Forward Osmosis with a Novel Thin-Film Inorganic Membrane
Forward osmosis (FO) represents a new promising membrane technology for liquid separation driven by the osmotic pressure of aqueous solution. Organic polymeric FO membranes are subject to severe internal concentration polarization due to asymmetric membrane structure, and low stability due to inhere...
Saved in:
| Published in | Environmental science & technology Vol. 47; no. 15; pp. 8733 - 8742 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Washington, DC
American Chemical Society
06.08.2013
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0013-936X 1520-5851 1520-5851 |
| DOI | 10.1021/es401555x |
Cover
| Abstract | Forward osmosis (FO) represents a new promising membrane technology for liquid separation driven by the osmotic pressure of aqueous solution. Organic polymeric FO membranes are subject to severe internal concentration polarization due to asymmetric membrane structure, and low stability due to inherent chemical composition. To address these limitations, this study focuses on the development of a new kind of thin-film inorganic (TFI) membrane made of microporous silica xerogels immobilized onto a stainless steel mesh (SSM) substrate. The FO performances of the TFI membrane were evaluated upon a lab-scale cell-type FO reactor using deionized water as feed solution and sodium chloride (NaCl) as draw solution. The results demonstrated that the TFI membrane could achieve transmembrane water flux of 60.3 L m–2 h–1 driven by 2.0 mol L–1 NaCl draw solution at ambient temperature. Meanwhile, its specific solute flux, i.e. the solute flux normalized by the water flux (0.19 g L–1), was 58.7% lower than that obained for a commercial cellulose triacetate (CTA) membrane (0.46 g L–1). The quasi-symmetry thin-film microporous structure of the silica membrane is responsible for low-level internal concentration polarization, and thus enhanced water flux during FO process. Moreover, the TFI membrne demonstrated a substantially improved stability in terms of mechanical strength, and resistance to thermal and chemical stimulation. This study not only provides a new method for fabricating quasi-symmetry thin-film inorganic silica membrane, but also suggests an effective strategy using this alternative membrane to achieve improved FO performances for scale-up applications. |
|---|---|
| AbstractList | Forward osmosis (FO) represents a new promising membrane technology for liquid separation driven by the osmotic pressure of aqueous solution. Organic polymeric FO membranes are subject to severe internal concentration polarization due to asymmetric membrane structure, and low stability due to inherent chemical composition. To address these limitations, this study focuses on the development of a new kind of thin-film inorganic (TFI) membrane made of microporous silica xerogels immobilized onto a stainless steel mesh (SSM) substrate. The FO performances of the TFI membrane were evaluated upon a lab-scale cell-type FO reactor using deionized water as feed solution and sodium chloride (NaCl) as draw solution. The results demonstrated that the TFI membrane could achieve transmembrane water flux of 60.3 L m... h... driven by 2.0 mol L... NaCl draw solution at ambient temperature. Meanwhile, its specific solute flux, i.e. the solute flux normalized by the water flux (0.19 g L...was 58.7% lower than that obained for a commercial cellulose triacetate (CTA) membrane (0.46 g L...). The quasi-symmetry thin-film microporous structure of the silica membrane is responsible for low-level internal concentration polarization, and thus enhanced water flux during FO process. Moreover, the TFI membrne demonstrated a substantially improved stability in terms of mechanical strength, and resistance to thermal and chemical stimulation. This study not only provides a new method for fabricating quasi-symmetry thin-film inorganic silica membrane, but also suggests an effective strategy using this alternative membrane to achieve improved FO performances for scale-up applications. (ProQuest: ... denotes formulae/symbols omitted.) Forward osmosis (FO) represents a new promising membrane technology for liquid separation driven by the osmotic pressure of aqueous solution. Organic polymeric FO membranes are subject to severe internal concentration polarization due to asymmetric membrane structure, and low stability due to inherent chemical composition. To address these limitations, this study focuses on the development of a new kind of thin-film inorganic (TFI) membrane made of microporous silica xerogels immobilized onto a stainless steel mesh (SSM) substrate. The FO performances of the TFI membrane were evaluated upon a lab-scale cell-type FO reactor using deionized water as feed solution and sodium chloride (NaCl) as draw solution. The results demonstrated that the TFI membrane could achieve transmembrane water flux of 60.3 L m–² h–¹ driven by 2.0 mol L–¹ NaCl draw solution at ambient temperature. Meanwhile, its specific solute flux, i.e. the solute flux normalized by the water flux (0.19 g L–¹), was 58.7% lower than that obained for a commercial cellulose triacetate (CTA) membrane (0.46 g L–¹). The quasi-symmetry thin-film microporous structure of the silica membrane is responsible for low-level internal concentration polarization, and thus enhanced water flux during FO process. Moreover, the TFI membrne demonstrated a substantially improved stability in terms of mechanical strength, and resistance to thermal and chemical stimulation. This study not only provides a new method for fabricating quasi-symmetry thin-film inorganic silica membrane, but also suggests an effective strategy using this alternative membrane to achieve improved FO performances for scale-up applications. Forward osmosis (FO) represents a new promising membrane technology for liquid separation driven by the osmotic pressure of aqueous solution. Organic polymeric FO membranes are subject to severe internal concentration polarization due to asymmetric membrane structure, and low stability due to inherent chemical composition. To address these limitations, this study focuses on the development of a new kind of thin-film inorganic (TFI) membrane made of microporous silica xerogels immobilized onto a stainless steel mesh (SSM) substrate. The FO performances of the TFI membrane were evaluated upon a lab-scale cell-type FO reactor using deionized water as feed solution and sodium chloride (NaCl) as draw solution. The results demonstrated that the TFI membrane could achieve transmembrane water flux of 60.3 L m(-2) h(-1) driven by 2.0 mol L(-1) NaCl draw solution at ambient temperature. Meanwhile, its specific solute flux, i.e. the solute flux normalized by the water flux (0.19 g L(-1)), was 58.7% lower than that obained for a commercial cellulose triacetate (CTA) membrane (0.46 g L(-1)). The quasi-symmetry thin-film microporous structure of the silica membrane is responsible for low-level internal concentration polarization, and thus enhanced water flux during FO process. Moreover, the TFI membrne demonstrated a substantially improved stability in terms of mechanical strength, and resistance to thermal and chemical stimulation. This study not only provides a new method for fabricating quasi-symmetry thin-film inorganic silica membrane, but also suggests an effective strategy using this alternative membrane to achieve improved FO performances for scale-up applications.Forward osmosis (FO) represents a new promising membrane technology for liquid separation driven by the osmotic pressure of aqueous solution. Organic polymeric FO membranes are subject to severe internal concentration polarization due to asymmetric membrane structure, and low stability due to inherent chemical composition. To address these limitations, this study focuses on the development of a new kind of thin-film inorganic (TFI) membrane made of microporous silica xerogels immobilized onto a stainless steel mesh (SSM) substrate. The FO performances of the TFI membrane were evaluated upon a lab-scale cell-type FO reactor using deionized water as feed solution and sodium chloride (NaCl) as draw solution. The results demonstrated that the TFI membrane could achieve transmembrane water flux of 60.3 L m(-2) h(-1) driven by 2.0 mol L(-1) NaCl draw solution at ambient temperature. Meanwhile, its specific solute flux, i.e. the solute flux normalized by the water flux (0.19 g L(-1)), was 58.7% lower than that obained for a commercial cellulose triacetate (CTA) membrane (0.46 g L(-1)). The quasi-symmetry thin-film microporous structure of the silica membrane is responsible for low-level internal concentration polarization, and thus enhanced water flux during FO process. Moreover, the TFI membrne demonstrated a substantially improved stability in terms of mechanical strength, and resistance to thermal and chemical stimulation. This study not only provides a new method for fabricating quasi-symmetry thin-film inorganic silica membrane, but also suggests an effective strategy using this alternative membrane to achieve improved FO performances for scale-up applications. Forward osmosis (FO) represents a new promising membrane technology for liquid separation driven by the osmotic pressure of aqueous solution. Organic polymeric FO membranes are subject to severe internal concentration polarization due to asymmetric membrane structure, and low stability due to inherent chemical composition. To address these limitations, this study focuses on the development of a new kind of thin-film inorganic (TFI) membrane made of microporous silica xerogels immobilized onto a stainless steel mesh (SSM) substrate. The FO performances of the TFI membrane were evaluated upon a lab-scale cell-type FO reactor using deionized water as feed solution and sodium chloride (NaCl) as draw solution. The results demonstrated that the TFI membrane could achieve transmembrane water flux of 60.3 L m(-2) h(-1) driven by 2.0 mol L(-1) NaCl draw solution at ambient temperature. Meanwhile, its specific solute flux, i.e. the solute flux normalized by the water flux (0.19 g L(-1)), was 58.7% lower than that obained for a commercial cellulose triacetate (CTA) membrane (0.46 g L(-1)). The quasi-symmetry thin-film microporous structure of the silica membrane is responsible for low-level internal concentration polarization, and thus enhanced water flux during FO process. Moreover, the TFI membrne demonstrated a substantially improved stability in terms of mechanical strength, and resistance to thermal and chemical stimulation. This study not only provides a new method for fabricating quasi-symmetry thin-film inorganic silica membrane, but also suggests an effective strategy using this alternative membrane to achieve improved FO performances for scale-up applications. Forward osmosis (FO) represents a new promising membrane technology for liquid separation driven by the osmotic pressure of aqueous solution. Organic polymeric FO membranes are subject to severe internal concentration polarization due to asymmetric membrane structure, and low stability due to inherent chemical composition. To address these limitations, this study focuses on the development of a new kind of thin-film inorganic (TFI) membrane made of microporous silica xerogels immobilized onto a stainless steel mesh (SSM) substrate. The FO performances of the TFI membrane were evaluated upon a lab-scale cell-type FO reactor using deionized water as feed solution and sodium chloride (NaCl) as draw solution. The results demonstrated that the TFI membrane could achieve transmembrane water flux of 60.3 L m h driven by 2.0 mol L NaCl draw solution at ambient temperature. Meanwhile, its specific solute flux, i.e. the solute flux normalized by the water flux (0.19 g L was 58.7% lower than that obained for a commercial cellulose triacetate (CTA) membrane (0.46 g L). The quasi-symmetry thin-film microporous structure of the silica membrane is responsible for low-level internal concentration polarization, and thus enhanced water flux during FO process. Moreover, the TFI membrne demonstrated a substantially improved stability in terms of mechanical strength, and resistance to thermal and chemical stimulation. This study not only provides a new method for fabricating quasi-symmetry thin-film inorganic silica membrane, but also suggests an effective strategy using this alternative membrane to achieve improved FO performances for scale-up applications. |
| Author | Wang, Xiuheng Zhang, Jinna Gan, Yang Yu, Chen Han, Jia Ren, Nanqi You, Shijie Tang, Chuyang |
| AuthorAffiliation | Nanyang Technological University (NTU) Harbin Institute of Technology (HIT) |
| AuthorAffiliation_xml | – name: Nanyang Technological University (NTU) – name: Harbin Institute of Technology (HIT) |
| Author_xml | – sequence: 1 givenname: Shijie surname: You fullname: You, Shijie email: sjyou@hit.edu.cn, xiuheng@hit.edu.cn – sequence: 2 givenname: Chuyang surname: Tang fullname: Tang, Chuyang – sequence: 3 givenname: Chen surname: Yu fullname: Yu, Chen – sequence: 4 givenname: Xiuheng surname: Wang fullname: Wang, Xiuheng email: sjyou@hit.edu.cn, xiuheng@hit.edu.cn – sequence: 5 givenname: Jinna surname: Zhang fullname: Zhang, Jinna – sequence: 6 givenname: Jia surname: Han fullname: Han, Jia – sequence: 7 givenname: Yang surname: Gan fullname: Gan, Yang – sequence: 8 givenname: Nanqi surname: Ren fullname: Ren, Nanqi |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27637679$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23829428$$D View this record in MEDLINE/PubMed |
| BookMark | eNqF0UFLHTEQB_AglvrUHvwCZUGE9rA6M9lkk6NIXyvYerHQ25LNZmtkd6PJPq3f3ojPttiCp1x-M5n_zDbbnMLkGNtDOEQgPHKpAhRC_NpgCxQEpVACN9kCAHmpufyxxbZTugIA4qDesi3iinRFasH0MsQ7E7viPI0h-VTc-fmyMMW3cOuG4uLST-XSD2NxOoX400zeFl_d2EYzuV32pjdDcu_W7w77vvx0cfKlPDv_fHpyfFaaqpZz2bleOLIEaNrectt1vUSBrgUSWGMFtVFIpCqhjaFKI7i2J61J1rXkuuM77MNT3-sYblYuzc3ok3XDkGcIq9TQYyzgUolXKQqAWpJQ8DqtUHEpSGGm-y_oVVjFKWfOKv8sKKfI6v1ardrRdc119KOJ983zqjM4WAOTrBn6vEPr0x-X09ay1tkdPTkbQ0rR9Y31s5l9mOZo_NAgNI9Hb34fPVd8fFHx3PR_dj2FsemvHP-4Bzd3sxQ |
| CODEN | ESTHAG |
| CitedBy_id | crossref_primary_10_1016_j_memsci_2016_10_051 crossref_primary_10_1016_j_surfcoat_2018_11_076 crossref_primary_10_1016_j_cej_2015_05_080 crossref_primary_10_1016_j_carbpol_2018_10_005 crossref_primary_10_1016_j_jece_2024_113429 crossref_primary_10_1016_j_desal_2017_12_010 crossref_primary_10_1016_j_memsci_2015_12_066 crossref_primary_10_1021_acs_est_6b02953 crossref_primary_10_1021_acsami_0c17405 crossref_primary_10_1021_acsanm_8b00709 crossref_primary_10_1515_revce_2021_0004 crossref_primary_10_1080_15422119_2019_1622133 crossref_primary_10_1016_j_desal_2015_05_026 crossref_primary_10_1021_jp409178j crossref_primary_10_1016_j_memsci_2020_118738 crossref_primary_10_3390_w12010107 crossref_primary_10_1016_j_desal_2020_114338 crossref_primary_10_1039_C7CP05660E crossref_primary_10_1016_j_jwpe_2024_105099 crossref_primary_10_1016_j_cherd_2015_10_008 crossref_primary_10_1021_acs_est_5b03747 crossref_primary_10_1016_j_memsci_2013_12_068 crossref_primary_10_1016_j_jwpe_2021_102045 crossref_primary_10_1016_j_eti_2021_101423 crossref_primary_10_1021_acs_est_7b05341 crossref_primary_10_1016_j_desal_2017_10_028 crossref_primary_10_1021_acs_iecr_5b01960 crossref_primary_10_1016_j_jwpe_2020_101806 crossref_primary_10_1016_j_memsci_2015_09_010 crossref_primary_10_1021_acs_est_0c02809 crossref_primary_10_1016_j_memsci_2015_03_080 crossref_primary_10_1016_j_cej_2016_12_092 crossref_primary_10_1016_j_seppur_2021_119973 crossref_primary_10_1016_j_memsci_2018_11_075 crossref_primary_10_1016_j_seppur_2020_116947 crossref_primary_10_1016_j_desal_2015_07_016 crossref_primary_10_1039_C7EW00507E crossref_primary_10_1088_1757_899X_547_1_012053 crossref_primary_10_1016_j_seppur_2024_130163 crossref_primary_10_1016_j_cej_2017_03_064 crossref_primary_10_1016_j_desal_2015_12_006 crossref_primary_10_1016_j_desal_2017_08_006 crossref_primary_10_1016_j_watres_2014_08_021 crossref_primary_10_1021_acs_est_0c03392 crossref_primary_10_1021_acs_estlett_8b00117 crossref_primary_10_1016_j_jfoodeng_2020_110216 crossref_primary_10_1016_j_jwpe_2019_100864 crossref_primary_10_1016_j_jece_2021_105473 crossref_primary_10_1039_C5TA00430F crossref_primary_10_1016_j_memsci_2017_01_035 crossref_primary_10_1021_acsami_1c04777 |
| Cites_doi | 10.1016/S0376-7388(99)00081-2 10.1016/j.memsci.2011.11.020 10.1021/es803360t 10.1016/j.memsci.2010.11.014 10.1016/j.memsci.2011.02.013 10.1016/j.memsci.2005.10.048 10.1016/j.cej.2012.05.087 10.1061/(ASCE)1090-0241(2002)128:7(629) 10.1039/b401496k 10.1063/1.441506 10.1016/j.desal.2012.07.005 10.1016/S0376-7388(98)00361-5 10.1021/ie2027052 10.1126/science.279.5357.1710 10.1016/S0009-2509(99)00371-1 10.1016/0376-7388(91)80007-S 10.1021/ie901592d 10.1016/j.memsci.2010.03.003 10.1016/j.memsci.2011.12.026 10.1016/S0376-7388(97)00334-7 10.1016/j.memsci.2011.12.034 10.1016/j.memsci.2010.02.059 10.1016/S0011-9164(00)82089-5 10.1016/S0376-7388(00)00692-X 10.1016/j.memsci.2012.07.020 10.1016/j.memsci.2012.01.001 10.1016/j.memsci.2012.03.002 10.1016/0376-7388(92)85006-5 10.1016/j.memsci.2010.03.017 10.1016/j.desal.2011.05.018 10.1016/j.memsci.2010.05.056 10.1021/es100901n 10.1016/j.memsci.2013.04.004 10.1016/j.desal.2011.06.047 10.1016/j.memsci.2011.12.046 10.1016/j.memsci.2012.09.005 10.1016/j.memsci.2011.12.023 10.1016/j.desal.2010.06.027 10.1016/j.polymer.2012.04.024 10.1016/j.memsci.2008.03.021 10.1016/j.memsci.2012.05.065 10.1080/00268970110041236 10.1016/j.jcis.2011.10.041 10.1016/j.desal.2004.11.002 10.1016/j.watres.2007.05.054 10.1016/j.memsci.2010.11.067 10.1021/es1002555 10.1016/j.memsci.2006.07.049 10.1016/j.memsci.2011.08.046 10.1016/j.ces.2012.05.033 10.1016/j.desal.2011.02.026 10.1007/BF00489722 10.1016/j.memsci.2007.05.035 10.1016/S0010-938X(00)00113-X 10.1016/S0260-8774(00)00222-3 10.1002/adma.201100510 10.1038/174660a0 10.1016/j.desal.2004.02.102 10.1016/0168-3659(95)00013-X 10.1016/j.memsci.2006.05.048 |
| ContentType | Journal Article |
| Copyright | Copyright © 2013 American Chemical Society 2015 INIST-CNRS Copyright American Chemical Society Aug 6, 2013 |
| Copyright_xml | – notice: Copyright © 2013 American Chemical Society – notice: 2015 INIST-CNRS – notice: Copyright American Chemical Society Aug 6, 2013 |
| DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7QH 7UA F1W H97 L.G 7S9 L.6 |
| DOI | 10.1021/es401555x |
| DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic Aqualine Water Resources Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Biotechnology Research Abstracts AGRICOLA MEDLINE - Academic MEDLINE Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences Chemistry |
| EISSN | 1520-5851 |
| EndPage | 8742 |
| ExternalDocumentID | 3044947331 23829428 27637679 10_1021_es401555x c689963806 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
| GroupedDBID | - .K2 1AW 3R3 4.4 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 6TJ AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADUKH AGXLV AHGAQ CITATION CUPRZ GGK MS~ MW2 XSW ZCA .HR 186 1WB 42X 8WZ A6W AAYOK ABHMW ABTAH ACKIV ACRPL ADMHC ADNMO AETEA AEYZD ANPPW ANTXH IHE IQODW MVM NHB OHT RNS TAE UBC UBX UBY UQL VJK VOH YV5 ZCG ZY4 ~A~ CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 7QH 7UA F1W H97 L.G 7S9 L.6 |
| ID | FETCH-LOGICAL-a476t-def5e2c201abfc3cddf6151eb025171407a81228459aa24910ebf2992677639d3 |
| IEDL.DBID | ACS |
| ISSN | 0013-936X 1520-5851 |
| IngestDate | Fri Jul 11 15:57:04 EDT 2025 Tue Oct 07 09:56:57 EDT 2025 Fri Jul 11 10:16:17 EDT 2025 Mon Jun 30 06:08:18 EDT 2025 Mon Jul 21 06:05:56 EDT 2025 Wed Apr 02 07:46:50 EDT 2025 Thu Apr 24 22:59:34 EDT 2025 Tue Jul 01 04:28:38 EDT 2025 Thu Aug 27 13:42:21 EDT 2020 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Keywords | Atomic force microscopy Stainless steel Osmosis Sodium chloride Xerogel Silica Inorganic membrane |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a476t-def5e2c201abfc3cddf6151eb025171407a81228459aa24910ebf2992677639d3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PMID | 23829428 |
| PQID | 1420352140 |
| PQPubID | 45412 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2000203685 proquest_miscellaneous_1500762580 proquest_miscellaneous_1418365281 proquest_journals_1420352140 pubmed_primary_23829428 pascalfrancis_primary_27637679 crossref_citationtrail_10_1021_es401555x crossref_primary_10_1021_es401555x acs_journals_10_1021_es401555x |
| ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2013-08-06 |
| PublicationDateYYYYMMDD | 2013-08-06 |
| PublicationDate_xml | – month: 08 year: 2013 text: 2013-08-06 day: 06 |
| PublicationDecade | 2010 |
| PublicationPlace | Washington, DC |
| PublicationPlace_xml | – name: Washington, DC – name: United States – name: Easton |
| PublicationTitle | Environmental science & technology |
| PublicationTitleAlternate | Environ. Sci. Technol |
| PublicationYear | 2013 |
| Publisher | American Chemical Society |
| Publisher_xml | – name: American Chemical Society |
| References | McCutcheon J. R. (ref53/cit53) 2008; 318 Cath T. Y. (ref59/cit59) 2013; 312 Li L. X. (ref64/cit64) 2004; 170 McCutcheon J. R. (ref31/cit31) 2006; 278 Yip N. Y. (ref37/cit37) 2010; 44 McCutcheon J. R. (ref56/cit56) 2006; 284 Setiawan L. (ref9/cit9) 2011; 369 Han G. (ref32/cit32) 2012; 80 Cuperus F. P. (ref19/cit19) 1992; 71 Tiraferri A. (ref38/cit38) 2011; 367 Wang R. (ref36/cit36) 2010; 355 Yong J. S. (ref52/cit52) 2012; 392 Kravath R. E. (ref65/cit65) 1975; 16 Li X. (ref44/cit44) 2012; 51 Wei J. (ref30/cit30) 2011; 372 Su J. C. (ref34/cit34) 2012; 396 Pattle R. E. (ref4/cit4) 1954; 174 Han G. (ref22/cit22) 2012; 423 Holloway R. W. (ref2/cit2) 2007; 41 Cath T. Y. (ref6/cit6) 2006; 281 Bozec N. L. (ref16/cit16) 2001; 43 Petrotos K. B. (ref3/cit3) 2001; 49 Ma N. (ref60/cit60) 2013; 441 Malusis M. A. (ref62/cit62) 2002; 128 Santus G. (ref5/cit5) 1995; 35 Chou S. R. (ref43/cit43) 2010; 261 McCutcheon J. R. (ref1/cit1) 2005; 174 Qiu C. (ref39/cit39) 2012; 287 De Vos R. M. (ref11/cit11) 1998; 279 You S. J. (ref21/cit21) 2012; 198 Song X. X. (ref42/cit42) 2011; 23 Tang C. Y. (ref58/cit58) 2010; 354 Qin J. J. (ref24/cit24) 1999; 157 Lin C. X. (ref63/cit63) 2012; 368 Su J. C. (ref35/cit35) 2010; 355 Phuntsho S. (ref54/cit54) 2012; 415 Campaniello J. (ref14/cit14) 2004 De Vos R. M. (ref17/cit17) 1998; 143 Zhang S. (ref46/cit46) 2012; 53 Ruthven D. M. (ref26/cit26) 1984 Palmeri J. (ref27/cit27) 1999; 160 Ong R. C. (ref51/cit51) 2012; 394 Fang W. X. (ref49/cit49) 2012; 394 Cuperus F. P. (ref18/cit18) 1991; 71 Setiawan L. (ref40/cit40) 2011; 369 Palinkas G. (ref61/cit61) 1981; 74 Zhao S. F. (ref10/cit10) 2012; 396 Qi S. R. (ref45/cit45) 2012; 405 De Lange R. S. A. (ref15/cit15) 1995; 2 Setiawan L. (ref47/cit47) 2012; 394 Wang K. Y. (ref7/cit7) 2007; 300 Chung T. S. (ref25/cit25) 1999; 55 Wei J. (ref8/cit8) 2011; 372 Wang R. (ref23/cit23) 2010; 355 Lee H. R. (ref13/cit13) 2011; 383 Yang Q. (ref50/cit50) 2009; 43 Tsuru T. (ref20/cit20) 2001; 186 Tang C. Y. Y. (ref28/cit28) 2011; 283 Phillip W. A. (ref57/cit57) 2010; 44 Ma N. (ref29/cit29) 2012; 405 Zhang S. (ref41/cit41) 2010; 360 Zhao S. (ref55/cit55) 2011; 278 Lin J. (ref12/cit12) 2001; 99 Setiawan L. (ref33/cit33) 2012; 421 Wang K. Y. (ref48/cit48) 2010; 49 |
| References_xml | – volume: 160 start-page: 141 year: 1999 ident: ref27/cit27 publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(99)00081-2 – volume: 392 start-page: 9 year: 2012 ident: ref52/cit52 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.11.020 – volume: 43 start-page: 2800 year: 2009 ident: ref50/cit50 publication-title: Environ. Sci. Technol. doi: 10.1021/es803360t – volume: 367 start-page: 340 year: 2011 ident: ref38/cit38 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.11.014 – volume: 372 start-page: 292 year: 2011 ident: ref30/cit30 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.02.013 – volume: 278 start-page: 114 year: 2006 ident: ref31/cit31 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2005.10.048 – volume: 372 start-page: 292 year: 2011 ident: ref8/cit8 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.02.013 – volume: 198 start-page: 52 year: 2012 ident: ref21/cit21 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.05.087 – volume: 128 start-page: 629 year: 2002 ident: ref62/cit62 publication-title: J. Geotechnol. Geoenviron. Eng. doi: 10.1061/(ASCE)1090-0241(2002)128:7(629) – start-page: 834 year: 2004 ident: ref14/cit14 publication-title: Chem. Commun. doi: 10.1039/b401496k – volume: 74 start-page: 3522 year: 1981 ident: ref61/cit61 publication-title: J. Chem. Phys. doi: 10.1063/1.441506 – volume: 312 start-page: 31 year: 2013 ident: ref59/cit59 publication-title: Desalination doi: 10.1016/j.desal.2012.07.005 – volume: 157 start-page: 35 year: 1999 ident: ref24/cit24 publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(98)00361-5 – volume: 51 start-page: 10039 year: 2012 ident: ref44/cit44 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie2027052 – volume: 279 start-page: 1710 year: 1998 ident: ref11/cit11 publication-title: Science doi: 10.1126/science.279.5357.1710 – volume: 55 start-page: 1077 year: 1999 ident: ref25/cit25 publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(99)00371-1 – volume-title: Principles of Adsorption and Adsorption Processes year: 1984 ident: ref26/cit26 – volume: 71 start-page: 73 year: 1991 ident: ref18/cit18 publication-title: J. Membr. Sci. doi: 10.1016/0376-7388(91)80007-S – volume: 49 start-page: 4824 year: 2010 ident: ref48/cit48 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie901592d – volume: 355 start-page: 36 year: 2010 ident: ref35/cit35 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.03.003 – volume: 394 start-page: 80 year: 2012 ident: ref47/cit47 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.12.026 – volume: 143 start-page: 37 year: 1998 ident: ref17/cit17 publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(97)00334-7 – volume: 394 start-page: 140 year: 2012 ident: ref49/cit49 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.12.034 – volume: 354 start-page: 123 year: 2010 ident: ref58/cit58 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.02.059 – volume: 16 start-page: 151 year: 1975 ident: ref65/cit65 publication-title: Desalination doi: 10.1016/S0011-9164(00)82089-5 – volume: 186 start-page: 257 year: 2001 ident: ref20/cit20 publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(00)00692-X – volume: 421 start-page: 238 year: 2012 ident: ref33/cit33 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.07.020 – volume: 396 start-page: 92 year: 2012 ident: ref34/cit34 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.01.001 – volume: 405 start-page: 149 year: 2012 ident: ref29/cit29 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.03.002 – volume: 71 start-page: 57 year: 1992 ident: ref19/cit19 publication-title: J. Membr. Sci. doi: 10.1016/0376-7388(92)85006-5 – volume: 355 start-page: 158 year: 2010 ident: ref23/cit23 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.03.017 – volume: 278 start-page: 157 year: 2011 ident: ref55/cit55 publication-title: Desalination doi: 10.1016/j.desal.2011.05.018 – volume: 360 start-page: 522 year: 2010 ident: ref41/cit41 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.05.056 – volume: 44 start-page: 5170 year: 2010 ident: ref57/cit57 publication-title: Environ. Sci. Technol. doi: 10.1021/es100901n – volume: 441 start-page: 54 year: 2013 ident: ref60/cit60 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.04.004 – volume: 287 start-page: 266 year: 2012 ident: ref39/cit39 publication-title: Desalination doi: 10.1016/j.desal.2011.06.047 – volume: 394 start-page: 230 year: 2012 ident: ref51/cit51 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.12.046 – volume: 423 start-page: 543 year: 2012 ident: ref22/cit22 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.09.005 – volume: 396 start-page: 1 year: 2012 ident: ref10/cit10 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.12.023 – volume: 261 start-page: 365 year: 2010 ident: ref43/cit43 publication-title: Desalination doi: 10.1016/j.desal.2010.06.027 – volume: 53 start-page: 2664 year: 2012 ident: ref46/cit46 publication-title: Polymer doi: 10.1016/j.polymer.2012.04.024 – volume: 318 start-page: 458 year: 2008 ident: ref53/cit53 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2008.03.021 – volume: 415 start-page: 734 year: 2012 ident: ref54/cit54 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.05.065 – volume: 99 start-page: 1175 year: 2001 ident: ref12/cit12 publication-title: Mol. Phys. doi: 10.1080/00268970110041236 – volume: 368 start-page: 70 year: 2012 ident: ref63/cit63 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2011.10.041 – volume: 174 start-page: 1 year: 2005 ident: ref1/cit1 publication-title: Desalination doi: 10.1016/j.desal.2004.11.002 – volume: 41 start-page: 4005 year: 2007 ident: ref2/cit2 publication-title: Water Res. doi: 10.1016/j.watres.2007.05.054 – volume: 369 start-page: 196 year: 2011 ident: ref40/cit40 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.11.067 – volume: 44 start-page: 3812 year: 2010 ident: ref37/cit37 publication-title: Environ. Sci. Technol. doi: 10.1021/es1002555 – volume: 284 start-page: 237 year: 2006 ident: ref56/cit56 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2006.07.049 – volume: 383 start-page: 152 year: 2011 ident: ref13/cit13 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.08.046 – volume: 80 start-page: 219 year: 2012 ident: ref32/cit32 publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2012.05.033 – volume: 283 start-page: 178 year: 2011 ident: ref28/cit28 publication-title: Desalination doi: 10.1016/j.desal.2011.02.026 – volume: 405 start-page: 20 year: 2012 ident: ref45/cit45 publication-title: J. Membr. Sci. – volume: 369 start-page: 196 year: 2011 ident: ref9/cit9 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.11.067 – volume: 2 start-page: 141 year: 1995 ident: ref15/cit15 publication-title: J. Porous Mater. doi: 10.1007/BF00489722 – volume: 300 start-page: 6 year: 2007 ident: ref7/cit7 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2007.05.035 – volume: 43 start-page: 765 year: 2001 ident: ref16/cit16 publication-title: Corros. Sci. doi: 10.1016/S0010-938X(00)00113-X – volume: 49 start-page: 201 year: 2001 ident: ref3/cit3 publication-title: J. Food Eng. doi: 10.1016/S0260-8774(00)00222-3 – volume: 355 start-page: 158 year: 2010 ident: ref36/cit36 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2010.03.017 – volume: 23 start-page: 3256 year: 2011 ident: ref42/cit42 publication-title: Adv. Mater. doi: 10.1002/adma.201100510 – volume: 174 start-page: 660 year: 1954 ident: ref4/cit4 publication-title: Nature doi: 10.1038/174660a0 – volume: 170 start-page: 309 year: 2004 ident: ref64/cit64 publication-title: Desalination doi: 10.1016/j.desal.2004.02.102 – volume: 35 start-page: 1 year: 1995 ident: ref5/cit5 publication-title: J. Controlled Release doi: 10.1016/0168-3659(95)00013-X – volume: 281 start-page: 70 year: 2006 ident: ref6/cit6 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2006.05.048 |
| SSID | ssj0002308 |
| Score | 2.340759 |
| Snippet | Forward osmosis (FO) represents a new promising membrane technology for liquid separation driven by the osmotic pressure of aqueous solution. Organic polymeric... |
| SourceID | proquest pubmed pascalfrancis crossref acs |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 8733 |
| SubjectTerms | ambient temperature Aqueous solutions asymmetric membranes cellulose chemical composition Chemistry Colloidal state and disperse state Exact sciences and technology General and physical chemistry Hydrogen-Ion Concentration Inorganic Chemicals Membranes Membranes, Artificial methodology Microscopy, Atomic Force Osmosis osmotic pressure porous media silica sodium chloride solutes Stainless steel strength (mechanics) Temperature Thin films |
| Title | Forward Osmosis with a Novel Thin-Film Inorganic Membrane |
| URI | http://dx.doi.org/10.1021/es401555x https://www.ncbi.nlm.nih.gov/pubmed/23829428 https://www.proquest.com/docview/1420352140 https://www.proquest.com/docview/1418365281 https://www.proquest.com/docview/1500762580 https://www.proquest.com/docview/2000203685 |
| Volume | 47 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1520-5851 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002308 issn: 0013-936X databaseCode: ACS dateStart: 19670101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB4hemlV9UFLm5auXODAJbBx_DwiYEUrQQ-AtLdV7NgS6m6CyC4Hfn3HebEI2J7zJbJnPJ5vMvYMwK5wGOLYxMSOSRszgbpQguWxcko7rlPO6v4pZ-fi9Ir9HvPxGuy8kMGnyYGrWPDrHIniKyqkDOf2Do8u-u0WObTq2hToVIy78kHLrwbXY6tHruftTVahFHzTvuJlfln7mdF7OO5u6zTHS_7uL-Zm394_Ld64agof4F3LM8lhszA-wporNuDNUvXBDdg8ebjkhtDWyqtPoEflbThMS_5Us7K6rkj4WUsycl7euSkJnT7j0fV0Rn4VTU8oS87cDKPuwn2Gq9HJ5dFp3LZYiDMmxTzOneeOWmQBmfE2tXnuA8Vxpi5lhsGXzJABoAvjOsswUkuGznj0YEERyG3ydBPWi7JwX4FoZyUbGsR4wYx0Gt8w2hrvkRN4qyIYoA4mrYlUkzr7TZNJL5wI9jr1TGxboDz0yZg-B93uoTdNVY7nQINHOu6RFIcuhdQRbHVKXxoWo6FELE49gp_9Y7S5kEhBQZaLgMGNUHCqkhUYHpKclKsV36FtIljxCL40i-5hkKmiGmPDb_8T23d4TesWHSoeii1Yn98u3A8kSnMzqA3lHzS5Cg0 |
| linkProvider | American Chemical Society |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2hcgCE-CgUAmUJiAOXtBvHduxjVXW1he5yoJX2FsWOLVXsJlW9y4Ffz9jJZreoFM6ZWJPxx7zJJO8BfOIGSxydqsTQXCeU41wITqtEGCENkxmjQT9lMuXjC_plxmYdTY7_FwadcDiSC038DbtAemgc9emdIV68zzhNfaF1dPy9P3URSou1WoHM-GzNIrR9q89A2t3IQI-vSofBsK2Kxd9hZkg3o6etblFwNHxl8uNgtVQH-tcfHI7_9yTP4EmHOuOjdpk8h3um3oVHW1yEu7B3svnlDU27Pe9egBw11_7T2vibWzTu0sX-1W1cxtPmp5nHXvczGV3OF_Fp3SpE6XhiFliD1-YlXIxOzo_HSSe4kJQ058ukMpYZohETlMrqTFeV9YDHqEBshqVYXiIewITGZFli3ZYOjbKYzwjP8ZiSVbYHO3VTm9cQS6NzOlRoYzlVuZF4h5JaWYsIwWoRwQBjU3QbxhWhF07Sog9OBJ_Xs1Tojq7cq2bMbzP92JtetRwdtxkNbkx1b0nQ9ZznMoL99dxvuUWJJ4zFR4_gQ38Zd6Bvq2Agm5W3wWORMyLSO2yYb3kSJu4Yh3RtYcEieNWuvY2TmSASK8U3_wrbe3gwPp-cFWen069v4SEJ4h0iGfJ92Fler8w7hFBLNQh75zeC3RJv |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLfQkBAI8TEYFMYREA-8dLumSZo8orFqA3ZDgkn3VjVpIk3ctafljgf-epy2193QGDzXiRw7jn-uExvgnbAY4phEx5ZlJmYCdSEFq2JppbJcpZy1_VNOJuLojH2a8mkfKIa3MMiEx5l8m8QPVr2oXF9hINm3ngUXzxEz3uYCTTxAoYNvw8mLcFquOxaoVEzXlYQ2hwYvZPwVL3R_UXoUiOs6WfwdarYuJ38IpwOz7U2TH3urpd4zv_6o4_j_q3kED3r0ST502-Ux3LL1NtzbqEm4DTuHl0_fkLS3ff8EVN5chCu25NTPG3_uSfiFS0oyaX7aGQn9P-P8fDYnx3XXKcqQEzvHWLy2T-EsP_x-cBT3jRfikmViGVfWcUsNYoNSO5OaqnIB-FjdFjjDkCwrERegY-OqLDF-S8ZWO_RrVGR4XKkq3YGtuqntcyDKmoyNNdI4wXRmFY7QymjnECk4IyMYoXyK3nB80ebEaVIMwong_VpThenLlofuGbPrSN8OpIuuVsd1RKMr6h4oKbKeiUxFsLvW_wZbjIbCsbj0CN4Mn9ESQ3oFBdmsAg0ej4JTmdxAw0Pqk3J5wzy0Tw9LHsGzbv9dMplKqjBifPEvsb2GO18_5sWX48nnl3CXtj08ZDwWu7C1vFjZV4iklnrUms9vd4MU8g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forward+Osmosis+with+a+Novel+Thin-Film+Inorganic+Membrane&rft.jtitle=Environmental+science+%26+technology&rft.au=You%2C+Shijie&rft.au=Tang%2C+Chuyang&rft.au=Yu%2C+Chen&rft.au=Wang%2C+Xiuheng&rft.date=2013-08-06&rft.issn=0013-936X&rft.volume=47&rft.issue=15&rft.spage=8733&rft.epage=8733&rft_id=info:doi/10.1021%2Fes401555x&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |