CKV-type $ B $-matrices and error bounds for linear complementarity problems

In this paper, we introduce a new subclass of $ P $-matrices called Cvetković-Kostić-Varga type $ B $-matrices (CKV-type $ B $-matrices), which contains DZ-type-$ B $-matrices as a special case, and present an infinity norm bound for the inverse of CKV-type $ B $-matrices. Based on this bound, we al...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 6; no. 10; pp. 10846 - 10860
Main Authors Song, Xinnian, Gao, Lei
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2021
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2021630

Cover

Abstract In this paper, we introduce a new subclass of $ P $-matrices called Cvetković-Kostić-Varga type $ B $-matrices (CKV-type $ B $-matrices), which contains DZ-type-$ B $-matrices as a special case, and present an infinity norm bound for the inverse of CKV-type $ B $-matrices. Based on this bound, we also give an error bound for linear complementarity problems of CKV-type $ B $-matrices. It is proved that the new error bound is better than that provided by Li et al. [<xref ref-type="bibr" rid="b24">24 ] for DZ-type-$ B $-matrices, and than that provided by M. García-Esnaola and J.M. Peña [<xref ref-type="bibr" rid="b10">10 ] for $ B $-matrices in some cases. Numerical examples demonstrate the effectiveness of the obtained results.
AbstractList In this paper, we introduce a new subclass of $ P $-matrices called Cvetković-Kostić-Varga type $ B $-matrices (CKV-type $ B $-matrices), which contains DZ-type-$ B $-matrices as a special case, and present an infinity norm bound for the inverse of CKV-type $ B $-matrices. Based on this bound, we also give an error bound for linear complementarity problems of CKV-type $ B $-matrices. It is proved that the new error bound is better than that provided by Li et al. [<xref ref-type="bibr" rid="b24">24 ] for DZ-type-$ B $-matrices, and than that provided by M. García-Esnaola and J.M. Peña [<xref ref-type="bibr" rid="b10">10 ] for $ B $-matrices in some cases. Numerical examples demonstrate the effectiveness of the obtained results.
In this paper, we introduce a new subclass of P-matrices called Cvetković-Kostić-Varga type B-matrices (CKV-type B-matrices), which contains DZ-type-B-matrices as a special case, and present an infinity norm bound for the inverse of CKV-type B-matrices. Based on this bound, we also give an error bound for linear complementarity problems of CKV-type B-matrices. It is proved that the new error bound is better than that provided by Li et al. [24] for DZ-type-B-matrices, and than that provided by M. García-Esnaola and J.M. Peña [10] for B-matrices in some cases. Numerical examples demonstrate the effectiveness of the obtained results.
Author Song, Xinnian
Gao, Lei
Author_xml – sequence: 1
  givenname: Xinnian
  surname: Song
  fullname: Song, Xinnian
– sequence: 2
  givenname: Lei
  surname: Gao
  fullname: Gao, Lei
