Improved prediction of slope stability using a hybrid stacking ensemble method based on finite element analysis and field data
Slope failures lead to catastrophic consequences in numerous countries and thus the stability assessment for slopes is of high interest in geotechnical and geological engineering researches. A hybrid stacking ensemble approach is proposed in this study for enhancing the prediction of slope stability...
Saved in:
| Published in | Journal of Rock Mechanics and Geotechnical Engineering Vol. 13; no. 1; pp. 188 - 201 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.02.2021
Civil and Infrastructure Discipline, School of Engineering, Royal Melbourne Institute of Technology (RMIT), Melbourne, Victoria, Australia%Civil and Infrastructure Discipline, School of Engineering, Royal Melbourne Institute of Technology (RMIT), Melbourne, Victoria, Australia Department of Civil and Environmental Engineering, College of Engineering, Shantou University, Shantou, 515063, China Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1674-7755 2589-0417 2589-0417 |
| DOI | 10.1016/j.jrmge.2020.05.011 |
Cover
| Abstract | Slope failures lead to catastrophic consequences in numerous countries and thus the stability assessment for slopes is of high interest in geotechnical and geological engineering researches. A hybrid stacking ensemble approach is proposed in this study for enhancing the prediction of slope stability. In the hybrid stacking ensemble approach, we used an artificial bee colony (ABC) algorithm to find out the best combination of base classifiers (level 0) and determined a suitable meta-classifier (level 1) from a pool of 11 individual optimized machine learning (OML) algorithms. Finite element analysis (FEA) was conducted in order to form the synthetic database for the training stage (150 cases) of the proposed model while 107 real field slope cases were used for the testing stage. The results by the hybrid stacking ensemble approach were then compared with that obtained by the 11 individual OML methods using confusion matrix, F1-score, and area under the curve, i.e. AUC-score. The comparisons showed that a significant improvement in the prediction ability of slope stability has been achieved by the hybrid stacking ensemble (AUC = 90.4%), which is 7% higher than the best of the 11 individual OML methods (AUC = 82.9%). Then, a further comparison was undertaken between the hybrid stacking ensemble method and basic ensemble classifier on slope stability prediction. The results showed a prominent performance of the hybrid stacking ensemble method over the basic ensemble method. Finally, the importance of the variables for slope stability was studied using linear vector quantization (LVQ) method. |
|---|---|
| AbstractList | Slope failures lead to catastrophic consequences in numerous countries and thus the stability assessment for slopes is of high interest in geotechnical and geological engineering researches. A hybrid stacking ensemble approach is proposed in this study for enhancing the prediction of slope stability. In the hybrid stacking ensemble approach, we used an artificial bee colony (ABC) algorithm to find out the best combination of base classifiers (level 0) and determined a suitable meta-classifier (level 1) from a pool of 11 individual optimized machine learning (OML) algorithms. Finite element analysis (FEA) was con- ducted in order to form the synthetic database for the training stage (150 cases) of the proposed model while 107 real field slope cases were used for the testing stage. The results by the hybrid stacking ensemble approach were then compared with that obtained by the 11 individual OML methods using confusion matrix, F1-score, and area under the curve, i.e. AUC-score. The comparisons showed that a significant improvement in the prediction ability of slope stability has been achieved by the hybrid stacking ensemble (AUC = 90.4%), which is 7% higher than the best of the 11 individual OML methods (AUC = 82.9%). Then, a further comparison was undertaken between the hybrid stacking ensemble method and basic ensemble classifier on slope stability prediction. The results showed a prominent performance of the hybrid stacking ensemble method over the basic ensemble method. Finally, the importance of the variables for slope stability was studied using linear vector quantization (LVQ) method. Slope failures lead to catastrophic consequences in numerous countries and thus the stability assessment for slopes is of high interest in geotechnical and geological engineering researches. A hybrid stacking ensemble approach is proposed in this study for enhancing the prediction of slope stability. In the hybrid stacking ensemble approach, we used an artificial bee colony (ABC) algorithm to find out the best combination of base classifiers (level 0) and determined a suitable meta-classifier (level 1) from a pool of 11 individual optimized machine learning (OML) algorithms. Finite element analysis (FEA) was conducted in order to form the synthetic database for the training stage (150 cases) of the proposed model while 107 real field slope cases were used for the testing stage. The results by the hybrid stacking ensemble approach were then compared with that obtained by the 11 individual OML methods using confusion matrix, F1-score, and area under the curve, i.e. AUC-score. The comparisons showed that a significant improvement in the prediction ability of slope stability has been achieved by the hybrid stacking ensemble (AUC = 90.4%), which is 7% higher than the best of the 11 individual OML methods (AUC = 82.9%). Then, a further comparison was undertaken between the hybrid stacking ensemble method and basic ensemble classifier on slope stability prediction. The results showed a prominent performance of the hybrid stacking ensemble method over the basic ensemble method. Finally, the importance of the variables for slope stability was studied using linear vector quantization (LVQ) method. |
| Author | Nazem, Majidreza Kardani, Navid Zhou, Annan Shen, Shui-Long |
| AuthorAffiliation | Civil and Infrastructure Discipline, School of Engineering, Royal Melbourne Institute of Technology (RMIT), Melbourne, Victoria, Australia%Civil and Infrastructure Discipline, School of Engineering, Royal Melbourne Institute of Technology (RMIT), Melbourne, Victoria, Australia Department of Civil and Environmental Engineering, College of Engineering, Shantou University, Shantou, 515063, China |
| AuthorAffiliation_xml | – name: Civil and Infrastructure Discipline, School of Engineering, Royal Melbourne Institute of Technology (RMIT), Melbourne, Victoria, Australia%Civil and Infrastructure Discipline, School of Engineering, Royal Melbourne Institute of Technology (RMIT), Melbourne, Victoria, Australia Department of Civil and Environmental Engineering, College of Engineering, Shantou University, Shantou, 515063, China |
| Author_xml | – sequence: 1 givenname: Navid surname: Kardani fullname: Kardani, Navid organization: Civil and Infrastructure Discipline, School of Engineering, Royal Melbourne Institute of Technology (RMIT), Melbourne, Victoria, Australia – sequence: 2 givenname: Annan orcidid: 0000-0001-5209-5169 surname: Zhou fullname: Zhou, Annan email: annan.zhou@rmit.edu.au organization: Civil and Infrastructure Discipline, School of Engineering, Royal Melbourne Institute of Technology (RMIT), Melbourne, Victoria, Australia – sequence: 3 givenname: Majidreza orcidid: 0000-0002-6433-3416 surname: Nazem fullname: Nazem, Majidreza organization: Civil and Infrastructure Discipline, School of Engineering, Royal Melbourne Institute of Technology (RMIT), Melbourne, Victoria, Australia – sequence: 4 givenname: Shui-Long surname: Shen fullname: Shen, Shui-Long organization: Civil and Infrastructure Discipline, School of Engineering, Royal Melbourne Institute of Technology (RMIT), Melbourne, Victoria, Australia |
| BookMark | eNqNks9u3CAQh60qlbpN8wS98ALrgm3APvRQRf2zUqRc0jMaYLxhi_EK2CS-9NmDs1UPPbQ9gWb0fYzmx9vqIswBq-o9ozWjTHw41Ic47bFuaENrymvK2Ktq0_B-2NKOyYtqw4TstlJy_qa6SslpymQnhWzFpvq5m45xfkBLjhGtM9nNgcwjSX4-IkkZtPMuL-SUXNgTIPeLjs6uDfNjrWBIOGmPZMJ8P1uiIRVXcYwuuIwEPU4YMoEAfkkulYstPfSWWMjwrno9gk949eu8rL5_-Xx3_W17c_t1d_3pZgtl0LztkTeMNS2CkKOwvRWybxnt20aA0Ma246iN5KNsBLW9GITglCHoQUsLPfTtZbU7e-0MB3WMboK4qBmceinMca8gZmc8KmpADh2MjZDQ8Z5Bo2HgfUu5Yd3Yr67u7DqFIyyP4P1vIaNqjUQd1Eskao1EUa5KJAWrz9gjhBHCXh3mUyxbSWpJ_mlZ8t48aYUFKQrK2gIMZ8DEOaWIozIuwxpQjuD8Px5r_2D_b8SPZwpLFA8Oo0rGYTDlY0Q0uezK_ZV_BuFizdQ |
| CitedBy_id | crossref_primary_10_1007_s42947_021_00054_w crossref_primary_10_1155_2021_6695464 crossref_primary_10_3390_rs15071886 crossref_primary_10_3390_app15020635 crossref_primary_10_1186_s12859_023_05592_7 crossref_primary_10_1016_j_compgeo_2022_105094 crossref_primary_10_1007_s11069_023_06055_1 crossref_primary_10_1007_s12665_024_11562_w crossref_primary_10_1016_j_advengsoft_2024_103648 crossref_primary_10_1016_j_eswa_2023_122400 crossref_primary_10_1016_j_sedgeo_2025_106825 crossref_primary_10_1016_j_wse_2023_09_001 crossref_primary_10_1371_journal_pone_0300586 crossref_primary_10_1016_j_cmpbup_2023_100118 crossref_primary_10_3389_feart_2024_1429601 crossref_primary_10_1007_s12665_023_11247_w crossref_primary_10_1016_j_trgeo_2024_101305 crossref_primary_10_1007_s00366_021_01329_3 crossref_primary_10_1016_j_istruc_2024_106837 crossref_primary_10_1016_j_engstruct_2022_114548 crossref_primary_10_1016_j_nhres_2022_02_001 crossref_primary_10_3233_JIFS_230009 crossref_primary_10_1016_j_jrmge_2022_03_002 crossref_primary_10_3389_feart_2024_1378956 crossref_primary_10_4018_IJGEE_298988 crossref_primary_10_1016_j_ringps_2021_100034 crossref_primary_10_1155_2022_4372567 crossref_primary_10_3390_buildings12050613 crossref_primary_10_1007_s00477_024_02774_4 crossref_primary_10_1016_j_eswa_2023_120595 crossref_primary_10_1109_TGRS_2024_3418205 crossref_primary_10_3389_fmats_2024_1330609 crossref_primary_10_1016_j_undsp_2023_11_002 crossref_primary_10_1007_s11157_023_09671_2 crossref_primary_10_1016_j_compgeo_2022_104904 crossref_primary_10_1016_j_jrmge_2021_05_004 crossref_primary_10_1186_s12911_023_02185_5 crossref_primary_10_1007_s11069_021_05165_y crossref_primary_10_1007_s11069_024_06490_8 crossref_primary_10_3390_bioengineering11050485 crossref_primary_10_1061_IJGNAI_GMENG_8213 crossref_primary_10_1007_s00521_021_06125_0 crossref_primary_10_1177_03611981241278354 crossref_primary_10_1007_s13369_022_06697_6 crossref_primary_10_1016_j_qsa_2023_100075 crossref_primary_10_1007_s12517_021_07664_5 crossref_primary_10_1007_s13762_024_05550_7 crossref_primary_10_1088_1755_1315_1173_1_012033 crossref_primary_10_1007_s10064_023_03226_z crossref_primary_10_3390_safety8010007 crossref_primary_10_1016_j_apm_2023_08_009 crossref_primary_10_1016_j_jrmge_2022_05_016 crossref_primary_10_1016_j_asoc_2023_110591 crossref_primary_10_1016_j_infrared_2024_105168 crossref_primary_10_1155_2021_8249625 crossref_primary_10_1016_j_compgeo_2022_105040 crossref_primary_10_1016_j_conbuildmat_2023_132330 crossref_primary_10_1007_s10706_025_03091_5 crossref_primary_10_1016_j_jafrearsci_2025_105633 crossref_primary_10_1016_j_compstruc_2025_107698 crossref_primary_10_1016_j_psep_2022_08_043 crossref_primary_10_1007_s00366_021_01466_9 crossref_primary_10_3390_geotechnics3040066 crossref_primary_10_1016_j_enggeo_2022_106585 crossref_primary_10_1155_2023_5525793 crossref_primary_10_3390_math12203254 crossref_primary_10_1080_10916466_2021_1974882 crossref_primary_10_1155_2024_8868949 crossref_primary_10_3389_fbuil_2024_1373092 crossref_primary_10_1680_jgere_23_00030 crossref_primary_10_31590_ejosat_1254337 crossref_primary_10_3390_app15052423 crossref_primary_10_1007_s00521_024_09893_7 crossref_primary_10_1007_s11069_022_05292_0 crossref_primary_10_1016_j_jrmge_2024_09_001 crossref_primary_10_1016_j_jrmge_2023_10_015 crossref_primary_10_1016_j_ghm_2024_07_001 crossref_primary_10_1007_s11069_024_06674_2 crossref_primary_10_1016_j_ijthermalsci_2021_107427 crossref_primary_10_3390_modelling4040025 crossref_primary_10_3389_feart_2023_1147825 crossref_primary_10_1002_gj_4770 crossref_primary_10_1016_j_engappai_2023_106968 crossref_primary_10_1016_j_jrmge_2021_09_004 crossref_primary_10_1038_s41598_021_96157_2 crossref_primary_10_1007_s00170_024_14256_6 crossref_primary_10_1016_j_enggeo_2024_107885 crossref_primary_10_1080_17499518_2024_2309234 crossref_primary_10_3390_f14061237 crossref_primary_10_3390_safety7040082 crossref_primary_10_3390_app15010353 crossref_primary_10_1016_j_asoc_2021_107595 crossref_primary_10_1016_j_jrmge_2024_12_015 crossref_primary_10_5802_crmeca_230 crossref_primary_10_1007_s10694_022_01347_7 crossref_primary_10_1016_j_chemolab_2023_104784 crossref_primary_10_5604_01_3001_0016_0975 crossref_primary_10_1007_s00521_022_06964_5 crossref_primary_10_1016_j_treng_2021_100074 crossref_primary_10_3390_w13192664 crossref_primary_10_1080_08839514_2021_2008148 crossref_primary_10_1016_j_jrmge_2021_12_011 crossref_primary_10_1007_s00500_021_06628_x crossref_primary_10_1016_j_engappai_2024_108854 crossref_primary_10_1038_s41598_024_64663_8 crossref_primary_10_1016_j_jrmge_2024_09_015 crossref_primary_10_1007_s10706_022_02196_5 crossref_primary_10_1016_j_jrmge_2021_06_015 crossref_primary_10_1016_j_mineng_2024_108754 crossref_primary_10_3390_fractalfract8090522 crossref_primary_10_1007_s11468_025_02858_z crossref_primary_10_32604_cmc_2023_031194 crossref_primary_10_1007_s00477_024_02730_2 crossref_primary_10_1139_cgj_2022_0365 crossref_primary_10_1007_s10064_023_03466_z crossref_primary_10_1007_s00366_021_01380_0 crossref_primary_10_1007_s12145_024_01641_8 crossref_primary_10_1007_s40948_023_00690_5 crossref_primary_10_1007_s11440_021_01373_9 crossref_primary_10_1016_j_trgeo_2022_100827 crossref_primary_10_1016_j_jrmge_2024_03_038 crossref_primary_10_3390_app13179874 crossref_primary_10_1007_s12205_022_1431_4 crossref_primary_10_1038_s41598_021_86264_5 crossref_primary_10_1007_s11440_021_01257_y crossref_primary_10_1186_s40677_024_00271_y crossref_primary_10_3390_app14156526 crossref_primary_10_1109_ACCESS_2022_3232063 crossref_primary_10_3390_s22239166 crossref_primary_10_1007_s12665_022_10578_4 crossref_primary_10_1007_s00477_024_02784_2 crossref_primary_10_1016_j_jrmge_2021_09_010 crossref_primary_10_1016_j_enganabound_2024_03_019 crossref_primary_10_1016_j_engstruct_2024_118574 crossref_primary_10_1002_gj_4605 crossref_primary_10_3934_mbe_2023939 crossref_primary_10_1111_ffe_14410 crossref_primary_10_3390_app12178698 crossref_primary_10_3390_app122211699 crossref_primary_10_1155_2022_8529026 crossref_primary_10_3390_ijfs11030094 crossref_primary_10_1057_s41300_024_00222_7 crossref_primary_10_1016_j_gsf_2023_101758 crossref_primary_10_1016_j_compgeo_2024_106255 crossref_primary_10_3390_math11143071 crossref_primary_10_1016_j_istruc_2024_107066 crossref_primary_10_1007_s44150_024_00112_4 crossref_primary_10_1016_j_cscm_2024_e03864 crossref_primary_10_1007_s00477_024_02792_2 crossref_primary_10_1155_2022_1639311 crossref_primary_10_3390_app12031184 crossref_primary_10_1007_s11431_023_2537_y |
| Cites_doi | 10.1007/s10346-015-0614-1 10.1155/2010/901095 10.1016/S0893-6080(05)80023-1 10.1109/ACCESS.2018.2880466 10.1023/A:1018054314350 10.1002/nag.2554 10.1007/s11069-016-2454-2 10.1061/(ASCE)CP.1943-5487.0000370 10.3233/IDA-2010-0410 10.1007/s12665-010-0839-1 10.1007/s10346-016-0708-4 10.1016/j.geomorph.2009.04.004 10.1139/T07-082 10.1109/ACCESS.2018.2843787 10.1016/j.geomorph.2018.06.006 10.1002/nag.2834 10.1109/TPAMI.2011.142 10.1007/s10346-015-0593-2 10.1680/geot.1955.5.1.7 10.1007/s00366-015-0400-7 10.1023/B:NHAZ.0000007168.00673.27 10.1016/0148-9062(94)92314-0 10.1007/s12665-017-6711-9 10.1080/10916466.2016.1274758 10.1680/geot.1965.15.1.79 10.1155/2013/395096 10.1007/s12205-018-1337-3 10.1007/s10064-016-0870-x 10.1016/j.apm.2015.11.044 10.1080/00031305.1992.10475879 10.1080/19475705.2017.1289250 10.1680/geot.1999.49.3.387 10.1061/(ASCE)CP.1943-5487.0000737 10.1016/j.catena.2018.01.005 10.1007/s10994-006-6226-1 10.1016/j.catena.2016.06.004 10.3390/e13040841 10.1007/s10706-004-8680-5 10.1007/s10706-019-01085-8 10.1016/j.enggeo.2006.09.017 10.1007/s11069-018-3246-7 10.1016/j.swevo.2013.04.004 10.1016/j.cageo.2008.08.007 10.1016/j.compgeo.2008.03.006 10.1016/j.compgeo.2006.07.001 10.1061/(ASCE)CP.1943-5487.0000456 10.1061/(ASCE)CP.1943-5487.0000372 10.1016/j.cageo.2011.09.011 10.1080/19475705.2017.1407368 10.1016/j.catena.2017.11.022 10.1080/01430750.2018.1492441 10.1016/j.scitotenv.2019.01.329 10.1016/S0013-7952(03)00069-3 10.1016/j.geomorph.2004.06.010 10.1016/j.apm.2015.03.032 10.1016/j.asoc.2007.05.007 10.1016/j.jclepro.2018.08.127 10.1007/s10706-017-0264-2 10.1016/j.eswa.2015.10.020 10.1016/j.eswa.2011.08.081 10.1061/(ASCE)1090-0241(2004)130:5(507) 10.1016/j.soildyn.2019.105988 10.1016/j.molliq.2017.04.019 10.1016/j.tust.2020.103594 10.1016/j.cie.2018.02.028 10.3390/app8122540 10.1016/j.neucom.2015.11.122 10.1680/geot.1960.10.4.129 10.1016/j.enggeo.2008.09.004 10.1007/s11069-012-0396-x |
| ContentType | Journal Article |
| Copyright | 2021 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: 2021 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 6I. AAFTH AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ ADTOC UNPAY DOA |
| DOI | 10.1016/j.jrmge.2020.05.011 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) Unpaywall for CDI: Periodical Content Unpaywall Acceso a contenido Full Text - Doaj |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2589-0417 |
| EndPage | 201 |
| ExternalDocumentID | oai_doaj_org_article_0ca794af267a4581a2ba958305c14f88 10.1016/j.jrmge.2020.05.011 yslxyytgcxb_e202101013 10_1016_j_jrmge_2020_05_011 S1674775520301451 |
| GrantInformation_xml | – fundername: We acknowledge the funding support from Australia Research Council funderid: (Grant Nos. DP200100549 and IH180100010) |
| GroupedDBID | 6I. AAFTH ALMA_UNASSIGNED_HOLDINGS CDYEO AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ -01 -0A -SA -SC -S~ 0R~ 4.4 457 5VR 5VS 92E 92M 9D9 9DA 9DC AAEDT AAEDW AAIKJ AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADCNI ADEZE ADTOC ADVLN AEUPX AEXQZ AFPUW AFTJW AFUIB AGHFR AIGII AITUG AKBMS AKRWK AKYEP AMRAJ CAJEA CAJEC CCEZO CCVFK CHBEP CW9 EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB JUIAU KQ8 O-L O9- OK1 Q-- Q-0 Q-2 RIG ROL RT1 S.. SSZ T8Q TGP U1F U1G U5A U5K U5M UNPAY ~LI ~MB |
| ID | FETCH-LOGICAL-a476t-8e521123ea67f6d8d6783108326a6bcd3ffbc75f7260d86966501eab9b7da8a83 |
| IEDL.DBID | DOA |
| ISSN | 1674-7755 2589-0417 |
| IngestDate | Fri Oct 03 12:53:12 EDT 2025 Tue Aug 19 17:55:54 EDT 2025 Thu May 29 03:58:35 EDT 2025 Wed Oct 29 21:20:33 EDT 2025 Thu Apr 24 22:52:38 EDT 2025 Thu Jul 20 20:15:48 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Stacking ensemble Slope stability Machine learning (ML) Variable importance Artificial bee colony (ABC) |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a476t-8e521123ea67f6d8d6783108326a6bcd3ffbc75f7260d86966501eab9b7da8a83 |
| ORCID | 0000-0002-6433-3416 0000-0001-5209-5169 |
| OpenAccessLink | https://doaj.org/article/0ca794af267a4581a2ba958305c14f88 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0ca794af267a4581a2ba958305c14f88 unpaywall_primary_10_1016_j_jrmge_2020_05_011 wanfang_journals_yslxyytgcxb_e202101013 crossref_citationtrail_10_1016_j_jrmge_2020_05_011 crossref_primary_10_1016_j_jrmge_2020_05_011 elsevier_sciencedirect_doi_10_1016_j_jrmge_2020_05_011 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-01 |
| PublicationDateYYYYMMDD | 2021-02-01 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of Rock Mechanics and Geotechnical Engineering |
| PublicationTitle_FL | Journal of Rock Mechanics and Geotechnical Engineering |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V Civil and Infrastructure Discipline, School of Engineering, Royal Melbourne Institute of Technology (RMIT), Melbourne, Victoria, Australia%Civil and Infrastructure Discipline, School of Engineering, Royal Melbourne Institute of Technology (RMIT), Melbourne, Victoria, Australia Department of Civil and Environmental Engineering, College of Engineering, Shantou University, Shantou, 515063, China Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Civil and Infrastructure Discipline, School of Engineering, Royal Melbourne Institute of Technology (RMIT), Melbourne, Victoria, Australia%Civil and Infrastructure Discipline, School of Engineering, Royal Melbourne Institute of Technology (RMIT), Melbourne, Victoria, Australia Department of Civil and Environmental Engineering, College of Engineering, Shantou University, Shantou, 515063, China – name: Elsevier |
| References | Zhang, Lyu, Shen, Zhou, Yin (bib97) 2020; 106 Liu, Chen (bib67) 2007; 89 Probst, Bischl, Boulesteix (bib75) 2018 Ding, Li, Dong, Lin (bib22) 2018; 6 Griffiths, Lane (bib38) 1999; 49 Youssef, Pourghasemi, Pourtaghi, Al-Katheeri (bib95) 2016; 13 Atangana Njock, Shen, Zhou, Lyu (bib3) 2020; 130 Tsangaratos, Ilia (bib89) 2016; 145 Gao, Yan (bib30) 2010 Kumar, Prakash (bib58) 2014 Ramos-Cañón, Prada-Sarmiento, Trujillo-Vela, Macías, Santos (bib80) 2016; 13 Faramarzi, Zare, Azhari, Tabaei (bib26) 2017; 76 Kalantar, Pradhan, Naghibi, Motevalli, Mansor (bib47) 2018; 9 Cheng, Hoang (bib17) 2013; 28 Cheng, Hoang (bib18) 2014; 30 Baghban, Kardani, Habibzadeh (bib7) 2017; 236 Hong, Liu, Bui, Pradhan, Acharya, Pham, Zhu, Chen, Ahmad (bib43) 2018; 163 Bishop, Morgenstern (bib10) 1960; 10 Ho (bib40) 1995 Sah, Sheorey, Upadhyaya (bib81) 1994; 31 Babu, Ramjee, Narayana, Murty (bib6) 2011 Ke (bib55) 2010; 1 Elbaz, Shen, Zhou, Yin, Lyu (bib25) 2020 Breiman (bib11) 1996; 24 Griffiths, Fenton (bib37) 2004; 130 Wen, Zhang (bib91) 2014; 32 Fellenius (bib27) 1936 Bui, Nguyen, Hoang, Klempe (bib12) 2017; 14 Hoang, Pham (bib42) 2016; 46 Altman (bib2) 1992; 46 Qi, Tang (bib77) 2018; 42 Glastonbury, Fell (bib35) 2008; 45 Ghosh, Bhattacharya, Boccardo, Samadhiya (bib34) 2013; 29 He, Shahabi, Shirzadi, Li, Chen, Wang, Chai, Bian, Ma, Chen (bib39) 2019; 663 Ohlmacher, Davis (bib72) 2003; 69 Ayalew, Yamagishi (bib4) 2005; 65 Das, Biswal, Sivakugan, Das (bib20) 2011; 64 Shen, Atangana Njock, Zhou, Lyu (bib85) 2020 Li, Xiao, Cao, Phoon, Zhou (bib65) 2016; 40 Hwang, Guevarra, Yu (bib46) 2009; 104 Aditian, Kubota, Shinohara (bib1) 2018; 318 Feng, Li, Yuan, Zeng, Sun (bib28) 2018; 22 Cawley, Talbot (bib13) 2010; 11 Sari (bib84) 2019 Chen, Shahabi, Zhang, Khosravi, Shirzadi, Chapi, Pham, Zhang, Zhang, Chai (bib16) 2018; 8 Lu, Rosenbaum (bib68) 2003; 30 Ledezma, Aler, Borrajo (bib59) 2002 Shunmugapriya, Kanmani (bib86) 2013; 12 Wolpert (bib93) 1992; 5 Wang (bib90) 2005 Dong, Li (bib23) 2013; 2013 Kardani, Baghban, Sasanipour, Mohammadi, Habibzadeh (bib52) 2018; 203 Wijayanto, Purwarianti (bib92) 2014 Qi, Fourie, Ma, Tang, Du (bib78) 2017; 32 Yilmaz (bib94) 2009; 35 Zhang, Wu (bib96) 2011; 13 Cheng, Roy, Chen (bib19) 2012; 39 Morgenstern (bib70) 1965; 15 Gordan, Armaghani, Hajihassani, Monjezi (bib36) 2016; 32 Geurts, Ernst, Wehenkel (bib32) 2006; 63 Kardani, Zhou, Nazem, Shen (bib53) 2020; 38 Song, Gong, Gao, Wang, Cui, Li, Wei (bib87) 2012; 42 Datey, Chavan, Dypit (bib21) 2017 Ghanbari, Kardani, Moazami Goodarzi, Jaghorban Lariche, Baghban (bib33) 2020; 41 Huang, Jia (bib45) 2009; 36 Chen, Xie, Peng, Wang, Duan, Hong (bib15) 2017; 8 Nefeslioglu, Sezer, Gokceoglu, Bozkir, Duman (bib71) 2010 Hoang, Bui (bib41) 2017 Gandomi, Kashani, Mousavi, Jalalvandi (bib29) 2017; 41 Li, Wang (bib61) 2010 Garcia, Derrac, Cano, Herrera (bib31) 2012; 34 Azarafza, Asghari-Kaljahi, Akgün (bib5) 2017; 76 Pourghasemi, Rahmati (bib74) 2018; 162 Qi, Fourie, Du, Tang (bib79) 2018; 92 Sakellariou, Ferentinou (bib83) 2005; 23 Bishop (bib9) 1955; 5 Krabbenhoft, Lyamin, Krabbenhoft (bib57) 2015 Ledezma, Aler, Sanchis, Borrajo (bib60) 2010; 14 Karaboga, Basturk (bib49) 2007 Li, Zhao, Ru (bib63) 2013; 65 Lin, Zhou, Li (bib66) 2018; 6 Baker (bib8) 2006; 33 Hosmer, Lemeshow, Sturdivant (bib44) 2013 Karaboga, Basturk (bib50) 2008; 8 Li, Li, Zhang, Yang, Wang (bib64) 2015; 39 Pham, Bui, Prakash (bib73) 2017; 35 Kardani, Baghban (bib51) 2017; 35 Qi, Tang (bib76) 2018; 118 Kang, Li, Li (bib48) 2016; 209 Chen, Wong (bib14) 2011 Dong, Tung, Chen, Liao, Pan (bib24) 2009; 110 Suman, Khan, Das, Chand (bib88) 2016; 84 Shunmugapriya (10.1016/j.jrmge.2020.05.011_bib86) 2013; 12 Song (10.1016/j.jrmge.2020.05.011_bib87) 2012; 42 Aditian (10.1016/j.jrmge.2020.05.011_bib1) 2018; 318 Hwang (10.1016/j.jrmge.2020.05.011_bib46) 2009; 104 Gao (10.1016/j.jrmge.2020.05.011_bib30) 2010 Qi (10.1016/j.jrmge.2020.05.011_bib78) 2017; 32 Bishop (10.1016/j.jrmge.2020.05.011_bib9) 1955; 5 Zhang (10.1016/j.jrmge.2020.05.011_bib97) 2020; 106 Li (10.1016/j.jrmge.2020.05.011_bib65) 2016; 40 Morgenstern (10.1016/j.jrmge.2020.05.011_bib70) 1965; 15 Zhang (10.1016/j.jrmge.2020.05.011_bib96) 2011; 13 Ledezma (10.1016/j.jrmge.2020.05.011_bib60) 2010; 14 Faramarzi (10.1016/j.jrmge.2020.05.011_bib26) 2017; 76 Hong (10.1016/j.jrmge.2020.05.011_bib43) 2018; 163 Wolpert (10.1016/j.jrmge.2020.05.011_bib93) 1992; 5 Atangana Njock (10.1016/j.jrmge.2020.05.011_bib3) 2020; 130 Dong (10.1016/j.jrmge.2020.05.011_bib23) 2013; 2013 Gandomi (10.1016/j.jrmge.2020.05.011_bib29) 2017; 41 Nefeslioglu (10.1016/j.jrmge.2020.05.011_bib71) 2010 Kang (10.1016/j.jrmge.2020.05.011_bib48) 2016; 209 Probst (10.1016/j.jrmge.2020.05.011_bib75) 2018 Tsangaratos (10.1016/j.jrmge.2020.05.011_bib89) 2016; 145 Azarafza (10.1016/j.jrmge.2020.05.011_bib5) 2017; 76 Shen (10.1016/j.jrmge.2020.05.011_bib85) 2020 Karaboga (10.1016/j.jrmge.2020.05.011_bib49) 2007 Griffiths (10.1016/j.jrmge.2020.05.011_bib37) 2004; 130 Kardani (10.1016/j.jrmge.2020.05.011_bib53) 2020; 38 Cheng (10.1016/j.jrmge.2020.05.011_bib19) 2012; 39 Ramos-Cañón (10.1016/j.jrmge.2020.05.011_bib80) 2016; 13 Kalantar (10.1016/j.jrmge.2020.05.011_bib47) 2018; 9 Das (10.1016/j.jrmge.2020.05.011_bib20) 2011; 64 Lu (10.1016/j.jrmge.2020.05.011_bib68) 2003; 30 Fellenius (10.1016/j.jrmge.2020.05.011_bib27) 1936 Hosmer (10.1016/j.jrmge.2020.05.011_bib44) 2013 Sakellariou (10.1016/j.jrmge.2020.05.011_bib83) 2005; 23 Ayalew (10.1016/j.jrmge.2020.05.011_bib4) 2005; 65 Garcia (10.1016/j.jrmge.2020.05.011_bib31) 2012; 34 Huang (10.1016/j.jrmge.2020.05.011_bib45) 2009; 36 Breiman (10.1016/j.jrmge.2020.05.011_bib11) 1996; 24 Baghban (10.1016/j.jrmge.2020.05.011_bib7) 2017; 236 Cawley (10.1016/j.jrmge.2020.05.011_bib13) 2010; 11 Youssef (10.1016/j.jrmge.2020.05.011_bib95) 2016; 13 Bishop (10.1016/j.jrmge.2020.05.011_bib10) 1960; 10 Cheng (10.1016/j.jrmge.2020.05.011_bib18) 2014; 30 Ghanbari (10.1016/j.jrmge.2020.05.011_bib33) 2020; 41 Sah (10.1016/j.jrmge.2020.05.011_bib81) 1994; 31 Qi (10.1016/j.jrmge.2020.05.011_bib77) 2018; 42 Wen (10.1016/j.jrmge.2020.05.011_bib91) 2014; 32 Dong (10.1016/j.jrmge.2020.05.011_bib24) 2009; 110 Glastonbury (10.1016/j.jrmge.2020.05.011_bib35) 2008; 45 Chen (10.1016/j.jrmge.2020.05.011_bib16) 2018; 8 Elbaz (10.1016/j.jrmge.2020.05.011_bib25) 2020 Li (10.1016/j.jrmge.2020.05.011_bib61) 2010 Li (10.1016/j.jrmge.2020.05.011_bib63) 2013; 65 Liu (10.1016/j.jrmge.2020.05.011_bib67) 2007; 89 Cheng (10.1016/j.jrmge.2020.05.011_bib17) 2013; 28 Gordan (10.1016/j.jrmge.2020.05.011_bib36) 2016; 32 Ohlmacher (10.1016/j.jrmge.2020.05.011_bib72) 2003; 69 Bui (10.1016/j.jrmge.2020.05.011_bib12) 2017; 14 Chen (10.1016/j.jrmge.2020.05.011_bib14) 2011 Altman (10.1016/j.jrmge.2020.05.011_bib2) 1992; 46 Kardani (10.1016/j.jrmge.2020.05.011_bib52) 2018; 203 Pourghasemi (10.1016/j.jrmge.2020.05.011_bib74) 2018; 162 Baker (10.1016/j.jrmge.2020.05.011_bib8) 2006; 33 Li (10.1016/j.jrmge.2020.05.011_bib64) 2015; 39 Ghosh (10.1016/j.jrmge.2020.05.011_bib34) 2013; 29 Datey (10.1016/j.jrmge.2020.05.011_bib21) 2017 Hoang (10.1016/j.jrmge.2020.05.011_bib42) 2016; 46 Wijayanto (10.1016/j.jrmge.2020.05.011_bib92) 2014 Krabbenhoft (10.1016/j.jrmge.2020.05.011_bib57) 2015 Ledezma (10.1016/j.jrmge.2020.05.011_bib59) 2002 Suman (10.1016/j.jrmge.2020.05.011_bib88) 2016; 84 Griffiths (10.1016/j.jrmge.2020.05.011_bib38) 1999; 49 Pham (10.1016/j.jrmge.2020.05.011_bib73) 2017; 35 Lin (10.1016/j.jrmge.2020.05.011_bib66) 2018; 6 Yilmaz (10.1016/j.jrmge.2020.05.011_bib94) 2009; 35 He (10.1016/j.jrmge.2020.05.011_bib39) 2019; 663 Karaboga (10.1016/j.jrmge.2020.05.011_bib50) 2008; 8 Babu (10.1016/j.jrmge.2020.05.011_bib6) 2011 Ho (10.1016/j.jrmge.2020.05.011_bib40) 1995 Chen (10.1016/j.jrmge.2020.05.011_bib15) 2017; 8 Qi (10.1016/j.jrmge.2020.05.011_bib79) 2018; 92 Geurts (10.1016/j.jrmge.2020.05.011_bib32) 2006; 63 Kumar (10.1016/j.jrmge.2020.05.011_bib58) 2014 Qi (10.1016/j.jrmge.2020.05.011_bib76) 2018; 118 Sari (10.1016/j.jrmge.2020.05.011_bib84) 2019 Hoang (10.1016/j.jrmge.2020.05.011_bib41) 2017 Wang (10.1016/j.jrmge.2020.05.011_bib90) 2005 Kardani (10.1016/j.jrmge.2020.05.011_bib51) 2017; 35 Feng (10.1016/j.jrmge.2020.05.011_bib28) 2018; 22 Ding (10.1016/j.jrmge.2020.05.011_bib22) 2018; 6 Ke (10.1016/j.jrmge.2020.05.011_bib55) 2010; 1 |
| References_xml | – volume: 32 year: 2017 ident: bib78 article-title: Comparative study of hybrid artificial intelligence approaches for predicting hangingwall stability publication-title: Journal of Computing in Civil Engineering – volume: 46 start-page: 175 year: 1992 end-page: 185 ident: bib2 article-title: An introduction to kernel and nearest-neighbor nonparametric regression publication-title: The American Statistician – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: bib11 article-title: Bagging predictors publication-title: Machine Learning – volume: 34 start-page: 417 year: 2012 end-page: 435 ident: bib31 article-title: Prototype selection for nearest neighbor classification: taxonomy and empirical study publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 663 start-page: 1 year: 2019 end-page: 15 ident: bib39 article-title: Landslide spatial modelling using novel bivariate statistical based Naïve Bayes, RBF Classifier, and RBF Network machine learning algorithms publication-title: Science of The Total Environment – volume: 41 start-page: 251 year: 2017 end-page: 264 ident: bib29 article-title: Slope stability analysis using evolutionary optimization techniques publication-title: International Journal for Numerical and Analytical Methods in Geomechanics – volume: 36 start-page: 93 year: 2009 end-page: 101 ident: bib45 article-title: Strength reduction FEM in stability analysis of soil slopes subjected to transient unsaturated seepage publication-title: Computers and Geotechnics – volume: 8 start-page: 950 year: 2017 end-page: 973 ident: bib15 article-title: GIS-based landslide susceptibility modelling: a comparative assessment of kernel logistic regression, Naïve-Bayes tree, and alternating decision tree models publication-title: Geomatics, Natural Hazards and Risk – volume: 38 start-page: 2271 year: 2020 end-page: 2291 ident: bib53 article-title: Estimation of bearing capacity of piles in cohesionless soil using optimised machine learning approaches publication-title: Geotechnical and Geological Engineering – start-page: 51 year: 2011 end-page: 54 ident: bib6 article-title: Sheep and goat expert system using artificial bee colony (ABC) algorithm and particle swarm optimization (PSO) algorithm. In: Proceedings of the 2011 IEEE 2nd international conference on software engineering and service science – start-page: 10562 year: 2017 ident: bib21 article-title: Review on artificial bee colony publication-title: International Journal of Engineering Science – start-page: 765 year: 2010 end-page: 776 ident: bib61 article-title: Study on the forecasting models of slope stability under data mining. In: Proceedings of the earth and space 2010: engineering, science, construction, and operations in challenging environments – volume: 32 start-page: 105 year: 2014 end-page: 109 ident: bib91 article-title: Prediction model for open-pit coal mine slope stability based on random forest publication-title: Science & Technology Review – volume: 35 start-page: 761 year: 2017 end-page: 767 ident: bib51 article-title: Utilization of LSSVM strategy to predict water content of sweet natural gas publication-title: Petroleum Science and Technology – volume: 12 start-page: 24 year: 2013 end-page: 32 ident: bib86 article-title: Optimization of stacking ensemble configurations through artificial bee colony algorithm publication-title: Swarm and Evolutionary Computation – volume: 13 start-page: 839 year: 2016 end-page: 856 ident: bib95 article-title: Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia publication-title: Landslides – volume: 162 start-page: 177 year: 2018 end-page: 192 ident: bib74 article-title: Prediction of the landslide susceptibility: which algorithm, which precision? publication-title: Catena – volume: 130 start-page: 105988 year: 2020 ident: bib3 article-title: Evaluation of soil liquefaction using AI technology incorporating a coupled ENN/t-SNE model publication-title: Soil Dynamics and Earthquake Engineering – volume: 8 start-page: 2540 year: 2018 ident: bib16 article-title: Landslide susceptibility modeling based on GIS and novel Bagging-based kernel logistic regression publication-title: Applied Sciences – volume: 64 start-page: 201 year: 2011 end-page: 210 ident: bib20 article-title: Classification of slopes and prediction of factor of safety using differential evolution neural networks publication-title: Environmental Earth Sciences – volume: 32 start-page: 85 year: 2016 end-page: 97 ident: bib36 article-title: Prediction of seismic slope stability through combination of particle swarm optimization and neural network publication-title: Engineering with Computers – volume: 39 start-page: 1737 year: 2012 end-page: 1746 ident: bib19 article-title: Evolutionary risk preference inference model using fuzzy support vector machine for road slope collapse prediction publication-title: Expert Systems with Applications – volume: 14 start-page: 89 year: 2010 end-page: 119 ident: bib60 article-title: GA-stacking: evolutionary stacked generalization publication-title: Intelligent Data Analysis – volume: 84 start-page: 727 year: 2016 end-page: 748 ident: bib88 article-title: Slope stability analysis using artificial intelligence techniques publication-title: Natural Hazards – volume: 118 start-page: 112 year: 2018 end-page: 122 ident: bib76 article-title: Slope stability prediction using integrated metaheuristic and machine learning approaches: a comparative study publication-title: Computers & Industrial Engineering – volume: 69 start-page: 331 year: 2003 end-page: 343 ident: bib72 article-title: Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA publication-title: Engineering Geology – volume: 28 year: 2013 ident: bib17 article-title: Groutability estimation of grouting processes with microfine cements using an evolutionary instance-based learning approach publication-title: Journal of Computing in Civil Engineering – start-page: 278 year: 1995 end-page: 282 ident: bib40 article-title: Random decision forests publication-title: Proceedings of the 3rd international conference on document analysis and recognition – volume: 1 start-page: 4 year: 2010 ident: bib55 article-title: Evaluation of rock slope stability based on Fisher discriminant analysis method publication-title: Highway – year: 2010 ident: bib71 article-title: Assessment of landslide susceptibility by decision trees in the metropolitan area of Istanbul, Turkey publication-title: Mathematical Problems in Engineering – volume: 106 start-page: 103594 year: 2020 ident: bib97 article-title: Evolutionary hybrid neural network approach to predict shield tunneling-induced ground settlements publication-title: Tunneling and Underground Space Technology – volume: 11 start-page: 2079 year: 2010 end-page: 2107 ident: bib13 article-title: On over-fitting in model selection and subsequent selection bias in performance evaluation publication-title: Journal of Machine Learning Research – year: 2013 ident: bib44 article-title: Applied logistic regression – volume: 209 start-page: 46 year: 2016 end-page: 56 ident: bib48 article-title: System reliability analysis of slopes using least squares support vector machines with particle swarm optimization publication-title: Neurocomputing – volume: 203 start-page: 601 year: 2018 end-page: 618 ident: bib52 article-title: Group contribution methods for estimating CO2 absorption capacities of imidazolium and ammonium-based polyionic liquids publication-title: Journal of Cleaner Production – volume: 145 start-page: 164 year: 2016 end-page: 179 ident: bib89 article-title: Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments: the influence of models complexity and training dataset size publication-title: Catena – volume: 45 start-page: 329 year: 2008 end-page: 350 ident: bib35 article-title: A decision analysis framework for the assessment of likely post-failure velocity of translational and compound natural rock slope landslides publication-title: Canadian Geotechnical Journal – volume: 63 start-page: 3 year: 2006 end-page: 42 ident: bib32 article-title: Extremely randomized trees publication-title: Machine Learning – start-page: 333 year: 2017 end-page: 344 ident: bib41 article-title: Slope stability evaluation using radial basis function neural network, least squares support vector machines, and extreme learning machine publication-title: Handbook of neural computation – volume: 30 start-page: 383 year: 2003 end-page: 398 ident: bib68 article-title: Artificial neural networks and grey systems for the prediction of slope stability publication-title: Natural Hazards – volume: 14 start-page: 1 year: 2017 end-page: 17 ident: bib12 article-title: A novel fuzzy publication-title: Landslides – volume: 104 start-page: 126 year: 2009 end-page: 134 ident: bib46 article-title: Slope failure prediction using a decision tree: a case of engineered slopes in South Korea publication-title: Engineering Geology – start-page: 789 year: 2007 end-page: 798 ident: bib49 article-title: Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. In: Proceedings of the international fuzzy systems association world congress – start-page: 7 year: 2011 end-page: 8 ident: bib14 article-title: Optimizing stacking ensemble by an ant colony optimization approach publication-title: Proceedings of the 13th annual conference companion on genetic and evolutionary computation. Dublin, Ireland – volume: 29 year: 2013 ident: bib34 article-title: Automated geo-spatial hazard warning system GEOWARNS: Italian case study publication-title: Journal of Computing in Civil Engineering – volume: 89 start-page: 129 year: 2007 end-page: 143 ident: bib67 article-title: A new approach for application of rock mass classification on rock slope stability assessment publication-title: Engineering Geology – volume: 46 start-page: 60 year: 2016 end-page: 68 ident: bib42 article-title: Hybrid artificial intelligence approach based on metaheuristic and machine learning for slope stability assessment: a multinational data analysis publication-title: Expert Systems with Applications – year: 2015 ident: bib57 article-title: Optum computational engineering (Optum G2) – volume: 65 start-page: 707 year: 2013 end-page: 722 ident: bib63 article-title: Slope reliability analysis by updated support vector machine and Monte Carlo simulation publication-title: Natural Hazards – year: 2020 ident: bib85 article-title: Dynamic prediction of jet grouted column diameter in soft soil using Bi-LSTM deep learning publication-title: Acta Geotechnica – volume: 9 start-page: 49 year: 2018 end-page: 69 ident: bib47 article-title: Assessment of the effects of training data selection on the landslide susceptibility mapping: a comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN) publication-title: Geomatics, Natural Hazards and Risk – volume: 163 start-page: 399 year: 2018 end-page: 413 ident: bib43 article-title: Landslide susceptibility mapping using J48 decision tree with AdaBoost, bagging and rotation forest ensembles in the Guangchang area (China) publication-title: Catena – start-page: 445 year: 1936 end-page: 462 ident: bib27 article-title: Calculation of stability of earth dam publication-title: Proceedings of the 2nd congress on large dams – volume: 8 start-page: 687 year: 2008 end-page: 697 ident: bib50 article-title: On the performance of artificial bee colony (ABC) algorithm publication-title: Applied Soft Computing – year: 2018 ident: bib75 article-title: Tunability: importance of hyperparameters of machine learning algorithms – volume: 23 start-page: 419 year: 2005 ident: bib83 article-title: A study of slope stability prediction using neural networks publication-title: Geotechnical & Geological Engineering – volume: 65 start-page: 15 year: 2005 end-page: 31 ident: bib4 article-title: The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan publication-title: Geomorphology – start-page: 69 year: 2014 end-page: 74 ident: bib92 article-title: Improvement Design of fuzzy geo-demographic clustering using artificial bee colony optimization publication-title: Proceedings of the 2014 international conference on cyber and IT service management (CITSM) – volume: 5 start-page: 241 year: 1992 end-page: 259 ident: bib93 article-title: Stacked generalization publication-title: Neural Networks – volume: 2013 year: 2013 ident: bib23 article-title: Comprehensive models for evaluating rockmass stability based on statistical comparisons of multiple classifiers publication-title: Mathematical Problems in Engineering – volume: 42 start-page: 1823 year: 2018 end-page: 1839 ident: bib77 article-title: A hybrid ensemble method for improved prediction of slope stability publication-title: International Journal for Numerical and Analytical Methods in Geomechanics – volume: 30 year: 2014 ident: bib18 article-title: Slope collapse prediction using Bayesian framework with publication-title: Journal of Computing in Civil Engineering – start-page: 3 year: 2010 ident: bib30 article-title: Application of prediction model for slope stability based on distance discrimination analysis method publication-title: Journal of Water Resources and Architectural Engineering – volume: 92 start-page: 1179 year: 2018 end-page: 1197 ident: bib79 article-title: Prediction of open stope hangingwall stability using random forests publication-title: Natural Hazards – volume: 13 start-page: 841 year: 2011 end-page: 859 ident: bib96 article-title: Optimal multi-level thresholding based on maximum Tsallis entropy via an artificial bee colony approach publication-title: Entropy – volume: 49 start-page: 387 year: 1999 end-page: 403 ident: bib38 article-title: Slope stability analysis by finite elements publication-title: Geotechnique – volume: 35 start-page: 2597 year: 2017 end-page: 2611 ident: bib73 article-title: Landslide susceptibility assessment using bagging ensemble based alternating decision trees, logistic regression and J48 decision trees methods: a comparative study publication-title: Geotechnical and Geological Engineering – volume: 13 start-page: 671 year: 2016 end-page: 681 ident: bib80 article-title: Linear discriminant analysis to describe the relationship between rainfall and landslides in Bogotá, Colombia publication-title: Landslides – volume: 33 start-page: 275 year: 2006 end-page: 277 ident: bib8 article-title: A relation between safety factors with respect to strength and height of slopes publication-title: Computers and Geotechnics – volume: 5 start-page: 7 year: 1955 end-page: 17 ident: bib9 article-title: The use of the slip circle in the stability analysis of slopes publication-title: Geotechnique – volume: 10 start-page: 129 year: 1960 end-page: 150 ident: bib10 article-title: Stability coefficients for earth slopes publication-title: Geotechnique – volume: 130 start-page: 507 year: 2004 end-page: 518 ident: bib37 article-title: Probabilistic slope stability analysis by finite elements publication-title: Journal of Geotechnical and Geoenvironmental Engineering – volume: 110 start-page: 162 year: 2009 end-page: 171 ident: bib24 article-title: Discriminant analysis of the geomorphic characteristics and stability of landslide dams publication-title: Geomorphology – volume: 76 start-page: 397 year: 2017 ident: bib5 article-title: Assessment of discontinuous rock slope stability with block theory and numerical modeling: a case study for the South Pars Gas Complex, Assalouyeh, Iran publication-title: Environmental Earth Sciences – volume: 236 start-page: 452 year: 2017 end-page: 464 ident: bib7 article-title: Prediction viscosity of ionic liquids using a hybrid LSSVM and group contribution method publication-title: Journal of Molecular Liquids – start-page: 355 year: 2019 end-page: 357 ident: bib84 article-title: Stability analysis of slopes prone to circular failures using logistic regression. In: Proceedings of the 1st springer conference of the arabian journal of geosciences (CAJG-1). Switzerland: Springer – volume: 6 start-page: 69253 year: 2018 end-page: 69264 ident: bib22 article-title: Prediction of pillar stability for underground mines using the stochastic gradient boosting technique publication-title: IEEE Access – year: 2005 ident: bib90 article-title: Support vector machines: theory and applications – year: 2020 ident: bib25 article-title: Prediction of disc cutter life during shield tunnelling with AI via incorporation of genetic algorithm into GMDH-type neural network publication-title: Engineering – volume: 318 start-page: 101 year: 2018 end-page: 111 ident: bib1 article-title: Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia publication-title: Geomorphology – volume: 39 start-page: 5253 year: 2015 end-page: 5264 ident: bib64 article-title: Slope stability analysis based on quantum-behaved particle swarm optimization and least squares support vector machine publication-title: Applied Mathematical Modelling – volume: 6 start-page: 31169 year: 2018 end-page: 31179 ident: bib66 article-title: Prediction of slope stability using four supervised learning methods publication-title: IEEE Access – volume: 15 start-page: 79 year: 1965 end-page: 93 ident: bib70 article-title: Price VE the analysis of the stability of general slip surfaces publication-title: Geotechnique – volume: 22 start-page: 941 year: 2018 end-page: 950 ident: bib28 article-title: Prediction of slope stability using naive Bayes classifier publication-title: KSCE Journal of Civil Engineering – volume: 76 start-page: 783 year: 2017 end-page: 794 ident: bib26 article-title: Assessment of rock slope stability at Cham-Shir Dam Power Plant pit using the limit equilibrium method and numerical modeling publication-title: Bulletin of Engineering Geology and the Environment – volume: 41 start-page: 775 year: 2020 end-page: 782 ident: bib33 article-title: Neural computing approach for estimation of natural gas dew point temperature in glycol dehydration plant publication-title: International Journal of Ambient Energy – volume: 35 start-page: 1125 year: 2009 end-page: 1138 ident: bib94 article-title: Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat—Turkey) publication-title: Computers & Geosciences – volume: 42 start-page: 189 year: 2012 end-page: 199 ident: bib87 article-title: Susceptibility assessment of earthquake-induced landslides using Bayesian network: a case study in Beichuan, China publication-title: Computers & Geosciences – start-page: 1 year: 2014 end-page: 5 ident: bib58 article-title: Artificial bee colony algorithm for multi-target tracking in mobility sensor networks. In: Proceedings of the 2014 international conference on electronics and communication systems (ICECS) – start-page: 54 year: 2002 end-page: 67 ident: bib59 article-title: Heuristic search-based stacking of classifiers publication-title: Heuristic and optimization for knowledge discovery – volume: 40 start-page: 5216 year: 2016 end-page: 5229 ident: bib65 article-title: Efficient and consistent reliability analysis of soil slope stability using both limit equilibrium analysis and finite element analysis publication-title: Applied Mathematical Modelling – volume: 31 start-page: 47 year: 1994 end-page: 53 ident: bib81 article-title: Maximum likelihood estimation of slope stability publication-title: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts – volume: 13 start-page: 839 issue: 5 year: 2016 ident: 10.1016/j.jrmge.2020.05.011_bib95 article-title: Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia publication-title: Landslides doi: 10.1007/s10346-015-0614-1 – volume: 1 start-page: 4 year: 2010 ident: 10.1016/j.jrmge.2020.05.011_bib55 article-title: Evaluation of rock slope stability based on Fisher discriminant analysis method publication-title: Highway – year: 2010 ident: 10.1016/j.jrmge.2020.05.011_bib71 article-title: Assessment of landslide susceptibility by decision trees in the metropolitan area of Istanbul, Turkey publication-title: Mathematical Problems in Engineering doi: 10.1155/2010/901095 – start-page: 7 year: 2011 ident: 10.1016/j.jrmge.2020.05.011_bib14 article-title: Optimizing stacking ensemble by an ant colony optimization approach – start-page: 789 year: 2007 ident: 10.1016/j.jrmge.2020.05.011_bib49 – volume: 5 start-page: 241 issue: 2 year: 1992 ident: 10.1016/j.jrmge.2020.05.011_bib93 article-title: Stacked generalization publication-title: Neural Networks doi: 10.1016/S0893-6080(05)80023-1 – volume: 6 start-page: 69253 year: 2018 ident: 10.1016/j.jrmge.2020.05.011_bib22 article-title: Prediction of pillar stability for underground mines using the stochastic gradient boosting technique publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2880466 – volume: 24 start-page: 123 issue: 2 year: 1996 ident: 10.1016/j.jrmge.2020.05.011_bib11 article-title: Bagging predictors publication-title: Machine Learning doi: 10.1023/A:1018054314350 – volume: 41 start-page: 251 issue: 2 year: 2017 ident: 10.1016/j.jrmge.2020.05.011_bib29 article-title: Slope stability analysis using evolutionary optimization techniques publication-title: International Journal for Numerical and Analytical Methods in Geomechanics doi: 10.1002/nag.2554 – volume: 84 start-page: 727 issue: 2 year: 2016 ident: 10.1016/j.jrmge.2020.05.011_bib88 article-title: Slope stability analysis using artificial intelligence techniques publication-title: Natural Hazards doi: 10.1007/s11069-016-2454-2 – start-page: 10562 year: 2017 ident: 10.1016/j.jrmge.2020.05.011_bib21 article-title: Review on artificial bee colony publication-title: International Journal of Engineering Science – volume: 28 issue: 4 year: 2013 ident: 10.1016/j.jrmge.2020.05.011_bib17 article-title: Groutability estimation of grouting processes with microfine cements using an evolutionary instance-based learning approach publication-title: Journal of Computing in Civil Engineering doi: 10.1061/(ASCE)CP.1943-5487.0000370 – volume: 14 start-page: 89 issue: 1 year: 2010 ident: 10.1016/j.jrmge.2020.05.011_bib60 article-title: GA-stacking: evolutionary stacked generalization publication-title: Intelligent Data Analysis doi: 10.3233/IDA-2010-0410 – volume: 64 start-page: 201 issue: 1 year: 2011 ident: 10.1016/j.jrmge.2020.05.011_bib20 article-title: Classification of slopes and prediction of factor of safety using differential evolution neural networks publication-title: Environmental Earth Sciences doi: 10.1007/s12665-010-0839-1 – start-page: 1 year: 2014 ident: 10.1016/j.jrmge.2020.05.011_bib58 – volume: 14 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.jrmge.2020.05.011_bib12 article-title: A novel fuzzy K-nearest neighbor inference model with differential evolution for spatial prediction of rainfall-induced shallow landslides in a tropical hilly area using GIS publication-title: Landslides doi: 10.1007/s10346-016-0708-4 – volume: 110 start-page: 162 issue: 3–4 year: 2009 ident: 10.1016/j.jrmge.2020.05.011_bib24 article-title: Discriminant analysis of the geomorphic characteristics and stability of landslide dams publication-title: Geomorphology doi: 10.1016/j.geomorph.2009.04.004 – volume: 45 start-page: 329 issue: 3 year: 2008 ident: 10.1016/j.jrmge.2020.05.011_bib35 article-title: A decision analysis framework for the assessment of likely post-failure velocity of translational and compound natural rock slope landslides publication-title: Canadian Geotechnical Journal doi: 10.1139/T07-082 – volume: 6 start-page: 31169 year: 2018 ident: 10.1016/j.jrmge.2020.05.011_bib66 article-title: Prediction of slope stability using four supervised learning methods publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2843787 – volume: 318 start-page: 101 year: 2018 ident: 10.1016/j.jrmge.2020.05.011_bib1 article-title: Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia publication-title: Geomorphology doi: 10.1016/j.geomorph.2018.06.006 – volume: 42 start-page: 1823 issue: 15 year: 2018 ident: 10.1016/j.jrmge.2020.05.011_bib77 article-title: A hybrid ensemble method for improved prediction of slope stability publication-title: International Journal for Numerical and Analytical Methods in Geomechanics doi: 10.1002/nag.2834 – volume: 34 start-page: 417 issue: 3 year: 2012 ident: 10.1016/j.jrmge.2020.05.011_bib31 article-title: Prototype selection for nearest neighbor classification: taxonomy and empirical study publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2011.142 – volume: 13 start-page: 671 issue: 4 year: 2016 ident: 10.1016/j.jrmge.2020.05.011_bib80 article-title: Linear discriminant analysis to describe the relationship between rainfall and landslides in Bogotá, Colombia publication-title: Landslides doi: 10.1007/s10346-015-0593-2 – start-page: 69 year: 2014 ident: 10.1016/j.jrmge.2020.05.011_bib92 article-title: Improvement Design of fuzzy geo-demographic clustering using artificial bee colony optimization – start-page: 51 year: 2011 ident: 10.1016/j.jrmge.2020.05.011_bib6 – volume: 5 start-page: 7 issue: 1 year: 1955 ident: 10.1016/j.jrmge.2020.05.011_bib9 article-title: The use of the slip circle in the stability analysis of slopes publication-title: Geotechnique doi: 10.1680/geot.1955.5.1.7 – year: 2015 ident: 10.1016/j.jrmge.2020.05.011_bib57 – volume: 32 start-page: 85 issue: 1 year: 2016 ident: 10.1016/j.jrmge.2020.05.011_bib36 article-title: Prediction of seismic slope stability through combination of particle swarm optimization and neural network publication-title: Engineering with Computers doi: 10.1007/s00366-015-0400-7 – volume: 30 start-page: 383 issue: 3 year: 2003 ident: 10.1016/j.jrmge.2020.05.011_bib68 article-title: Artificial neural networks and grey systems for the prediction of slope stability publication-title: Natural Hazards doi: 10.1023/B:NHAZ.0000007168.00673.27 – start-page: 355 year: 2019 ident: 10.1016/j.jrmge.2020.05.011_bib84 – start-page: 445 year: 1936 ident: 10.1016/j.jrmge.2020.05.011_bib27 article-title: Calculation of stability of earth dam – volume: 31 start-page: 47 issue: 1 year: 1994 ident: 10.1016/j.jrmge.2020.05.011_bib81 article-title: Maximum likelihood estimation of slope stability publication-title: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts doi: 10.1016/0148-9062(94)92314-0 – volume: 76 start-page: 397 issue: 11 year: 2017 ident: 10.1016/j.jrmge.2020.05.011_bib5 article-title: Assessment of discontinuous rock slope stability with block theory and numerical modeling: a case study for the South Pars Gas Complex, Assalouyeh, Iran publication-title: Environmental Earth Sciences doi: 10.1007/s12665-017-6711-9 – volume: 35 start-page: 761 issue: 8 year: 2017 ident: 10.1016/j.jrmge.2020.05.011_bib51 article-title: Utilization of LSSVM strategy to predict water content of sweet natural gas publication-title: Petroleum Science and Technology doi: 10.1080/10916466.2016.1274758 – volume: 15 start-page: 79 issue: 1 year: 1965 ident: 10.1016/j.jrmge.2020.05.011_bib70 article-title: Price VE the analysis of the stability of general slip surfaces publication-title: Geotechnique doi: 10.1680/geot.1965.15.1.79 – year: 2013 ident: 10.1016/j.jrmge.2020.05.011_bib44 – volume: 11 start-page: 2079 year: 2010 ident: 10.1016/j.jrmge.2020.05.011_bib13 article-title: On over-fitting in model selection and subsequent selection bias in performance evaluation publication-title: Journal of Machine Learning Research – volume: 2013 year: 2013 ident: 10.1016/j.jrmge.2020.05.011_bib23 article-title: Comprehensive models for evaluating rockmass stability based on statistical comparisons of multiple classifiers publication-title: Mathematical Problems in Engineering doi: 10.1155/2013/395096 – volume: 22 start-page: 941 issue: 3 year: 2018 ident: 10.1016/j.jrmge.2020.05.011_bib28 article-title: Prediction of slope stability using naive Bayes classifier publication-title: KSCE Journal of Civil Engineering doi: 10.1007/s12205-018-1337-3 – volume: 76 start-page: 783 issue: 2 year: 2017 ident: 10.1016/j.jrmge.2020.05.011_bib26 article-title: Assessment of rock slope stability at Cham-Shir Dam Power Plant pit using the limit equilibrium method and numerical modeling publication-title: Bulletin of Engineering Geology and the Environment doi: 10.1007/s10064-016-0870-x – volume: 40 start-page: 5216 issue: 9–10 year: 2016 ident: 10.1016/j.jrmge.2020.05.011_bib65 article-title: Efficient and consistent reliability analysis of soil slope stability using both limit equilibrium analysis and finite element analysis publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2015.11.044 – volume: 46 start-page: 175 issue: 3 year: 1992 ident: 10.1016/j.jrmge.2020.05.011_bib2 article-title: An introduction to kernel and nearest-neighbor nonparametric regression publication-title: The American Statistician doi: 10.1080/00031305.1992.10475879 – volume: 8 start-page: 950 issue: 2 year: 2017 ident: 10.1016/j.jrmge.2020.05.011_bib15 article-title: GIS-based landslide susceptibility modelling: a comparative assessment of kernel logistic regression, Naïve-Bayes tree, and alternating decision tree models publication-title: Geomatics, Natural Hazards and Risk doi: 10.1080/19475705.2017.1289250 – start-page: 3 year: 2010 ident: 10.1016/j.jrmge.2020.05.011_bib30 article-title: Application of prediction model for slope stability based on distance discrimination analysis method publication-title: Journal of Water Resources and Architectural Engineering – volume: 49 start-page: 387 issue: 3 year: 1999 ident: 10.1016/j.jrmge.2020.05.011_bib38 article-title: Slope stability analysis by finite elements publication-title: Geotechnique doi: 10.1680/geot.1999.49.3.387 – volume: 32 issue: 2 year: 2017 ident: 10.1016/j.jrmge.2020.05.011_bib78 article-title: Comparative study of hybrid artificial intelligence approaches for predicting hangingwall stability publication-title: Journal of Computing in Civil Engineering doi: 10.1061/(ASCE)CP.1943-5487.0000737 – volume: 163 start-page: 399 year: 2018 ident: 10.1016/j.jrmge.2020.05.011_bib43 article-title: Landslide susceptibility mapping using J48 decision tree with AdaBoost, bagging and rotation forest ensembles in the Guangchang area (China) publication-title: Catena doi: 10.1016/j.catena.2018.01.005 – year: 2018 ident: 10.1016/j.jrmge.2020.05.011_bib75 – volume: 32 start-page: 105 issue: 4–5 year: 2014 ident: 10.1016/j.jrmge.2020.05.011_bib91 article-title: Prediction model for open-pit coal mine slope stability based on random forest publication-title: Science & Technology Review – start-page: 278 year: 1995 ident: 10.1016/j.jrmge.2020.05.011_bib40 article-title: Random decision forests – volume: 63 start-page: 3 issue: 1 year: 2006 ident: 10.1016/j.jrmge.2020.05.011_bib32 article-title: Extremely randomized trees publication-title: Machine Learning doi: 10.1007/s10994-006-6226-1 – year: 2020 ident: 10.1016/j.jrmge.2020.05.011_bib85 article-title: Dynamic prediction of jet grouted column diameter in soft soil using Bi-LSTM deep learning publication-title: Acta Geotechnica – start-page: 765 year: 2010 ident: 10.1016/j.jrmge.2020.05.011_bib61 – volume: 145 start-page: 164 year: 2016 ident: 10.1016/j.jrmge.2020.05.011_bib89 article-title: Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments: the influence of models complexity and training dataset size publication-title: Catena doi: 10.1016/j.catena.2016.06.004 – volume: 13 start-page: 841 issue: 4 year: 2011 ident: 10.1016/j.jrmge.2020.05.011_bib96 article-title: Optimal multi-level thresholding based on maximum Tsallis entropy via an artificial bee colony approach publication-title: Entropy doi: 10.3390/e13040841 – volume: 23 start-page: 419 issue: 4 year: 2005 ident: 10.1016/j.jrmge.2020.05.011_bib83 article-title: A study of slope stability prediction using neural networks publication-title: Geotechnical & Geological Engineering doi: 10.1007/s10706-004-8680-5 – volume: 38 start-page: 2271 year: 2020 ident: 10.1016/j.jrmge.2020.05.011_bib53 article-title: Estimation of bearing capacity of piles in cohesionless soil using optimised machine learning approaches publication-title: Geotechnical and Geological Engineering doi: 10.1007/s10706-019-01085-8 – volume: 89 start-page: 129 issue: 1–2 year: 2007 ident: 10.1016/j.jrmge.2020.05.011_bib67 article-title: A new approach for application of rock mass classification on rock slope stability assessment publication-title: Engineering Geology doi: 10.1016/j.enggeo.2006.09.017 – volume: 92 start-page: 1179 issue: 2 year: 2018 ident: 10.1016/j.jrmge.2020.05.011_bib79 article-title: Prediction of open stope hangingwall stability using random forests publication-title: Natural Hazards doi: 10.1007/s11069-018-3246-7 – volume: 12 start-page: 24 year: 2013 ident: 10.1016/j.jrmge.2020.05.011_bib86 article-title: Optimization of stacking ensemble configurations through artificial bee colony algorithm publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2013.04.004 – volume: 35 start-page: 1125 issue: 6 year: 2009 ident: 10.1016/j.jrmge.2020.05.011_bib94 article-title: Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat—Turkey) publication-title: Computers & Geosciences doi: 10.1016/j.cageo.2008.08.007 – volume: 36 start-page: 93 issue: 1–2 year: 2009 ident: 10.1016/j.jrmge.2020.05.011_bib45 article-title: Strength reduction FEM in stability analysis of soil slopes subjected to transient unsaturated seepage publication-title: Computers and Geotechnics doi: 10.1016/j.compgeo.2008.03.006 – volume: 33 start-page: 275 issue: 4–5 year: 2006 ident: 10.1016/j.jrmge.2020.05.011_bib8 article-title: A relation between safety factors with respect to strength and height of slopes publication-title: Computers and Geotechnics doi: 10.1016/j.compgeo.2006.07.001 – volume: 30 issue: 1 year: 2014 ident: 10.1016/j.jrmge.2020.05.011_bib18 article-title: Slope collapse prediction using Bayesian framework with k-nearest neighbor density estimation: case study in Taiwan publication-title: Journal of Computing in Civil Engineering doi: 10.1061/(ASCE)CP.1943-5487.0000456 – volume: 29 issue: 5 year: 2013 ident: 10.1016/j.jrmge.2020.05.011_bib34 article-title: Automated geo-spatial hazard warning system GEOWARNS: Italian case study publication-title: Journal of Computing in Civil Engineering doi: 10.1061/(ASCE)CP.1943-5487.0000372 – volume: 42 start-page: 189 year: 2012 ident: 10.1016/j.jrmge.2020.05.011_bib87 article-title: Susceptibility assessment of earthquake-induced landslides using Bayesian network: a case study in Beichuan, China publication-title: Computers & Geosciences doi: 10.1016/j.cageo.2011.09.011 – volume: 9 start-page: 49 issue: 1 year: 2018 ident: 10.1016/j.jrmge.2020.05.011_bib47 article-title: Assessment of the effects of training data selection on the landslide susceptibility mapping: a comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN) publication-title: Geomatics, Natural Hazards and Risk doi: 10.1080/19475705.2017.1407368 – volume: 162 start-page: 177 year: 2018 ident: 10.1016/j.jrmge.2020.05.011_bib74 article-title: Prediction of the landslide susceptibility: which algorithm, which precision? publication-title: Catena doi: 10.1016/j.catena.2017.11.022 – volume: 41 start-page: 775 issue: 7 year: 2020 ident: 10.1016/j.jrmge.2020.05.011_bib33 article-title: Neural computing approach for estimation of natural gas dew point temperature in glycol dehydration plant publication-title: International Journal of Ambient Energy doi: 10.1080/01430750.2018.1492441 – volume: 663 start-page: 1 year: 2019 ident: 10.1016/j.jrmge.2020.05.011_bib39 article-title: Landslide spatial modelling using novel bivariate statistical based Naïve Bayes, RBF Classifier, and RBF Network machine learning algorithms publication-title: Science of The Total Environment doi: 10.1016/j.scitotenv.2019.01.329 – volume: 69 start-page: 331 issue: 3–4 year: 2003 ident: 10.1016/j.jrmge.2020.05.011_bib72 article-title: Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA publication-title: Engineering Geology doi: 10.1016/S0013-7952(03)00069-3 – year: 2020 ident: 10.1016/j.jrmge.2020.05.011_bib25 article-title: Prediction of disc cutter life during shield tunnelling with AI via incorporation of genetic algorithm into GMDH-type neural network publication-title: Engineering – volume: 65 start-page: 15 issue: 1–2 year: 2005 ident: 10.1016/j.jrmge.2020.05.011_bib4 article-title: The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan publication-title: Geomorphology doi: 10.1016/j.geomorph.2004.06.010 – volume: 39 start-page: 5253 issue: 17 year: 2015 ident: 10.1016/j.jrmge.2020.05.011_bib64 article-title: Slope stability analysis based on quantum-behaved particle swarm optimization and least squares support vector machine publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2015.03.032 – start-page: 333 year: 2017 ident: 10.1016/j.jrmge.2020.05.011_bib41 article-title: Slope stability evaluation using radial basis function neural network, least squares support vector machines, and extreme learning machine – volume: 8 start-page: 687 issue: 1 year: 2008 ident: 10.1016/j.jrmge.2020.05.011_bib50 article-title: On the performance of artificial bee colony (ABC) algorithm publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2007.05.007 – volume: 203 start-page: 601 year: 2018 ident: 10.1016/j.jrmge.2020.05.011_bib52 article-title: Group contribution methods for estimating CO2 absorption capacities of imidazolium and ammonium-based polyionic liquids publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2018.08.127 – volume: 35 start-page: 2597 issue: 6 year: 2017 ident: 10.1016/j.jrmge.2020.05.011_bib73 article-title: Landslide susceptibility assessment using bagging ensemble based alternating decision trees, logistic regression and J48 decision trees methods: a comparative study publication-title: Geotechnical and Geological Engineering doi: 10.1007/s10706-017-0264-2 – volume: 46 start-page: 60 year: 2016 ident: 10.1016/j.jrmge.2020.05.011_bib42 article-title: Hybrid artificial intelligence approach based on metaheuristic and machine learning for slope stability assessment: a multinational data analysis publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2015.10.020 – volume: 39 start-page: 1737 issue: 2 year: 2012 ident: 10.1016/j.jrmge.2020.05.011_bib19 article-title: Evolutionary risk preference inference model using fuzzy support vector machine for road slope collapse prediction publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.08.081 – volume: 130 start-page: 507 issue: 5 year: 2004 ident: 10.1016/j.jrmge.2020.05.011_bib37 article-title: Probabilistic slope stability analysis by finite elements publication-title: Journal of Geotechnical and Geoenvironmental Engineering doi: 10.1061/(ASCE)1090-0241(2004)130:5(507) – volume: 130 start-page: 105988 year: 2020 ident: 10.1016/j.jrmge.2020.05.011_bib3 article-title: Evaluation of soil liquefaction using AI technology incorporating a coupled ENN/t-SNE model publication-title: Soil Dynamics and Earthquake Engineering doi: 10.1016/j.soildyn.2019.105988 – volume: 236 start-page: 452 year: 2017 ident: 10.1016/j.jrmge.2020.05.011_bib7 article-title: Prediction viscosity of ionic liquids using a hybrid LSSVM and group contribution method publication-title: Journal of Molecular Liquids doi: 10.1016/j.molliq.2017.04.019 – start-page: 54 year: 2002 ident: 10.1016/j.jrmge.2020.05.011_bib59 article-title: Heuristic search-based stacking of classifiers – volume: 106 start-page: 103594 year: 2020 ident: 10.1016/j.jrmge.2020.05.011_bib97 article-title: Evolutionary hybrid neural network approach to predict shield tunneling-induced ground settlements publication-title: Tunneling and Underground Space Technology doi: 10.1016/j.tust.2020.103594 – volume: 118 start-page: 112 year: 2018 ident: 10.1016/j.jrmge.2020.05.011_bib76 article-title: Slope stability prediction using integrated metaheuristic and machine learning approaches: a comparative study publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2018.02.028 – volume: 8 start-page: 2540 issue: 12 year: 2018 ident: 10.1016/j.jrmge.2020.05.011_bib16 article-title: Landslide susceptibility modeling based on GIS and novel Bagging-based kernel logistic regression publication-title: Applied Sciences doi: 10.3390/app8122540 – volume: 209 start-page: 46 year: 2016 ident: 10.1016/j.jrmge.2020.05.011_bib48 article-title: System reliability analysis of slopes using least squares support vector machines with particle swarm optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.11.122 – year: 2005 ident: 10.1016/j.jrmge.2020.05.011_bib90 – volume: 10 start-page: 129 issue: 4 year: 1960 ident: 10.1016/j.jrmge.2020.05.011_bib10 article-title: Stability coefficients for earth slopes publication-title: Geotechnique doi: 10.1680/geot.1960.10.4.129 – volume: 104 start-page: 126 issue: 1–2 year: 2009 ident: 10.1016/j.jrmge.2020.05.011_bib46 article-title: Slope failure prediction using a decision tree: a case of engineered slopes in South Korea publication-title: Engineering Geology doi: 10.1016/j.enggeo.2008.09.004 – volume: 65 start-page: 707 issue: 1 year: 2013 ident: 10.1016/j.jrmge.2020.05.011_bib63 article-title: Slope reliability analysis by updated support vector machine and Monte Carlo simulation publication-title: Natural Hazards doi: 10.1007/s11069-012-0396-x |
| SSID | ssib017476736 ssib022315938 ssib007891447 ssib051367711 ssib011451244 ssib044745613 ssib038074921 |
| Score | 2.5680916 |
| Snippet | Slope failures lead to catastrophic consequences in numerous countries and thus the stability assessment for slopes is of high interest in geotechnical and... |
| SourceID | doaj unpaywall wanfang crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 188 |
| SubjectTerms | Artificial bee colony (ABC) Machine learning (ML) Slope stability Stacking ensemble Variable importance |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQ9gAceCO2POQDEhdSbR52kmNBVBUSFQdWKidr_Fpa0uxqNyuaHvjtzDjeVRehqiiXKHGcxJ54vom_-czYW29MDTrTCRqPTgopdQJZXSRV7nKL7lOLIPb85UQeT4vPp-I06mxTLszO_H3gYZ0vL2akZ5lNBolNDHX2pEDgPWJ705Ovh98ppJLEKizDGqeZIBJQkZYbjaF_17Ljh4Jc_447urtuF9D_gqYJ2Tyth3Z2zfEcPRwyuldBr5D4Jj8P1p0-MFd_qTne8p0esQcRgPLDwWIeszuufcLuX5MlfMp-D38anOWLJc3jUN_xueerZr5wHOFkINT2nDjzMw78R09pX3TC0I93jpGxu9CN48Py1Jw8peVYhz8jhMvdQFnnEAVRcMfyQKXjRFh9xqZHn759PE7iOg0JFKXsksohBkAP6ECWXtrKogNE1IhjhQSpjc2916YUvsTYyVYSAywxSR3oWpcWKqjy52zUzlv3gnFKKQGw3tkSCm987T0JwFvwkJYOxJhlm15TJoqY01oajdqw1c5VaFxFjasmQmHjjtn77UWLQcPj5uIfyBy2RUmAOxzAPlTxe1YTAziSgc8kPqioUsg01KLC0dOkha-qMZMbY1IRywwYBas6u_nuydb0bve076J5qjj6rFS_ai77vpuZS61cRlE9bvn-f9b8kt2jaweK-is26pZr9xoRWKffxC_vD5ohLBw priority: 102 providerName: Unpaywall |
| Title | Improved prediction of slope stability using a hybrid stacking ensemble method based on finite element analysis and field data |
| URI | https://dx.doi.org/10.1016/j.jrmge.2020.05.011 https://d.wanfangdata.com.cn/periodical/yslxyytgcxb-e202101013 https://doi.org/10.1016/j.jrmge.2020.05.011 https://doaj.org/article/0ca794af267a4581a2ba958305c14f88 |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2589-0417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib044745613 issn: 1674-7755 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEF2hcoALAgEifFR7QOKChb92vT62qFWF1IoDkcppNfsVWrlOlKSivvS3d2btGPdSOKBIUZTYa2fnxW_GefuGsY_B2hpMbhIEj0lKKU0CeV0mqvCFQ_o0Ipo9n57Jk3n57VycT1p9kSastwfuJ-5LagEhAyGXFZRCZZAbqIVCmNqsDCou801VPSmmCEmVqrFSGIk1o360EyJDTsTz-IM8cl0vJ8ZguCslFiNyBRmbVbGZL6n2MSUVYmdhFMVil-urBZlu5mnvA5rdo7nYDeAe2z25blfQ_YamiYuF2gDtYsJrx8_ZsyEh5Qf9RLxgj3z7kt329xq846s1_ZND0ePLwDfNcuU5JpRRUttxUs0vOPBfHS38og8s3XrnWBv7K9N43jeo5sSVjuMY4YJyXO570TqHwRIFXzgexXScJKuv2Pz46MfXk2To1JBAWcltojxmAciBHmQVpFMOKRDzRrxaSJDGuiIEYysRKqyenJJYYok082BqUzlQoIrXbK9dtv4N47SoBMAF7zDewYY6BLKAdxAgqzyIGct3E6vtYGNO3TQavdOrXeoYDU3R0KnQGI0Z-zzutOpdPB7e_JAiNm5KFtzxDQSmHoCp_wbMGZO7eOshm-mzFBzq4uGjJyM6_u1sPw0I0sP1Z6O7TXPTdduFvTHa51TX46N4-z--1zv2lAbslevv2d52fe0_YGK2NfvxN4jPp7dH--zx_Oz7wc878BEwIg |
| linkProvider | Directory of Open Access Journals |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQ9gAceCO2POQDEhdSbR52kmNBVBUSFQdWKidr_Fpa0uxqNyuaHvjtzDjeVRehqiiXKHGcxJ54vom_-czYW29MDTrTCRqPTgopdQJZXSRV7nKL7lOLIPb85UQeT4vPp-I06mxTLszO_H3gYZ0vL2akZ5lNBolNDHX2pEDgPWJ705Ovh98ppJLEKizDGqeZIBJQkZYbjaF_17Ljh4Jc_447urtuF9D_gqYJ2Tyth3Z2zfEcPRwyuldBr5D4Jj8P1p0-MFd_qTne8p0esQcRgPLDwWIeszuufcLuX5MlfMp-D38anOWLJc3jUN_xueerZr5wHOFkINT2nDjzMw78R09pX3TC0I93jpGxu9CN48Py1Jw8peVYhz8jhMvdQFnnEAVRcMfyQKXjRFh9xqZHn759PE7iOg0JFKXsksohBkAP6ECWXtrKogNE1IhjhQSpjc2916YUvsTYyVYSAywxSR3oWpcWKqjy52zUzlv3gnFKKQGw3tkSCm987T0JwFvwkJYOxJhlm15TJoqY01oajdqw1c5VaFxFjasmQmHjjtn77UWLQcPj5uIfyBy2RUmAOxzAPlTxe1YTAziSgc8kPqioUsg01KLC0dOkha-qMZMbY1IRywwYBas6u_nuydb0bve076J5qjj6rFS_ai77vpuZS61cRlE9bvn-f9b8kt2jaweK-is26pZr9xoRWKffxC_vD5ohLBw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+prediction+of+slope+stability+using+a+hybrid+stacking+ensemble+method+based+on+finite+element+analysis+and+field+data&rft.jtitle=Journal+of+Rock+Mechanics+and+Geotechnical+Engineering&rft.au=Kardani%2C+Navid&rft.au=Zhou%2C+Annan&rft.au=Nazem%2C+Majidreza&rft.au=Shen%2C+Shui-Long&rft.date=2021-02-01&rft.pub=Elsevier+B.V&rft.issn=1674-7755&rft.volume=13&rft.issue=1&rft.spage=188&rft.epage=201&rft_id=info:doi/10.1016%2Fj.jrmge.2020.05.011&rft.externalDocID=S1674775520301451 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fyslxyytgcxb-e%2Fyslxyytgcxb-e.jpg |