari, Narahara Chari
Author_xml – sequence: 1
  givenname: Ishan
  surname: Barman
  fullname: Barman, Ishan
  email: ishan@mit.edu
– sequence: 2
  givenname: Chae-Ryon
  surname: Kong
  fullname: Kong, Chae-Ryon
– sequence: 3
  givenname: Narahara Chari
  surname: Dingari
  fullname: Dingari, Narahara Chari
– sequence: 4
  givenname: Ramachandra R
  surname: Dasari
  fullname: Dasari, Ramachandra R
– sequence: 5
  givenname: Michael S
  surname: Feld
  fullname: Feld, Michael S
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23624585$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21050004$$D View this record in MEDLINE/PubMed
BookMark eNptklFPFTEQhRuDkQv44B8wjYkxPqy03Xa7vJDoVdEEQgLoazPb7UJJb7u2uyT-ewe5XhR5atr55uSczuyQrZiiI-QFZ-84E3wfLGdcKxmfkAVXglVN24otsmCM1ZXQjG2TnVKuGePINc_ItuBMYVEuyPTR3biQxpWLE00DPUvdXCa6hOC7DJNPkZ6k3oVCvxUfL-n5PI4pT_S7s1PK9ATslY-u0AEv5yM-5lRsGr3FtugRuW1C3Q8hpZ4ehdmm4vbI0wFCcc_X5y65-PzpYvmlOj49-rp8f1yBPBBTJQahBnCdtLpuoAXgmttWKC4HTOKUY03dYGxtgcle97XUXd-6XvWSSy3qXXJ4JzvO3cr1FiNmCGbMfgX5p0ngzb-V6K_MZboxNVNaaokCb9YCOf2YXZnMyhfrQoDo0lxMy5VS4qDmSL56QF6nOUcMZ1rBFXJNjdDLv_1sjPyZBgKv1wAUC2HIEK0v91zdCKlahdzbO87ib5fshg3CmbndCLPZCGT3H7DWT78Hi5F9eLRj7QJsuY_xP_cLUCPEXA
CODEN ANCHAM
CitedBy_id crossref_primary_10_1364_OE_21_006346
crossref_primary_10_1364_BOE_3_003012
crossref_primary_10_1371_journal_pone_0032406
crossref_primary_10_1021_acs_jpcc_5b11894
crossref_primary_10_1016_j_chemolab_2013_04_011
crossref_primary_10_1016_j_saa_2024_125584
crossref_primary_10_1002_jbio_201200098
crossref_primary_10_1016_j_postharvbio_2018_01_019
crossref_primary_10_1016_j_sab_2015_09_021
crossref_primary_10_1021_ac2030199
crossref_primary_10_1080_05704928_2019_1584567
crossref_primary_10_1371_journal_pone_0197134
crossref_primary_10_3389_fchem_2022_994272
crossref_primary_10_56530_spectroscopy_sl5185z2
crossref_primary_10_1002_jrs_5410
crossref_primary_10_1039_C5AY00208G
crossref_primary_10_1016_j_trac_2014_09_005
crossref_primary_10_1364_BOE_2_000592
crossref_primary_10_1039_C4AY02665A
crossref_primary_10_1364_BOE_2_001243
crossref_primary_10_4155_bio_2015_0030
crossref_primary_10_1016_j_chemolab_2014_04_004
crossref_primary_10_1016_j_fuel_2013_07_122
crossref_primary_10_1021_ac301200n
crossref_primary_10_1021_ac202755e
crossref_primary_10_1088_2058_6272_ab7eda
crossref_primary_10_4236_jbm_2015_36007
crossref_primary_10_1007_s11696_018_0638_9
crossref_primary_10_1366_13_07292
crossref_primary_10_1366_13_07250
crossref_primary_10_1002_jrs_4334
crossref_primary_10_1364_BOE_9_000289
crossref_primary_10_1039_c2an15972d
crossref_primary_10_1039_c2ay25102g
crossref_primary_10_1039_C4AY02462A
crossref_primary_10_1088_1361_6463_ac4723
crossref_primary_10_1021_acs_accounts_6b00472
crossref_primary_10_1039_C4AN01849D
crossref_primary_10_3233_JIFS_171979
crossref_primary_10_1016_j_infrared_2019_103177
crossref_primary_10_1016_j_infrared_2022_104049
crossref_primary_10_1088_1757_899X_104_1_012036
crossref_primary_10_1080_05704928_2018_1509344
crossref_primary_10_1007_s11306_011_0331_2
crossref_primary_10_1117_1_JBO_19_11_111603
crossref_primary_10_1002_jbio_201700397
crossref_primary_10_1177_1179597220948100
crossref_primary_10_1063_1_3646524
crossref_primary_10_1021_ac203266a
crossref_primary_10_1016_j_chemolab_2011_09_007
crossref_primary_10_1021_acsabm_8b00267
crossref_primary_10_1117_1_3611006
crossref_primary_10_3389_fbioe_2022_876672
crossref_primary_10_3389_fbioe_2024_1399938
crossref_primary_10_1142_S1793545818500384
crossref_primary_10_1002_cem_2867
crossref_primary_10_1016_j_infrared_2021_103762
crossref_primary_10_1007_s00216_011_5004_5
crossref_primary_10_1016_j_ijleo_2018_05_050
crossref_primary_10_1117_1_JBO_22_7_077001
crossref_primary_10_1002_elsc_201600229
crossref_primary_10_1186_1756_0381_5_10
crossref_primary_10_1002_jrs_6258
Cites_doi 10.1021/ac050429e
10.1021/ac970721p
10.1117/1.3520131
10.1088/0022-3727/38/15/020
10.1089/dia.2004.6.660
10.1038/414813a
10.1039/b712389b
10.1021/ac9709920
10.1137/1.9780898719697
10.1002/9780470057780
10.1364/OE.16.012726
10.1142/5089
10.1021/ac8025509
10.1021/ac100810e
10.1073/pnas.211566398
10.1007/s00216-006-0971-7
10.1364/OE.11.003320
10.1364/OL.25.001451
10.1364/AO.38.002916
10.1007/s00125-005-1852-x
10.1364/AO.32.003585
10.1111/j.1751-1097.1998.tb05160.x
10.1364/OL.27.002004
10.1021/ac991076k
10.1364/OE.16.012737
10.1088/0031-9155/45/2/201
10.2337/diacare.10.5.622
10.1021/cr0204653
10.1007/978-1-4757-2440-0
10.1021/ac060732v
10.1364/AO.46.001726
10.1117/1.1914843
10.1021/ac035522m
ContentType Journal Article
Copyright Copyright © 2010 American Chemical Society
2015 INIST-CNRS
Copyright American Chemical Society Dec 1, 2010
Copyright_xml – notice: Copyright © 2010 American Chemical Society
– notice: 2015 INIST-CNRS
– notice: Copyright American Chemical Society Dec 1, 2010
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1021/ac101754n
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList

Materials Research Database
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-6882
EndPage 9726
ExternalDocumentID PMC3057474
2224063251
21050004
23624585
10_1021_ac101754n
c993786108
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NCRR NIH HHS
  grantid: P41-RR02594
– fundername: NCRR NIH HHS
  grantid: P41 RR002594
GroupedDBID -
.K2
02
1AW
23M
3O-
4.4
53G
53T
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABOCM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACNCT
ACPRK
ACS
AEESW
AENEX
AETEA
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
D0L
DZ
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
P2P
PQEST
PQQKQ
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
VF5
VG9
VQA
W1F
WH7
X
X6Y
XFK
YZZ
---
-DZ
-~X
.DC
6J9
AAHBH
AAYXX
ABBLG
ABHFT
ABHMW
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ACKOT
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
KZ1
LMP
XSW
ZCA
~02
.GJ
.HR
186
1WB
2KS
3EH
6TJ
AAUTI
ABDPE
ACKIV
ACPVT
ACQAM
ACRPL
ADNMO
ADXHL
AEYZD
AFFDN
AFFNX
AGQPQ
AIDAL
ANPPW
ANTXH
IQODW
MVM
NHB
OHT
OMK
RNS
UBC
UBX
VOH
XOL
YQI
YQJ
YR5
YXE
YYP
ZCG
ZE2
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
ID FETCH-LOGICAL-a492t-2f25faeb4c736a8aa171c82514f011e5e06367547ca04d7d347bd8ed5d414723
IEDL.DBID ACS
ISSN 0003-2700
1520-6882
IngestDate Thu Aug 21 14:20:52 EDT 2025
Fri Jul 11 04:13:38 EDT 2025
Mon Jun 30 10:27:01 EDT 2025
Mon Jul 21 06:04:11 EDT 2025
Mon Jul 21 09:14:17 EDT 2025
Tue Jul 01 04:21:13 EDT 2025
Thu Apr 24 22:50:41 EDT 2025
Thu Aug 27 13:44:48 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords Glucose
Support vector machine
Mixture
Blood
Heterogeneity
Tissue
Improvement
Accuracy
Absorption
Dynamics
Raman spectrometry
Vector
Monitoring
Human
Linear regression
Sample
Prediction
Concentration
Calibration
PLS regression
Regression model
Morphology
Transfer
Parameter
Skin
Technique
Detection
Application
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a492t-2f25faeb4c736a8aa171c82514f011e5e06367547ca04d7d347bd8ed5d414723
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Deceased
PMID 21050004
PQID 821515563
PQPubID 45400
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3057474
proquest_miscellaneous_815552931
proquest_journals_821515563
pubmed_primary_21050004
pascalfrancis_primary_23624585
crossref_primary_10_1021_ac101754n
crossref_citationtrail_10_1021_ac101754n
acs_journals_10_1021_ac101754n
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-12-01
PublicationDateYYYYMMDD 2010-12-01
PublicationDate_xml – month: 12
  year: 2010
  text: 2010-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Washington
PublicationTitle Analytical chemistry (Washington)
PublicationTitleAlternate Anal. Chem
PublicationYear 2010
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
Tuchin V. V. (ref26/cit26) 2000
Vapnik V. (ref20/cit20) 1995
Lambert J. L. (ref6/cit6) 2005; 10
Roe J. N. (ref30/cit30) 1998; 15
Barman I. (ref13/cit13) 2009; 81
Cortes C. (ref19/cit19) 1995; 20
Clarke W. L. (ref31/cit31) 1987; 10
ref29/cit29
Brownlee M. (ref1/cit1) 2001; 414
Borin A. (ref40/cit40) 2007; 387
Arnold M. A. (ref8/cit8) 2005; 77
Qi D. (ref28/cit28) 2007; 46
ref39/cit39
Zhang Q. G. (ref35/cit35) 2000; 25
Biswal N. C. (ref36/cit36) 2003; 11
Hanlon E. B. (ref17/cit17) 2000; 45
Liu R. (ref27/cit27) 2005; 38
Enejder A. M. K. (ref5/cit5) 2002; 27
Thissen U. (ref23/cit23) 2004; 76
Christianini N. (ref25/cit25) 2000
Bechtel K. L. (ref12/cit12) 2008; 16
Ramaswamy S. (ref21/cit21) 2001; 98
Wülfert F. (ref32/cit32) 1998; 70
Scholkopf B. (ref24/cit24) 2002
Steil G. M. (ref10/cit10) 2005; 48
Shih W.-C. (ref16/cit16) 2007; 79
Widjaja E. (ref22/cit22) 2008; 133
Enejder A. M. K. (ref7/cit7) 2005; 10
Wu J. (ref34/cit34) 1993; 32
Despagne F. (ref33/cit33) 2000; 72
Berger A. J. (ref15/cit15) 1998; 70
Hansen P. C. (ref38/cit38) 1998
Manoharan R. (ref18/cit18) 1998; 67
Shih W. C. (ref37/cit37) 2008; 16
Ross S. A. (ref2/cit2) 2004; 104
Barman I. (ref11/cit11) 2010; 82
Brereton R. G. (ref14/cit14) 2007
Khalil O. S. (ref3/cit3) 2004; 6
Berger A. J. (ref4/cit4) 1999; 38
References_xml – volume: 77
  start-page: 5429
  year: 2005
  ident: ref8/cit8
  publication-title: Anal. Chem.
  doi: 10.1021/ac050429e
– volume: 70
  start-page: 623
  year: 1998
  ident: ref15/cit15
  publication-title: Anal. Chem.
  doi: 10.1021/ac970721p
– volume: 15
  start-page: 199
  year: 1998
  ident: ref30/cit30
  publication-title: Crit. Rev. Ther. Drug.
– ident: ref9/cit9
  doi: 10.1117/1.3520131
– volume: 38
  start-page: 2675
  year: 2005
  ident: ref27/cit27
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/38/15/020
– volume: 6
  start-page: 660
  year: 2004
  ident: ref3/cit3
  publication-title: Diabetes Technol. Ther.
  doi: 10.1089/dia.2004.6.660
– volume: 414
  start-page: 813
  year: 2001
  ident: ref1/cit1
  publication-title: Nature.
  doi: 10.1038/414813a
– volume: 133
  start-page: 493
  year: 2008
  ident: ref22/cit22
  publication-title: Analyst.
  doi: 10.1039/b712389b
– volume: 70
  start-page: 1761
  year: 1998
  ident: ref32/cit32
  publication-title: Anal. Chem.
  doi: 10.1021/ac9709920
– volume-title: Rank-Deficient and Discrete ill—Posed Problems: Numerical Aspects of Linear Inversion
  year: 1998
  ident: ref38/cit38
  doi: 10.1137/1.9780898719697
– volume: 10
  start-page: 031114−9
  year: 2005
  ident: ref7/cit7
  publication-title: J. Biomed. Opt.
– volume-title: Applied Chemometrics for Scientists
  year: 2007
  ident: ref14/cit14
  doi: 10.1002/9780470057780
– volume: 16
  start-page: 12726
  year: 2008
  ident: ref37/cit37
  publication-title: Opt. Exp.
  doi: 10.1364/OE.16.012726
– ident: ref39/cit39
  doi: 10.1142/5089
– volume: 81
  start-page: 4233
  year: 2009
  ident: ref13/cit13
  publication-title: Anal. Chem.
  doi: 10.1021/ac8025509
– volume: 20
  start-page: 273
  year: 1995
  ident: ref19/cit19
  publication-title: Mach. Learn.
– volume: 82
  start-page: 6104
  year: 2010
  ident: ref11/cit11
  publication-title: Anal. Chem.
  doi: 10.1021/ac100810e
– volume: 98
  start-page: 15149
  year: 2001
  ident: ref21/cit21
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.211566398
– volume-title: An Introduction to Support Vector Machines
  year: 2000
  ident: ref25/cit25
– volume: 387
  start-page: 1105
  year: 2007
  ident: ref40/cit40
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-006-0971-7
– ident: ref29/cit29
– volume: 11
  start-page: 3320
  year: 2003
  ident: ref36/cit36
  publication-title: Opt. Express
  doi: 10.1364/OE.11.003320
– volume: 25
  start-page: 1451
  year: 2000
  ident: ref35/cit35
  publication-title: Opt. Lett.
  doi: 10.1364/OL.25.001451
– volume: 38
  start-page: 2916
  year: 1999
  ident: ref4/cit4
  publication-title: Appl. Opt.
  doi: 10.1364/AO.38.002916
– volume: 48
  start-page: 1833
  year: 2005
  ident: ref10/cit10
  publication-title: Diabetologia.
  doi: 10.1007/s00125-005-1852-x
– volume-title: Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis
  year: 2000
  ident: ref26/cit26
– volume: 32
  start-page: 3585
  year: 1993
  ident: ref34/cit34
  publication-title: Appl. Opt.
  doi: 10.1364/AO.32.003585
– volume: 67
  start-page: 15
  year: 1998
  ident: ref18/cit18
  publication-title: Photochem. Photobiol.
  doi: 10.1111/j.1751-1097.1998.tb05160.x
– volume: 27
  start-page: 2004
  year: 2002
  ident: ref5/cit5
  publication-title: Opt. Lett.
  doi: 10.1364/OL.27.002004
– volume: 72
  start-page: 1657
  year: 2000
  ident: ref33/cit33
  publication-title: Anal. Chem.
  doi: 10.1021/ac991076k
– volume: 16
  start-page: 12737
  year: 2008
  ident: ref12/cit12
  publication-title: Opt. Express
  doi: 10.1364/OE.16.012737
– volume: 45
  start-page: R1
  year: 2000
  ident: ref17/cit17
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/45/2/201
– volume: 10
  start-page: 622
  year: 1987
  ident: ref31/cit31
  publication-title: Diabetes Care
  doi: 10.2337/diacare.10.5.622
– volume: 104
  start-page: 1255
  year: 2004
  ident: ref2/cit2
  publication-title: Chem. Rev.
  doi: 10.1021/cr0204653
– volume-title: The Nature of Statistical Learning Theory
  year: 1995
  ident: ref20/cit20
  doi: 10.1007/978-1-4757-2440-0
– volume: 79
  start-page: 234
  year: 2007
  ident: ref16/cit16
  publication-title: Anal. Chem.
  doi: 10.1021/ac060732v
– volume-title: Learning with Kernels
  year: 2002
  ident: ref24/cit24
– volume: 46
  start-page: 1726
  year: 2007
  ident: ref28/cit28
  publication-title: Appl. Opt.
  doi: 10.1364/AO.46.001726
– volume: 10
  start-page: 1
  year: 2005
  ident: ref6/cit6
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.1914843
– volume: 76
  start-page: 3099
  year: 2004
  ident: ref23/cit23
  publication-title: Anal. Chem.
  doi: 10.1021/ac035522m
SSID ssj0011016
Score 2.3190224
Snippet Sample-to-sample variability has proven to be a major challenge in achieving calibration transfer in quantitative biological Raman spectroscopy. Multiple...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9719
SubjectTerms Accuracy
Analytical chemistry
Artificial Intelligence
Blood
Blood Glucose - analysis
Calibration
Chemistry
Exact sciences and technology
Fluctuations
Glucose
Heterogeneity
Human populations
Humans
Least-Squares Analysis
Scattering
Spectrometric and optical methods
Spectrum analysis
Spectrum Analysis, Raman - methods
Spectrum Analysis, Raman - standards
Turbidity
Title Development of Robust Calibration Models Using Support Vector Machines for Spectroscopic Monitoring of Blood Glucose
URI http://dx.doi.org/10.1021/ac101754n
https://www.ncbi.nlm.nih.gov/pubmed/21050004
https://www.proquest.com/docview/821515563
https://www.proquest.com/docview/815552931
https://pubmed.ncbi.nlm.nih.gov/PMC3057474
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1520-6882
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011016
  issn: 0003-2700
  databaseCode: ACS
  dateStart: 19470121
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Nb9NAEB2V9gAVaqFQcD-iFXDg4pJdz9rOsaQtVaVygIJ6i3bXa7VqZUfYufDrmbFjN4EA5504yc549o3m7RuAd5ilsYzzIWW_3IeYpxgaRBMOfUTZT8tIm4bl-zk-_4YX1_p6Dd7-pYOv5AfjOGo0Fo9gQ8Wp5ArrePy1bxVw-dmNxeMuaicftPhRPnpctXT0PJ2ainYhb8dXrMKXv9MkF86ds2046W7vtHSTu6NZbY_czz_FHP_1l57B1hx3iuM2UJ7Dmi924PG4G_e2A5sLyoQvoF4gE4kyF19KO6tqwTe5bBszgqeo3Vei4RwIHg5KQF58b5oA4rKhaPpKECQWPOK-ZtHMcnrrRJtE-Fv4uR-ZNy8-tbz5l3B1dno1Pg_nAxrInyNVhypXOjfeokui2KTGyEQ6vguLOfnFa0_4hwoSTJwZYpZkESY2S32mM5SYqGgX1ouy8K9BeL7wK2OtfGIwcspGeuRSYxWlP4ujNIABOXAyf7-qSdM6V3LS72QA7zvfTtxc3ZyHbNyvMn3Tm05bSY9VRoOlAOktFZ34SDVWAPtdxDz8rJQBFEuuBSD6VfIjN2FM4csZmdC6JowlA3jVhtfDownrMsYOIFkKvN6ApcCXV4rbm0YSnLI21YW4979t2ocnqufjHMB6_WPmDwlV1XbQvFW_ALlHHAQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BORSEeJRXWlgsxIFL2rVjJ9kjXbUs0PYAC-otsh1HVFTJimQv_PrOOI_drVaCsyeOY0_GnzWfvwF4L_M05nExxuhXuFAWqQy1lDocuwijn-KR0p7lexHPfsgvl-qyk8mhuzA4iBp7qn0Sf6UuwI-0JedRsrwL97wCCsGg6fchY0Cn0L46HiVTexWh9UdpB7L1xg70cKFrnIyirWKxDWbeZkuubT-nj9s6Rn7gnnXy-3DZmEP795am4_992RN41KFQ9rF1m6dwx5V7sDvti7_twYM1ncJn0KxRi1hVsG-VWdYNo3tdpvUgRjXVrmvmGQiMSoUirGc_fUqAnXvCpqsZAmRGBe8bktCsFleWtSGF3kL9HhOLnn1qWfTPYX56Mp_Owq5cA67uRDShKIQqtDPSJlGsU615wi3djJUFLo9TDtEQHk9kYvVY5kkeycTkqctVLrlMRPQCdsqqdK-AObr-y2MlXKJlZIWJ1MSm2ggMhkZO0gBGOJFZ97fVmU-kC54NMxnAh36JM9tpnVPJjettpu8G00Ur8LHNaLThJ4OlwP1f4okrgIPecVbDSglOkQBbAGxoxXWklIwuXbVEE2xXiLh4AC9bL1t1jciXEHcAyYb_DQYkDL7ZUl798gLhGMPxlCj3_zVNb2F3Nj8_y84-X3w9gPtiYOq8hp3mz9K9QbzVmJH_0W4A7N4kbw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB7BIvEQ4rG8wkKxEAcuWWrHTtIjFMryWhAsaG-R7dhixSqpSHrh1zPjPLZdVYKzp447Ho-_0Yy_AXgmyzzlqZ-i9_Mulj6XsZZSx1OXoPdTPFE6VPkepgff5ftjddwHivQWBhfR4ExNSOLTqV6WvmcY4C-0JQNSsroIlxRRvxEUmn8bswYUiQ4d8iihOjAJrf-UbiHbbNxC15e6QYX4rpPFNqh5vmJy7Qpa3ITP4-JD5cmv_VVr9u2fc7yO___vbsGNHo2yl5353IYLrtqFK_OhCdwuXFvjK7wD7VqJEas9-1qbVdMyet9lOkti1FvttGGhEoFRy1CE9-xHSA2wT6Fw0zUMgTKjxvctUWnWyxPLOtdCX6F5X1E1PXvbVdPfhaPFm6P5Qdy3bcBdnok2Fl4or52RNktSnWvNM27phaz0uEVOOURFGKbIzOqpLLMykZkpc1eqUnKZieQe7FR15R4Ac_QMmKdKuEzLxAqTqJnNtRHoFI2c5RFMUJlFf-qaIiTUBS9GTUbwfNjmwvac59R643Sb6NNRdNkRfWwTmmzYyigpEAdIjLwi2BuM52xZOcEqImKLgI2juI-UmtGVq1coguMKkReP4H5naWdTIwIm5B1BtmGDowARhG-OVCc_A1E4-nKMFuXDf6npCVz-8npRfHx3-GEProqxYOcR7LS_V-4xwq7WTMJZ-wsvhibp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+Robust+Calibration+Models+Using+Support+Vector+Machines+for+Spectroscopic+Monitoring+of+Blood+Glucose&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Barman%2C+Ishan&rft.au=Kong%2C+Chae-Ryon&rft.au=Dingari%2C+Narahara+Chari&rft.au=Dasari%2C+Ramachandra+R&rft.date=2010-12-01&rft.pub=American+Chemical+Society&rft.issn=0003-2700&rft.eissn=1520-6882&rft.volume=82&rft.issue=23&rft.spage=9719&rft.epage=9726&rft_id=info:doi/10.1021%2Fac101754n&rft.externalDocID=c993786108
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon