Base-Catalyzed Dehydration of 3‑Substituted Benzene cis-1,2-Dihydrodiols: Stabilization of a Cyclohexadienide Anion Intermediate by Negative Aromatic Hyperconjugation
Evidence that a 1,2-dihydroxycyclohexadienide anion is stabilized by aromatic “negative hyperconjugation” is described. It complements an earlier inference of “positive” hyperconjugative aromaticity for the cyclohexadienyl cation. The anion is a reactive intermediate in the dehydration of benzene ci...
Saved in:
Published in | Journal of the American Chemical Society Vol. 134; no. 34; pp. 14056 - 14069 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
29.08.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 0002-7863 1520-5126 1943-2984 1520-5126 |
DOI | 10.1021/ja304366j |
Cover
Abstract | Evidence that a 1,2-dihydroxycyclohexadienide anion is stabilized by aromatic “negative hyperconjugation” is described. It complements an earlier inference of “positive” hyperconjugative aromaticity for the cyclohexadienyl cation. The anion is a reactive intermediate in the dehydration of benzene cis-1,2-dihydrodiol to phenol. Rate constants for 3-substituted benzene cis-dihydrodiols are correlated by σ– values with ρ = 3.2. Solvent isotope effects for the reactions are k H2O/k D2O = 1.2–1.8. These measurements are consistent with reaction via a carbanion intermediate or a concerted reaction with a “carbanion-like” transition state. These and other experimental results confirm that the reaction proceeds by a stepwise mechanism, with a change in rate-determining step from proton transfer to the loss of hydroxide ion from the intermediate. Hydrogen isotope exchange accompanying dehydration of the parent benzene cis-1,2-dihydrodiol was not found, and thus, the proton transfer step is subject to internal return. A rate constant of ∼1011 s–1, corresponding to rotational relaxation of the aqueous solvent, is assigned to loss of hydroxide ion from the intermediate. The rate constant for internal return therefore falls in the range 1011–1012 s–1. From these limiting values and the measured rate constant for hydroxide-catalyzed dehydration, a pK a of 30.8 ± 0.5 was determined for formation of the anion. Although loss of hydroxide ion is hugely exothermic, a concerted reaction is not enforced by the instability of the intermediate. Stabilization by negative hyperconjugation is proposed for 1,2-dihydroxycyclohexadienide and similar anions, and this proposal is supported by additional experimental evidence and by computational results, including evidence for a diatropic (“aromatic”) ring current in 3,3-difluorocyclohexadienyl anion. |
---|---|
AbstractList | Evidence that a 1,2-dihydroxycyclohexadienide anion is stabilized by aromatic "negative hyperconjugation" is described. It complements an earlier inference of "positive" hyperconjugative aromaticity for the cyclohexadienyl cation. The anion is a reactive intermediate in the dehydration of benzene cis-1,2-dihydrodiol to phenol. Rate constants for 3-substituted benzene cis-dihydrodiols are correlated by values with rho = 3.2. Solvent isotope effects for the reactions are k(H2O)/k(D2O) = 1.2-1.8. These measurements are consistent with reaction via a carbanion intermediate or a concerted reaction with a "carbanion-like" transition state. These and other experimental results confirm that the reaction proceeds by a stepwise mechanism, with a change in rate-determining step from proton transfer to the loss of hydroxide ion from the intermediate. Hydrogen isotope exchange accompanying dehydration of the parent benzene cis-1,2-dihydrodiol was not found, and thus, the proton transfer step is subject to internal return. A rate constant of similar to 10(11) s(-1), corresponding to rotational relaxation of the aqueous solvent, is assigned to loss of hydroxide ion from the intermediate. The rate constant for internal return therefore falls in the range 10(11)-10(12) s(-1). From these limiting values and the measured rate constant for hydroxide-catalyzed dehydration, a pK(a) of 30.8 +/- 0.5 was determined for formation of the anion. Although loss of hydroxide ion is hugely exothermic, a concerted reaction is not enforced by the instability of the intermediate. Stabilization by negative hyperconjugation is proposed for 1,2-dihydroxycyclohexadienide and similar anions, and this proposal is supported by additional experimental evidence and by computational results, including evidence for a diatropic ("aromatic") ring current in 3,3-difluorocyclohexadienyl anion. Evidence that a 1,2-dihydroxycyclohexadienide anion is stabilized by aromatic "negative hyperconjugation" is described. It complements an earlier inference of "positive" hyperconjugative aromaticity for the cyclohexadienyl cation. The anion is a reactive intermediate in the dehydration of benzene cis-1,2-dihydrodiol to phenol. Rate constants for 3-substituted benzene cis-dihydrodiols are correlated by σ(-) values with ρ = 3.2. Solvent isotope effects for the reactions are k(H(2)O)/k(D(2)O) = 1.2-1.8. These measurements are consistent with reaction via a carbanion intermediate or a concerted reaction with a "carbanion-like" transition state. These and other experimental results confirm that the reaction proceeds by a stepwise mechanism, with a change in rate-determining step from proton transfer to the loss of hydroxide ion from the intermediate. Hydrogen isotope exchange accompanying dehydration of the parent benzene cis-1,2-dihydrodiol was not found, and thus, the proton transfer step is subject to internal return. A rate constant of ~10(11) s(-1), corresponding to rotational relaxation of the aqueous solvent, is assigned to loss of hydroxide ion from the intermediate. The rate constant for internal return therefore falls in the range 10(11)-10(12) s(-1). From these limiting values and the measured rate constant for hydroxide-catalyzed dehydration, a pK(a) of 30.8 ± 0.5 was determined for formation of the anion. Although loss of hydroxide ion is hugely exothermic, a concerted reaction is not enforced by the instability of the intermediate. Stabilization by negative hyperconjugation is proposed for 1,2-dihydroxycyclohexadienide and similar anions, and this proposal is supported by additional experimental evidence and by computational results, including evidence for a diatropic ("aromatic") ring current in 3,3-difluorocyclohexadienyl anion. Evidence that a 1,2-dihydroxycyclohexadienide anion is stabilized by aromatic “negative hyperconjugation” is described. It complements an earlier inference of “positive” hyperconjugative aromaticity for the cyclohexadienyl cation. The anion is a reactive intermediate in the dehydration of benzene cis-1,2-dihydrodiol to phenol. Rate constants for 3-substituted benzene cis-dihydrodiols are correlated by σ– values with ρ = 3.2. Solvent isotope effects for the reactions are k H2O/k D2O = 1.2–1.8. These measurements are consistent with reaction via a carbanion intermediate or a concerted reaction with a “carbanion-like” transition state. These and other experimental results confirm that the reaction proceeds by a stepwise mechanism, with a change in rate-determining step from proton transfer to the loss of hydroxide ion from the intermediate. Hydrogen isotope exchange accompanying dehydration of the parent benzene cis-1,2-dihydrodiol was not found, and thus, the proton transfer step is subject to internal return. A rate constant of ∼1011 s–1, corresponding to rotational relaxation of the aqueous solvent, is assigned to loss of hydroxide ion from the intermediate. The rate constant for internal return therefore falls in the range 1011–1012 s–1. From these limiting values and the measured rate constant for hydroxide-catalyzed dehydration, a pK a of 30.8 ± 0.5 was determined for formation of the anion. Although loss of hydroxide ion is hugely exothermic, a concerted reaction is not enforced by the instability of the intermediate. Stabilization by negative hyperconjugation is proposed for 1,2-dihydroxycyclohexadienide and similar anions, and this proposal is supported by additional experimental evidence and by computational results, including evidence for a diatropic (“aromatic”) ring current in 3,3-difluorocyclohexadienyl anion. Evidence that a 1,2-dihydroxycyclohexadienide anion is stabilized by aromatic "negative hyperconjugation" is described. It complements an earlier inference of "positive" hyperconjugative aromaticity for the cyclohexadienyl cation. The anion is a reactive intermediate in the dehydration of benzene cis-1,2-dihydrodiol to phenol. Rate constants for 3-substituted benzene cis-dihydrodiols are correlated by σ(-) values with ρ = 3.2. Solvent isotope effects for the reactions are k(H(2)O)/k(D(2)O) = 1.2-1.8. These measurements are consistent with reaction via a carbanion intermediate or a concerted reaction with a "carbanion-like" transition state. These and other experimental results confirm that the reaction proceeds by a stepwise mechanism, with a change in rate-determining step from proton transfer to the loss of hydroxide ion from the intermediate. Hydrogen isotope exchange accompanying dehydration of the parent benzene cis-1,2-dihydrodiol was not found, and thus, the proton transfer step is subject to internal return. A rate constant of ~10(11) s(-1), corresponding to rotational relaxation of the aqueous solvent, is assigned to loss of hydroxide ion from the intermediate. The rate constant for internal return therefore falls in the range 10(11)-10(12) s(-1). From these limiting values and the measured rate constant for hydroxide-catalyzed dehydration, a pK(a) of 30.8 ± 0.5 was determined for formation of the anion. Although loss of hydroxide ion is hugely exothermic, a concerted reaction is not enforced by the instability of the intermediate. Stabilization by negative hyperconjugation is proposed for 1,2-dihydroxycyclohexadienide and similar anions, and this proposal is supported by additional experimental evidence and by computational results, including evidence for a diatropic ("aromatic") ring current in 3,3-difluorocyclohexadienyl anion.Evidence that a 1,2-dihydroxycyclohexadienide anion is stabilized by aromatic "negative hyperconjugation" is described. It complements an earlier inference of "positive" hyperconjugative aromaticity for the cyclohexadienyl cation. The anion is a reactive intermediate in the dehydration of benzene cis-1,2-dihydrodiol to phenol. Rate constants for 3-substituted benzene cis-dihydrodiols are correlated by σ(-) values with ρ = 3.2. Solvent isotope effects for the reactions are k(H(2)O)/k(D(2)O) = 1.2-1.8. These measurements are consistent with reaction via a carbanion intermediate or a concerted reaction with a "carbanion-like" transition state. These and other experimental results confirm that the reaction proceeds by a stepwise mechanism, with a change in rate-determining step from proton transfer to the loss of hydroxide ion from the intermediate. Hydrogen isotope exchange accompanying dehydration of the parent benzene cis-1,2-dihydrodiol was not found, and thus, the proton transfer step is subject to internal return. A rate constant of ~10(11) s(-1), corresponding to rotational relaxation of the aqueous solvent, is assigned to loss of hydroxide ion from the intermediate. The rate constant for internal return therefore falls in the range 10(11)-10(12) s(-1). From these limiting values and the measured rate constant for hydroxide-catalyzed dehydration, a pK(a) of 30.8 ± 0.5 was determined for formation of the anion. Although loss of hydroxide ion is hugely exothermic, a concerted reaction is not enforced by the instability of the intermediate. Stabilization by negative hyperconjugation is proposed for 1,2-dihydroxycyclohexadienide and similar anions, and this proposal is supported by additional experimental evidence and by computational results, including evidence for a diatropic ("aromatic") ring current in 3,3-difluorocyclohexadienyl anion. Evidence that a 1,2-dihydroxycyclohexadienide anion is stabilized by aromatic “negative hyperconjugation” is described. It complements an earlier inference of “positive” hyperconjugative aromaticity for the cyclohexadienyl cation. The anion is a reactive intermediate in the dehydration of benzene cis-1,2-dihydrodiol to phenol. Rate constants for 3-substituted benzene cis-dihydrodiols are correlated by σ– values with ρ = 3.2. Solvent isotope effects for the reactions are kH₂O/kD₂O = 1.2–1.8. These measurements are consistent with reaction via a carbanion intermediate or a concerted reaction with a “carbanion-like” transition state. These and other experimental results confirm that the reaction proceeds by a stepwise mechanism, with a change in rate-determining step from proton transfer to the loss of hydroxide ion from the intermediate. Hydrogen isotope exchange accompanying dehydration of the parent benzene cis-1,2-dihydrodiol was not found, and thus, the proton transfer step is subject to internal return. A rate constant of ∼10¹¹ s–¹, corresponding to rotational relaxation of the aqueous solvent, is assigned to loss of hydroxide ion from the intermediate. The rate constant for internal return therefore falls in the range 10¹¹–10¹² s–¹. From these limiting values and the measured rate constant for hydroxide-catalyzed dehydration, a pKₐ of 30.8 ± 0.5 was determined for formation of the anion. Although loss of hydroxide ion is hugely exothermic, a concerted reaction is not enforced by the instability of the intermediate. Stabilization by negative hyperconjugation is proposed for 1,2-dihydroxycyclohexadienide and similar anions, and this proposal is supported by additional experimental evidence and by computational results, including evidence for a diatropic (“aromatic”) ring current in 3,3-difluorocyclohexadienyl anion. |
Author | Kamerlin, Shina Caroline Lynn Sharma, Narain D Rao, S. Nagaraja Boyd, Derek R Fowler, Patrick W Kudavalli, Jaya Satyanarayana Gronert, Scott Keeffe, James R More O’Ferrall, Rory A Bean, David E |
AuthorAffiliation | University of Sheffield Queen’s University of Belfast San Francisco State University Uppsala University Virginia Commonwealth University University College Dublin |
AuthorAffiliation_xml | – name: Uppsala University – name: San Francisco State University – name: University College Dublin – name: Virginia Commonwealth University – name: Queen’s University of Belfast – name: University of Sheffield |
Author_xml | – sequence: 1 givenname: Jaya Satyanarayana surname: Kudavalli fullname: Kudavalli, Jaya Satyanarayana – sequence: 2 givenname: S. Nagaraja surname: Rao fullname: Rao, S. Nagaraja – sequence: 3 givenname: David E surname: Bean fullname: Bean, David E – sequence: 4 givenname: Narain D surname: Sharma fullname: Sharma, Narain D – sequence: 5 givenname: Derek R surname: Boyd fullname: Boyd, Derek R – sequence: 6 givenname: Patrick W surname: Fowler fullname: Fowler, Patrick W – sequence: 7 givenname: Scott surname: Gronert fullname: Gronert, Scott – sequence: 8 givenname: Shina Caroline Lynn surname: Kamerlin fullname: Kamerlin, Shina Caroline Lynn – sequence: 9 givenname: James R surname: Keeffe fullname: Keeffe, James R email: keeffe@sfsu.edu – sequence: 10 givenname: Rory A surname: More O’Ferrall fullname: More O’Ferrall, Rory A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22830996$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-183892$$DView record from Swedish Publication Index |
BookMark | eNqFkctuEzEUhi1URNPCghdAs0EC1KG-TObCLk0orVTBosDW8thnUkcTO_WFMlnxCrwFz9UnwWlKFqiCle3zf-fo938O0J6xBhB6TvBbgik5XgiGC1aWi0doRMYU52NCyz00whjTvKpLto8OvF-kZ0Fr8gTtU1oz3DTlCP06ER7yqQiiH9agshlcDcqJoK3JbJex2x8_L2Prgw4xJPkEzBoMZFL7nBzRfKY3uFXa9v5ddhlEq3u93rWLbDrI3l7Bd6E0GK0gm5iNdm4CuCUoLQJk7ZB9hHlq-pZkZ5fpJrOzYQVOWrOI87txT9HjTvQent2fh-jL6fvP07P84tOH8-nkIhdFXYa8Fl1bdQTEuMJjJjcJqLYsOzYuVRIwTuVK1XXbiKpJDBYKQ6MAZNWBbAk7RG-2c6NZieFG9D1fOb0UbuAE803cfBd3go-2sL-BVWx3pBWaz_TXCbduzmPkpGZ1QxP-aouvnL2O4ANfai-h74UBGz2nyS4jVVHU_0UJZhUtGGUbxy_u0dimSHcm_iw5AcdbQDrrvYOOSx3uQg1O6P7Bf73-q-NfGbzcskJ6vrDRmbSeB7jfW_3Vyw |
CitedBy_id | crossref_primary_10_1021_jo301134q crossref_primary_10_1021_jo402702m crossref_primary_10_1021_acs_organomet_4c00244 crossref_primary_10_1002_adsc_201500189 crossref_primary_10_1002_chem_201202411 crossref_primary_10_1016_j_tetlet_2017_09_051 crossref_primary_10_1021_acs_joc_7b02573 crossref_primary_10_1021_jo5028968 crossref_primary_10_1021_acscatal_5b02638 crossref_primary_10_1002_poc_3174 crossref_primary_10_1021_ar300258d crossref_primary_10_1002_poc_3154 crossref_primary_10_1021_acs_organomet_2c00352 crossref_primary_10_1039_c3ob40166a crossref_primary_10_3390_polym17070835 crossref_primary_10_1002_adsc_201700711 crossref_primary_10_1002_ajoc_201800680 crossref_primary_10_1039_D0CP06388F crossref_primary_10_1016_j_tet_2013_04_033 crossref_primary_10_1021_acs_organomet_8b00571 crossref_primary_10_1039_C5OB02411K crossref_primary_10_1002_chem_201402577 crossref_primary_10_1002_poc_3183 crossref_primary_10_1039_C7GC03864J crossref_primary_10_1039_C4OB00946K crossref_primary_10_1039_D4NJ04234D crossref_primary_10_1002_asia_201800179 |
Cites_doi | 10.1021/jo962096e 10.1021/ja00766a084 10.1039/p29740000490 10.1021/ol1014027 10.1016/0009-2614(93)89127-4 10.1021/j100715a005 10.1039/c39940000313 10.1021/ja0126125 10.1080/00268970512331340592 10.1002/1521-3773(20010119)40:2<362::AID-ANIE362>3.0.CO;2-Z 10.1021/jo981769l 10.1021/ja982692l 10.1021/ja00346a048 10.1002/anie.196400011 10.1039/b205903g 10.1021/jp011955m 10.1021/jo201104v 10.1002/(SICI)1099-1395(199808/09)11:8/9<614::AID-POC46>3.0.CO;2-8 10.1039/c39910001630 10.1021/ja00541a009 10.1021/ja101104q 10.1021/ja00452a034 10.1021/ja0356683 10.1021/ja9617451 10.1007/BF01132801 10.1021/jo100195w 10.1039/a800809d 10.1021/ja00744a025 10.1021/ja01032a019 10.1021/ja2071626 10.1021/ja00160a022 10.1021/j100193a068 10.1021/ja00317a032 10.1021/je00058a001 10.1139/v92-139 10.1002/cphc.200800356 10.1039/b104847n 10.1021/ja0125321 10.1016/j.cplett.2011.03.032 10.1039/B513226F |
ContentType | Journal Article |
Copyright | Copyright © 2012 American Chemical Society |
Copyright_xml | – notice: Copyright © 2012 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 ACNBI ADTPV AOWAS D8T DF2 ZZAVC ADTOC UNPAY |
DOI | 10.1021/ja304366j |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic SWEPUB Uppsala universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Uppsala universitet SwePub Articles full text Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 14069 |
ExternalDocumentID | oai:DiVA.org:uu-183892 oai_DiVA_org_uu_183892 22830996 10_1021_ja304366j a601633139 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 4.4 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TAF TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC AAHBH AAYWT AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 .GJ .HR 186 1WB 3EH 3O- 41~ 6TJ AAUPJ AAYJJ ABHMW ABWLT ACBNA ACKIV ACNBI ACRPL ADNMO ADTPV ADXHL AEYZD AFFNX AGQPQ AI. AIDAL ANPPW ANTXH AOWAS D0S D8T DF2 IHE MVM NHB OHT P-O RNS UBC UBX UQL VH1 X7L YR5 YXA YXE YYP ZCG ZE2 ZGI ZY4 ZZAVC ADTOC UNPAY XOL |
ID | FETCH-LOGICAL-a486t-8afb7f1ea57053c0002db66f356db7f007057d88b9a795700ad0e9deec7fecb13 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 1943-2984 |
IngestDate | Wed Aug 20 00:18:53 EDT 2025 Tue Sep 09 23:42:47 EDT 2025 Thu Sep 04 16:09:30 EDT 2025 Fri Sep 05 10:18:57 EDT 2025 Thu Apr 03 06:55:46 EDT 2025 Thu Apr 24 22:58:37 EDT 2025 Wed Oct 01 02:47:35 EDT 2025 Thu Aug 27 13:42:35 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Language | English |
License | other-oa |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a486t-8afb7f1ea57053c0002db66f356db7f007057d88b9a795700ad0e9deec7fecb13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-183892 |
PMID | 22830996 |
PQID | 1037243231 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | unpaywall_primary_10_1021_ja304366j swepub_primary_oai_DiVA_org_uu_183892 proquest_miscellaneous_2000317448 proquest_miscellaneous_1037243231 pubmed_primary_22830996 crossref_citationtrail_10_1021_ja304366j crossref_primary_10_1021_ja304366j acs_journals_10_1021_ja304366j |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-08-29 |
PublicationDateYYYYMMDD | 2012-08-29 |
PublicationDate_xml | – month: 08 year: 2012 text: 2012-08-29 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2012 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Kresge A. J. (ref10/cit10) 1986; 5 Kaatze U. (ref24/cit24) 1992; 96 Boyd D. R. (ref42/cit42c) 2002 Guthrie J. P. (ref11/cit11) 1992; 70 Kim Y. (ref18/cit18) 2012; 132 Bartmess J. E. (ref13/cit13) 2003 Lawlor D. A. (ref3/cit3) 2011; 133 Richard J. P. (ref26/cit26) 2002; 124 Alexander R. (ref32/cit32) 1974 Koch H. F. (ref27/cit27) 1983; 103 Schubert W. M. (ref4/cit4a) 1972; 94 ref37/cit37 Keeffe J. R. (ref8/cit8) 2003; 125 Kamerlin S. C. L. (ref40/cit40) 2011; 76 Terrier F. (ref16/cit16) 1991 Bernasconi C. F. (ref28/cit28) 2010; 44 Richard J. P. (ref4/cit4b) 1984; 106 Reed A. E. (ref7/cit7) 1990; 112 Birch A. J. (ref17/cit17) 1980; 102 Giese K. (ref22/cit22) 1970; 74 Steiner E. (ref35/cit35c) 2001; 105 Saunders W. H. (ref6/cit6) 1999; 64 Eigen M. (ref25/cit25) 1964; 3 Fernández I. (ref14/cit14) 2010; 75 Koch H. F. (ref20/cit20) 1998; 11 Kamerlin S. C. L. (ref41/cit41) 2008; 9 Kaatze U. (ref23/cit23) 1989; 34 Toteva M. M. (ref31/cit31) 1996; 118 Steiner E. (ref36/cit36) 2001; 40 Boyd D. R. (ref42/cit42b) 1998 Glukhotsev M. N. (ref15/cit15) 1997; 62 Richard J. P. (ref21/cit21) 1999; 121 More O’Ferrall R. A. (ref5/cit5c) 1970 Coriani S. (ref35/cit35b) 1994; 89 ref39/cit39 Fishbein J. C. (ref5/cit5a) 1988; 110 Boyd D. R. (ref42/cit42a) 1991 Dey J. (ref12/cit12) 2002; 124 Boyd D. R. (ref9/cit9) 2006; 4 Hine J. (ref29/cit29) 1971; 93 Fedor L. R. (ref5/cit5b) 1969; 91 Boyd D. R. (ref1/cit1) 1994 Bouchoux G. (ref33/cit33) 2011; 506 Boyd D. R. (ref2/cit2) 2010; 12 Keith T. A. (ref35/cit35a) 1993; 210 Steiner E. (ref34/cit34) 2001 Guest M. F. (ref38/cit38) 2005; 103 Buncel E. (ref19/cit19) 2003 Bunting W. J. (ref30/cit30) 1979; 25 Modena G. (ref4/cit4c) 1977; 99 |
References_xml | – volume: 62 start-page: 4036 year: 1997 ident: ref15/cit15 publication-title: J. Org. Chem. doi: 10.1021/jo962096e – volume: 25 start-page: 1 year: 1979 ident: ref30/cit30 publication-title: Adv. Heterocycl. Chem. – volume: 94 start-page: 4048 year: 1972 ident: ref4/cit4a publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00766a084 – start-page: 490 year: 1974 ident: ref32/cit32 publication-title: J. Chem. Soc. Perkin Trans. 2 doi: 10.1039/p29740000490 – volume: 12 start-page: 5550 year: 2010 ident: ref2/cit2 publication-title: Org. Lett. doi: 10.1021/ol1014027 – volume-title: Nucleophilic Aromatic Displacement: The Influence of the Nitro Group year: 1991 ident: ref16/cit16 – volume: 210 start-page: 223 year: 1993 ident: ref35/cit35a publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(93)89127-4 – volume: 74 start-page: 3718 year: 1970 ident: ref22/cit22 publication-title: J. Phys. Chem. doi: 10.1021/j100715a005 – start-page: 313 year: 1994 ident: ref1/cit1 publication-title: J. Chem. Soc., Chem. Commun. doi: 10.1039/c39940000313 – volume: 5 volume-title: Isotopes in Organic Chemistry year: 1986 ident: ref10/cit10 – volume: 124 start-page: 8561 year: 2002 ident: ref12/cit12 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0126125 – volume: 103 start-page: 719 year: 2005 ident: ref38/cit38 publication-title: Mol. Phys. doi: 10.1080/00268970512331340592 – volume: 40 start-page: 362 year: 2001 ident: ref36/cit36 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20010119)40:2<362::AID-ANIE362>3.0.CO;2-Z – volume: 64 start-page: 861 year: 1999 ident: ref6/cit6 publication-title: J. Org. Chem. doi: 10.1021/jo981769l – volume: 121 start-page: 715 year: 1999 ident: ref21/cit21 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja982692l – volume: 103 start-page: 2394 year: 1983 ident: ref27/cit27 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00346a048 – volume: 3 start-page: 1 year: 1964 ident: ref25/cit25 publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.196400011 – start-page: 1914 year: 2002 ident: ref42/cit42c publication-title: Chem. Commun. doi: 10.1039/b205903g – volume: 105 start-page: 9553 year: 2001 ident: ref35/cit35c publication-title: J. Phys. Chem. doi: 10.1021/jp011955m – volume: 76 start-page: 9228 year: 2011 ident: ref40/cit40 publication-title: J. Org. Chem. doi: 10.1021/jo201104v – volume: 11 start-page: 614 year: 1998 ident: ref20/cit20 publication-title: J. Phys. Org. Chem. doi: 10.1002/(SICI)1099-1395(199808/09)11:8/9<614::AID-POC46>3.0.CO;2-8 – ident: ref37/cit37 – start-page: 260 year: 1970 ident: ref5/cit5c publication-title: J. Chem Soc. B – start-page: 1630 year: 1991 ident: ref42/cit42a publication-title: J. Chem. Soc., Chem. Commun. doi: 10.1039/c39910001630 – volume: 102 start-page: 6430 year: 1980 ident: ref17/cit17 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00541a009 – volume-title: NIST Standard Reference Database Number 69 year: 2003 ident: ref13/cit13 – volume: 132 start-page: 11071 year: 2012 ident: ref18/cit18 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja101104q – volume: 99 start-page: 3392 year: 1977 ident: ref4/cit4c publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00452a034 – volume: 125 start-page: 11730 year: 2003 ident: ref8/cit8 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0356683 – volume: 118 start-page: 11434 year: 1996 ident: ref31/cit31 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9617451 – volume: 89 start-page: 181 year: 1994 ident: ref35/cit35b publication-title: Theor. Chim. Acta doi: 10.1007/BF01132801 – volume: 75 start-page: 2971 year: 2010 ident: ref14/cit14 publication-title: J. Org. Chem. doi: 10.1021/jo100195w – volume-title: Carbanion Chemistry: Stuctures and Mechanisms year: 2003 ident: ref19/cit19 – start-page: 1935 year: 1998 ident: ref42/cit42b publication-title: J. Chem. Soc., Perkin Trans. 1 doi: 10.1039/a800809d – ident: ref39/cit39 – volume: 93 start-page: 3701 year: 1971 ident: ref29/cit29 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00744a025 – volume: 91 start-page: 908 year: 1969 ident: ref5/cit5b publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01032a019 – volume: 133 start-page: 19729 year: 2011 ident: ref3/cit3 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2071626 – volume: 112 start-page: 1434 year: 1990 ident: ref7/cit7 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00160a022 – volume: 96 start-page: 6017 year: 1992 ident: ref24/cit24 publication-title: J. Phys. Chem. doi: 10.1021/j100193a068 – volume: 106 start-page: 1373 year: 1984 ident: ref4/cit4b publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00317a032 – volume: 34 start-page: 371 year: 1989 ident: ref23/cit23 publication-title: J. Chem. Eng. Data doi: 10.1021/je00058a001 – volume: 70 start-page: 1042 year: 1992 ident: ref11/cit11 publication-title: Can. J. Chem. doi: 10.1139/v92-139 – volume: 9 start-page: 1767 year: 2008 ident: ref41/cit41 publication-title: ChemPhysChem doi: 10.1002/cphc.200800356 – start-page: 2220 year: 2001 ident: ref34/cit34 publication-title: J. Chem. Soc., Chem. Commun. doi: 10.1039/b104847n – volume: 124 start-page: 2957 year: 2002 ident: ref26/cit26 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0125321 – volume: 506 start-page: 167 year: 2011 ident: ref33/cit33 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2011.03.032 – volume: 110 start-page: 5074 year: 1988 ident: ref5/cit5a publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 181 year: 2006 ident: ref9/cit9 publication-title: Org. Biomol. Chem. doi: 10.1039/B513226F – volume: 44 start-page: 223 year: 2010 ident: ref28/cit28 publication-title: Adv. Phys. Org. Chem. |
SSID | ssj0004281 |
Score | 2.2039185 |
Snippet | Evidence that a 1,2-dihydroxycyclohexadienide anion is stabilized by aromatic “negative hyperconjugation” is described. It complements an earlier inference of... Evidence that a 1,2-dihydroxycyclohexadienide anion is stabilized by aromatic "negative hyperconjugation" is described. It complements an earlier inference of... |
SourceID | unpaywall swepub proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 14056 |
SubjectTerms | anions Anions - chemistry benzene Benzene - chemistry Catalysis cations Cyclohexenes - chemistry heat production hydrogen isotopes Kinetics phenol Phenols - chemistry solvents Water - chemistry |
SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFLaq6aFwoOykQGU2iQOums2JIyE0naEaITHiwEA5Rd4yTYmSaiYpZH4Qv5PnbAK1leCQS_wmy_iL3_dsv-8h9NIOhM-pYxOpKIUARSQETkjiJ0oD40gAEiYb-eOczhbehxP_ZAv1VRzh7-s2uUOwWWQX-h2ceQtHlIs8WuuoqiKVXnACSAwZDL3b1CwsjdD2Yv5p_K3nukHYlFAD33RIwKM1KUbMM0XLQq-XF3KM9JBrFNjpmXFNcv23a7rENwcx0Ztop8rPef2DZ9kfzuh4F33tU3raPSjfD6pSHMjNZYXH_3zP2-hWx0_xuAXUHbSl87toZ9KXhbuHfh2B3yMTM-tTb7TCU31aqxZGuEiwS8xQ1O4_UPhI5xsYTLFM18R-45BpaowLlRbZOsJAdM3W3M3wY44ntcyKU_2z2YiWKo3HuWlr5i2bJJdSY1HjuV42guXwnEWjOYtnEE-vILY_q5bN5e6jxfH7z5MZ6Yo9EO6FtCQhT0SQ2Jr7AYwL0nSjEpQmrk8VNBhZIj9QYSgYD5gR5efqUDOltQwSLYXtPkCjvMj1I4S5w5LQc4Qtme0JCPG59n0gMpzZMmRUWWgfejvuPtZ13KzDOxAH9XCw0OseCLHspNJNxY7sKtPng-l5qw9yldGzHk0x9JZZkuG5LipzazdwPBdI9vU2JpkKWB7E0RZ62EJxuFWj3wYhq4VetdgcWoxs-DT9Mo6L1TKuqrgFkoVeDNC9_nn3_snqMboB7NExE-wOe4JG5arST4GhlWK_-xx_A-A8Omc priority: 102 providerName: Unpaywall |
Title | Base-Catalyzed Dehydration of 3‑Substituted Benzene cis-1,2-Dihydrodiols: Stabilization of a Cyclohexadienide Anion Intermediate by Negative Aromatic Hyperconjugation |
URI | http://dx.doi.org/10.1021/ja304366j https://www.ncbi.nlm.nih.gov/pubmed/22830996 https://www.proquest.com/docview/1037243231 https://www.proquest.com/docview/2000317448 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-183892 http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-183892 |
UnpaywallVersion | submittedVersion |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1520-5126 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004281 issn: 1943-2984 databaseCode: ACS dateStart: 18790101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6V9lA48H6Ex8pQkDg0FXESJ-GWZqlWSKyQYFE5RX6lTYmSqrsRZE_8Bf4Fv4tfwjjZhKJ24RqP48Qztr-xZz4DPHcC4XNGHVsqxtBBEZmND6TtZ0oj4sjQJEw28rspm8y8t4f-4QbsrDnBp4YfyDU06ezkCmxRFjrGw4qTD3-SH2no9Bg3CJnb0wedr2qWHjn_e-m5gCcHstBrsF2Xp7z5yovi3GJzcAPGfcpOF2PyZa9eiD25vMjg-K__uAnXV2CTxJ113IINXd6G7aS_4-0O_NzHRcxOzBZOs9SKjPVxozqbIFVG3F_ff5iZpQsnUGRfl0ucG4nM57azS-1xbsQrlVfF_DVB3GoibZdDdU6SRhbVsf7WxpXlSpO4NGXtNmSbs7LQRDRkqo9a_nH80qqlkCUTdI_P0FU_qY_a192F2cGbj8nEXt3dYHMvZAs75JkIMkdzP8BhLo12lGAsc32msMCwDPmBCkMR8SAyHPtcvdKR0loGmZbCce_BZlmV-gEQTqMs9KhwZOR4Aj12rn0fcQmPHBlGTFkwQuWmq7E3T9tjdYpuTd_hFrzs9Z7KFfO5uYCjuEz02SB62tF9XCb0tDeeFPVlTlh4qavaNO0G1HMRM6-XMblRCNrQLbbgfmd5Q1MtHRt6oBa86ExxKDEs4OP8U5yiSaV1neJMHEbUgp3BUtd_78P_ddAjuIo4kJqtcho9hs3FWa2fINZaiFE71kawNZu-jz__BhJoJ4Q |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JctQwEFVBOAw5sC9mCWKr4oBTsWzLNreJh9QAyVxIqNxc2pw4uOxUbBd4TvwCf8F38SW05CUBkoKr1VostaTXkvo1Qi-cgPuMEscWklIwUHhqwwdh-6lUgDhSUAntjbyzoPM97_2-v9_T5GhfGGhEBSVV5hL_lF1A0wS5mi2dHl1GVwwDioZB8cdTH0gSOgPUDULqDixCZ7PqHUhUv-9Af8HKkTN0FU2a4pi1X1ien9lztq53wYtMa81Tk8_rTc3XxfIPIsf_-50b6FoPPfG005Wb6JIqbqFJPER8u41-bMKWZsf6QKddKoln6rCVnYbgMsXuz2_f9TrTPS6QeFMVS1gpscgq23lN7FmmxUuZlXn1BgOK1e9ul2N2huNW5OWh-mpemWVS4Wmh08yhpPFgqRXmLV6oA8NGDi0tDaEsnoOxfAKG-1FzYIq7g_a23u7Gc7uP5GAzL6S1HbKUB6mjmB_ApBd6kCSnNHV9KiFBcw75gQxDHrEg0oz7TG6oSColglQJ7rh30UpRFuo-woxEaegR7ojI8TjY70z5PqAUFjkijKi00Br0d9LPxCoxl-wEjJyhwy30ahj-RPQ86DocR36e6LNR9Lgj_zhP6OmgQwmMl75vYYUqG121GxDPBQR9sYz2lAIIB0ayhe51CjhWZcjZwB610MtOI8cUzQk-yz5NE1CrpGkSWJfDiFjo-aiwF7f3wb866AmazHd3tpPtd4sPD9FVQIhEH6KT6BFaqU8a9RhQWM3XzPT7BQzlLj8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ZbtQwFLWgSBQe2JdhKWaTeCAVSSZOwtt0htGwDUi0qG-R1zYlSkbNRJB54hf4C76LL-FeZ6FAK3iNb2zHObbPtX2PCXnkhiLgzHMdqRgDB0UYBx5IJzBKA-MwAAmMRn47Z7Od4avdYLd1FDEWBipRQk6l3cTHXr1QplUYQKkgHxXT2cFpciZA6TekQuMPv-Igvcjt6G4YMb9TEjr6Ks5Csvx9FvqLWva6oefJepUveP2ZZ9mReWd6kbzra2yPm3zarJZiU67-EHP8_0-6RC60FJSOGsxcJqd0foWsj7ub366S71swtTljXNipV1rRid6vVYMUWhjq__j6Dceb5pCBols6X8GISWVaOu5Tz5mkaF6otMjK5xTYLJ6_XfWvczquZVbs6y_2tFmqNB3lmGYXJ20ky1JTUdO53rOq5FDTwgrL0hk4zYfgwB9Ueza7a2Rn-mJ7PHPaGx0cPozY0om4EaFxNQ9C6PwSf5QSjBk_YAoSUHsoCFUUiZiHMSrvc_VMx0prGRothetfJ2t5keubhHIvNtHQE66M3aEAP57rIAC2wmNXRjFTA7IBbZ60PbJM7Ga7B85O1-AD8qSDQCJbPXS8liM7zvRBb7poRECOM7rf4SiB_4X7LjzXRYVF-6E39IFJn2yDEVNA5cBZHpAbDQj7oqxIG_ilA_K4QWWfgtrgk_TjKAFoJVWVwPgcxd6APOxBe3J9b_2rge6Rs-8n0-TNy_nr2-QcEEUP19K9-A5ZWx5W-i6QsaXYsD3wJ4oiMLk |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb9QwFLaq6aFwoOykQGU2iQOums2JIyE0naEaITHiwEA5Rd4yTYmSaiYpZH4Qv5PnbAK1leCQS_wmy_iL3_dsv-8h9NIOhM-pYxOpKIUARSQETkjiJ0oD40gAEiYb-eOczhbehxP_ZAv1VRzh7-s2uUOwWWQX-h2ceQtHlIs8WuuoqiKVXnACSAwZDL3b1CwsjdD2Yv5p_K3nukHYlFAD33RIwKM1KUbMM0XLQq-XF3KM9JBrFNjpmXFNcv23a7rENwcx0Ztop8rPef2DZ9kfzuh4F33tU3raPSjfD6pSHMjNZYXH_3zP2-hWx0_xuAXUHbSl87toZ9KXhbuHfh2B3yMTM-tTb7TCU31aqxZGuEiwS8xQ1O4_UPhI5xsYTLFM18R-45BpaowLlRbZOsJAdM3W3M3wY44ntcyKU_2z2YiWKo3HuWlr5i2bJJdSY1HjuV42guXwnEWjOYtnEE-vILY_q5bN5e6jxfH7z5MZ6Yo9EO6FtCQhT0SQ2Jr7AYwL0nSjEpQmrk8VNBhZIj9QYSgYD5gR5efqUDOltQwSLYXtPkCjvMj1I4S5w5LQc4Qtme0JCPG59n0gMpzZMmRUWWgfejvuPtZ13KzDOxAH9XCw0OseCLHspNJNxY7sKtPng-l5qw9yldGzHk0x9JZZkuG5LipzazdwPBdI9vU2JpkKWB7E0RZ62EJxuFWj3wYhq4VetdgcWoxs-DT9Mo6L1TKuqrgFkoVeDNC9_nn3_snqMboB7NExE-wOe4JG5arST4GhlWK_-xx_A-A8Omc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Base-Catalyzed+Dehydration+of+3-Substituted+Benzene+cis-1%2C2-Dihydrodiols&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Kudavalli%2C+Jaya+Satyanarayana&rft.au=Rao%2C+S.+Nagaraja&rft.au=Bean%2C+David+E.&rft.au=Sharma%2C+Narain+D.&rft.date=2012-08-29&rft.issn=1520-5126&rft.volume=134&rft.issue=34&rft.spage=14056&rft_id=info:doi/10.1021%2Fja304366j&rft.externalDocID=oai_DiVA_org_uu_183892 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |