Elucidation of the Complicated Scenario of Primate APOBEC3 Gene Evolution
In terms of virus-host interactions and coevolution, the APOBEC3 gene family is one of the most important subjects in the field of retrovirology. APOBEC3 genes are composed of a repertoire of subclasses based on sequence similarity, and a paper by LaRue et al. provides the standard guideline for the...
Saved in:
Published in | Journal of virology Vol. 95; no. 12 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
24.05.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-538X 1098-5514 1098-5514 |
DOI | 10.1128/JVI.00144-21 |
Cover
Abstract | In terms of virus-host interactions and coevolution, the APOBEC3 gene family is one of the most important subjects in the field of retrovirology. APOBEC3 genes are composed of a repertoire of subclasses based on sequence similarity, and a paper by LaRue et al. provides the standard guideline for the nomenclature and genomic architecture of APOBEC3 genes.
APOBEC3 proteins play pivotal roles in defenses against retroviruses, including HIV-1, as well as retrotransposons. Presumably due to the evolutionary arms race between the hosts and retroelements, APOBEC3 genes have rapidly evolved in primate lineages through sequence diversification, gene amplification and loss, and gene fusion. Consequently, modern primates possess a unique set or “repertoire” of APOBEC3 genes. The APOBEC3 gene repertoire of humans has been well investigated. There are three types of catalytic domains (Z domain; A3Z1, A3Z2, and A3Z3), 11 Z domains, and 7 independent genes, including 4 genes encoding double Z domains. However, the APOBEC3 gene repertoires of nonhuman primates remain largely unclear. Here, we characterize APOBEC3 gene repertoires among primates and investigated the evolutionary scenario of primate APOBEC3 genes using phylogenetic and comparative genomics approaches. In the 21 primate species investigated, we identified 145 APOBEC3 genes, including 69 double-domain type APOBEC3 genes. We further estimated the ages of the respective APOBEC3 genes and revealed that APOBEC3B, APOBEC3D, and APOBEC3F are the youngest in humans and were generated in the common ancestor of Catarrhini. Notably, invasion of the LINE1 retrotransposon peaked during the same period as the generation of these youngest APOBEC3 genes, implying that LINE1 invasion was one of the driving forces of the generation of these genes. Moreover, we found evidence suggesting that sequence diversification by gene conversions among APOBEC3 paralogs occurred in multiple primate lineages. Together, our analyses reveal the hidden diversity and the complicated evolutionary scenario of APOBEC3 genes in primates.
IMPORTANCE
In terms of virus-host interactions and coevolution, the APOBEC3 gene family is one of the most important subjects in the field of retrovirology. APOBEC3 genes are composed of a repertoire of subclasses based on sequence similarity, and a paper by LaRue et al. provides the standard guideline for the nomenclature and genomic architecture of APOBEC3 genes. However, it has been more than 10 years since this publication, and new information, including RefSeq, which we used in this study, is accumulating. Based on accumulating knowledge, APOBEC3 genes, particularly those of primates, should be refined and reannotated. This study updates knowledge of primate APOBEC3 genes and their genomic architectures. We further inferred the evolutionary scenario of primate APOBEC3 genes and the potential driving forces of APOBEC3 gene evolution. This study will be a landmark for the elucidation of the multiple aspects of APOBEC3 family genes in the future. |
---|---|
AbstractList | APOBEC3 proteins play pivotal roles in defenses against retroviruses, including HIV-1, as well as retrotransposons. Presumably due to the evolutionary arms race between the hosts and retroelements, APOBEC3 genes have rapidly evolved in primate lineages through sequence diversification, gene amplification and loss, and gene fusion. Consequently, modern primates possess a unique set or “repertoire” of APOBEC3 genes. The APOBEC3 gene repertoire of humans has been well investigated. There are three types of catalytic domains (Z domain; A3Z1, A3Z2, and A3Z3), 11 Z domains, and 7 independent genes, including 4 genes encoding double Z domains. However, the APOBEC3 gene repertoires of nonhuman primates remain largely unclear. Here, we characterize APOBEC3 gene repertoires among primates and investigated the evolutionary scenario of primate APOBEC3 genes using phylogenetic and comparative genomics approaches. In the 21 primate species investigated, we identified 145 APOBEC3 genes, including 69 double-domain type APOBEC3 genes. We further estimated the ages of the respective APOBEC3 genes and revealed that APOBEC3B, APOBEC3D, and APOBEC3F are the youngest in humans and were generated in the common ancestor of Catarrhini. Notably, invasion of the LINE1 retrotransposon peaked during the same period as the generation of these youngest APOBEC3 genes, implying that LINE1 invasion was one of the driving forces of the generation of these genes. Moreover, we found evidence suggesting that sequence diversification by gene conversions among APOBEC3 paralogs occurred in multiple primate lineages. Together, our analyses reveal the hidden diversity and the complicated evolutionary scenario of APOBEC3 genes in primates.
IMPORTANCE
In terms of virus-host interactions and coevolution, the APOBEC3 gene family is one of the most important subjects in the field of retrovirology. APOBEC3 genes are composed of a repertoire of subclasses based on sequence similarity, and a paper by LaRue et al. provides the standard guideline for the nomenclature and genomic architecture of APOBEC3 genes. However, it has been more than 10 years since this publication, and new information, including RefSeq, which we used in this study, is accumulating. Based on accumulating knowledge, APOBEC3 genes, particularly those of primates, should be refined and reannotated. This study updates knowledge of primate APOBEC3 genes and their genomic architectures. We further inferred the evolutionary scenario of primate APOBEC3 genes and the potential driving forces of APOBEC3 gene evolution. This study will be a landmark for the elucidation of the multiple aspects of APOBEC3 family genes in the future. In terms of virus-host interactions and coevolution, the APOBEC3 gene family is one of the most important subjects in the field of retrovirology. APOBEC3 genes are composed of a repertoire of subclasses based on sequence similarity, and a paper by LaRue et al. provides the standard guideline for the nomenclature and genomic architecture of APOBEC3 genes. APOBEC3 proteins play pivotal roles in defenses against retroviruses, including HIV-1, as well as retrotransposons. Presumably due to the evolutionary arms race between the hosts and retroelements, APOBEC3 genes have rapidly evolved in primate lineages through sequence diversification, gene amplification and loss, and gene fusion. Consequently, modern primates possess a unique set or “repertoire” of APOBEC3 genes. The APOBEC3 gene repertoire of humans has been well investigated. There are three types of catalytic domains (Z domain; A3Z1, A3Z2, and A3Z3), 11 Z domains, and 7 independent genes, including 4 genes encoding double Z domains. However, the APOBEC3 gene repertoires of nonhuman primates remain largely unclear. Here, we characterize APOBEC3 gene repertoires among primates and investigated the evolutionary scenario of primate APOBEC3 genes using phylogenetic and comparative genomics approaches. In the 21 primate species investigated, we identified 145 APOBEC3 genes, including 69 double-domain type APOBEC3 genes. We further estimated the ages of the respective APOBEC3 genes and revealed that APOBEC3B, APOBEC3D, and APOBEC3F are the youngest in humans and were generated in the common ancestor of Catarrhini. Notably, invasion of the LINE1 retrotransposon peaked during the same period as the generation of these youngest APOBEC3 genes, implying that LINE1 invasion was one of the driving forces of the generation of these genes. Moreover, we found evidence suggesting that sequence diversification by gene conversions among APOBEC3 paralogs occurred in multiple primate lineages. Together, our analyses reveal the hidden diversity and the complicated evolutionary scenario of APOBEC3 genes in primates. IMPORTANCE In terms of virus-host interactions and coevolution, the APOBEC3 gene family is one of the most important subjects in the field of retrovirology. APOBEC3 genes are composed of a repertoire of subclasses based on sequence similarity, and a paper by LaRue et al. provides the standard guideline for the nomenclature and genomic architecture of APOBEC3 genes. However, it has been more than 10 years since this publication, and new information, including RefSeq, which we used in this study, is accumulating. Based on accumulating knowledge, APOBEC3 genes, particularly those of primates, should be refined and reannotated. This study updates knowledge of primate APOBEC3 genes and their genomic architectures. We further inferred the evolutionary scenario of primate APOBEC3 genes and the potential driving forces of APOBEC3 gene evolution. This study will be a landmark for the elucidation of the multiple aspects of APOBEC3 family genes in the future. APOBEC3 proteins play pivotal roles in defenses against retroviruses, including HIV-1, as well as retrotransposons. Presumably due to the evolutionary arms race between the hosts and retroelements, APOBEC3 genes have rapidly evolved in primate lineages through sequence diversification, gene amplification and loss, and gene fusion. Consequently, modern primates possess a unique set or "repertoire" of APOBEC3 genes. The APOBEC3 gene repertoire of humans has been well investigated. There are three types of catalytic domains (Z domain; A3Z1, A3Z2, and A3Z3), 11 Z domains, and 7 independent genes, including 4 genes encoding double Z domains. However, the APOBEC3 gene repertoires of nonhuman primates remain largely unclear. Here, we characterize APOBEC3 gene repertoires among primates and investigated the evolutionary scenario of primate APOBEC3 genes using phylogenetic and comparative genomics approaches. In the 21 primate species investigated, we identified 145 APOBEC3 genes, including 69 double-domain type APOBEC3 genes. We further estimated the ages of the respective APOBEC3 genes and revealed that APOBEC3B, APOBEC3D, and APOBEC3F are the youngest in humans and were generated in the common ancestor of Catarrhini. Notably, invasion of the LINE1 retrotransposon peaked during the same period as the generation of these youngest APOBEC3 genes, implying that LINE1 invasion was one of the driving forces of the generation of these genes. Moreover, we found evidence suggesting that sequence diversification by gene conversions among APOBEC3 paralogs occurred in multiple primate lineages. Together, our analyses reveal the hidden diversity and the complicated evolutionary scenario of APOBEC3 genes in primates.IMPORTANCE In terms of virus-host interactions and coevolution, the APOBEC3 gene family is one of the most important subjects in the field of retrovirology. APOBEC3 genes are composed of a repertoire of subclasses based on sequence similarity, and a paper by LaRue et al. provides the standard guideline for the nomenclature and genomic architecture of APOBEC3 genes. However, it has been more than 10 years since this publication, and new information, including RefSeq, which we used in this study, is accumulating. Based on accumulating knowledge, APOBEC3 genes, particularly those of primates, should be refined and reannotated. This study updates knowledge of primate APOBEC3 genes and their genomic architectures. We further inferred the evolutionary scenario of primate APOBEC3 genes and the potential driving forces of APOBEC3 gene evolution. This study will be a landmark for the elucidation of the multiple aspects of APOBEC3 family genes in the future.APOBEC3 proteins play pivotal roles in defenses against retroviruses, including HIV-1, as well as retrotransposons. Presumably due to the evolutionary arms race between the hosts and retroelements, APOBEC3 genes have rapidly evolved in primate lineages through sequence diversification, gene amplification and loss, and gene fusion. Consequently, modern primates possess a unique set or "repertoire" of APOBEC3 genes. The APOBEC3 gene repertoire of humans has been well investigated. There are three types of catalytic domains (Z domain; A3Z1, A3Z2, and A3Z3), 11 Z domains, and 7 independent genes, including 4 genes encoding double Z domains. However, the APOBEC3 gene repertoires of nonhuman primates remain largely unclear. Here, we characterize APOBEC3 gene repertoires among primates and investigated the evolutionary scenario of primate APOBEC3 genes using phylogenetic and comparative genomics approaches. In the 21 primate species investigated, we identified 145 APOBEC3 genes, including 69 double-domain type APOBEC3 genes. We further estimated the ages of the respective APOBEC3 genes and revealed that APOBEC3B, APOBEC3D, and APOBEC3F are the youngest in humans and were generated in the common ancestor of Catarrhini. Notably, invasion of the LINE1 retrotransposon peaked during the same period as the generation of these youngest APOBEC3 genes, implying that LINE1 invasion was one of the driving forces of the generation of these genes. Moreover, we found evidence suggesting that sequence diversification by gene conversions among APOBEC3 paralogs occurred in multiple primate lineages. Together, our analyses reveal the hidden diversity and the complicated evolutionary scenario of APOBEC3 genes in primates.IMPORTANCE In terms of virus-host interactions and coevolution, the APOBEC3 gene family is one of the most important subjects in the field of retrovirology. APOBEC3 genes are composed of a repertoire of subclasses based on sequence similarity, and a paper by LaRue et al. provides the standard guideline for the nomenclature and genomic architecture of APOBEC3 genes. However, it has been more than 10 years since this publication, and new information, including RefSeq, which we used in this study, is accumulating. Based on accumulating knowledge, APOBEC3 genes, particularly those of primates, should be refined and reannotated. This study updates knowledge of primate APOBEC3 genes and their genomic architectures. We further inferred the evolutionary scenario of primate APOBEC3 genes and the potential driving forces of APOBEC3 gene evolution. This study will be a landmark for the elucidation of the multiple aspects of APOBEC3 family genes in the future. APOBEC3 proteins play pivotal roles in defenses against retroviruses, including HIV-1, as well as retrotransposons. Presumably due to the evolutionary arms race between the hosts and retroelements, APOBEC3 genes have rapidly evolved in primate lineages through sequence diversification, gene amplification and loss, and gene fusion. Consequently, modern primates possess a unique set or "repertoire" of APOBEC3 genes. The APOBEC3 gene repertoire of humans has been well investigated. There are three types of catalytic domains (Z domain; A3Z1, A3Z2, and A3Z3), 11 Z domains, and 7 independent genes, including 4 genes encoding double Z domains. However, the APOBEC3 gene repertoires of nonhuman primates remain largely unclear. Here, we characterize APOBEC3 gene repertoires among primates and investigated the evolutionary scenario of primate APOBEC3 genes using phylogenetic and comparative genomics approaches. In the 21 primate species investigated, we identified 145 APOBEC3 genes, including 69 double-domain type APOBEC3 genes. We further estimated the ages of the respective APOBEC3 genes and revealed that APOBEC3B, APOBEC3D, and APOBEC3F are the youngest in humans and were generated in the common ancestor of Catarrhini. Notably, invasion of the LINE1 retrotransposon peaked during the same period as the generation of these youngest APOBEC3 genes, implying that LINE1 invasion was one of the driving forces of the generation of these genes. Moreover, we found evidence suggesting that sequence diversification by gene conversions among APOBEC3 paralogs occurred in multiple primate lineages. Together, our analyses reveal the hidden diversity and the complicated evolutionary scenario of APOBEC3 genes in primates. In terms of virus-host interactions and coevolution, the APOBEC3 gene family is one of the most important subjects in the field of retrovirology. APOBEC3 genes are composed of a repertoire of subclasses based on sequence similarity, and a paper by LaRue et al. provides the standard guideline for the nomenclature and genomic architecture of APOBEC3 genes. However, it has been more than 10 years since this publication, and new information, including RefSeq, which we used in this study, is accumulating. Based on accumulating knowledge, APOBEC3 genes, particularly those of primates, should be refined and reannotated. This study updates knowledge of primate APOBEC3 genes and their genomic architectures. We further inferred the evolutionary scenario of primate APOBEC3 genes and the potential driving forces of APOBEC3 gene evolution. This study will be a landmark for the elucidation of the multiple aspects of APOBEC3 family genes in the future. APOBEC3 proteins play pivotal roles in defenses against retroviruses, including HIV-1, as well as retrotransposons. Presumably due to the evolutionary arms race between the hosts and retroelements, APOBEC3 genes have rapidly evolved in primate lineages through sequence diversification, gene amplification and loss, and gene fusion. Consequently, modern primates possess a unique set or “repertoire” of APOBEC3 genes. The APOBEC3 gene repertoire of humans has been well investigated. There are three types of catalytic domains (Z domain; A3Z1, A3Z2, and A3Z3), 11 Z domains, and 7 independent genes, including 4 genes encoding double Z domains. However, the APOBEC3 gene repertoires of nonhuman primates remain largely unclear. Here, we characterize APOBEC3 gene repertoires among primates and investigated the evolutionary scenario of primate APOBEC3 genes using phylogenetic and comparative genomics approaches. In the 21 primate species investigated, we identified 145 APOBEC3 genes, including 69 double-domain type APOBEC3 genes. We further estimated the ages of the respective APOBEC3 genes and revealed that APOBEC3B, APOBEC3D, and APOBEC3F are the youngest in humans and were generated in the common ancestor of Catarrhini. Notably, invasion of the LINE1 retrotransposon peaked during the same period as the generation of these youngest APOBEC3 genes, implying that LINE1 invasion was one of the driving forces of the generation of these genes. Moreover, we found evidence suggesting that sequence diversification by gene conversions among APOBEC3 paralogs occurred in multiple primate lineages. Together, our analyses reveal the hidden diversity and the complicated evolutionary scenario of APOBEC3 genes in primates. IMPORTANCE In terms of virus-host interactions and coevolution, the APOBEC3 gene family is one of the most important subjects in the field of retrovirology. APOBEC3 genes are composed of a repertoire of subclasses based on sequence similarity, and a paper by LaRue et al. provides the standard guideline for the nomenclature and genomic architecture of APOBEC3 genes. However, it has been more than 10 years since this publication, and new information, including RefSeq, which we used in this study, is accumulating. Based on accumulating knowledge, APOBEC3 genes, particularly those of primates, should be refined and reannotated. This study updates knowledge of primate APOBEC3 genes and their genomic architectures. We further inferred the evolutionary scenario of primate APOBEC3 genes and the potential driving forces of APOBEC3 gene evolution. This study will be a landmark for the elucidation of the multiple aspects of APOBEC3 family genes in the future. |
Author | Kosugi, Yusuke Sato, Kei Ito, Jumpei Uriu, Keiya Suzuki, Narumi |
Author_xml | – sequence: 1 givenname: Keiya surname: Uriu fullname: Uriu, Keiya organization: Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan, Graduate School of Medicine, University of Tokyo, Tokyo, Japan – sequence: 2 givenname: Yusuke surname: Kosugi fullname: Kosugi, Yusuke organization: Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan, Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan – sequence: 3 givenname: Narumi surname: Suzuki fullname: Suzuki, Narumi organization: Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan, Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan – sequence: 4 givenname: Jumpei orcidid: 0000-0003-0440-8321 surname: Ito fullname: Ito, Jumpei organization: Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan – sequence: 5 givenname: Kei orcidid: 0000-0003-4431-1380 surname: Sato fullname: Sato, Kei organization: Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan, CREST, Japan Science and Technology Agency, Saitama, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33789992$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kM1LwzAYh4Mouk1vnqVHBTvz1bS9CFrmnAgT_MBbSJNUI20zm1bwvzfdpqgoOQTyPu-PJ78h2KxtrQHYR3CMEE5Orh5mYwgRpSFGG2CAYJqEUYToJhhAiHEYkeRxBwyde1lSjG6DHULiJE1TPACzSdlJo0RrbB3YImifdZDZalEaKVqtglupa9EY289uGlP5x-DsZn4-yUgw1bUOJm-27PrtXbBViNLpvfU9AvcXk7vsMryeT2fZ2XUoaELbkCZSkoIKrNMcIaVyEueCKT-LCINxQguFFcRxxCTLc6pYpImXZogIf-KcjMDpKnfR5ZVW3q9tRMkXvVzzzq0w_OekNs_8yb7xhCCGMPYBh-uAxr522rW8Mk7qshS1tp3jOIJxjGOWph49WqHCVZi_2K6p_dc4gryvnvvq-bJUjpFnD757fQl9du0BvAJkY51rdMGlaZfFe01T_pd6_GvpM_dP_AN5HZ5M |
CitedBy_id | crossref_primary_10_1128_jvi_01606_24 crossref_primary_10_3390_genes12101562 crossref_primary_10_3390_v13071366 crossref_primary_10_1016_j_omtn_2023_102062 crossref_primary_10_1128_msphere_00451_22 crossref_primary_10_1093_nar_gkac1121 crossref_primary_10_1371_journal_ppat_1009523 crossref_primary_10_1186_s13100_022_00283_1 crossref_primary_10_7554_eLife_83893 crossref_primary_10_3389_fviro_2024_1343037 |
Cites_doi | 10.1016/j.virol.2008.12.018 10.1038/nri3295 10.1038/nature12686 10.1093/molbev/mst010 10.1186/gb-2008-9-6-229 10.1371/journal.ppat.1005958 10.1038/s41586-020-2762-2 10.1186/1471-2105-10-421 10.1038/ng1223 10.1038/srep16021 10.1371/journal.pbio.0020275 10.1016/j.celrep.2015.10.067 10.3389/fmicb.2012.00131 10.1073/pnas.1914183116 10.1128/JVI.01976-08 10.1038/nsmb.2378 10.1128/JVI.02362-14 10.1016/j.virol.2015.03.012 10.1186/1471-2164-13-155 10.1073/pnas.0409853102 10.1186/s12977-017-0355-4 10.1371/journal.pone.0049265 10.1038/ncomms3593 10.1074/jbc.M602367200 10.1093/bioinformatics/btq033 10.1007/s00251-009-0358-y 10.1128/JVI.78.11.6073-6076.2004 10.1038/sj.emboj.7600246 10.1038/nchem.1795 10.1371/journal.pone.0011904 10.1186/1742-4690-9-55 10.1371/journal.pgen.1002764 10.1371/journal.ppat.0010006 10.1093/bioinformatics/btl474 10.1016/j.chom.2011.11.004 10.1371/journal.ppat.1006348 10.1093/nar/gkv1189 10.1074/jbc.M110.173161 10.3389/fmicb.2018.03228 10.1128/JVI.05238-11 10.1038/nature00939 10.1128/JVI.02369-15 10.1128/JVI.01123-06 10.1101/gr.849004 10.1186/1471-2148-12-71 10.1371/journal.ppat.1005149 10.7554/eLife.58436 10.1371/journal.ppat.0030197 10.1074/jbc.M111.251058 10.1016/j.cub.2004.06.050 10.1007/978-3-642-37765-5_1 10.1016/j.str.2013.04.010 10.1093/molbev/msy096 10.1016/S0065-2776(06)94002-4 10.1093/nar/gkh340 10.1371/journal.ppat.1000443 10.1371/journal.pgen.0040021 10.1006/geno.2002.6718 10.1371/journal.ppat.0030010 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Uriu et al. Copyright © 2021 Uriu et al. 2021 Uriu et al. |
Copyright_xml | – notice: Copyright © 2021 Uriu et al. – notice: Copyright © 2021 Uriu et al. 2021 Uriu et al. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1128/JVI.00144-21 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1098-5514 |
Editor | Kirchhoff, Frank |
Editor_xml | – sequence: 1 givenname: Frank surname: Kirchhoff fullname: Kirchhoff, Frank |
ExternalDocumentID | PMC8316122 00144-21 33789992 10_1128_JVI_00144_21 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: MEXT | Japan Society for the Promotion of Science (JSPS) grantid: 19H04826 funderid: https://doi.org/10.13039/501100001691 – fundername: ; grantid: 19H04826 |
GroupedDBID | --- -~X 0R~ 18M 29L 2WC 39C 4.4 53G 5GY 5RE 5VS 85S AAFWJ AAGFI AAYXX ABPPZ ACGFO ACNCT ADBBV AENEX AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 DIK E3Z EBS F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 N9A O9- OK1 P2P RHI RNS RPM RSF TR2 UPT W2D W8F WH7 WOQ YQT ~02 ~KM CGR CUY CVF ECM EIF NPM - 02 0R ABFLS ABPTK ADACO BXI HZ KM RHF UCJ X ZA5 7X8 5PM |
ID | FETCH-LOGICAL-a484t-48cc3f4a2e9b11ddb37ba6d4845360784fd2d02756c6bb4d65e3464613a3a37b3 |
ISSN | 0022-538X 1098-5514 |
IngestDate | Thu Aug 21 18:18:14 EDT 2025 Fri Sep 05 11:20:47 EDT 2025 Tue Dec 28 13:59:21 EST 2021 Thu Apr 03 07:05:52 EDT 2025 Thu Apr 24 22:51:38 EDT 2025 Tue Jul 01 01:32:37 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | APOBEC3 primates evolution |
Language | English |
License | Copyright © 2021 Uriu et al. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a484t-48cc3f4a2e9b11ddb37ba6d4845360784fd2d02756c6bb4d65e3464613a3a37b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Citation Uriu K, Kosugi Y, Suzuki N, Ito J, Sato K. 2021. Elucidation of the complicated scenario of primate APOBEC3 gene evolution. J Virol 95:e00144-21. https://doi.org/10.1128/JVI.00144-21. Keiya Uriu, Yusuke Kosugi, and Narumi Suzuki contributed equally to this article. Order is based on author efforts and amounts of data obtained. |
ORCID | 0000-0003-4431-1380 0000-0003-0440-8321 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8316122 |
PMID | 33789992 |
PQID | 2507727699 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8316122 proquest_miscellaneous_2507727699 asm2_journals_10_1128_JVI_00144_21 pubmed_primary_33789992 crossref_citationtrail_10_1128_JVI_00144_21 crossref_primary_10_1128_JVI_00144_21 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210524 |
PublicationDateYYYYMMDD | 2021-05-24 |
PublicationDate_xml | – month: 5 year: 2021 text: 20210524 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Journal of virology |
PublicationTitleAbbrev | J Virol |
PublicationTitleAlternate | J Virol |
PublicationYear | 2021 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_51_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_60_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 Ito, J, Gifford, RJ, Sato, K (B19) 2020; 117 Edgar, RC (B58) 2004; 32 Nakano, Y, Misawa, N, Juarez-Fernandez, G, Moriwaki, M, Nakaoka, S, Funo, T, Yamada, E, Soper, A, Yoshikawa, R, Ebrahimi, D, Tachiki, Y, Iwami, S, Harris, RS, Koyanagi, Y, Sato, K (B44) 2017; 13 Richards, C, Albin, JS, Demir, Ö, Shaban, NM, Luengas, EM, Land, AM, Anderson, BD, Holten, JR, Anderson, JS, Harki, DA, Amaro, RE, Harris, RS (B48) 2015; 13 Refsland, EW, Harris, RS (B37) 2013; 371 Lim, ES, Wu, LI, Malik, HS, Emerman, M (B9) 2012; 9 Land, AM, Shaban, NM, Evans, L, Hultquist, JF, Albin, JS, Harris, RS (B52) 2014; 88 Sawyer, SL, Emerman, M, Malik, HS (B1) 2004; 2 Sato, K, Gee, P, Koyanagi, Y (B2) 2012; 3 Conticello, SG (B21) 2008; 9 Yang, L, Emerman, M, Malik, HS, McLaughlin, RNJ (B33) 2020; 9 Sawyer, SL, Emerman, M, Malik, HS (B18) 2007; 3 Etienne, L, Bibollet-Ruche, F, Sudmant, PH, Wu, LI, Hahn, BH, Emerman, M (B45) 2015; 11 Wiegand, HL, Doehle, BP, Bogerd, HP, Cullen, BR (B25) 2004; 23 Stenglein, MD, Harris, RS (B40) 2006; 281 Murrell, B, Wertheim, JO, Moola, S, Weighill, T, Scheffler, K, Kosakovsky Pond, SL (B35) 2012; 8 Bernheim, A, Millman, A, Ofir, G, Meitav, G, Avraham, C, Shomar, H, Rosenberg, MM, Tal, N, Melamed, S, Amitai, G, Sorek, R (B11) 2021; 589 Nakano, Y, Aso, H, Soper, A, Yamada, E, Moriwaki, M, Juarez-Fernandez, G, Koyanagi, Y, Sato, K (B4) 2017; 14 Kumar, S, Stecher, G, Li, M, Knyaz, C, Tamura, K (B57) 2018; 35 Zhao, X, Li, J, Winkler, CA, An, P, Guo, JT (B12) 2018; 9 Tareen, SU, Sawyer, SL, Malik, HS, Emerman, M (B17) 2009; 385 Chaurasiya, KR, McCauley, MJ, Wang, W, Qualley, DF, Wu, T, Kitamura, S, Geertsema, H, Chan, DS, Hertz, A, Iwatani, Y, Levin, JG, Musier-Forsyth, K, Rouzina, I, Williams, MC (B29) 2014; 6 Zhang, Z, Liu, J, Li, M, Yang, H, Zhang, C (B14) 2012; 7 LaRue, RS, Andresdottir, V, Blanchard, Y, Conticello, SG, Derse, D, Emerman, M, Greene, WC, Jonsson, SR, Landau, NR, Lochelt, M, Malik, HS, Malim, MH, Munk, C, O’Brien, SJ, Pathak, VK, Strebel, K, Wain-Hobson, S, Yu, XF, Yuhki, N, Harris, RS (B20) 2009; 83 Kosakovsky Pond, SL, Posada, D, Gravenor, MB, Woelk, CH, Frost, SD (B36) 2006; 22 Bohn, MF, Shandilya, SM, Albin, JS, Kouno, T, Anderson, BD, McDougle, RM, Carpenter, MA, Rathore, A, Evans, L, Davis, AN, Zhang, J, Lu, Y, Somasundaran, M, Matsuo, H, Harris, RS, Schiffer, CA (B50) 2013; 21 Harris, RS, Anderson, BD (B31) 2016; 12 Hultquist, JF, Lengyel, JA, Refsland, EW, LaRue, RS, Lackey, L, Brown, WL, Harris, RS (B28) 2011; 85 Lee, YN, Bieniasz, PD (B43) 2007; 3 Kitamura, S, Ode, H, Nakashima, M, Imahashi, M, Naganawa, Y, Kurosawa, T, Yokomaku, Y, Yamane, T, Watanabe, N, Suzuki, A, Sugiura, W, Iwatani, Y (B51) 2012; 19 Seo, JY, Yaneva, R, Cresswell, P (B10) 2011; 10 Dewannieux, M, Esnault, C, Heidmann, T (B38) 2003; 35 Liu, J, Chen, K, Wang, JH, Zhang, C (B6) 2010; 5 Wissing, S, Montano, M, Garcia-Perez, JL, Moran, JV, Greene, WC (B39) 2011; 286 Nakashima, M, Ode, H, Kawamura, T, Kitamura, S, Naganawa, Y, Awazu, H, Tsuzuki, S, Matsuoka, K, Nemoto, M, Hachiya, A, Sugiura, W, Yokomaku, Y, Watanabe, N, Iwatani, Y (B46) 2016; 90 Katoh, K, Standley, DM (B56) 2013; 30 Duggal, NK, Emerman, M (B3) 2012; 12 O’Leary, NA, Wright, MW, Brister, JR, Ciufo, S, Haddad, D, McVeigh, R, Rajput, B, Robbertse, B, Smith-White, B, Ako-Adjei, D, Astashyn, A, Badretdin, A, Bao, Y, Blinkova, O, Brover, V, Chetvernin, V, Choi, J, Cox, E, Ermolaeva, O, Farrell, CM, Goldfarb, T, Gupta, T, Haft, D, Hatcher, E (B34) 2016; 44 Crooks, GE, Hon, G, Chandonia, JM, Brenner, SE (B59) 2004; 14 Camacho, C, Coulouris, G, Avagyan, V, Ma, N, Papadopoulos, J, Bealer, K, Madden, TL (B54) 2009; 10 Quinlan, AR, Hall, IM (B55) 2010; 26 Münk, C, Willemsen, A, Bravo, IG (B32) 2012; 12 Albin, JS, LaRue, RS, Weaver, JA, Brown, WL, Shindo, K, Harjes, E, Matsuo, H, Harris, RS (B49) 2010; 285 Kerns, JA, Emerman, M, Malik, HS (B5) 2008; 4 Gupta, RK, Hué, S, Schaller, T, Verschoor, E, Pillay, D, Towers, GJ (B7) 2009; 5 Siu, KK, Sultana, A, Azimi, FC, Lee, JE (B47) 2013; 4 Simon, V, Zennou, V, Murray, D, Huang, Y, Ho, DD, Bieniasz, PD (B27) 2005; 1 Sawyer, SL, Wu, LI, Emerman, M, Malik, HS (B15) 2005; 102 Jarmuz, A, Chester, A, Bayliss, J, Gisbourne, J, Dunham, I, Scott, J, Navaratnam, N (B23) 2002; 79 Harris, RS, Dudley, JP (B30) 2015; 479–480 Johnson, WE, Sawyer, SL (B16) 2009; 61 Dang, Y, Wang, X, Esselman, WJ, Zheng, YH (B53) 2006; 80 Takeuchi, JS, Ren, F, Yoshikawa, R, Yamada, E, Nakano, Y, Kobayashi, T, Matsuda, K, Izumi, T, Misawa, N, Shintaku, Y, Wetzel, KS, Collman, RG, Tanaka, H, Hirsch, VM, Koyanagi, Y, Sato, K (B8) 2015; 5 Conticello, SG, Langlois, MA, Yang, Z, Neuberger, MS (B22) 2007; 94 Zheng, YH, Irwin, D, Kurosu, T, Tokunaga, K, Sata, T, Peterlin, BM (B26) 2004; 78 Sheehy, AM, Gaddis, NC, Choi, JD, Malim, MH (B24) 2002; 418 Marchetto, MCN, Narvaiza, I, Denli, AM, Benner, C, Lazzarini, TA, Nathanson, JL, Paquola, ACM, Desai, KN, Herai, RH, Weitzman, MD, Yeo, GW, Muotri, AR, Gage, FH (B41) 2013; 503 Liddament, MT, Brown, WL, Schumacher, AJ, Harris, RS (B42) 2004; 14 Hickford, D, Frankenberg, S, Shaw, G, Renfree, MB (B13) 2012; 13 |
References_xml | – ident: e_1_3_3_18_2 doi: 10.1016/j.virol.2008.12.018 – ident: e_1_3_3_4_2 doi: 10.1038/nri3295 – ident: e_1_3_3_42_2 doi: 10.1038/nature12686 – ident: e_1_3_3_57_2 doi: 10.1093/molbev/mst010 – ident: e_1_3_3_22_2 doi: 10.1186/gb-2008-9-6-229 – ident: e_1_3_3_32_2 doi: 10.1371/journal.ppat.1005958 – ident: e_1_3_3_12_2 doi: 10.1038/s41586-020-2762-2 – ident: e_1_3_3_55_2 doi: 10.1186/1471-2105-10-421 – ident: e_1_3_3_39_2 doi: 10.1038/ng1223 – ident: e_1_3_3_9_2 doi: 10.1038/srep16021 – ident: e_1_3_3_2_2 doi: 10.1371/journal.pbio.0020275 – ident: e_1_3_3_49_2 doi: 10.1016/j.celrep.2015.10.067 – ident: e_1_3_3_3_2 doi: 10.3389/fmicb.2012.00131 – ident: e_1_3_3_20_2 doi: 10.1073/pnas.1914183116 – ident: e_1_3_3_21_2 doi: 10.1128/JVI.01976-08 – ident: e_1_3_3_52_2 doi: 10.1038/nsmb.2378 – ident: e_1_3_3_53_2 doi: 10.1128/JVI.02362-14 – ident: e_1_3_3_31_2 doi: 10.1016/j.virol.2015.03.012 – ident: e_1_3_3_14_2 doi: 10.1186/1471-2164-13-155 – ident: e_1_3_3_16_2 doi: 10.1073/pnas.0409853102 – ident: e_1_3_3_5_2 doi: 10.1186/s12977-017-0355-4 – ident: e_1_3_3_15_2 doi: 10.1371/journal.pone.0049265 – ident: e_1_3_3_48_2 doi: 10.1038/ncomms3593 – ident: e_1_3_3_41_2 doi: 10.1074/jbc.M602367200 – ident: e_1_3_3_56_2 doi: 10.1093/bioinformatics/btq033 – ident: e_1_3_3_17_2 doi: 10.1007/s00251-009-0358-y – ident: e_1_3_3_27_2 doi: 10.1128/JVI.78.11.6073-6076.2004 – ident: e_1_3_3_26_2 doi: 10.1038/sj.emboj.7600246 – ident: e_1_3_3_30_2 doi: 10.1038/nchem.1795 – ident: e_1_3_3_7_2 doi: 10.1371/journal.pone.0011904 – ident: e_1_3_3_10_2 doi: 10.1186/1742-4690-9-55 – ident: e_1_3_3_36_2 doi: 10.1371/journal.pgen.1002764 – ident: e_1_3_3_28_2 doi: 10.1371/journal.ppat.0010006 – ident: e_1_3_3_37_2 doi: 10.1093/bioinformatics/btl474 – ident: e_1_3_3_11_2 doi: 10.1016/j.chom.2011.11.004 – ident: e_1_3_3_45_2 doi: 10.1371/journal.ppat.1006348 – ident: e_1_3_3_35_2 doi: 10.1093/nar/gkv1189 – ident: e_1_3_3_50_2 doi: 10.1074/jbc.M110.173161 – ident: e_1_3_3_13_2 doi: 10.3389/fmicb.2018.03228 – ident: e_1_3_3_29_2 doi: 10.1128/JVI.05238-11 – ident: e_1_3_3_25_2 doi: 10.1038/nature00939 – ident: e_1_3_3_47_2 doi: 10.1128/JVI.02369-15 – ident: e_1_3_3_54_2 doi: 10.1128/JVI.01123-06 – ident: e_1_3_3_60_2 doi: 10.1101/gr.849004 – ident: e_1_3_3_33_2 doi: 10.1186/1471-2148-12-71 – ident: e_1_3_3_46_2 doi: 10.1371/journal.ppat.1005149 – ident: e_1_3_3_34_2 doi: 10.7554/eLife.58436 – ident: e_1_3_3_19_2 doi: 10.1371/journal.ppat.0030197 – ident: e_1_3_3_40_2 doi: 10.1074/jbc.M111.251058 – ident: e_1_3_3_43_2 doi: 10.1016/j.cub.2004.06.050 – ident: e_1_3_3_38_2 doi: 10.1007/978-3-642-37765-5_1 – ident: e_1_3_3_51_2 doi: 10.1016/j.str.2013.04.010 – ident: e_1_3_3_58_2 doi: 10.1093/molbev/msy096 – ident: e_1_3_3_23_2 doi: 10.1016/S0065-2776(06)94002-4 – ident: e_1_3_3_59_2 doi: 10.1093/nar/gkh340 – ident: e_1_3_3_8_2 doi: 10.1371/journal.ppat.1000443 – ident: e_1_3_3_6_2 doi: 10.1371/journal.pgen.0040021 – ident: e_1_3_3_24_2 doi: 10.1006/geno.2002.6718 – ident: e_1_3_3_44_2 doi: 10.1371/journal.ppat.0030010 – volume: 32 start-page: 1792 year: 2004 end-page: 1797 ident: B58 article-title: MUSCLE: multiple sequence alignment with high accuracy and high throughput publication-title: Nucleic Acids Res doi: 10.1093/nar/gkh340 – volume: 12 year: 2016 ident: B31 article-title: Evolutionary paradigms from ancient andongoing conflicts between the lentiviral Vif protein and mammalian APOBEC3 enzymes publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1005958 – volume: 371 start-page: 1 year: 2013 end-page: 27 ident: B37 article-title: The APOBEC3 family of retroelement restriction factors publication-title: Curr Top Microbiol Immunol doi: 10.1007/978-3-642-37765-5_1 – volume: 285 start-page: 40785 year: 2010 end-page: 40792 ident: B49 article-title: A single amino acid in human APOBEC3F alters susceptibility to HIV-1 Vif publication-title: J Biol Chem doi: 10.1074/jbc.M110.173161 – volume: 9 start-page: 55 year: 2012 ident: B9 article-title: The function and evolution of the restriction factor Viperin in primates was not driven by lentiviruses publication-title: Retrovirology doi: 10.1186/1742-4690-9-55 – volume: 10 start-page: 534 year: 2011 end-page: 539 ident: B10 article-title: Viperin: a multifunctional, interferon-inducible protein that regulates virus replication publication-title: Cell Host Microbe doi: 10.1016/j.chom.2011.11.004 – volume: 8 year: 2012 ident: B35 article-title: Detecting individual sites subject to episodic diversifying selection publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002764 – volume: 22 start-page: 3096 year: 2006 end-page: 3098 ident: B36 article-title: GARD: a genetic algorithm for recombination detection publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl474 – volume: 5 start-page: 16021 year: 2015 ident: B8 article-title: Coevolutionary dynamics between tribe Cercopithecini tetherins and their lentiviruses publication-title: Sci Rep doi: 10.1038/srep16021 – volume: 88 start-page: 12923 year: 2014 end-page: 12927 ident: B52 article-title: APOBEC3F determinants of HIV-1 Vif sensitivity publication-title: J Virol doi: 10.1128/JVI.02362-14 – volume: 10 start-page: 421 year: 2009 ident: B54 article-title: BLAST+: architecture and applications publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-421 – volume: 23 start-page: 2451 year: 2004 end-page: 2458 ident: B25 article-title: A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV-1 and HIV-2 Vif proteins publication-title: EMBO J doi: 10.1038/sj.emboj.7600246 – volume: 1 year: 2005 ident: B27 article-title: Natural variation in Vif: differential impact on APOBEC3G/3F and a potential role in HIV-1 diversification publication-title: PLoS Pathog doi: 10.1371/journal.ppat.0010006 – volume: 78 start-page: 6073 year: 2004 end-page: 6076 ident: B26 article-title: Human APOBEC3F is another host factor that blocks human immunodeficiency virus type 1 replication publication-title: J Virol doi: 10.1128/JVI.78.11.6073-6076.2004 – volume: 80 start-page: 10522 year: 2006 end-page: 10533 ident: B53 article-title: Identification of APOBEC3DE as another antiretroviral factor from the human APOBEC family publication-title: J Virol doi: 10.1128/JVI.01123-06 – volume: 7 year: 2012 ident: B14 article-title: Evolutionary dynamics of the interferon-induced transmembrane gene family in vertebrates publication-title: PLoS One doi: 10.1371/journal.pone.0049265 – volume: 94 start-page: 37 year: 2007 end-page: 73 ident: B22 article-title: DNA deamination in immunity: AID in the context of its APOBEC relatives publication-title: Adv Immunol doi: 10.1016/S0065-2776(06)94002-4 – volume: 589 start-page: 120 year: 2021 end-page: 124 ident: B11 article-title: Prokaryotic viperins produce diverse antiviral molecules publication-title: Nature doi: 10.1038/s41586-020-2762-2 – volume: 5 year: 2009 ident: B7 article-title: Mutation of a single residue renders human tetherin resistant to HIV-1 Vpu-mediated depletion publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000443 – volume: 35 start-page: 1547 year: 2018 end-page: 1549 ident: B57 article-title: MEGA X: molecular evolutionary genetics analysis across computing platforms publication-title: Mol Biol Evol doi: 10.1093/molbev/msy096 – volume: 13 start-page: 1781 year: 2015 end-page: 1788 ident: B48 article-title: The binding interface between human APOBEC3F and HIV-1 Vif elucidated by genetic and computational approaches publication-title: Cell Rep doi: 10.1016/j.celrep.2015.10.067 – volume: 5 year: 2010 ident: B6 article-title: Molecular evolution of the primate antiviral restriction factor tetherin publication-title: PLoS One doi: 10.1371/journal.pone.0011904 – volume: 9 year: 2020 ident: B33 article-title: Retrocopying expands the functional repertoire of APOBEC3 antiviral proteins in primates publication-title: Elife doi: 10.7554/eLife.58436 – volume: 13 year: 2017 ident: B44 article-title: HIV-1 competition experiments in humanized mice show that APOBEC3H imposes selective pressure and promotes virus adaptation publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1006348 – volume: 26 start-page: 841 year: 2010 end-page: 842 ident: B55 article-title: BEDTools: a flexible suite of utilities for comparing genomic features publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq033 – volume: 11 year: 2015 ident: B45 article-title: The role of the antiviral APOBEC3 gene family in protecting chimpanzees against lentiviruses from monkeys publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1005149 – volume: 61 start-page: 163 year: 2009 end-page: 176 ident: B16 article-title: Molecular evolution of the antiretroviral TRIM5 gene publication-title: Immunogenetics doi: 10.1007/s00251-009-0358-y – volume: 90 start-page: 1034 year: 2016 end-page: 1047 ident: B46 article-title: Structural insights into HIV-1 Vif-APOBEC3F interaction publication-title: J Virol doi: 10.1128/JVI.02369-15 – volume: 3 start-page: 131 year: 2012 ident: B2 article-title: Vpu and BST2: still not there yet? publication-title: Front Microbiol – volume: 9 start-page: 229 year: 2008 ident: B21 article-title: The AID/APOBEC family of nucleic acid mutators publication-title: Genome Biol doi: 10.1186/gb-2008-9-6-229 – volume: 3 year: 2007 ident: B43 article-title: Reconstitution of an infectious human endogenous retrovirus publication-title: PLoS Pathog doi: 10.1371/journal.ppat.0030010 – volume: 503 start-page: 525 year: 2013 end-page: 529 ident: B41 article-title: Differential L1 regulation in pluripotent stem cells of humans and apes publication-title: Nature doi: 10.1038/nature12686 – volume: 83 start-page: 494 year: 2009 end-page: 497 ident: B20 article-title: Guidelines for naming nonprimate APOBEC3 genes and proteins publication-title: J Virol doi: 10.1128/JVI.01976-08 – volume: 418 start-page: 646 year: 2002 end-page: 650 ident: B24 article-title: Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein publication-title: Nature doi: 10.1038/nature00939 – volume: 30 start-page: 772 year: 2013 end-page: 780 ident: B56 article-title: MAFFT multiple sequence alignment software version 7: improvements in performance and usability publication-title: Mol Biol Evol doi: 10.1093/molbev/mst010 – volume: 12 start-page: 687 year: 2012 end-page: 695 ident: B3 article-title: Evolutionary conflicts between viruses and restriction factors shape immunity publication-title: Nat Rev Immunol doi: 10.1038/nri3295 – volume: 3 year: 2007 ident: B18 article-title: Discordant evolution of the adjacent antiretroviral genes TRIM22 and TRIM5 in mammals publication-title: PLoS Pathog doi: 10.1371/journal.ppat.0030197 – volume: 479–480 start-page: 131 year: 2015 end-page: 145 ident: B30 article-title: APOBECs and virus restriction publication-title: Virology doi: 10.1016/j.virol.2015.03.012 – volume: 102 start-page: 2832 year: 2005 end-page: 2837 ident: B15 article-title: Positive selection of primate TRIM5alpha identifies a critical species-specific retroviral restriction domain publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0409853102 – volume: 385 start-page: 473 year: 2009 end-page: 483 ident: B17 article-title: An expanded clade of rodent Trim5 genes publication-title: Virology doi: 10.1016/j.virol.2008.12.018 – volume: 13 start-page: 155 year: 2012 ident: B13 article-title: Evolution of vertebrate interferon inducible transmembrane proteins publication-title: BMC Genomics doi: 10.1186/1471-2164-13-155 – volume: 19 start-page: 1005 year: 2012 end-page: 1010 ident: B51 article-title: The APOBEC3C crystal structure and the interface for HIV-1 Vif binding publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.2378 – volume: 14 start-page: 1188 year: 2004 end-page: 1190 ident: B59 article-title: WebLogo: a sequence logo generator publication-title: Genome Res doi: 10.1101/gr.849004 – volume: 6 start-page: 28 year: 2014 end-page: 33 ident: B29 article-title: Oligomerization transforms human APOBEC3G from an efficient enzyme to a slowly dissociating nucleic acid-binding protein publication-title: Nat Chem doi: 10.1038/nchem.1795 – volume: 117 start-page: 610 year: 2020 end-page: 618 ident: B19 article-title: Retroviruses drive the rapid evolution of mammalian APOBEC3 genes publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1914183116 – volume: 9 start-page: 3228 year: 2018 ident: B12 article-title: IFITM genes, variants, and their roles in the control and pathogenesis of viral infections publication-title: Front Microbiol doi: 10.3389/fmicb.2018.03228 – volume: 2 year: 2004 ident: B1 article-title: Ancient adaptive evolution of the primate antiviral DNA-editing enzyme APOBEC3G publication-title: PLoS Biol doi: 10.1371/journal.pbio.0020275 – volume: 44 start-page: D733 year: 2016 end-page: D475 ident: B34 article-title: Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1189 – volume: 14 start-page: 31 year: 2017 ident: B4 article-title: A conflict of interest: the evolutionary arms race between mammalian APOBEC3 and lentiviral Vif publication-title: Retrovirology doi: 10.1186/s12977-017-0355-4 – volume: 14 start-page: 1385 year: 2004 end-page: 1391 ident: B42 article-title: APOBEC3F properties and hypermutation preferences indicate activity against HIV-1 in vivo publication-title: Curr Biol doi: 10.1016/j.cub.2004.06.050 – volume: 286 start-page: 36427 year: 2011 end-page: 36437 ident: B39 article-title: Endogenous APOBEC3B restricts LINE-1 retrotransposition in transformed cells and human embryonic stem cells publication-title: J Biol Chem doi: 10.1074/jbc.M111.251058 – volume: 79 start-page: 285 year: 2002 end-page: 296 ident: B23 article-title: An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22 publication-title: Genomics doi: 10.1006/geno.2002.6718 – volume: 4 start-page: 2593 year: 2013 ident: B47 article-title: Structural determinants of HIV-1 Vif susceptibility and DNA binding in APOBEC3F publication-title: Nat Commun doi: 10.1038/ncomms3593 – volume: 4 year: 2008 ident: B5 article-title: Positive selection and increased antiviral activity associated with the PARP-containing isoform of human zinc-finger antiviral protein publication-title: PLoS Genet doi: 10.1371/journal.pgen.0040021 – volume: 21 start-page: 1042 year: 2013 end-page: 1050 ident: B50 article-title: Crystal structure of the DNA cytosine deaminase APOBEC3F: the catalytically active and HIV-1 Vif-binding domain publication-title: Structure doi: 10.1016/j.str.2013.04.010 – volume: 35 start-page: 41 year: 2003 end-page: 48 ident: B38 article-title: LINE-mediated retrotransposition of marked Alu sequences publication-title: Nat Genet doi: 10.1038/ng1223 – volume: 85 start-page: 11220 year: 2011 end-page: 11234 ident: B28 article-title: Human and rhesus APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H demonstrate a conserved capacity to restrict Vif-deficient HIV-1 publication-title: J Virol doi: 10.1128/JVI.05238-11 – volume: 281 start-page: 16837 year: 2006 end-page: 16841 ident: B40 article-title: APOBEC3B and APOBEC3F inhibit L1 retrotransposition by a DNA deamination-independent mechanism publication-title: J Biol Chem doi: 10.1074/jbc.M602367200 – volume: 12 start-page: 71 year: 2012 ident: B32 article-title: An ancient history of gene duplications, fusions and losses in the evolution of APOBEC3 mutators in mammals publication-title: BMC Evol Biol doi: 10.1186/1471-2148-12-71 |
SSID | ssj0014464 |
Score | 2.4351134 |
Snippet | In terms of virus-host interactions and coevolution, the APOBEC3 gene family is one of the most important subjects in the field of retrovirology. APOBEC3 genes... APOBEC3 proteins play pivotal roles in defenses against retroviruses, including HIV-1, as well as retrotransposons. Presumably due to the evolutionary arms... |
SourceID | pubmedcentral proquest asm2 pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Animals APOBEC Deaminases - chemistry APOBEC Deaminases - genetics Catalytic Domain Cytidine Deaminase - chemistry Cytidine Deaminase - genetics Cytosine Deaminase - chemistry Cytosine Deaminase - genetics Evolution, Molecular Gene Conversion Humans Long Interspersed Nucleotide Elements Minor Histocompatibility Antigens - chemistry Minor Histocompatibility Antigens - genetics Phylogeny Primates - genetics Virus-Cell Interactions |
Title | Elucidation of the Complicated Scenario of Primate APOBEC3 Gene Evolution |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33789992 https://journals.asm.org/doi/10.1128/JVI.00144-21 https://www.proquest.com/docview/2507727699 https://pubmed.ncbi.nlm.nih.gov/PMC8316122 |
Volume | 95 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1098-5514 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014464 issn: 0022-538X databaseCode: KQ8 dateStart: 19670201 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1098-5514 dateEnd: 20250401 omitProxy: true ssIdentifier: ssj0014464 issn: 0022-538X databaseCode: DIK dateStart: 19670101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1098-5514 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014464 issn: 0022-538X databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1098-5514 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0014464 issn: 0022-538X databaseCode: RPM dateStart: 19670101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbQEGgviDvlpoDgqQostuMkj6MqbEMbk1hReYriSyBiTaYmQdp-Pcd24qZjlWCqFFWxc5G_L_Y5PjeE3pAgVAEJsC-ozH2qs7fGsOz6sFjnQcQVaBwm2-cR25vRg3k4X-0qmeiShr8TF1fGlVwHVTgHuOoo2f9A1t0UTsB_wBeOgDAc_wnj6WkrCumEvsbUoOtcxLUgKVQJqnBl_Nx0VolGjXePv3yYTohJNz2e_u5eb4OIqmPghrvus2XR2mCe4txN55-ruv1hfAK-t3X7yxHla3vR2prYR9myXRSOhI019gCPVDHcdMCBtpfj1aajsyYNXUsPi1XqqOGUq7VdYuoHw4JjZ1mdxFSLasNp2Nba7OmGr57esQ5ZOPi2rw1IwCgbXD1A-mxhoCYkAj3SFtm7lE77-HASExBzMazbN3HEmC578Wnu_IK0fkz7FPP6vftoCRy_Hz54G93unwKreVYv8Lpk85e6ctnrdiDGnNxFdzpwvV1Lpnvohirvo1u2Iun5A7Q_oJRX5R5QyhtQyusppds6SnkdpTxNKc9R6iGafZyeTPb8rtqGn9GYNj6NhSA5zbBKeBBIyUnEMyahLSQMBEmaSyy1kZsJxjmVLFQEhgrEwQx-ESeP0FZZleoJ8pJc7bCEcMalpKEQsSA7UuRZkgdShVk8Qq_1gKXdp1SnRhPFcQoDnJoBTnEwQuN-OFPR5avXZVNON_R-63qf2TwtG_q96pFJYSLV1rGsVFVbp6ALgKYZsSQZoccWKXenHukRitYwdB10kvb1lrL4aZK1d2R7eu0rn6Ht1Rf4HG01y1a9AEG44S8Ncf8AMrixcg |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elucidation+of+the+Complicated+Scenario+of+Primate+APOBEC3+Gene+Evolution&rft.jtitle=Journal+of+virology&rft.au=Uriu%2C+Keiya&rft.au=Kosugi%2C+Yusuke&rft.au=Suzuki%2C+Narumi&rft.au=Ito%2C+Jumpei&rft.date=2021-05-24&rft.pub=American+Society+for+Microbiology&rft.issn=0022-538X&rft.eissn=1098-5514&rft.volume=95&rft.issue=12&rft_id=info:doi/10.1128%2FJVI.00144-21&rft_id=info%3Apmid%2F33789992&rft.externalDocID=PMC8316122 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon |