Adaptive isogeometric finite element analysis of steady-state groundwater flow

Summary Numerical challenges occur in the simulation of groundwater flow problems because of complex boundary conditions, varying material properties, presence of sources or sinks in the flow domain, or a combination of these. In this paper, we apply adaptive isogeometric finite element analysis usi...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical and analytical methods in geomechanics Vol. 40; no. 5; pp. 738 - 765
Main Authors Bekele, Yared W., Kvamsdal, Trond, Kvarving, Arne M., Nordal, Steinar
Format Journal Article
LanguageEnglish
Published Bognor Regis Blackwell Publishing Ltd 10.04.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0363-9061
1096-9853
DOI10.1002/nag.2425

Cover

Abstract Summary Numerical challenges occur in the simulation of groundwater flow problems because of complex boundary conditions, varying material properties, presence of sources or sinks in the flow domain, or a combination of these. In this paper, we apply adaptive isogeometric finite element analysis using locally refined (LR) B‐splines to address these types of problems. The fundamentals behind isogeometric analysis and LR B‐splines are briefly presented. Galerkin's method is applied to the standard weak formulation of the governing equation to derive the linear system of equations. A posteriori error estimates are calculated to identify which B‐splines should be locally refined. The error estimates are calculated based on recovery of the L2‐projected solution. The adaptive analysis method is first illustrated by performing simulation of benchmark problems with analytical solutions. Numerical applications to two‐dimensional groundwater flow problems are then presented. The problems studied are flow around an impervious corner, flow around a cutoff wall, and flow in a heterogeneous medium. The convergence rates obtained with adaptive analysis using local refinement were, in general, observed to be of optimal order in contrast to simulations with uniform refinement. Copyright © 2015 John Wiley & Sons, Ltd.
AbstractList Numerical challenges occur in the simulation of groundwater flow problems because of complex boundary conditions, varying material properties, presence of sources or sinks in the flow domain, or a combination of these. In this paper, we apply adaptive isogeometric finite element analysis using locally refined (LR) B-splines to address these types of problems. The fundamentals behind isogeometric analysis and LR B-splines are briefly presented. Galerkin's method is applied to the standard weak formulation of the governing equation to derive the linear system of equations. A posteriori error estimates are calculated to identify which B-splines should be locally refined. The error estimates are calculated based on recovery of the L sub(2)-projected solution. The adaptive analysis method is first illustrated by performing simulation of benchmark problems with analytical solutions. Numerical applications to two-dimensional groundwater flow problems are then presented. The problems studied are flow around an impervious corner, flow around a cutoff wall, and flow in a heterogeneous medium. The convergence rates obtained with adaptive analysis using local refinement were, in general, observed to be of optimal order in contrast to simulations with uniform refinement.
Summary Numerical challenges occur in the simulation of groundwater flow problems because of complex boundary conditions, varying material properties, presence of sources or sinks in the flow domain, or a combination of these. In this paper, we apply adaptive isogeometric finite element analysis using locally refined (LR) B‐splines to address these types of problems. The fundamentals behind isogeometric analysis and LR B‐splines are briefly presented. Galerkin's method is applied to the standard weak formulation of the governing equation to derive the linear system of equations. A posteriori error estimates are calculated to identify which B‐splines should be locally refined. The error estimates are calculated based on recovery of the L2‐projected solution. The adaptive analysis method is first illustrated by performing simulation of benchmark problems with analytical solutions. Numerical applications to two‐dimensional groundwater flow problems are then presented. The problems studied are flow around an impervious corner, flow around a cutoff wall, and flow in a heterogeneous medium. The convergence rates obtained with adaptive analysis using local refinement were, in general, observed to be of optimal order in contrast to simulations with uniform refinement. Copyright © 2015 John Wiley & Sons, Ltd.
Numerical challenges occur in the simulation of groundwater flow problems because of complex boundary conditions, varying material properties, presence of sources or sinks in the flow domain, or a combination of these. In this paper, we apply adaptive isogeometric finite element analysis using locally refined (LR) B‐splines to address these types of problems. The fundamentals behind isogeometric analysis and LR B‐splines are briefly presented. Galerkin's method is applied to the standard weak formulation of the governing equation to derive the linear system of equations. A posteriori error estimates are calculated to identify which B‐splines should be locally refined. The error estimates are calculated based on recovery of the L 2 ‐projected solution. The adaptive analysis method is first illustrated by performing simulation of benchmark problems with analytical solutions. Numerical applications to two‐dimensional groundwater flow problems are then presented. The problems studied are flow around an impervious corner, flow around a cutoff wall, and flow in a heterogeneous medium. The convergence rates obtained with adaptive analysis using local refinement were, in general, observed to be of optimal order in contrast to simulations with uniform refinement. Copyright © 2015 John Wiley & Sons, Ltd.
Summary Numerical challenges occur in the simulation of groundwater flow problems because of complex boundary conditions, varying material properties, presence of sources or sinks in the flow domain, or a combination of these. In this paper, we apply adaptive isogeometric finite element analysis using locally refined (LR) B-splines to address these types of problems. The fundamentals behind isogeometric analysis and LR B-splines are briefly presented. Galerkin's method is applied to the standard weak formulation of the governing equation to derive the linear system of equations. A posteriori error estimates are calculated to identify which B-splines should be locally refined. The error estimates are calculated based on recovery of the L2-projected solution. The adaptive analysis method is first illustrated by performing simulation of benchmark problems with analytical solutions. Numerical applications to two-dimensional groundwater flow problems are then presented. The problems studied are flow around an impervious corner, flow around a cutoff wall, and flow in a heterogeneous medium. The convergence rates obtained with adaptive analysis using local refinement were, in general, observed to be of optimal order in contrast to simulations with uniform refinement. Copyright © 2015 John Wiley & Sons, Ltd.
Author Kvarving, Arne M.
Bekele, Yared W.
Nordal, Steinar
Kvamsdal, Trond
Author_xml – sequence: 1
  givenname: Yared W.
  surname: Bekele
  fullname: Bekele, Yared W.
  email: Correspondence to: Yared Worku Bekele, Department of Civil and Transport Engineering, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway., yared.bekele@ntnu.no
  organization: Department of Civil and Transport Engineering, Norwegian University of Science and Technology, Trondheim, Norway
– sequence: 2
  givenname: Trond
  surname: Kvamsdal
  fullname: Kvamsdal, Trond
  organization: Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, Norway
– sequence: 3
  givenname: Arne M.
  surname: Kvarving
  fullname: Kvarving, Arne M.
  organization: Department of Applied Mathematics, SINTEF ICT, Trondheim, Norway
– sequence: 4
  givenname: Steinar
  surname: Nordal
  fullname: Nordal, Steinar
  organization: Department of Civil and Transport Engineering, Norwegian University of Science and Technology, Trondheim, Norway
BookMark eNqF0U1rGzEQBmARUqiTFPoTFnLpZV2ttPo6mny4pal7SWhvQrsaGSVryZXWdf3vK-OSkpKQkwb0jNDMe4KOQwyA0PsGTxuMycdgllPSEnaEJg1WvFaS0WM0wZTTWmHevEUnOd9jjFm5naDFzJr16H9B5XNcQlzBmHxfOR_8CBUMsIIwViaYYZd9rqKr8gjG7uo8mgKWKW6C3ZYyVW6I2zP0xpkhw7u_5ym6u766vfhU33ybf76Y3dSmVZjVjIhWdrKjQhKuqLW4bWRvO0uAdIwbJkknRGuZaGjHuRHWOeoApOMtVo7TU_Th8O46xZ8byKNe-dzDMJgAcZN1I_cDEinJ61QIzltGFC30_D96HzepzL5XXEkpiy1qelB9ijkncLr3ZRk-hjEZP-gG630SuiSh90n8-8Fjwzr5lUm752h9oFs_wO5Fpxez-VPvSyy_H71JD5oLKpj-vpjrOaFfL398UXpB_wArdaeb
CODEN IJNGDZ
CitedBy_id crossref_primary_10_1016_j_cma_2022_115272
crossref_primary_10_1016_j_cma_2016_11_014
crossref_primary_10_1016_j_engfracmech_2020_107131
crossref_primary_10_1016_j_advwatres_2020_103838
crossref_primary_10_1016_j_engfracmech_2022_108298
crossref_primary_10_1109_ACCESS_2019_2937450
crossref_primary_10_1016_j_enganabound_2020_05_005
crossref_primary_10_1002_fld_4830
crossref_primary_10_1016_j_compositesb_2019_107259
crossref_primary_10_1016_j_compstruct_2025_119028
crossref_primary_10_1002_nag_3274
crossref_primary_10_1016_j_euromechsol_2022_104783
crossref_primary_10_1016_j_finel_2018_05_003
crossref_primary_10_1016_j_cma_2020_113016
crossref_primary_10_1007_s11269_023_03631_9
crossref_primary_10_1016_j_cma_2018_04_013
crossref_primary_10_1007_s00366_021_01334_6
crossref_primary_10_1016_j_compstruct_2019_111387
crossref_primary_10_1016_j_cma_2016_10_040
crossref_primary_10_1002_nag_2668
crossref_primary_10_3390_app12062915
crossref_primary_10_1016_j_cma_2019_05_045
crossref_primary_10_1080_09715010_2021_1925982
crossref_primary_10_1016_j_engfracmech_2020_106964
Cites_doi 10.1016/0309-1708(82)90055-0
10.1016/S0022-1694(97)00051-6
10.1002/nme.1620310708
10.1093/imanum/19.4.563
10.1137/0715049
10.1029/WR008i001p00108
10.1061/(ASCE)0733-9429(2006)132:11(1206)
10.1002/(SICI)1097-0207(19990220)44:5<697::AID-NME526>3.0.CO;2-L
10.1016/j.cma.2004.10.008
10.1002/9781118032824
10.1002/(SICI)1097-0207(19980615)42:3<443::AID-NME366>3.0.CO;2-G
10.1002/nme.1620230703
10.1007/978-3-642-57172-5_9
10.1145/882262.882295
10.1016/j.cagd.2012.12.005
10.1002/nme.1620330702
10.1029/WR020i005p00553
10.1002/nme.1620121010
10.1016/j.camwa.2015.05.031
10.1002/nme.1620240206
10.1002/nme.1620330703
10.1016/j.matcom.2013.03.006
10.1029/WR017i005p01529
10.1016/S0045-7825(02)00575-3
10.1016/S0309-1708(98)00047-5
10.1002/9780470749081
10.1016/0022-1694(82)90132-9
10.1061/JSFEAQ.0001074
10.6028/NIST.IR.7668
10.2172/4248170
10.1007/s003660050007
10.1029/WR006i003p00889
10.1002/hyp.8156
10.1007/BFb0096835
10.1061/JYCEAJ.0005457
10.1016/j.cma.2004.05.014
10.1016/j.cma.2013.09.014
10.1002/cnm.480
ContentType Journal Article
Copyright Copyright © 2015 John Wiley & Sons, Ltd.
Copyright © 2016 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2015 John Wiley & Sons, Ltd.
– notice: Copyright © 2016 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
7UA
8FD
C1K
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
DOI 10.1002/nag.2425
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Civil Engineering Abstracts

CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-9853
EndPage 765
ExternalDocumentID 3969302281
10_1002_nag_2425
NAG2425
ark_67375_WNG_G23MDXK9_N
Genre article
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
7SC
7UA
8FD
C1K
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-a4905-52748b8b3782693dd0418cdbd2e2b56a582b774d5713b66a7dff3fee8f6409f63
IEDL.DBID DR2
ISSN 0363-9061
IngestDate Fri Jul 11 08:12:47 EDT 2025
Tue Oct 07 09:10:47 EDT 2025
Fri Jul 25 12:12:03 EDT 2025
Thu Apr 24 22:55:34 EDT 2025
Wed Oct 01 03:41:35 EDT 2025
Tue Sep 09 05:08:28 EDT 2025
Sun Sep 21 06:15:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4905-52748b8b3782693dd0418cdbd2e2b56a582b774d5713b66a7dff3fee8f6409f63
Notes ark:/67375/WNG-G23MDXK9-N
istex:F7D8989D7DB437EE0F0A154CB0144D9021854AFA
ArticleID:NAG2425
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1769888776
PQPubID 996377
PageCount 28
ParticipantIDs proquest_miscellaneous_1800502882
proquest_miscellaneous_1776645293
proquest_journals_1769888776
crossref_citationtrail_10_1002_nag_2425
crossref_primary_10_1002_nag_2425
wiley_primary_10_1002_nag_2425_NAG2425
istex_primary_ark_67375_WNG_G23MDXK9_N
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 10 April 2016
PublicationDateYYYYMMDD 2016-04-10
PublicationDate_xml – month: 04
  year: 2016
  text: 10 April 2016
  day: 10
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal for numerical and analytical methods in geomechanics
PublicationTitleAlternate Int. J. Numer. Anal. Meth. Geomech
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Kumar M, Kvamsdal T, Johannessen KA. Superconvergent patch recovery and a posteriori error estimation technique in adaptive isogeometric analysis. Computer Methods in Applied Mechanics and Engineering. 2015. Submitted.
Zienkiewicz OC, Zhu JZ. The superconvergent patch recovery and a posteriori error estimates. II. Error estimates and adaptivity. International Journal for Numerical Methods in Engineering. 1992; 33(7):1365-1382.
Ainsworth M, Oden JT. A Posteriori Error Estimation in Finite Element Analysis. Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons]: New York, 2000.
Kvamsdal T, Okstad KM. Error estimation based on superconvergent patch recovery using statically admissible stress fields. International Journal for Numerical Methods in Engineering. 1998; 42(3):443-472.
Burkley VJ, Bruch JC. Adaptive error analysis in seepage problems. International Journal for Numerical Methods in Engineering. 1991; 31(7):1333-1356.
Melbø H, Kvamsdal T. Goal oriented error estimators for Stokes equations based on variationally consistent postprocessing. Computer Methods in Applied Mechanics and Engineering. 2003; 192(5-6):613-633.
Zienkiewicz OC, Zhu JZ. The superconvergent patch recovery and a posteriori error estimates. I. The recovery technique. International Journal for Numerical Methods in Engineering. 1992; 33(7):1331-1364.
Okstad KM, Kvamsdal T, Mathisen KM. Superconvergent patch recovery for plate problems using statically admissible stress resultant fields. International Journal for Numerical Methods in Engineering. 1999; 44(5):697-727.
Hughes TJR, Cottrell JA, Bazilevs Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering. 2005; 194(39-41):4135-4195.
Okstad KM, Kvamsdal T. Object-oriented programming in field recovery and error estimation. Engineering with Computers. 1999; 15(1):90-104.
Dogrul EC, Kadir TN. Flow computation and mass balance in Galerkin finite-element groundwater models. Journal of Hydraulic Engineering-Asce. 2006; 132(11):1206-1214.
Dokken T, Lyche T, Pettersen KF. Polynomial splines over locally refined box-partitions. Computer Aided Geometric Design. 2013; 30(3):331-356.
Finn WDL. Finite-element analysis of seepage through dams. Journal of Soil Mechanics & Foundations Div, ASCE SM6. 1967; 92:41-48.
Neuman SP, Witherspoon PA. Finite element method of analyzing steady seepage with a free surface. Water Resources Research. 1970; 6(3):889-897.
Tharp TM. An enriched finite-element for simulation of groundwater-flow to a well or drain. Journal of Hydrology. 1982; 55(1-4):237-245.
Johannessen KA, Kvamsdal T, Dokken T. Isogeometric analysis using LR B-splines. Computer Methods in Applied Mechanics and Engineering. 2014; 269(0):471-514.
Boeriu S, Bruch JC. Performance analysis tools applied to a finite element adaptive mesh free boundary seepage parallel algorithm. Computer Methods in Applied Mechanics and Engineering. 2005; 194(2-5):297-312.
Smaoui H, Zouhri L, Ouahsine A, Carlier E. Modelling of groundwater flow in heterogeneous porous media by finite element method. Hydrological Processes. 2012; 26(4):558-569.
Babuṡka I, Rheinboldt WC. A posteriori error estimates for the finite element method. International Journal of Numerical Methods and Engineering. 1978; 12:1597-1615.
Wahlbin LB. Superconvergence in Galerkin finite element methods, Lecture Notes in Mathematics, vol. 1605. Springer-Verlag: Berlin, 1995.
Botha JF, Bakkes GN. Galerkin finite element method and the groundwater flow equation: 1. Convergence of the method. Advances in Water Resources. 1982; 5(2):121-126.
Babuṡka I, Rheinboldt WC. Error estimates for adaptive finite element computations. SIAM Journal on Numerical Analysis. 1978; 15(4):736-754.
Liang D, Zhang B. A finite element method for a unidimensional single-phase nonlinear free boundary problem in groundwater flow. IMA Journal of Numerical Analysis. 1999; 19(4):563-581.
Lafe OE, Liu PLF, Liggett JA, Cheng AHD, Montes JS. Singularities in Darcy flow through porous media. Journal of the Hydraulics Division. 1980; 106(6):977-997.
Yeh GT. On the computation of Darcian velocity and mass balance in the finite-element modeling of groundwater-flow. Water Resources Research. 1981; 17(5):1529-1534.
Cao J, Kitanidis PK. Adaptive-grid simulation of groundwater flow in heterogeneous aquifers. Advances in Water Resources. 1999; 22(7):681-696.
Cottrell JA, Hughes TJR, Bazilevs Y. Isogeometric Analysis: Toward Integration of CAD and FEA. John Wiley & Sons: Chichester, West Sussex, U.K., Hoboken, NJ, 2009.
Gupta SK, Cole CR, Pinder GF. A finite-element three-dimensional groundwater (FE3DGW) model for a multiaquifer system. Water resources research. 1984; 20(5):553-563.
Rank E, Werner H. An adaptive finite-element approach for the free-surface seepage problem. International Journal for Numerical Methods in Engineering. 1986; 23(7):1217-1228.
Larabi A, De Smedt F. Numerical solution of 3-D groundwater flow involving free boundaries by a fixed finite element method. Journal of Hydrology. 1997; 201(1-4):161-182.
Pinder GF, Frind EO. Application of Galerkin's procedure to aquifer analysis. Water Resources Research. 1972; 8(1):108-120.
Zienkiewicz OC, Zhu JZ. A simple error estimator and adaptive procedure for practical engineering analysis. Internat. J. Numer. Methods Engrg. 1987; 24(2):337-357.
Sederberg TW, Zheng J, Bakenov A, Nasri A. T-splines and T-NURCCs. ACM Transactions on Graphics. 2003; 22(3):477-484.
Sharif NH, Wiberg NE. Adaptive ICT procedure for non-linear seepage flows with free surface in porous media. Communications in Numerical Methods in Engineering. 2002; 18(3):161-176.
Jie YX, Liu LZ, Xu WJ, Li GX. Application of NEM in seepage analysis with a free surface. Mathematics and Computers in Simulation. 2013; 89:23-37.
Kumar M, Kvamsdal T, Johannessen KA. Simple posteriori error estimators in adaptive isogeometric analysis. Computers and Mathematics with Applications. DOI: 10.1016/j.camwa.2015.05.031.
1984; 20
1970; 6
1972; 8
2005; 194
2002; 18
1978; 12
2010
2013; 89
1991; 31
1982; 55
2009
1998
1975
2006; 132
1999; 22
1999; 44
2003; 192
1995
1978; 15
1992; 33
1998; 42
1999
1997; 201
1987; 24
1980; 106
1967; 92
2000
1999; 19
1982; 5
1986; 23
1999; 15
2013; 30
1981; 17
2015
2014
2012; 26
2014; 269
2003; 22
e_1_2_9_30_1
Finn WDL (e_1_2_9_2_1) 1967; 92
e_1_2_9_31_1
George K (e_1_2_9_21_1) 2014
e_1_2_9_34_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
Okstad KM (e_1_2_9_38_1) 1999; 15
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
Liang D (e_1_2_9_11_1) 1999; 19
e_1_2_9_22_1
Johannessen KA (e_1_2_9_23_1) 2014; 269
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
Kumar M (e_1_2_9_41_1) 2015
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_9_1
Lafe OE (e_1_2_9_10_1) 1980; 106
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
Okstad KM (e_1_2_9_39_1) 2000
References_xml – reference: Finn WDL. Finite-element analysis of seepage through dams. Journal of Soil Mechanics & Foundations Div, ASCE SM6. 1967; 92:41-48.
– reference: Yeh GT. On the computation of Darcian velocity and mass balance in the finite-element modeling of groundwater-flow. Water Resources Research. 1981; 17(5):1529-1534.
– reference: Zienkiewicz OC, Zhu JZ. The superconvergent patch recovery and a posteriori error estimates. I. The recovery technique. International Journal for Numerical Methods in Engineering. 1992; 33(7):1331-1364.
– reference: Jie YX, Liu LZ, Xu WJ, Li GX. Application of NEM in seepage analysis with a free surface. Mathematics and Computers in Simulation. 2013; 89:23-37.
– reference: Burkley VJ, Bruch JC. Adaptive error analysis in seepage problems. International Journal for Numerical Methods in Engineering. 1991; 31(7):1333-1356.
– reference: Tharp TM. An enriched finite-element for simulation of groundwater-flow to a well or drain. Journal of Hydrology. 1982; 55(1-4):237-245.
– reference: Ainsworth M, Oden JT. A Posteriori Error Estimation in Finite Element Analysis. Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons]: New York, 2000.
– reference: Kvamsdal T, Okstad KM. Error estimation based on superconvergent patch recovery using statically admissible stress fields. International Journal for Numerical Methods in Engineering. 1998; 42(3):443-472.
– reference: Okstad KM, Kvamsdal T, Mathisen KM. Superconvergent patch recovery for plate problems using statically admissible stress resultant fields. International Journal for Numerical Methods in Engineering. 1999; 44(5):697-727.
– reference: Pinder GF, Frind EO. Application of Galerkin's procedure to aquifer analysis. Water Resources Research. 1972; 8(1):108-120.
– reference: Neuman SP, Witherspoon PA. Finite element method of analyzing steady seepage with a free surface. Water Resources Research. 1970; 6(3):889-897.
– reference: Babuṡka I, Rheinboldt WC. A posteriori error estimates for the finite element method. International Journal of Numerical Methods and Engineering. 1978; 12:1597-1615.
– reference: Botha JF, Bakkes GN. Galerkin finite element method and the groundwater flow equation: 1. Convergence of the method. Advances in Water Resources. 1982; 5(2):121-126.
– reference: Cao J, Kitanidis PK. Adaptive-grid simulation of groundwater flow in heterogeneous aquifers. Advances in Water Resources. 1999; 22(7):681-696.
– reference: Johannessen KA, Kvamsdal T, Dokken T. Isogeometric analysis using LR B-splines. Computer Methods in Applied Mechanics and Engineering. 2014; 269(0):471-514.
– reference: Sederberg TW, Zheng J, Bakenov A, Nasri A. T-splines and T-NURCCs. ACM Transactions on Graphics. 2003; 22(3):477-484.
– reference: Rank E, Werner H. An adaptive finite-element approach for the free-surface seepage problem. International Journal for Numerical Methods in Engineering. 1986; 23(7):1217-1228.
– reference: Kumar M, Kvamsdal T, Johannessen KA. Superconvergent patch recovery and a posteriori error estimation technique in adaptive isogeometric analysis. Computer Methods in Applied Mechanics and Engineering. 2015. Submitted.
– reference: Cottrell JA, Hughes TJR, Bazilevs Y. Isogeometric Analysis: Toward Integration of CAD and FEA. John Wiley & Sons: Chichester, West Sussex, U.K., Hoboken, NJ, 2009.
– reference: Sharif NH, Wiberg NE. Adaptive ICT procedure for non-linear seepage flows with free surface in porous media. Communications in Numerical Methods in Engineering. 2002; 18(3):161-176.
– reference: Dogrul EC, Kadir TN. Flow computation and mass balance in Galerkin finite-element groundwater models. Journal of Hydraulic Engineering-Asce. 2006; 132(11):1206-1214.
– reference: Melbø H, Kvamsdal T. Goal oriented error estimators for Stokes equations based on variationally consistent postprocessing. Computer Methods in Applied Mechanics and Engineering. 2003; 192(5-6):613-633.
– reference: Larabi A, De Smedt F. Numerical solution of 3-D groundwater flow involving free boundaries by a fixed finite element method. Journal of Hydrology. 1997; 201(1-4):161-182.
– reference: Babuṡka I, Rheinboldt WC. Error estimates for adaptive finite element computations. SIAM Journal on Numerical Analysis. 1978; 15(4):736-754.
– reference: Wahlbin LB. Superconvergence in Galerkin finite element methods, Lecture Notes in Mathematics, vol. 1605. Springer-Verlag: Berlin, 1995.
– reference: Smaoui H, Zouhri L, Ouahsine A, Carlier E. Modelling of groundwater flow in heterogeneous porous media by finite element method. Hydrological Processes. 2012; 26(4):558-569.
– reference: Hughes TJR, Cottrell JA, Bazilevs Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering. 2005; 194(39-41):4135-4195.
– reference: Gupta SK, Cole CR, Pinder GF. A finite-element three-dimensional groundwater (FE3DGW) model for a multiaquifer system. Water resources research. 1984; 20(5):553-563.
– reference: Kumar M, Kvamsdal T, Johannessen KA. Simple posteriori error estimators in adaptive isogeometric analysis. Computers and Mathematics with Applications. DOI: 10.1016/j.camwa.2015.05.031.
– reference: Boeriu S, Bruch JC. Performance analysis tools applied to a finite element adaptive mesh free boundary seepage parallel algorithm. Computer Methods in Applied Mechanics and Engineering. 2005; 194(2-5):297-312.
– reference: Dokken T, Lyche T, Pettersen KF. Polynomial splines over locally refined box-partitions. Computer Aided Geometric Design. 2013; 30(3):331-356.
– reference: Liang D, Zhang B. A finite element method for a unidimensional single-phase nonlinear free boundary problem in groundwater flow. IMA Journal of Numerical Analysis. 1999; 19(4):563-581.
– reference: Lafe OE, Liu PLF, Liggett JA, Cheng AHD, Montes JS. Singularities in Darcy flow through porous media. Journal of the Hydraulics Division. 1980; 106(6):977-997.
– reference: Zienkiewicz OC, Zhu JZ. The superconvergent patch recovery and a posteriori error estimates. II. Error estimates and adaptivity. International Journal for Numerical Methods in Engineering. 1992; 33(7):1365-1382.
– reference: Okstad KM, Kvamsdal T. Object-oriented programming in field recovery and error estimation. Engineering with Computers. 1999; 15(1):90-104.
– reference: Zienkiewicz OC, Zhu JZ. A simple error estimator and adaptive procedure for practical engineering analysis. Internat. J. Numer. Methods Engrg. 1987; 24(2):337-357.
– volume: 20
  start-page: 553
  issue: 5
  year: 1984
  end-page: 563
  article-title: A finite‐element three‐dimensional groundwater (FE3DGW) model for a multiaquifer system
  publication-title: Water resources research
– volume: 22
  start-page: 681
  issue: 7
  year: 1999
  end-page: 696
  article-title: Adaptive‐grid simulation of groundwater flow in heterogeneous aquifers
  publication-title: Advances in Water Resources
– volume: 106
  start-page: 977
  issue: 6
  year: 1980
  end-page: 997
  article-title: Singularities in Darcy flow through porous media
  publication-title: Journal of the Hydraulics Division
– start-page: 1236
  year: 2014
  end-page: 1243
– year: 2009
– volume: 15
  start-page: 736
  issue: 4
  year: 1978
  end-page: 754
  article-title: Error estimates for adaptive finite element computations
  publication-title: SIAM Journal on Numerical Analysis
– year: 2015
  article-title: Superconvergent patch recovery and a posteriori error estimation technique in adaptive isogeometric analysis
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 30
  start-page: 331
  issue: 3
  year: 2013
  end-page: 356
  article-title: Polynomial splines over locally refined box‐partitions
  publication-title: Computer Aided Geometric Design
– volume: 22
  start-page: 477
  issue: 3
  year: 2003
  end-page: 484
  article-title: T‐splines and T‐NURCCs
  publication-title: ACM Transactions on Graphics
– article-title: Simple posteriori error estimators in adaptive isogeometric analysis
  publication-title: Computers and Mathematics with Applications
– volume: 8
  start-page: 108
  issue: 1
  year: 1972
  end-page: 120
  article-title: Application of Galerkin's procedure to aquifer analysis
  publication-title: Water Resources Research
– volume: 18
  start-page: 161
  issue: 3
  year: 2002
  end-page: 176
  article-title: Adaptive ICT procedure for non‐linear seepage flows with free surface in porous media
  publication-title: Communications in Numerical Methods in Engineering
– volume: 92
  start-page: 41
  year: 1967
  end-page: 48
  article-title: Finite‐element analysis of seepage through dams
  publication-title: Journal of Soil Mechanics & Foundations Div, ASCE SM6
– volume: 26
  start-page: 558
  issue: 4
  year: 2012
  end-page: 569
  article-title: Modelling of groundwater flow in heterogeneous porous media by finite element method
  publication-title: Hydrological Processes
– year: 2000
– volume: 201
  start-page: 161
  issue: 1‐4
  year: 1997
  end-page: 182
  article-title: Numerical solution of 3‐D groundwater flow involving free boundaries by a fixed finite element method
  publication-title: Journal of Hydrology
– year: 1975
– volume: 31
  start-page: 1333
  issue: 7
  year: 1991
  end-page: 1356
  article-title: Adaptive error analysis in seepage problems
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 5
  start-page: 121
  issue: 2
  year: 1982
  end-page: 126
  article-title: Galerkin finite element method and the groundwater flow equation: 1. Convergence of the method
  publication-title: Advances in Water Resources
– volume: 89
  start-page: 23
  year: 2013
  end-page: 37
  article-title: Application of NEM in seepage analysis with a free surface
  publication-title: Mathematics and Computers in Simulation
– year: 1998
– year: 2010
– volume: 194
  start-page: 297
  issue: 2‐5
  year: 2005
  end-page: 312
  article-title: Performance analysis tools applied to a finite element adaptive mesh free boundary seepage parallel algorithm
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 42
  start-page: 443
  issue: 3
  year: 1998
  end-page: 472
  article-title: Error estimation based on superconvergent patch recovery using statically admissible stress fields
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 269
  start-page: 471
  issue: 0
  year: 2014
  end-page: 514
  article-title: Isogeometric analysis using LR B‐splines
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 33
  start-page: 1365
  issue: 7
  year: 1992
  end-page: 1382
  article-title: The superconvergent patch recovery and a posteriori error estimates. II. Error estimates and adaptivity
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 132
  start-page: 1206
  issue: 11
  year: 2006
  end-page: 1214
  article-title: Flow computation and mass balance in Galerkin finite‐element groundwater models
  publication-title: Journal of Hydraulic Engineering‐Asce
– volume: 55
  start-page: 237
  issue: 1‐4
  year: 1982
  end-page: 245
  article-title: An enriched finite‐element for simulation of groundwater‐flow to a well or drain
  publication-title: Journal of Hydrology
– volume: 17
  start-page: 1529
  issue: 5
  year: 1981
  end-page: 1534
  article-title: On the computation of Darcian velocity and mass balance in the finite‐element modeling of groundwater‐flow
  publication-title: Water Resources Research
– volume: 23
  start-page: 1217
  issue: 7
  year: 1986
  end-page: 1228
  article-title: An adaptive finite‐element approach for the free‐surface seepage problem
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 24
  start-page: 337
  issue: 2
  year: 1987
  end-page: 357
  article-title: A simple error estimator and adaptive procedure for practical engineering analysis
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 6
  start-page: 889
  issue: 3
  year: 1970
  end-page: 897
  article-title: Finite element method of analyzing steady seepage with a free surface
  publication-title: Water Resources Research
– volume: 19
  start-page: 563
  issue: 4
  year: 1999
  end-page: 581
  article-title: A finite element method for a unidimensional single‐phase nonlinear free boundary problem in groundwater flow
  publication-title: IMA Journal of Numerical Analysis
– volume: 194
  start-page: 4135
  issue: 39‐41
  year: 2005
  end-page: 4195
  article-title: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 12
  start-page: 1597
  year: 1978
  end-page: 1615
  article-title: A posteriori error estimates for the finite element method
  publication-title: International Journal of Numerical Methods and Engineering
– year: 1995
– volume: 15
  start-page: 90
  issue: 1
  year: 1999
  end-page: 104
  article-title: Object‐oriented programming in field recovery and error estimation
  publication-title: Engineering with Computers
– start-page: 283
  year: 2000
  end-page: 317
– volume: 192
  start-page: 613
  issue: 5–6
  year: 2003
  end-page: 633
  article-title: Goal oriented error estimators for Stokes equations based on variationally consistent postprocessing
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 33
  start-page: 1331
  issue: 7
  year: 1992
  end-page: 1364
  article-title: The superconvergent patch recovery and a posteriori error estimates. I. The recovery technique
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 44
  start-page: 697
  issue: 5
  year: 1999
  end-page: 727
  article-title: Superconvergent patch recovery for plate problems using statically admissible stress resultant fields
  publication-title: International Journal for Numerical Methods in Engineering
– year: 1999
– ident: e_1_2_9_7_1
  doi: 10.1016/0309-1708(82)90055-0
– ident: e_1_2_9_13_1
  doi: 10.1016/S0022-1694(97)00051-6
– ident: e_1_2_9_18_1
  doi: 10.1002/nme.1620310708
– year: 2015
  ident: e_1_2_9_41_1
  article-title: Superconvergent patch recovery and a posteriori error estimation technique in adaptive isogeometric analysis
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 19
  start-page: 563
  issue: 4
  year: 1999
  ident: e_1_2_9_11_1
  article-title: A finite element method for a unidimensional single‐phase nonlinear free boundary problem in groundwater flow
  publication-title: IMA Journal of Numerical Analysis
  doi: 10.1093/imanum/19.4.563
– start-page: 1236
  volume-title: Proceedings of the 7th International Congress on Environmental Modeling and Software
  year: 2014
  ident: e_1_2_9_21_1
– ident: e_1_2_9_27_1
  doi: 10.1137/0715049
– ident: e_1_2_9_3_1
  doi: 10.1029/WR008i001p00108
– ident: e_1_2_9_9_1
  doi: 10.1061/(ASCE)0733-9429(2006)132:11(1206)
– ident: e_1_2_9_34_1
  doi: 10.1002/(SICI)1097-0207(19990220)44:5<697::AID-NME526>3.0.CO;2-L
– ident: e_1_2_9_24_1
  doi: 10.1016/j.cma.2004.10.008
– ident: e_1_2_9_29_1
  doi: 10.1002/9781118032824
– ident: e_1_2_9_33_1
  doi: 10.1002/(SICI)1097-0207(19980615)42:3<443::AID-NME366>3.0.CO;2-G
– ident: e_1_2_9_14_1
  doi: 10.1002/nme.1620230703
– ident: e_1_2_9_36_1
– start-page: 283
  volume-title: Advances in Software Tools for Scientific Computing
  year: 2000
  ident: e_1_2_9_39_1
  doi: 10.1007/978-3-642-57172-5_9
– ident: e_1_2_9_25_1
  doi: 10.1145/882262.882295
– ident: e_1_2_9_22_1
  doi: 10.1016/j.cagd.2012.12.005
– ident: e_1_2_9_31_1
  doi: 10.1002/nme.1620330702
– ident: e_1_2_9_5_1
  doi: 10.1029/WR020i005p00553
– ident: e_1_2_9_28_1
  doi: 10.1002/nme.1620121010
– ident: e_1_2_9_40_1
  doi: 10.1016/j.camwa.2015.05.031
– ident: e_1_2_9_30_1
  doi: 10.1002/nme.1620240206
– ident: e_1_2_9_32_1
  doi: 10.1002/nme.1620330703
– ident: e_1_2_9_17_1
  doi: 10.1016/j.matcom.2013.03.006
– ident: e_1_2_9_6_1
  doi: 10.1029/WR017i005p01529
– ident: e_1_2_9_35_1
– ident: e_1_2_9_37_1
  doi: 10.1016/S0045-7825(02)00575-3
– ident: e_1_2_9_20_1
  doi: 10.1016/S0309-1708(98)00047-5
– ident: e_1_2_9_26_1
  doi: 10.1002/9780470749081
– ident: e_1_2_9_8_1
  doi: 10.1016/0022-1694(82)90132-9
– volume: 92
  start-page: 41
  year: 1967
  ident: e_1_2_9_2_1
  article-title: Finite‐element analysis of seepage through dams
  publication-title: Journal of Soil Mechanics & Foundations Div, ASCE SM6
  doi: 10.1061/JSFEAQ.0001074
– ident: e_1_2_9_43_1
  doi: 10.6028/NIST.IR.7668
– ident: e_1_2_9_4_1
  doi: 10.2172/4248170
– volume: 15
  start-page: 90
  issue: 1
  year: 1999
  ident: e_1_2_9_38_1
  article-title: Object‐oriented programming in field recovery and error estimation
  publication-title: Engineering with Computers
  doi: 10.1007/s003660050007
– ident: e_1_2_9_12_1
  doi: 10.1029/WR006i003p00889
– ident: e_1_2_9_19_1
  doi: 10.1002/hyp.8156
– ident: e_1_2_9_42_1
  doi: 10.1007/BFb0096835
– volume: 106
  start-page: 977
  issue: 6
  year: 1980
  ident: e_1_2_9_10_1
  article-title: Singularities in Darcy flow through porous media
  publication-title: Journal of the Hydraulics Division
  doi: 10.1061/JYCEAJ.0005457
– ident: e_1_2_9_16_1
  doi: 10.1016/j.cma.2004.05.014
– volume: 269
  start-page: 471
  issue: 0
  year: 2014
  ident: e_1_2_9_23_1
  article-title: Isogeometric analysis using LR B‐splines
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2013.09.014
– ident: e_1_2_9_15_1
  doi: 10.1002/cnm.480
SSID ssj0005096
Score 2.254654
Snippet Summary Numerical challenges occur in the simulation of groundwater flow problems because of complex boundary conditions, varying material properties, presence...
Numerical challenges occur in the simulation of groundwater flow problems because of complex boundary conditions, varying material properties, presence of...
Summary Numerical challenges occur in the simulation of groundwater flow problems because of complex boundary conditions, varying material properties, presence...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 738
SubjectTerms a posteriori error estimates
adaptive refinement
Boundary conditions
Computer simulation
Errors
Estimates
Finite element method
Galerkin methods
Ground-water flow
Groundwater flow
isogeometric analysis
Mathematical analysis
Mathematical models
Title Adaptive isogeometric finite element analysis of steady-state groundwater flow
URI https://api.istex.fr/ark:/67375/WNG-G23MDXK9-N/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnag.2425
https://www.proquest.com/docview/1769888776
https://www.proquest.com/docview/1776645293
https://www.proquest.com/docview/1800502882
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0363-9061
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1096-9853
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005096
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQucCB8hRLCzISglO2ie3YznFF6VagrhCiYiUOlh3bVdWSVPtQW078BH4jv6QzeSxbBAhx2kg7URzPw99k7G8IeaECBIAyioQL7hPBMp_YgulEe89y56RTTW_Ag4ncPxRvp_m021WJZ2FafojVBzf0jCZeo4NbN99ZIw21R0PEyxB-My6bbOrDT-YoZDXpy5QFrFk972zKdvobr61EN3FSL67BzHWw2qw2e5vkcz_OdpPJyXC5cMPy6y8Ujv_3InfJnQ6E0lFrNffIjVDdJ7fXqAkfkPcjb88wFNLjeX0U6i_Yeauk8RgxKg3tpnNqO0oTWkfamMvlj2_fmzNKFI-LVP4cLmc0ntbnD8nh3puPr_eTrvtCYkWR5pChKqGddhwwhCy496nIdOmdZ4G5XNpcMwfY0eegTSelVT5GHkPQUULOGCV_RDaqugqPCY0xMuuFZKJM0Rys185B4sgVBAwfswF51WvClB01OXbIODUtqTIzMEcG52hAnq8kz1o6jt_IvGyUuRKwsxPcvqZy82kyNmPGD3an7wozGZDtXtum89y5yZQsNEReJeFZq7_B57CQYqtQL1FGSSwIF_wvMhqNkEECA-Np1P_HAZvJaIy_T_5VcIvcAtwmsaiVpdtkYzFbhqeAjRbuWeMFV5DMDCI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLVKuwAWlFfFQAEjIVhlmtiO7airEdAZaCdCqBWzQLLs2K6qlqSazqjAik_oN_ZL8M1jmCJAiFUi5UZxfB8-19c-Rui5cCEAFJ5FlFEbMZLYSGdERtJakhrDjajPBhznfHTA3k3SyQra7vbCNPwQiwk38Iw6XoODw4T01hJrqD7sA2C-htYYD2kKIKIPP7mjgNekK1RmYdTqmGdjstW9eWUsWoNu_XIFaC7D1Xq82VlHn7qWNstMjvvzmekX334hcfzPX7mNbrU4FA8aw7mDVlx5F91cYie8h94PrD6FaIiPzqpDV32Gw7cK7I8ApmLXrDvHumU1wZXHtcV8vfx-UW9TwrBjpLTn4XaK_Ul1fh8d7LzZfzWK2gMYIs2yOA1JqmDSSEMDjOAZtTZmiSysscQRk3KdSmICfLRpUKjhXAvrPfXOSQ_68JxuoNWyKt0DhL33RFvGCStisAhtpTEhd6QixAzrkx562alCFS07ORyScaIaXmWiQh8p6KMeeraQPG0YOX4j86LW5kJAT49hBZtI1cd8qIaEjl9PdjOV99Bmp27VOu-ZSgTPZAi-godvLR4Ht4Naii5dNQcZwaEmnNG_yEiwQhJymNCeWv9_bLDKB0O4PvxXwafo-mh_vKf23ua7j9CNAOM41LiSeBOtzqZz9zhApZl5UrvED08oEEM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGJiF4GNeJsgFGQvCULrEd2xFPFaUdjEUTYqIPSJYd29O0kVRdqwFP_AR-I78En1xKhwAhnhqpJ4rjc_F3cuzvIPREuBAACs8iyqiNGElspDMiI2ktSY3hRtS9AQ9yvnfEXk_SyRp63p2Fafghlh_cwDPqeA0O7qbW766whurjPgDmK2iDpZmE_XzDtz-5o4DXpCtUZmHV6phnY7Lb3XlpLdqAaf10CWiuwtV6vRndQB-6kTbbTE77i7npF19-IXH8z1e5iTZbHIoHjeHcQmuuvI2ur7AT3kGHA6unEA3xyXl17KqP0HyrwP4EYCp2zb5zrFtWE1x5XFvM5-9fv9XHlDCcGCntRbicYX9WXdxFR6OX717sRW0DhkizLE5DkiqYNNLQACN4Rq2NWSILayxxxKRcp5KYAB9tGhRqONfCek-9c9LzkDZ6TrfQelmV7h7C3nuiLeOEFTFYhLbSmJA7UhFihvVJDz3rVKGKlp0cmmScqYZXmagwRwrmqIceLyWnDSPHb2Se1tpcCujZKexgE6l6n4_VmNCD4WQ_U3kP7XTqVq3znqtE8EyG4Ct4eNby7-B2UEvRpasWICM41IQz-hcZCVZIQg4TxlPr_48DVvlgDL_3_1XwEbp6OBypN6_y_W10LaA4DiWuJN5B6_PZwj0ISGluHtYe8QPhrg_H
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+isogeometric+finite+element+analysis+of+steady%E2%80%90state+groundwater+flow&rft.jtitle=International+journal+for+numerical+and+analytical+methods+in+geomechanics&rft.au=Bekele%2C+Yared+W.&rft.au=Kvamsdal%2C+Trond&rft.au=Kvarving%2C+Arne+M.&rft.au=Nordal%2C+Steinar&rft.date=2016-04-10&rft.issn=0363-9061&rft.eissn=1096-9853&rft.volume=40&rft.issue=5&rft.spage=738&rft.epage=765&rft_id=info:doi/10.1002%2Fnag.2425&rft.externalDBID=10.1002%252Fnag.2425&rft.externalDocID=NAG2425
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-9061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-9061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-9061&client=summon