BookMark eNp9kF9LwzAUxYMoOOfe_AB52KOdSZomzaMO_wwHvqiv4TZNNaNtSpoh_fZ2bogI-nTPvZzzu3DO0HHrW4vQBSWLVKX8qoH4vmCEUZGSIzRhXKaJUHl-_EOfolnfbwgZXYwzySdovXx8TeLQWTzHN3iejJTgjO0xtCW2IfiAC79tyx5Xo6xdayFg45uuto1tIwQXB9wFX4x7f45OKqh7OzvMKXq5u31ePiTrp_vV8nqdAJd5TJglKiWlkjRjOVOSiQpUpgqpMkPAQikNr6SorJBUAaWkJKWoKGTCCMs4T6doteeWHja6C66BMGgPTn8dfHjTEKIztdWqEFmheKEymXNqirxkkpHMpJRSZcdepijZs7ZtB8MH1PU3kBK9a1bvmtWHZkc_2_tN8H0fbKWNixCdb2MAV_8VuvwV-vfHJzGNi1w
CitedBy_id crossref_primary_10_3934_math_2022662
crossref_primary_10_3934_math_20241034
crossref_primary_10_1007_s13160_023_00591_w
crossref_primary_10_1007_s10440_024_00644_3
crossref_primary_10_2298_FIL2313335A
crossref_primary_10_3934_math_20231384
Cites_doi 10.1137/0330025
10.1007/s00211-002-0427-8
10.1016/j.aml.2008.09.001
10.1007/s11075-017-0312-2
10.1016/j.amc.2019.124788
10.1016/j.laa.2010.04.024
10.1137/S0895479800370342
10.1016/j.laa.2018.04.028
10.1137/1.9781611971262
10.1007/s40314-021-01491-w
10.1007/s11075-014-9950-9
10.1007/s10092-019-0328-1
10.1016/j.cam.2017.12.032
10.1080/03081087.2019.1649995
10.1007/s11075-013-9786-8
10.1007/s11075-012-9691-6
10.1002/nla.524
10.1090/S0002-9939-1974-0332820-0
10.1287/moor.12.3.474
10.1007/s11075-015-0054-y
10.1007/s10092-015-0167-7
10.1007/s10092-016-0209-9
10.1137/0802004
10.1080/03081087.2017.1389847
10.1007/s11075-018-0495-1
10.1016/j.laa.2020.08.028
10.1007/s11075-016-0181-0
10.1007/s11075-012-9533-6
10.1016/j.laa.2018.12.013
10.1016/j.laa.2019.07.020
10.1016/j.aml.2016.01.013
10.1007/s10107-005-0645-9
10.1016/j.laa.2010.09.049
10.1007/s11075-016-0125-8
ContentType Journal Article
CorporateAuthor School of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji, Shaanxi, 721013, China
CorporateAuthor_xml – name: School of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji, Shaanxi, 721013, China
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.3934/math.2021630
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 10860
ExternalDocumentID oai_doaj_org_article_9b65b94b957841cb8d27205c31119e47
10.3934/math.2021630
10_3934_math_2021630
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ADTOC
UNPAY
ID FETCH-LOGICAL-a478t-2e0930d97152829726fa959b795c0aead7c4f76fe6719a110d0d6f1a56c6e2443
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Fri Oct 03 12:41:04 EDT 2025
Mon Sep 15 08:19:45 EDT 2025
Tue Jul 01 03:56:49 EDT 2025
Thu Apr 24 22:52:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a478t-2e0930d97152829726fa959b795c0aead7c4f76fe6719a110d0d6f1a56c6e2443
OpenAccessLink https://doaj.org/article/9b65b94b957841cb8d27205c31119e47
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_9b65b94b957841cb8d27205c31119e47
unpaywall_primary_10_3934_math_2021630
crossref_citationtrail_10_3934_math_2021630
crossref_primary_10_3934_math_2021630
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2021
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2021630-1
key-10.3934/math.2021630-14
key-10.3934/math.2021630-36
key-10.3934/math.2021630-13
key-10.3934/math.2021630-35
key-10.3934/math.2021630-16
key-10.3934/math.2021630-15
key-10.3934/math.2021630-5
key-10.3934/math.2021630-18
key-10.3934/math.2021630-4
key-10.3934/math.2021630-17
key-10.3934/math.2021630-3
key-10.3934/math.2021630-2
key-10.3934/math.2021630-19
key-10.3934/math.2021630-30
key-10.3934/math.2021630-10
key-10.3934/math.2021630-32
key-10.3934/math.2021630-31
key-10.3934/math.2021630-12
key-10.3934/math.2021630-34
key-10.3934/math.2021630-11
key-10.3934/math.2021630-33
key-10.3934/math.2021630-9
key-10.3934/math.2021630-8
key-10.3934/math.2021630-7
key-10.3934/math.2021630-6
key-10.3934/math.2021630-25
key-10.3934/math.2021630-24
key-10.3934/math.2021630-27
key-10.3934/math.2021630-26
key-10.3934/math.2021630-29
key-10.3934/math.2021630-28
key-10.3934/math.2021630-21
key-10.3934/math.2021630-20
key-10.3934/math.2021630-23
key-10.3934/math.2021630-22
References_xml – ident: key-10.3934/math.2021630-19
  doi: 10.1137/0330025
– ident: key-10.3934/math.2021630-29
  doi: 10.1007/s00211-002-0427-8
– ident: key-10.3934/math.2021630-10
  doi: 10.1016/j.aml.2008.09.001
– ident: key-10.3934/math.2021630-16
  doi: 10.1007/s11075-017-0312-2
– ident: key-10.3934/math.2021630-34
  doi: 10.1016/j.amc.2019.124788
– ident: key-10.3934/math.2021630-14
  doi: 10.1016/j.laa.2010.04.024
– ident: key-10.3934/math.2021630-30
  doi: 10.1137/S0895479800370342
– ident: key-10.3934/math.2021630-33
  doi: 10.1016/j.laa.2018.04.028
– ident: key-10.3934/math.2021630-1
  doi: 10.1137/1.9781611971262
– ident: key-10.3934/math.2021630-27
  doi: 10.1007/s40314-021-01491-w
– ident: key-10.3934/math.2021630-4
  doi: 10.1007/s11075-014-9950-9
– ident: key-10.3934/math.2021630-13
  doi: 10.1007/s10092-019-0328-1
– ident: key-10.3934/math.2021630-15
  doi: 10.1016/j.cam.2017.12.032
– ident: key-10.3934/math.2021630-32
  doi: 10.1080/03081087.2019.1649995
– ident: key-10.3934/math.2021630-23
  doi: 10.1007/s11075-013-9786-8
– ident: key-10.3934/math.2021630-8
  doi: 10.1007/s11075-012-9691-6
– ident: key-10.3934/math.2021630-25
  doi: 10.1002/nla.524
– ident: key-10.3934/math.2021630-31
  doi: 10.1090/S0002-9939-1974-0332820-0
– ident: key-10.3934/math.2021630-28
  doi: 10.1287/moor.12.3.474
– ident: key-10.3934/math.2021630-11
  doi: 10.1007/s11075-015-0054-y
– ident: key-10.3934/math.2021630-9
  doi: 10.1007/s10092-015-0167-7
– ident: key-10.3934/math.2021630-12
  doi: 10.1007/s10092-016-0209-9
– ident: key-10.3934/math.2021630-18
  doi: 10.1137/0802004
– ident: key-10.3934/math.2021630-35
  doi: 10.1080/03081087.2017.1389847
– ident: key-10.3934/math.2021630-17
  doi: 10.1007/s11075-018-0495-1
– ident: key-10.3934/math.2021630-5
  doi: 10.1016/j.laa.2020.08.028
– ident: key-10.3934/math.2021630-21
  doi: 10.1007/s11075-016-0181-0
– ident: key-10.3934/math.2021630-7
  doi: 10.1007/s11075-012-9533-6
– ident: key-10.3934/math.2021630-24
  doi: 10.1016/j.laa.2018.12.013
– ident: key-10.3934/math.2021630-26
– ident: key-10.3934/math.2021630-36
  doi: 10.1016/j.laa.2019.07.020
– ident: key-10.3934/math.2021630-20
  doi: 10.1016/j.aml.2016.01.013
– ident: key-10.3934/math.2021630-2
– ident: key-10.3934/math.2021630-3
  doi: 10.1007/s10107-005-0645-9
– ident: key-10.3934/math.2021630-6
  doi: 10.1016/j.laa.2010.09.049
– ident: key-10.3934/math.2021630-22
  doi: 10.1007/s11075-016-0125-8
SSID ssj0002124274
Score 2.1955316
Snippet In this paper, we introduce a new subclass of $ P $-matrices called Cvetković-Kostić-Varga type $ B $-matrices (CKV-type $ B $-matrices), which contains...
In this paper, we introduce a new subclass of P-matrices called Cvetković-Kostić-Varga type B-matrices (CKV-type B-matrices), which contains DZ-type-B-matrices...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
StartPage 10846
SubjectTerms ckv-type b-matrices
error bounds
infinity norm
linear complementarity problems
p-matrices
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLamcQAOvBHjpRwGF1TYmjRpjoA2IV7iwBCcqrx6YRTUbULw63HabhogHreqctXITuLPsfMZoEkN49pwG6i07TyptsM1J8LAca2ptJSLgp3_6pqf9dj5fXRfg-b4LsxU_p5Kyo4QtvmUQYiwAQPzGR4h4q7DTO_65vjB941jggZcxnFZ0_7tk0_epiDln4fZUfai3l5Vvz_lSbqL0BmPoSwgeTwcDfWhef9Cz_jXIJdgoYKS5Li0_TLUXLYC81cTHtbBKlyeXtwF_pSVNMkJaQZPBSG_GxCVWeLy_Dkn2vdVGhDErsQjTpWTosq8LCr3ne1I1XNmsAa9buf29Cyo-icEiol4GISuJWnLSoE-2t-gDXmqZCS1kJFpKZxCwrBU8NShQaRCHGBblqdtFXHDHbp9ug717DlzG0CEw7gMN8fUqZSFti1t6NCcwqSMY4wZN-BgrOfEVOTivsdFP8Egw-so8TpKKh01YG8i_VKSavwgd-JNNpHxVNjFC1R-Uq2sRGoeacm0jHwK1ejY-tRyZCju4tIx0YD9icF__dvmfwW3YM4_lQcx21Af5iO3g9BkqHermfkBpvDeWA
  priority: 102
  providerName: Unpaywall
Title CKV-type $ B $-matrices and error bounds for linear complementarity problems
URI https://doi.org/10.3934/math.2021630
https://doaj.org/article/9b65b94b957841cb8d27205c31119e47
UnpaywallVersion publishedVersion
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQGaAD4inKo_IALChqmjh2PNKKqgK1YqCoTJFfmUpaJa0Q_567JFRlABbW6BRb39n3sM_fEXIVGsa14dZTadchqbaDPScCz3GtQ2lDLkp2_tGYDyfsYRpNN1p9YU1YRQ9cAdeRmkdaMi0jvCEzOrZ4cxiZEDapdKx8R-7HciOZQhsMBplBvlVVuocyZB2I__DuIYD4w__mg0qq_ibZWWUL9fGuZrMN_zLYJ3t1YEjvqgkdkC2XHZLmaM2qWhyRYf_xxcMzU9rz3kpqfVdQlVnq8nyeU40dkgoKUSjF2FHltKwXr8rDsUcdrbvHFMdkMrh_7g-9uhOCp5iIl17gfBn6VgrwtvgWNuCpkpHUQkbGV7AYhGGp4KkDaKUCj259y9OuirjhDhx4eEIa2Txzp4QKBxkWmLnUqZQFtitt4EAxwqSMQ7YYt8jtFzaJqWnCsVvFLIF0AZFMEMmkRrJFrtfSi4oe4we5HsK8lkFS6_IDqDqpVZ38peoWuVkr6dfRzv5jtHOyi7-rjlsuSGOZr9wlBCBL3S7XWptsT8ZPd6-fQIXYEA
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLamcQAOvBHjpRwGF1TYmjRpjoA2IV7iwBCcqrx6YRTUbULw63HabhogHreqctXITuLPsfMZoEkN49pwG6i07TyptsM1J8LAca2ptJSLgp3_6pqf9dj5fXRfg-b4LsxU_p5Kyo4QtvmUQYiwAQPzGR4h4q7DTO_65vjB941jggZcxnFZ0_7tk0_epiDln4fZUfai3l5Vvz_lSbqL0BmPoSwgeTwcDfWhef9Cz_jXIJdgoYKS5Li0_TLUXLYC81cTHtbBKlyeXtwF_pSVNMkJaQZPBSG_GxCVWeLy_Dkn2vdVGhDErsQjTpWTosq8LCr3ne1I1XNmsAa9buf29Cyo-icEiol4GISuJWnLSoE-2t-gDXmqZCS1kJFpKZxCwrBU8NShQaRCHGBblqdtFXHDHbp9ug717DlzG0CEw7gMN8fUqZSFti1t6NCcwqSMY4wZN-BgrOfEVOTivsdFP8Egw-so8TpKKh01YG8i_VKSavwgd-JNNpHxVNjFC1R-Uq2sRGoeacm0jHwK1ejY-tRyZCju4tIx0YD9icF__dvmfwW3YM4_lQcx21Af5iO3g9BkqHermfkBpvDeWA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CKV-type+B-matrices+and+error+bounds+for+linear+complementarity+problems&rft.jtitle=AIMS+mathematics&rft.au=Xinnian+Song&rft.au=Lei+Gao&rft.date=2021-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=6&rft.issue=10&rft.spage=10846&rft.epage=10860&rft_id=info:doi/10.3934%2Fmath.2021630&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9b65b94b957841cb8d27205c31119e47
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon