Elucidation of the Complicated Scenario of Primate APOBEC3 Gene Evolution

In terms of virus-host interactions and coevolution, the APOBEC3 gene family is one of the most important subjects in the field of retrovirology. APOBEC3 genes are composed of a repertoire of subclasses based on sequence similarity, and a paper by LaRue et al. provides the standard guideline for the...

Full description

Saved in:
Bibliographic Details
Published inJournal of virology Vol. 95; no. 12
Main Authors Uriu, Keiya, Kosugi, Yusuke, Suzuki, Narumi, Ito, Jumpei, Sato, Kei
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 24.05.2021
Subjects
Online AccessGet full text
ISSN0022-538X
1098-5514
1098-5514
DOI10.1128/JVI.00144-21

Cover

Abstract In terms of virus-host interactions and coevolution, the APOBEC3 gene family is one of the most important subjects in the field of retrovirology. APOBEC3 genes are composed of a repertoire of subclasses based on sequence similarity, and a paper by LaRue et al. provides the standard guideline for the nomenclature and genomic architecture of APOBEC3 genes. APOBEC3 proteins play pivotal roles in defenses against retroviruses, including HIV-1, as well as retrotransposons. Presumably due to the evolutionary arms race between the hosts and retroelements, APOBEC3 genes have rapidly evolved in primate lineages through sequence diversification, gene amplification and loss, and gene fusion. Consequently, modern primates possess a unique set or “repertoire” of APOBEC3 genes. The APOBEC3 gene repertoire of humans has been well investigated. There are three types of catalytic domains (Z domain; A3Z1, A3Z2, and A3Z3), 11 Z domains, and 7 independent genes, including 4 genes encoding double Z domains. However, the APOBEC3 gene repertoires of nonhuman primates remain largely unclear. Here, we characterize APOBEC3 gene repertoires among primates and investigated the evolutionary scenario of primate APOBEC3 genes using phylogenetic and comparative genomics approaches. In the 21 primate species investigated, we identified 145 APOBEC3 genes, including 69 double-domain type APOBEC3 genes. We further estimated the ages of the respective APOBEC3 genes and revealed that APOBEC3B, APOBEC3D, and APOBEC3F are the youngest in humans and were generated in the common ancestor of Catarrhini. Notably, invasion of the LINE1 retrotransposon peaked during the same period as the generation of these youngest APOBEC3 genes, implying that LINE1 invasion was one of the driving forces of the generation of these genes. Moreover, we found evidence suggesting that sequence diversification by gene conversions among APOBEC3 paralogs occurred in multiple primate lineages. Together, our analyses reveal the hidden diversity and the complicated evolutionary scenario of APOBEC3 genes in primates. IMPORTANCE In terms of virus-host interactions and coevolution, the APOBEC3 gene family is one of the most important subjects in the field of retrovirology. APOBEC3 genes are composed of a repertoire of subclasses based on sequence similarity, and a paper by LaRue et al. provides the standard guideline for the nomenclature and genomic architecture of APOBEC3 genes. However, it has been more than 10 years since this publication, and new information, including RefSeq, which we used in this study, is accumulating. Based on accumulating knowledge, APOBEC3 genes, particularly those of primates, should be refined and reannotated. This study updates knowledge of primate APOBEC3 genes and their genomic architectures. We further inferred the evolutionary scenario of primate APOBEC3 genes and the potential driving forces of APOBEC3 gene evolution. This study will be a landmark for the elucidation of the multiple aspects of APOBEC3 family genes in the future.
AbstractList APOBEC3 proteins play pivotal roles in defenses against retroviruses, including HIV-1, as well as retrotransposons. Presumably due to the evolutionary arms race between the hosts and retroelements, APOBEC3 genes have rapidly evolved in primate lineages through sequence diversification, gene amplification and loss, and gene fusion. Consequently, modern primates possess a unique set or “repertoire” of APOBEC3 genes. The APOBEC3 gene repertoire of humans has been well investigated. There are three types of catalytic domains (Z domain; A3Z1, A3Z2, and A3Z3), 11 Z domains, and 7 independent genes, including 4 genes encoding double Z domains. However, the APOBEC3 gene repertoires of nonhuman primates remain largely unclear. Here, we characterize APOBEC3 gene repertoires among primates and investigated the evolutionary scenario of primate APOBEC3 genes using phylogenetic and comparative genomics approaches. In the 21 primate species investigated, we identified 145 APOBEC3 genes, including 69 double-domain type APOBEC3 genes. We further estimated the ages of the respective APOBEC3 genes and revealed that APOBEC3B, APOBEC3D, and APOBEC3F are the youngest in humans and were generated in the common ancestor of Catarrhini. Notably, invasion of the LINE1 retrotransposon peaked during the same period as the generation of these youngest APOBEC3 genes, implying that LINE1 invasion was one of the driving forces of the generation of these genes. Moreover, we found evidence suggesting that sequence diversification by gene conversions among APOBEC3 paralogs occurred in multiple primate lineages. Together, our analyses reveal the hidden diversity and the complicated evolutionary scenario of APOBEC3 genes in primates. IMPORTANCE In terms of virus-host interactions and coevolution, the APOBEC3 gene family is one of the most important subjects in the field of retrovirology. APOBEC3 genes are composed of a repertoire of subclasses based on sequence similarity, and a paper by LaRue et al. provides the standard guideline for the nomenclature and genomic architecture of APOBEC3 genes. However, it has been more than 10 years since this publication, and new information, including RefSeq, which we used in this study, is accumulating. Based on accumulating knowledge, APOBEC3 genes, particularly those of primates, should be refined and reannotated. This study updates knowledge of primate APOBEC3 genes and their genomic architectures. We further inferred the evolutionary scenario of primate APOBEC3 genes and the potential driving forces of APOBEC3 gene evolution. This study will be a landmark for the elucidation of the multiple aspects of APOBEC3 family genes in the future.
In terms of virus-host interactions and coevolution, the APOBEC3 gene family is one of the most important subjects in the field of retrovirology. APOBEC3 genes are composed of a repertoire of subclasses based on sequence similarity, and a paper by LaRue et al. provides the standard guideline for the nomenclature and genomic architecture of APOBEC3 genes. APOBEC3 proteins play pivotal roles in defenses against retroviruses, including HIV-1, as well as retrotransposons. Presumably due to the evolutionary arms race between the hosts and retroelements, APOBEC3 genes have rapidly evolved in primate lineages through sequence diversification, gene amplification and loss, and gene fusion. Consequently, modern primates possess a unique set or “repertoire” of APOBEC3 genes. The APOBEC3 gene repertoire of humans has been well investigated. There are three types of catalytic domains (Z domain; A3Z1, A3Z2, and A3Z3), 11 Z domains, and 7 independent genes, including 4 genes encoding double Z domains. However, the APOBEC3 gene repertoires of nonhuman primates remain largely unclear. Here, we characterize APOBEC3 gene repertoires among primates and investigated the evolutionary scenario of primate APOBEC3 genes using phylogenetic and comparative genomics approaches. In the 21 primate species investigated, we identified 145 APOBEC3 genes, including 69 double-domain type APOBEC3 genes. We further estimated the ages of the respective APOBEC3 genes and revealed that APOBEC3B, APOBEC3D, and APOBEC3F are the youngest in humans and were generated in the common ancestor of Catarrhini. Notably, invasion of the LINE1 retrotransposon peaked during the same period as the generation of these youngest APOBEC3 genes, implying that LINE1 invasion was one of the driving forces of the generation of these genes. Moreover, we found evidence suggesting that sequence diversification by gene conversions among APOBEC3 paralogs occurred in multiple primate lineages. Together, our analyses reveal the hidden diversity and the complicated evolutionary scenario of APOBEC3 genes in primates. IMPORTANCE In terms of virus-host interactions and coevolution, the APOBEC3 gene family is one of the most important subjects in the field of retrovirology. APOBEC3 genes are composed of a repertoire of subclasses based on sequence similarity, and a paper by LaRue et al. provides the standard guideline for the nomenclature and genomic architecture of APOBEC3 genes. However, it has been more than 10 years since this publication, and new information, including RefSeq, which we used in this study, is accumulating. Based on accumulating knowledge, APOBEC3 genes, particularly those of primates, should be refined and reannotated. This study updates knowledge of primate APOBEC3 genes and their genomic architectures. We further inferred the evolutionary scenario of primate APOBEC3 genes and the potential driving forces of APOBEC3 gene evolution. This study will be a landmark for the elucidation of the multiple aspects of APOBEC3 family genes in the future.
APOBEC3 proteins play pivotal roles in defenses against retroviruses, including HIV-1, as well as retrotransposons. Presumably due to the evolutionary arms race between the hosts and retroelements, APOBEC3 genes have rapidly evolved in primate lineages through sequence diversification, gene amplification and loss, and gene fusion. Consequently, modern primates possess a unique set or "repertoire" of APOBEC3 genes. The APOBEC3 gene repertoire of humans has been well investigated. There are three types of catalytic domains (Z domain; A3Z1, A3Z2, and A3Z3), 11 Z domains, and 7 independent genes, including 4 genes encoding double Z domains. However, the APOBEC3 gene repertoires of nonhuman primates remain largely unclear. Here, we characterize APOBEC3 gene repertoires among primates and investigated the evolutionary scenario of primate APOBEC3 genes using phylogenetic and comparative genomics approaches. In the 21 primate species investigated, we identified 145 APOBEC3 genes, including 69 double-domain type APOBEC3 genes. We further estimated the ages of the respective APOBEC3 genes and revealed that APOBEC3B, APOBEC3D, and APOBEC3F are the youngest in humans and were generated in the common ancestor of Catarrhini. Notably, invasion of the LINE1 retrotransposon peaked during the same period as the generation of these youngest APOBEC3 genes, implying that LINE1 invasion was one of the driving forces of the generation of these genes. Moreover, we found evidence suggesting that sequence diversification by gene conversions among APOBEC3 paralogs occurred in multiple primate lineages. Together, our analyses reveal the hidden diversity and the complicated evolutionary scenario of APOBEC3 genes in primates.IMPORTANCE In terms of virus-host interactions and coevolution, the APOBEC3 gene family is one of the most important subjects in the field of retrovirology. APOBEC3 genes are composed of a repertoire of subclasses based on sequence similarity, and a paper by LaRue et al. provides the standard guideline for the nomenclature and genomic architecture of APOBEC3 genes. However, it has been more than 10 years since this publication, and new information, including RefSeq, which we used in this study, is accumulating. Based on accumulating knowledge, APOBEC3 genes, particularly those of primates, should be refined and reannotated. This study updates knowledge of primate APOBEC3 genes and their genomic architectures. We further inferred the evolutionary scenario of primate APOBEC3 genes and the potential driving forces of APOBEC3 gene evolution. This study will be a landmark for the elucidation of the multiple aspects of APOBEC3 family genes in the future.APOBEC3 proteins play pivotal roles in defenses against retroviruses, including HIV-1, as well as retrotransposons. Presumably due to the evolutionary arms race between the hosts and retroelements, APOBEC3 genes have rapidly evolved in primate lineages through sequence diversification, gene amplification and loss, and gene fusion. Consequently, modern primates possess a unique set or "repertoire" of APOBEC3 genes. The APOBEC3 gene repertoire of humans has been well investigated. There are three types of catalytic domains (Z domain; A3Z1, A3Z2, and A3Z3), 11 Z domains, and 7 independent genes, including 4 genes encoding double Z domains. However, the APOBEC3 gene repertoires of nonhuman primates remain largely unclear. Here, we characterize APOBEC3 gene repertoires among primates and investigated the evolutionary scenario of primate APOBEC3 genes using phylogenetic and comparative genomics approaches. In the 21 primate species investigated, we identified 145 APOBEC3 genes, including 69 double-domain type APOBEC3 genes. We further estimated the ages of the respective APOBEC3 genes and revealed that APOBEC3B, APOBEC3D, and APOBEC3F are the youngest in humans and were generated in the common ancestor of Catarrhini. Notably, invasion of the LINE1 retrotransposon peaked during the same period as the generation of these youngest APOBEC3 genes, implying that LINE1 invasion was one of the driving forces of the generation of these genes. Moreover, we found evidence suggesting that sequence diversification by gene conversions among APOBEC3 paralogs occurred in multiple primate lineages. Together, our analyses reveal the hidden diversity and the complicated evolutionary scenario of APOBEC3 genes in primates.IMPORTANCE In terms of virus-host interactions and coevolution, the APOBEC3 gene family is one of the most important subjects in the field of retrovirology. APOBEC3 genes are composed of a repertoire of subclasses based on sequence similarity, and a paper by LaRue et al. provides the standard guideline for the nomenclature and genomic architecture of APOBEC3 genes. However, it has been more than 10 years since this publication, and new information, including RefSeq, which we used in this study, is accumulating. Based on accumulating knowledge, APOBEC3 genes, particularly those of primates, should be refined and reannotated. This study updates knowledge of primate APOBEC3 genes and their genomic architectures. We further inferred the evolutionary scenario of primate APOBEC3 genes and the potential driving forces of APOBEC3 gene evolution. This study will be a landmark for the elucidation of the multiple aspects of APOBEC3 family genes in the future.
APOBEC3 proteins play pivotal roles in defenses against retroviruses, including HIV-1, as well as retrotransposons. Presumably due to the evolutionary arms race between the hosts and retroelements, APOBEC3 genes have rapidly evolved in primate lineages through sequence diversification, gene amplification and loss, and gene fusion. Consequently, modern primates possess a unique set or "repertoire" of APOBEC3 genes. The APOBEC3 gene repertoire of humans has been well investigated. There are three types of catalytic domains (Z domain; A3Z1, A3Z2, and A3Z3), 11 Z domains, and 7 independent genes, including 4 genes encoding double Z domains. However, the APOBEC3 gene repertoires of nonhuman primates remain largely unclear. Here, we characterize APOBEC3 gene repertoires among primates and investigated the evolutionary scenario of primate APOBEC3 genes using phylogenetic and comparative genomics approaches. In the 21 primate species investigated, we identified 145 APOBEC3 genes, including 69 double-domain type APOBEC3 genes. We further estimated the ages of the respective APOBEC3 genes and revealed that APOBEC3B, APOBEC3D, and APOBEC3F are the youngest in humans and were generated in the common ancestor of Catarrhini. Notably, invasion of the LINE1 retrotransposon peaked during the same period as the generation of these youngest APOBEC3 genes, implying that LINE1 invasion was one of the driving forces of the generation of these genes. Moreover, we found evidence suggesting that sequence diversification by gene conversions among APOBEC3 paralogs occurred in multiple primate lineages. Together, our analyses reveal the hidden diversity and the complicated evolutionary scenario of APOBEC3 genes in primates. In terms of virus-host interactions and coevolution, the APOBEC3 gene family is one of the most important subjects in the field of retrovirology. APOBEC3 genes are composed of a repertoire of subclasses based on sequence similarity, and a paper by LaRue et al. provides the standard guideline for the nomenclature and genomic architecture of APOBEC3 genes. However, it has been more than 10 years since this publication, and new information, including RefSeq, which we used in this study, is accumulating. Based on accumulating knowledge, APOBEC3 genes, particularly those of primates, should be refined and reannotated. This study updates knowledge of primate APOBEC3 genes and their genomic architectures. We further inferred the evolutionary scenario of primate APOBEC3 genes and the potential driving forces of APOBEC3 gene evolution. This study will be a landmark for the elucidation of the multiple aspects of APOBEC3 family genes in the future.
APOBEC3 proteins play pivotal roles in defenses against retroviruses, including HIV-1, as well as retrotransposons. Presumably due to the evolutionary arms race between the hosts and retroelements, APOBEC3 genes have rapidly evolved in primate lineages through sequence diversification, gene amplification and loss, and gene fusion. Consequently, modern primates possess a unique set or “repertoire” of APOBEC3 genes. The APOBEC3 gene repertoire of humans has been well investigated. There are three types of catalytic domains (Z domain; A3Z1, A3Z2, and A3Z3), 11 Z domains, and 7 independent genes, including 4 genes encoding double Z domains. However, the APOBEC3 gene repertoires of nonhuman primates remain largely unclear. Here, we characterize APOBEC3 gene repertoires among primates and investigated the evolutionary scenario of primate APOBEC3 genes using phylogenetic and comparative genomics approaches. In the 21 primate species investigated, we identified 145 APOBEC3 genes, including 69 double-domain type APOBEC3 genes. We further estimated the ages of the respective APOBEC3 genes and revealed that APOBEC3B, APOBEC3D, and APOBEC3F are the youngest in humans and were generated in the common ancestor of Catarrhini. Notably, invasion of the LINE1 retrotransposon peaked during the same period as the generation of these youngest APOBEC3 genes, implying that LINE1 invasion was one of the driving forces of the generation of these genes. Moreover, we found evidence suggesting that sequence diversification by gene conversions among APOBEC3 paralogs occurred in multiple primate lineages. Together, our analyses reveal the hidden diversity and the complicated evolutionary scenario of APOBEC3 genes in primates. IMPORTANCE In terms of virus-host interactions and coevolution, the APOBEC3 gene family is one of the most important subjects in the field of retrovirology. APOBEC3 genes are composed of a repertoire of subclasses based on sequence similarity, and a paper by LaRue et al. provides the standard guideline for the nomenclature and genomic architecture of APOBEC3 genes. However, it has been more than 10 years since this publication, and new information, including RefSeq, which we used in this study, is accumulating. Based on accumulating knowledge, APOBEC3 genes, particularly those of primates, should be refined and reannotated. This study updates knowledge of primate APOBEC3 genes and their genomic architectures. We further inferred the evolutionary scenario of primate APOBEC3 genes and the potential driving forces of APOBEC3 gene evolution. This study will be a landmark for the elucidation of the multiple aspects of APOBEC3 family genes in the future.
Author Kosugi, Yusuke
Sato, Kei
Ito, Jumpei
Uriu, Keiya
Suzuki, Narumi
Author_xml – sequence: 1
  givenname: Keiya
  surname: Uriu
  fullname: Uriu, Keiya
  organization: Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
– sequence: 2
  givenname: Yusuke
  surname: Kosugi
  fullname: Kosugi, Yusuke
  organization: Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan, Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
– sequence: 3
  givenname: Narumi
  surname: Suzuki
  fullname: Suzuki, Narumi
  organization: Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan, Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan
– sequence: 4
  givenname: Jumpei
  orcidid: 0000-0003-0440-8321
  surname: Ito
  fullname: Ito, Jumpei
  organization: Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
– sequence: 5
  givenname: Kei
  orcidid: 0000-0003-4431-1380
  surname: Sato
  fullname: Sato, Kei
  organization: Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan, CREST, Japan Science and Technology Agency, Saitama, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33789992$$D View this record in MEDLINE/PubMed
BookMark eNp1kM1LwzAYh4Mouk1vnqVHBTvz1bS9CFrmnAgT_MBbSJNUI20zm1bwvzfdpqgoOQTyPu-PJ78h2KxtrQHYR3CMEE5Orh5mYwgRpSFGG2CAYJqEUYToJhhAiHEYkeRxBwyde1lSjG6DHULiJE1TPACzSdlJo0RrbB3YImifdZDZalEaKVqtglupa9EY289uGlP5x-DsZn4-yUgw1bUOJm-27PrtXbBViNLpvfU9AvcXk7vsMryeT2fZ2XUoaELbkCZSkoIKrNMcIaVyEueCKT-LCINxQguFFcRxxCTLc6pYpImXZogIf-KcjMDpKnfR5ZVW3q9tRMkXvVzzzq0w_OekNs_8yb7xhCCGMPYBh-uAxr522rW8Mk7qshS1tp3jOIJxjGOWph49WqHCVZi_2K6p_dc4gryvnvvq-bJUjpFnD757fQl9du0BvAJkY51rdMGlaZfFe01T_pd6_GvpM_dP_AN5HZ5M
CitedBy_id crossref_primary_10_1128_jvi_01606_24
crossref_primary_10_3390_genes12101562
crossref_primary_10_3390_v13071366
crossref_primary_10_1016_j_omtn_2023_102062
crossref_primary_10_1128_msphere_00451_22
crossref_primary_10_1093_nar_gkac1121
crossref_primary_10_1371_journal_ppat_1009523
crossref_primary_10_1186_s13100_022_00283_1
crossref_primary_10_7554_eLife_83893
crossref_primary_10_3389_fviro_2024_1343037
Cites_doi 10.1016/j.virol.2008.12.018
10.1038/nri3295
10.1038/nature12686
10.1093/molbev/mst010
10.1186/gb-2008-9-6-229
10.1371/journal.ppat.1005958
10.1038/s41586-020-2762-2
10.1186/1471-2105-10-421
10.1038/ng1223
10.1038/srep16021
10.1371/journal.pbio.0020275
10.1016/j.celrep.2015.10.067
10.3389/fmicb.2012.00131
10.1073/pnas.1914183116
10.1128/JVI.01976-08
10.1038/nsmb.2378
10.1128/JVI.02362-14
10.1016/j.virol.2015.03.012
10.1186/1471-2164-13-155
10.1073/pnas.0409853102
10.1186/s12977-017-0355-4
10.1371/journal.pone.0049265
10.1038/ncomms3593
10.1074/jbc.M602367200
10.1093/bioinformatics/btq033
10.1007/s00251-009-0358-y
10.1128/JVI.78.11.6073-6076.2004
10.1038/sj.emboj.7600246
10.1038/nchem.1795
10.1371/journal.pone.0011904
10.1186/1742-4690-9-55
10.1371/journal.pgen.1002764
10.1371/journal.ppat.0010006
10.1093/bioinformatics/btl474
10.1016/j.chom.2011.11.004
10.1371/journal.ppat.1006348
10.1093/nar/gkv1189
10.1074/jbc.M110.173161
10.3389/fmicb.2018.03228
10.1128/JVI.05238-11
10.1038/nature00939
10.1128/JVI.02369-15
10.1128/JVI.01123-06
10.1101/gr.849004
10.1186/1471-2148-12-71
10.1371/journal.ppat.1005149
10.7554/eLife.58436
10.1371/journal.ppat.0030197
10.1074/jbc.M111.251058
10.1016/j.cub.2004.06.050
10.1007/978-3-642-37765-5_1
10.1016/j.str.2013.04.010
10.1093/molbev/msy096
10.1016/S0065-2776(06)94002-4
10.1093/nar/gkh340
10.1371/journal.ppat.1000443
10.1371/journal.pgen.0040021
10.1006/geno.2002.6718
10.1371/journal.ppat.0030010
ContentType Journal Article
Copyright Copyright © 2021 Uriu et al.
Copyright © 2021 Uriu et al. 2021 Uriu et al.
Copyright_xml – notice: Copyright © 2021 Uriu et al.
– notice: Copyright © 2021 Uriu et al. 2021 Uriu et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1128/JVI.00144-21
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1098-5514
Editor Kirchhoff, Frank
Editor_xml – sequence: 1
  givenname: Frank
  surname: Kirchhoff
  fullname: Kirchhoff, Frank
ExternalDocumentID PMC8316122
00144-21
33789992
10_1128_JVI_00144_21
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  grantid: 19H04826
  funderid: https://doi.org/10.13039/501100001691
– fundername: ;
  grantid: 19H04826
GroupedDBID ---
-~X
0R~
18M
29L
2WC
39C
4.4
53G
5GY
5RE
5VS
85S
AAFWJ
AAGFI
AAYXX
ABPPZ
ACGFO
ACNCT
ADBBV
AENEX
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
E3Z
EBS
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
N9A
O9-
OK1
P2P
RHI
RNS
RPM
RSF
TR2
UPT
W2D
W8F
WH7
WOQ
YQT
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
-
02
0R
ABFLS
ABPTK
ADACO
BXI
HZ
KM
RHF
UCJ
X
ZA5
7X8
5PM
ID FETCH-LOGICAL-a484t-48cc3f4a2e9b11ddb37ba6d4845360784fd2d02756c6bb4d65e3464613a3a37b3
ISSN 0022-538X
1098-5514
IngestDate Thu Aug 21 18:18:14 EDT 2025
Fri Sep 05 11:20:47 EDT 2025
Tue Dec 28 13:59:21 EST 2021
Thu Apr 03 07:05:52 EDT 2025
Thu Apr 24 22:51:38 EDT 2025
Tue Jul 01 01:32:37 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords APOBEC3
primates
evolution
Language English
License Copyright © 2021 Uriu et al.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a484t-48cc3f4a2e9b11ddb37ba6d4845360784fd2d02756c6bb4d65e3464613a3a37b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Citation Uriu K, Kosugi Y, Suzuki N, Ito J, Sato K. 2021. Elucidation of the complicated scenario of primate APOBEC3 gene evolution. J Virol 95:e00144-21. https://doi.org/10.1128/JVI.00144-21.
Keiya Uriu, Yusuke Kosugi, and Narumi Suzuki contributed equally to this article. Order is based on author efforts and amounts of data obtained.
ORCID 0000-0003-4431-1380
0000-0003-0440-8321
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8316122
PMID 33789992
PQID 2507727699
PQPubID 23479
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8316122
proquest_miscellaneous_2507727699
asm2_journals_10_1128_JVI_00144_21
pubmed_primary_33789992
crossref_citationtrail_10_1128_JVI_00144_21
crossref_primary_10_1128_JVI_00144_21
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210524
PublicationDateYYYYMMDD 2021-05-24
PublicationDate_xml – month: 5
  year: 2021
  text: 20210524
  day: 24
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Journal of virology
PublicationTitleAbbrev J Virol
PublicationTitleAlternate J Virol
PublicationYear 2021
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_60_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
Ito, J, Gifford, RJ, Sato, K (B19) 2020; 117
Edgar, RC (B58) 2004; 32
Nakano, Y, Misawa, N, Juarez-Fernandez, G, Moriwaki, M, Nakaoka, S, Funo, T, Yamada, E, Soper, A, Yoshikawa, R, Ebrahimi, D, Tachiki, Y, Iwami, S, Harris, RS, Koyanagi, Y, Sato, K (B44) 2017; 13
Richards, C, Albin, JS, Demir, Ö, Shaban, NM, Luengas, EM, Land, AM, Anderson, BD, Holten, JR, Anderson, JS, Harki, DA, Amaro, RE, Harris, RS (B48) 2015; 13
Refsland, EW, Harris, RS (B37) 2013; 371
Lim, ES, Wu, LI, Malik, HS, Emerman, M (B9) 2012; 9
Land, AM, Shaban, NM, Evans, L, Hultquist, JF, Albin, JS, Harris, RS (B52) 2014; 88
Sawyer, SL, Emerman, M, Malik, HS (B1) 2004; 2
Sato, K, Gee, P, Koyanagi, Y (B2) 2012; 3
Conticello, SG (B21) 2008; 9
Yang, L, Emerman, M, Malik, HS, McLaughlin, RNJ (B33) 2020; 9
Sawyer, SL, Emerman, M, Malik, HS (B18) 2007; 3
Etienne, L, Bibollet-Ruche, F, Sudmant, PH, Wu, LI, Hahn, BH, Emerman, M (B45) 2015; 11
Wiegand, HL, Doehle, BP, Bogerd, HP, Cullen, BR (B25) 2004; 23
Stenglein, MD, Harris, RS (B40) 2006; 281
Murrell, B, Wertheim, JO, Moola, S, Weighill, T, Scheffler, K, Kosakovsky Pond, SL (B35) 2012; 8
Bernheim, A, Millman, A, Ofir, G, Meitav, G, Avraham, C, Shomar, H, Rosenberg, MM, Tal, N, Melamed, S, Amitai, G, Sorek, R (B11) 2021; 589
Nakano, Y, Aso, H, Soper, A, Yamada, E, Moriwaki, M, Juarez-Fernandez, G, Koyanagi, Y, Sato, K (B4) 2017; 14
Kumar, S, Stecher, G, Li, M, Knyaz, C, Tamura, K (B57) 2018; 35
Zhao, X, Li, J, Winkler, CA, An, P, Guo, JT (B12) 2018; 9
Tareen, SU, Sawyer, SL, Malik, HS, Emerman, M (B17) 2009; 385
Chaurasiya, KR, McCauley, MJ, Wang, W, Qualley, DF, Wu, T, Kitamura, S, Geertsema, H, Chan, DS, Hertz, A, Iwatani, Y, Levin, JG, Musier-Forsyth, K, Rouzina, I, Williams, MC (B29) 2014; 6
Zhang, Z, Liu, J, Li, M, Yang, H, Zhang, C (B14) 2012; 7
LaRue, RS, Andresdottir, V, Blanchard, Y, Conticello, SG, Derse, D, Emerman, M, Greene, WC, Jonsson, SR, Landau, NR, Lochelt, M, Malik, HS, Malim, MH, Munk, C, O’Brien, SJ, Pathak, VK, Strebel, K, Wain-Hobson, S, Yu, XF, Yuhki, N, Harris, RS (B20) 2009; 83
Kosakovsky Pond, SL, Posada, D, Gravenor, MB, Woelk, CH, Frost, SD (B36) 2006; 22
Bohn, MF, Shandilya, SM, Albin, JS, Kouno, T, Anderson, BD, McDougle, RM, Carpenter, MA, Rathore, A, Evans, L, Davis, AN, Zhang, J, Lu, Y, Somasundaran, M, Matsuo, H, Harris, RS, Schiffer, CA (B50) 2013; 21
Harris, RS, Anderson, BD (B31) 2016; 12
Hultquist, JF, Lengyel, JA, Refsland, EW, LaRue, RS, Lackey, L, Brown, WL, Harris, RS (B28) 2011; 85
Lee, YN, Bieniasz, PD (B43) 2007; 3
Kitamura, S, Ode, H, Nakashima, M, Imahashi, M, Naganawa, Y, Kurosawa, T, Yokomaku, Y, Yamane, T, Watanabe, N, Suzuki, A, Sugiura, W, Iwatani, Y (B51) 2012; 19
Seo, JY, Yaneva, R, Cresswell, P (B10) 2011; 10
Dewannieux, M, Esnault, C, Heidmann, T (B38) 2003; 35
Liu, J, Chen, K, Wang, JH, Zhang, C (B6) 2010; 5
Wissing, S, Montano, M, Garcia-Perez, JL, Moran, JV, Greene, WC (B39) 2011; 286
Nakashima, M, Ode, H, Kawamura, T, Kitamura, S, Naganawa, Y, Awazu, H, Tsuzuki, S, Matsuoka, K, Nemoto, M, Hachiya, A, Sugiura, W, Yokomaku, Y, Watanabe, N, Iwatani, Y (B46) 2016; 90
Katoh, K, Standley, DM (B56) 2013; 30
Duggal, NK, Emerman, M (B3) 2012; 12
O’Leary, NA, Wright, MW, Brister, JR, Ciufo, S, Haddad, D, McVeigh, R, Rajput, B, Robbertse, B, Smith-White, B, Ako-Adjei, D, Astashyn, A, Badretdin, A, Bao, Y, Blinkova, O, Brover, V, Chetvernin, V, Choi, J, Cox, E, Ermolaeva, O, Farrell, CM, Goldfarb, T, Gupta, T, Haft, D, Hatcher, E (B34) 2016; 44
Crooks, GE, Hon, G, Chandonia, JM, Brenner, SE (B59) 2004; 14
Camacho, C, Coulouris, G, Avagyan, V, Ma, N, Papadopoulos, J, Bealer, K, Madden, TL (B54) 2009; 10
Quinlan, AR, Hall, IM (B55) 2010; 26
Münk, C, Willemsen, A, Bravo, IG (B32) 2012; 12
Albin, JS, LaRue, RS, Weaver, JA, Brown, WL, Shindo, K, Harjes, E, Matsuo, H, Harris, RS (B49) 2010; 285
Kerns, JA, Emerman, M, Malik, HS (B5) 2008; 4
Gupta, RK, Hué, S, Schaller, T, Verschoor, E, Pillay, D, Towers, GJ (B7) 2009; 5
Siu, KK, Sultana, A, Azimi, FC, Lee, JE (B47) 2013; 4
Simon, V, Zennou, V, Murray, D, Huang, Y, Ho, DD, Bieniasz, PD (B27) 2005; 1
Sawyer, SL, Wu, LI, Emerman, M, Malik, HS (B15) 2005; 102
Jarmuz, A, Chester, A, Bayliss, J, Gisbourne, J, Dunham, I, Scott, J, Navaratnam, N (B23) 2002; 79
Harris, RS, Dudley, JP (B30) 2015; 479–480
Johnson, WE, Sawyer, SL (B16) 2009; 61
Dang, Y, Wang, X, Esselman, WJ, Zheng, YH (B53) 2006; 80
Takeuchi, JS, Ren, F, Yoshikawa, R, Yamada, E, Nakano, Y, Kobayashi, T, Matsuda, K, Izumi, T, Misawa, N, Shintaku, Y, Wetzel, KS, Collman, RG, Tanaka, H, Hirsch, VM, Koyanagi, Y, Sato, K (B8) 2015; 5
Conticello, SG, Langlois, MA, Yang, Z, Neuberger, MS (B22) 2007; 94
Zheng, YH, Irwin, D, Kurosu, T, Tokunaga, K, Sata, T, Peterlin, BM (B26) 2004; 78
Sheehy, AM, Gaddis, NC, Choi, JD, Malim, MH (B24) 2002; 418
Marchetto, MCN, Narvaiza, I, Denli, AM, Benner, C, Lazzarini, TA, Nathanson, JL, Paquola, ACM, Desai, KN, Herai, RH, Weitzman, MD, Yeo, GW, Muotri, AR, Gage, FH (B41) 2013; 503
Liddament, MT, Brown, WL, Schumacher, AJ, Harris, RS (B42) 2004; 14
Hickford, D, Frankenberg, S, Shaw, G, Renfree, MB (B13) 2012; 13
References_xml – ident: e_1_3_3_18_2
  doi: 10.1016/j.virol.2008.12.018
– ident: e_1_3_3_4_2
  doi: 10.1038/nri3295
– ident: e_1_3_3_42_2
  doi: 10.1038/nature12686
– ident: e_1_3_3_57_2
  doi: 10.1093/molbev/mst010
– ident: e_1_3_3_22_2
  doi: 10.1186/gb-2008-9-6-229
– ident: e_1_3_3_32_2
  doi: 10.1371/journal.ppat.1005958
– ident: e_1_3_3_12_2
  doi: 10.1038/s41586-020-2762-2
– ident: e_1_3_3_55_2
  doi: 10.1186/1471-2105-10-421
– ident: e_1_3_3_39_2
  doi: 10.1038/ng1223
– ident: e_1_3_3_9_2
  doi: 10.1038/srep16021
– ident: e_1_3_3_2_2
  doi: 10.1371/journal.pbio.0020275
– ident: e_1_3_3_49_2
  doi: 10.1016/j.celrep.2015.10.067
– ident: e_1_3_3_3_2
  doi: 10.3389/fmicb.2012.00131
– ident: e_1_3_3_20_2
  doi: 10.1073/pnas.1914183116
– ident: e_1_3_3_21_2
  doi: 10.1128/JVI.01976-08
– ident: e_1_3_3_52_2
  doi: 10.1038/nsmb.2378
– ident: e_1_3_3_53_2
  doi: 10.1128/JVI.02362-14
– ident: e_1_3_3_31_2
  doi: 10.1016/j.virol.2015.03.012
– ident: e_1_3_3_14_2
  doi: 10.1186/1471-2164-13-155
– ident: e_1_3_3_16_2
  doi: 10.1073/pnas.0409853102
– ident: e_1_3_3_5_2
  doi: 10.1186/s12977-017-0355-4
– ident: e_1_3_3_15_2
  doi: 10.1371/journal.pone.0049265
– ident: e_1_3_3_48_2
  doi: 10.1038/ncomms3593
– ident: e_1_3_3_41_2
  doi: 10.1074/jbc.M602367200
– ident: e_1_3_3_56_2
  doi: 10.1093/bioinformatics/btq033
– ident: e_1_3_3_17_2
  doi: 10.1007/s00251-009-0358-y
– ident: e_1_3_3_27_2
  doi: 10.1128/JVI.78.11.6073-6076.2004
– ident: e_1_3_3_26_2
  doi: 10.1038/sj.emboj.7600246
– ident: e_1_3_3_30_2
  doi: 10.1038/nchem.1795
– ident: e_1_3_3_7_2
  doi: 10.1371/journal.pone.0011904
– ident: e_1_3_3_10_2
  doi: 10.1186/1742-4690-9-55
– ident: e_1_3_3_36_2
  doi: 10.1371/journal.pgen.1002764
– ident: e_1_3_3_28_2
  doi: 10.1371/journal.ppat.0010006
– ident: e_1_3_3_37_2
  doi: 10.1093/bioinformatics/btl474
– ident: e_1_3_3_11_2
  doi: 10.1016/j.chom.2011.11.004
– ident: e_1_3_3_45_2
  doi: 10.1371/journal.ppat.1006348
– ident: e_1_3_3_35_2
  doi: 10.1093/nar/gkv1189
– ident: e_1_3_3_50_2
  doi: 10.1074/jbc.M110.173161
– ident: e_1_3_3_13_2
  doi: 10.3389/fmicb.2018.03228
– ident: e_1_3_3_29_2
  doi: 10.1128/JVI.05238-11
– ident: e_1_3_3_25_2
  doi: 10.1038/nature00939
– ident: e_1_3_3_47_2
  doi: 10.1128/JVI.02369-15
– ident: e_1_3_3_54_2
  doi: 10.1128/JVI.01123-06
– ident: e_1_3_3_60_2
  doi: 10.1101/gr.849004
– ident: e_1_3_3_33_2
  doi: 10.1186/1471-2148-12-71
– ident: e_1_3_3_46_2
  doi: 10.1371/journal.ppat.1005149
– ident: e_1_3_3_34_2
  doi: 10.7554/eLife.58436
– ident: e_1_3_3_19_2
  doi: 10.1371/journal.ppat.0030197
– ident: e_1_3_3_40_2
  doi: 10.1074/jbc.M111.251058
– ident: e_1_3_3_43_2
  doi: 10.1016/j.cub.2004.06.050
– ident: e_1_3_3_38_2
  doi: 10.1007/978-3-642-37765-5_1
– ident: e_1_3_3_51_2
  doi: 10.1016/j.str.2013.04.010
– ident: e_1_3_3_58_2
  doi: 10.1093/molbev/msy096
– ident: e_1_3_3_23_2
  doi: 10.1016/S0065-2776(06)94002-4
– ident: e_1_3_3_59_2
  doi: 10.1093/nar/gkh340
– ident: e_1_3_3_8_2
  doi: 10.1371/journal.ppat.1000443
– ident: e_1_3_3_6_2
  doi: 10.1371/journal.pgen.0040021
– ident: e_1_3_3_24_2
  doi: 10.1006/geno.2002.6718
– ident: e_1_3_3_44_2
  doi: 10.1371/journal.ppat.0030010
– volume: 32
  start-page: 1792
  year: 2004
  end-page: 1797
  ident: B58
  article-title: MUSCLE: multiple sequence alignment with high accuracy and high throughput
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkh340
– volume: 12
  year: 2016
  ident: B31
  article-title: Evolutionary paradigms from ancient andongoing conflicts between the lentiviral Vif protein and mammalian APOBEC3 enzymes
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1005958
– volume: 371
  start-page: 1
  year: 2013
  end-page: 27
  ident: B37
  article-title: The APOBEC3 family of retroelement restriction factors
  publication-title: Curr Top Microbiol Immunol
  doi: 10.1007/978-3-642-37765-5_1
– volume: 285
  start-page: 40785
  year: 2010
  end-page: 40792
  ident: B49
  article-title: A single amino acid in human APOBEC3F alters susceptibility to HIV-1 Vif
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.173161
– volume: 9
  start-page: 55
  year: 2012
  ident: B9
  article-title: The function and evolution of the restriction factor Viperin in primates was not driven by lentiviruses
  publication-title: Retrovirology
  doi: 10.1186/1742-4690-9-55
– volume: 10
  start-page: 534
  year: 2011
  end-page: 539
  ident: B10
  article-title: Viperin: a multifunctional, interferon-inducible protein that regulates virus replication
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2011.11.004
– volume: 8
  year: 2012
  ident: B35
  article-title: Detecting individual sites subject to episodic diversifying selection
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1002764
– volume: 22
  start-page: 3096
  year: 2006
  end-page: 3098
  ident: B36
  article-title: GARD: a genetic algorithm for recombination detection
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl474
– volume: 5
  start-page: 16021
  year: 2015
  ident: B8
  article-title: Coevolutionary dynamics between tribe Cercopithecini tetherins and their lentiviruses
  publication-title: Sci Rep
  doi: 10.1038/srep16021
– volume: 88
  start-page: 12923
  year: 2014
  end-page: 12927
  ident: B52
  article-title: APOBEC3F determinants of HIV-1 Vif sensitivity
  publication-title: J Virol
  doi: 10.1128/JVI.02362-14
– volume: 10
  start-page: 421
  year: 2009
  ident: B54
  article-title: BLAST+: architecture and applications
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-421
– volume: 23
  start-page: 2451
  year: 2004
  end-page: 2458
  ident: B25
  article-title: A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV-1 and HIV-2 Vif proteins
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7600246
– volume: 1
  year: 2005
  ident: B27
  article-title: Natural variation in Vif: differential impact on APOBEC3G/3F and a potential role in HIV-1 diversification
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.0010006
– volume: 78
  start-page: 6073
  year: 2004
  end-page: 6076
  ident: B26
  article-title: Human APOBEC3F is another host factor that blocks human immunodeficiency virus type 1 replication
  publication-title: J Virol
  doi: 10.1128/JVI.78.11.6073-6076.2004
– volume: 80
  start-page: 10522
  year: 2006
  end-page: 10533
  ident: B53
  article-title: Identification of APOBEC3DE as another antiretroviral factor from the human APOBEC family
  publication-title: J Virol
  doi: 10.1128/JVI.01123-06
– volume: 7
  year: 2012
  ident: B14
  article-title: Evolutionary dynamics of the interferon-induced transmembrane gene family in vertebrates
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0049265
– volume: 94
  start-page: 37
  year: 2007
  end-page: 73
  ident: B22
  article-title: DNA deamination in immunity: AID in the context of its APOBEC relatives
  publication-title: Adv Immunol
  doi: 10.1016/S0065-2776(06)94002-4
– volume: 589
  start-page: 120
  year: 2021
  end-page: 124
  ident: B11
  article-title: Prokaryotic viperins produce diverse antiviral molecules
  publication-title: Nature
  doi: 10.1038/s41586-020-2762-2
– volume: 5
  year: 2009
  ident: B7
  article-title: Mutation of a single residue renders human tetherin resistant to HIV-1 Vpu-mediated depletion
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000443
– volume: 35
  start-page: 1547
  year: 2018
  end-page: 1549
  ident: B57
  article-title: MEGA X: molecular evolutionary genetics analysis across computing platforms
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msy096
– volume: 13
  start-page: 1781
  year: 2015
  end-page: 1788
  ident: B48
  article-title: The binding interface between human APOBEC3F and HIV-1 Vif elucidated by genetic and computational approaches
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2015.10.067
– volume: 5
  year: 2010
  ident: B6
  article-title: Molecular evolution of the primate antiviral restriction factor tetherin
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0011904
– volume: 9
  year: 2020
  ident: B33
  article-title: Retrocopying expands the functional repertoire of APOBEC3 antiviral proteins in primates
  publication-title: Elife
  doi: 10.7554/eLife.58436
– volume: 13
  year: 2017
  ident: B44
  article-title: HIV-1 competition experiments in humanized mice show that APOBEC3H imposes selective pressure and promotes virus adaptation
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1006348
– volume: 26
  start-page: 841
  year: 2010
  end-page: 842
  ident: B55
  article-title: BEDTools: a flexible suite of utilities for comparing genomic features
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq033
– volume: 11
  year: 2015
  ident: B45
  article-title: The role of the antiviral APOBEC3 gene family in protecting chimpanzees against lentiviruses from monkeys
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1005149
– volume: 61
  start-page: 163
  year: 2009
  end-page: 176
  ident: B16
  article-title: Molecular evolution of the antiretroviral TRIM5 gene
  publication-title: Immunogenetics
  doi: 10.1007/s00251-009-0358-y
– volume: 90
  start-page: 1034
  year: 2016
  end-page: 1047
  ident: B46
  article-title: Structural insights into HIV-1 Vif-APOBEC3F interaction
  publication-title: J Virol
  doi: 10.1128/JVI.02369-15
– volume: 3
  start-page: 131
  year: 2012
  ident: B2
  article-title: Vpu and BST2: still not there yet?
  publication-title: Front Microbiol
– volume: 9
  start-page: 229
  year: 2008
  ident: B21
  article-title: The AID/APOBEC family of nucleic acid mutators
  publication-title: Genome Biol
  doi: 10.1186/gb-2008-9-6-229
– volume: 3
  year: 2007
  ident: B43
  article-title: Reconstitution of an infectious human endogenous retrovirus
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.0030010
– volume: 503
  start-page: 525
  year: 2013
  end-page: 529
  ident: B41
  article-title: Differential L1 regulation in pluripotent stem cells of humans and apes
  publication-title: Nature
  doi: 10.1038/nature12686
– volume: 83
  start-page: 494
  year: 2009
  end-page: 497
  ident: B20
  article-title: Guidelines for naming nonprimate APOBEC3 genes and proteins
  publication-title: J Virol
  doi: 10.1128/JVI.01976-08
– volume: 418
  start-page: 646
  year: 2002
  end-page: 650
  ident: B24
  article-title: Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein
  publication-title: Nature
  doi: 10.1038/nature00939
– volume: 30
  start-page: 772
  year: 2013
  end-page: 780
  ident: B56
  article-title: MAFFT multiple sequence alignment software version 7: improvements in performance and usability
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/mst010
– volume: 12
  start-page: 687
  year: 2012
  end-page: 695
  ident: B3
  article-title: Evolutionary conflicts between viruses and restriction factors shape immunity
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3295
– volume: 3
  year: 2007
  ident: B18
  article-title: Discordant evolution of the adjacent antiretroviral genes TRIM22 and TRIM5 in mammals
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.0030197
– volume: 479–480
  start-page: 131
  year: 2015
  end-page: 145
  ident: B30
  article-title: APOBECs and virus restriction
  publication-title: Virology
  doi: 10.1016/j.virol.2015.03.012
– volume: 102
  start-page: 2832
  year: 2005
  end-page: 2837
  ident: B15
  article-title: Positive selection of primate TRIM5alpha identifies a critical species-specific retroviral restriction domain
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0409853102
– volume: 385
  start-page: 473
  year: 2009
  end-page: 483
  ident: B17
  article-title: An expanded clade of rodent Trim5 genes
  publication-title: Virology
  doi: 10.1016/j.virol.2008.12.018
– volume: 13
  start-page: 155
  year: 2012
  ident: B13
  article-title: Evolution of vertebrate interferon inducible transmembrane proteins
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-13-155
– volume: 19
  start-page: 1005
  year: 2012
  end-page: 1010
  ident: B51
  article-title: The APOBEC3C crystal structure and the interface for HIV-1 Vif binding
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.2378
– volume: 14
  start-page: 1188
  year: 2004
  end-page: 1190
  ident: B59
  article-title: WebLogo: a sequence logo generator
  publication-title: Genome Res
  doi: 10.1101/gr.849004
– volume: 6
  start-page: 28
  year: 2014
  end-page: 33
  ident: B29
  article-title: Oligomerization transforms human APOBEC3G from an efficient enzyme to a slowly dissociating nucleic acid-binding protein
  publication-title: Nat Chem
  doi: 10.1038/nchem.1795
– volume: 117
  start-page: 610
  year: 2020
  end-page: 618
  ident: B19
  article-title: Retroviruses drive the rapid evolution of mammalian APOBEC3 genes
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1914183116
– volume: 9
  start-page: 3228
  year: 2018
  ident: B12
  article-title: IFITM genes, variants, and their roles in the control and pathogenesis of viral infections
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2018.03228
– volume: 2
  year: 2004
  ident: B1
  article-title: Ancient adaptive evolution of the primate antiviral DNA-editing enzyme APOBEC3G
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0020275
– volume: 44
  start-page: D733
  year: 2016
  end-page: D475
  ident: B34
  article-title: Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1189
– volume: 14
  start-page: 31
  year: 2017
  ident: B4
  article-title: A conflict of interest: the evolutionary arms race between mammalian APOBEC3 and lentiviral Vif
  publication-title: Retrovirology
  doi: 10.1186/s12977-017-0355-4
– volume: 14
  start-page: 1385
  year: 2004
  end-page: 1391
  ident: B42
  article-title: APOBEC3F properties and hypermutation preferences indicate activity against HIV-1 in vivo
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2004.06.050
– volume: 286
  start-page: 36427
  year: 2011
  end-page: 36437
  ident: B39
  article-title: Endogenous APOBEC3B restricts LINE-1 retrotransposition in transformed cells and human embryonic stem cells
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.251058
– volume: 79
  start-page: 285
  year: 2002
  end-page: 296
  ident: B23
  article-title: An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22
  publication-title: Genomics
  doi: 10.1006/geno.2002.6718
– volume: 4
  start-page: 2593
  year: 2013
  ident: B47
  article-title: Structural determinants of HIV-1 Vif susceptibility and DNA binding in APOBEC3F
  publication-title: Nat Commun
  doi: 10.1038/ncomms3593
– volume: 4
  year: 2008
  ident: B5
  article-title: Positive selection and increased antiviral activity associated with the PARP-containing isoform of human zinc-finger antiviral protein
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.0040021
– volume: 21
  start-page: 1042
  year: 2013
  end-page: 1050
  ident: B50
  article-title: Crystal structure of the DNA cytosine deaminase APOBEC3F: the catalytically active and HIV-1 Vif-binding domain
  publication-title: Structure
  doi: 10.1016/j.str.2013.04.010
– volume: 35
  start-page: 41
  year: 2003
  end-page: 48
  ident: B38
  article-title: LINE-mediated retrotransposition of marked Alu sequences
  publication-title: Nat Genet
  doi: 10.1038/ng1223
– volume: 85
  start-page: 11220
  year: 2011
  end-page: 11234
  ident: B28
  article-title: Human and rhesus APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H demonstrate a conserved capacity to restrict Vif-deficient HIV-1
  publication-title: J Virol
  doi: 10.1128/JVI.05238-11
– volume: 281
  start-page: 16837
  year: 2006
  end-page: 16841
  ident: B40
  article-title: APOBEC3B and APOBEC3F inhibit L1 retrotransposition by a DNA deamination-independent mechanism
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M602367200
– volume: 12
  start-page: 71
  year: 2012
  ident: B32
  article-title: An ancient history of gene duplications, fusions and losses in the evolution of APOBEC3 mutators in mammals
  publication-title: BMC Evol Biol
  doi: 10.1186/1471-2148-12-71
SSID ssj0014464
Score 2.4351134
Snippet In terms of virus-host interactions and coevolution, the APOBEC3 gene family is one of the most important subjects in the field of retrovirology. APOBEC3 genes...
APOBEC3 proteins play pivotal roles in defenses against retroviruses, including HIV-1, as well as retrotransposons. Presumably due to the evolutionary arms...
SourceID pubmedcentral
proquest
asm2
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Animals
APOBEC Deaminases - chemistry
APOBEC Deaminases - genetics
Catalytic Domain
Cytidine Deaminase - chemistry
Cytidine Deaminase - genetics
Cytosine Deaminase - chemistry
Cytosine Deaminase - genetics
Evolution, Molecular
Gene Conversion
Humans
Long Interspersed Nucleotide Elements
Minor Histocompatibility Antigens - chemistry
Minor Histocompatibility Antigens - genetics
Phylogeny
Primates - genetics
Virus-Cell Interactions
Title Elucidation of the Complicated Scenario of Primate APOBEC3 Gene Evolution
URI https://www.ncbi.nlm.nih.gov/pubmed/33789992
https://journals.asm.org/doi/10.1128/JVI.00144-21
https://www.proquest.com/docview/2507727699
https://pubmed.ncbi.nlm.nih.gov/PMC8316122
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1098-5514
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014464
  issn: 0022-538X
  databaseCode: KQ8
  dateStart: 19670201
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1098-5514
  dateEnd: 20250401
  omitProxy: true
  ssIdentifier: ssj0014464
  issn: 0022-538X
  databaseCode: DIK
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1098-5514
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014464
  issn: 0022-538X
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1098-5514
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0014464
  issn: 0022-538X
  databaseCode: RPM
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbQEGgviDvlpoDgqQostuMkj6MqbEMbk1hReYriSyBiTaYmQdp-Pcd24qZjlWCqFFWxc5G_L_Y5PjeE3pAgVAEJsC-ozH2qs7fGsOz6sFjnQcQVaBwm2-cR25vRg3k4X-0qmeiShr8TF1fGlVwHVTgHuOoo2f9A1t0UTsB_wBeOgDAc_wnj6WkrCumEvsbUoOtcxLUgKVQJqnBl_Nx0VolGjXePv3yYTohJNz2e_u5eb4OIqmPghrvus2XR2mCe4txN55-ruv1hfAK-t3X7yxHla3vR2prYR9myXRSOhI019gCPVDHcdMCBtpfj1aajsyYNXUsPi1XqqOGUq7VdYuoHw4JjZ1mdxFSLasNp2Nba7OmGr57esQ5ZOPi2rw1IwCgbXD1A-mxhoCYkAj3SFtm7lE77-HASExBzMazbN3HEmC578Wnu_IK0fkz7FPP6vftoCRy_Hz54G93unwKreVYv8Lpk85e6ctnrdiDGnNxFdzpwvV1Lpnvohirvo1u2Iun5A7Q_oJRX5R5QyhtQyusppds6SnkdpTxNKc9R6iGafZyeTPb8rtqGn9GYNj6NhSA5zbBKeBBIyUnEMyahLSQMBEmaSyy1kZsJxjmVLFQEhgrEwQx-ESeP0FZZleoJ8pJc7bCEcMalpKEQsSA7UuRZkgdShVk8Qq_1gKXdp1SnRhPFcQoDnJoBTnEwQuN-OFPR5avXZVNON_R-63qf2TwtG_q96pFJYSLV1rGsVFVbp6ALgKYZsSQZoccWKXenHukRitYwdB10kvb1lrL4aZK1d2R7eu0rn6Ht1Rf4HG01y1a9AEG44S8Ncf8AMrixcg
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elucidation+of+the+Complicated+Scenario+of+Primate+APOBEC3+Gene+Evolution&rft.jtitle=Journal+of+virology&rft.au=Uriu%2C+Keiya&rft.au=Kosugi%2C+Yusuke&rft.au=Suzuki%2C+Narumi&rft.au=Ito%2C+Jumpei&rft.date=2021-05-24&rft.pub=American+Society+for+Microbiology&rft.issn=0022-538X&rft.eissn=1098-5514&rft.volume=95&rft.issue=12&rft_id=info:doi/10.1128%2FJVI.00144-21&rft_id=info%3Apmid%2F33789992&rft.externalDocID=PMC8316122
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon