Fire is a major driver of patterns of genetic diversity in two co-occurring Tasmanian palaeoendemic conifers

Aim: The impacts of Holocene fires on the genetic architecture of fire-intolerant species have largely been overlooked. Here, we investigate the relative impacts of the last glacial climate versus Holocene fires on the genetic diversity of two co-occurring, fire-intolerant conifers using a comparati...

Full description

Saved in:
Bibliographic Details
Published inJournal of biogeography Vol. 44; no. 6; pp. 1254 - 1267
Main Authors Worth, James R. P., Jordan, Gregory J., Marthick, James R., Sakaguchi, Shota, Colhoun, Eric A., Williamson, Grant J., Ito, Motomi, Bowman, David M. J. S.
Format Journal Article
LanguageEnglish
Published Oxford John Wiley & Sons Ltd 01.06.2017
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0305-0270
1365-2699
DOI10.1111/jbi.12919

Cover

Abstract Aim: The impacts of Holocene fires on the genetic architecture of fire-intolerant species have largely been overlooked. Here, we investigate the relative impacts of the last glacial climate versus Holocene fires on the genetic diversity of two co-occurring, fire-intolerant conifers using a comparative population genetic study. Location: The palaeoendemic plant-rich montane rain forests and alpine coniferous heath of Tasmania, Australia. Methods: The Tasmanian endemic conifers Athrotaxis cupressoides D. Don (461 samples from 20 populations) and Diselma archeri Hook.f. (576 samples from 23 populations, 16 of which were for sites sampled for A. cupressoides), were genotyped using eight and nine EST nuclear microsatellites respectively. Genetic diversity and structure was compared between the two species and the factors underlying genetic patterns in both species were investigated by examining isolation by distance, correlations with Last Glacial Maximum modelled distributions and the fossil record, and a fire history index of the sampled stands. Results: The range-wide genetic structure of the two species was similar (Fst = 0.09 and F'st = 0.21 for A. cupressoides versus D. archeri; Fst = 0.06 F'st = 0.24), and there were significant correlations between species for population-based expected heterozygosity, allelic richness, private alielic richness and pairwise genetic divergences. Furthermore, genetic diversity metrics decreased significantly with an index of fire history. Given fossil evidence and modelling evidence that both species occurred near their current ranges during the last glaciation and a lack of evidence for isolation by distance in either species, the plausible explanation for the patterns of diversity is genetic decline resulting from repeated Holocene fires. Main conclusions: Our study suggests that fire can have substantial impacts on genetic structure and diversity of plant species, particularly those without fire-tolerant traits, and that any increases in fire resulting from climate change may impose substantial threats to such species. In Tasmania, the observed increase in dry lightning in recent years, combined with periods of abnormally dry conditions, may therefore further degrade the range and genetic diversity of fire-intolerant palaeoendemic species.
AbstractList AIM: The impacts of Holocene fires on the genetic architecture of fire‐intolerant species have largely been overlooked. Here, we investigate the relative impacts of the last glacial climate versus Holocene fires on the genetic diversity of two co‐occurring, fire‐intolerant conifers using a comparative population genetic study. LOCATION: The palaeoendemic plant‐rich montane rain forests and alpine coniferous heath of Tasmania, Australia. METHODS: The Tasmanian endemic conifers Athrotaxis cupressoides D. Don (461 samples from 20 populations) and Diselma archeri Hook.f. (576 samples from 23 populations, 16 of which were for sites sampled for A. cupressoides), were genotyped using eight and nine EST nuclear microsatellites respectively. Genetic diversity and structure was compared between the two species and the factors underlying genetic patterns in both species were investigated by examining isolation by distance, correlations with Last Glacial Maximum modelled distributions and the fossil record, and a fire history index of the sampled stands. RESULTS: The range‐wide genetic structure of the two species was similar (Fₛₜ = 0.09 and F’ₛₜ = 0.21 for A. cupressoides versus D. archeri; Fₛₜ = 0.06 and F’ₛₜ = 0.24), and there were significant correlations between species for population‐based expected heterozygosity, allelic richness, private allelic richness and pairwise genetic divergences. Furthermore, genetic diversity metrics decreased significantly with an index of fire history. Given fossil evidence and modelling evidence that both species occurred near their current ranges during the last glaciation and a lack of evidence for isolation by distance in either species, the plausible explanation for the patterns of diversity is genetic decline resulting from repeated Holocene fires. MAIN CONCLUSIONS: Our study suggests that fire can have substantial impacts on genetic structure and diversity of plant species, particularly those without fire‐tolerant traits, and that any increases in fire resulting from climate change may impose substantial threats to such species. In Tasmania, the observed increase in dry lightning in recent years, combined with periods of abnormally dry conditions, may therefore further degrade the range and genetic diversity of fire‐intolerant palaeoendemic species.
Aim The impacts of Holocene fires on the genetic architecture of fire‐intolerant species have largely been overlooked. Here, we investigate the relative impacts of the last glacial climate versus Holocene fires on the genetic diversity of two co‐occurring, fire‐intolerant conifers using a comparative population genetic study. Location The palaeoendemic plant‐rich montane rain forests and alpine coniferous heath of Tasmania, Australia. Methods The Tasmanian endemic conifers Athrotaxis cupressoides D. Don (461 samples from 20 populations) and Diselma archeri Hook.f. (576 samples from 23 populations, 16 of which were for sites sampled for A. cupressoides), were genotyped using eight and nine EST nuclear microsatellites respectively. Genetic diversity and structure was compared between the two species and the factors underlying genetic patterns in both species were investigated by examining isolation by distance, correlations with Last Glacial Maximum modelled distributions and the fossil record, and a fire history index of the sampled stands. Results The range‐wide genetic structure of the two species was similar (Fst = 0.09 and F’st = 0.21 for A. cupressoides versus D. archeri; Fst = 0.06 and F’st = 0.24), and there were significant correlations between species for population‐based expected heterozygosity, allelic richness, private allelic richness and pairwise genetic divergences. Furthermore, genetic diversity metrics decreased significantly with an index of fire history. Given fossil evidence and modelling evidence that both species occurred near their current ranges during the last glaciation and a lack of evidence for isolation by distance in either species, the plausible explanation for the patterns of diversity is genetic decline resulting from repeated Holocene fires. Main conclusions Our study suggests that fire can have substantial impacts on genetic structure and diversity of plant species, particularly those without fire‐tolerant traits, and that any increases in fire resulting from climate change may impose substantial threats to such species. In Tasmania, the observed increase in dry lightning in recent years, combined with periods of abnormally dry conditions, may therefore further degrade the range and genetic diversity of fire‐intolerant palaeoendemic species.
Aim The impacts of Holocene fires on the genetic architecture of fire-intolerant species have largely been overlooked. Here, we investigate the relative impacts of the last glacial climate versus Holocene fires on the genetic diversity of two co-occurring, fire-intolerant conifers using a comparative population genetic study. Location The palaeoendemic plant-rich montane rain forests and alpine coniferous heath of Tasmania, Australia. Methods The Tasmanian endemic conifers Athrotaxis cupressoides D. Don (461 samples from 20 populations) and Diselma archeri Hook.f. (576 samples from 23 populations, 16 of which were for sites sampled for A. cupressoides), were genotyped using eight and nine EST nuclear microsatellites respectively. Genetic diversity and structure was compared between the two species and the factors underlying genetic patterns in both species were investigated by examining isolation by distance, correlations with Last Glacial Maximum modelled distributions and the fossil record, and a fire history index of the sampled stands. Results The range-wide genetic structure of the two species was similar (Fst = 0.09 and F'st = 0.21 for A. cupressoides versus D. archeri;Fst = 0.06 and F'st = 0.24), and there were significant correlations between species for population-based expected heterozygosity, allelic richness, private allelic richness and pairwise genetic divergences. Furthermore, genetic diversity metrics decreased significantly with an index of fire history. Given fossil evidence and modelling evidence that both species occurred near their current ranges during the last glaciation and a lack of evidence for isolation by distance in either species, the plausible explanation for the patterns of diversity is genetic decline resulting from repeated Holocene fires. Main conclusions Our study suggests that fire can have substantial impacts on genetic structure and diversity of plant species, particularly those without fire-tolerant traits, and that any increases in fire resulting from climate change may impose substantial threats to such species. In Tasmania, the observed increase in dry lightning in recent years, combined with periods of abnormally dry conditions, may therefore further degrade the range and genetic diversity of fire-intolerant palaeoendemic species.
Aim: The impacts of Holocene fires on the genetic architecture of fire-intolerant species have largely been overlooked. Here, we investigate the relative impacts of the last glacial climate versus Holocene fires on the genetic diversity of two co-occurring, fire-intolerant conifers using a comparative population genetic study. Location: The palaeoendemic plant-rich montane rain forests and alpine coniferous heath of Tasmania, Australia. Methods: The Tasmanian endemic conifers Athrotaxis cupressoides D. Don (461 samples from 20 populations) and Diselma archeri Hook.f. (576 samples from 23 populations, 16 of which were for sites sampled for A. cupressoides), were genotyped using eight and nine EST nuclear microsatellites respectively. Genetic diversity and structure was compared between the two species and the factors underlying genetic patterns in both species were investigated by examining isolation by distance, correlations with Last Glacial Maximum modelled distributions and the fossil record, and a fire history index of the sampled stands. Results: The range-wide genetic structure of the two species was similar (Fst = 0.09 and F'st = 0.21 for A. cupressoides versus D. archeri; Fst = 0.06 F'st = 0.24), and there were significant correlations between species for population-based expected heterozygosity, allelic richness, private alielic richness and pairwise genetic divergences. Furthermore, genetic diversity metrics decreased significantly with an index of fire history. Given fossil evidence and modelling evidence that both species occurred near their current ranges during the last glaciation and a lack of evidence for isolation by distance in either species, the plausible explanation for the patterns of diversity is genetic decline resulting from repeated Holocene fires. Main conclusions: Our study suggests that fire can have substantial impacts on genetic structure and diversity of plant species, particularly those without fire-tolerant traits, and that any increases in fire resulting from climate change may impose substantial threats to such species. In Tasmania, the observed increase in dry lightning in recent years, combined with periods of abnormally dry conditions, may therefore further degrade the range and genetic diversity of fire-intolerant palaeoendemic species.
Author Sakaguchi, Shota
Bowman, David M. J. S.
Jordan, Gregory J.
Colhoun, Eric A.
Ito, Motomi
Worth, James R. P.
Marthick, James R.
Williamson, Grant J.
Author_xml – sequence: 1
  givenname: James R. P.
  surname: Worth
  fullname: Worth, James R. P.
– sequence: 2
  givenname: Gregory J.
  surname: Jordan
  fullname: Jordan, Gregory J.
– sequence: 3
  givenname: James R.
  surname: Marthick
  fullname: Marthick, James R.
– sequence: 4
  givenname: Shota
  surname: Sakaguchi
  fullname: Sakaguchi, Shota
– sequence: 5
  givenname: Eric A.
  surname: Colhoun
  fullname: Colhoun, Eric A.
– sequence: 6
  givenname: Grant J.
  surname: Williamson
  fullname: Williamson, Grant J.
– sequence: 7
  givenname: Motomi
  surname: Ito
  fullname: Ito, Motomi
– sequence: 8
  givenname: David M. J. S.
  surname: Bowman
  fullname: Bowman, David M. J. S.
BookMark eNp1kE1P3DAQhq2KSl2gh_6ASpZ6KYeAv-LExxaVFoTUCz1bE-8EOUrsre0t2n9fL0t7QOCLrZnnGY3fY3IUYkBCPnB2zuu5mAZ_zoXh5g1ZcanbRmhjjsiKSdY2THTsHTnOeWKMmVaqFZmvfELqMwW6wBQTXSf_BxONI91AKZhC3r_vMWDxjq73zezLjvpAy0OkLjbRuW1KPtzTO8gLBA-hujNgxLDGpVouBj9W75S8HWHO-P7pPiG_rr7dXf5obn9-v778ctuA6rRpnNB8WLdCmhZwQIZa65ENve5rRzLj2m5sRSvN0EKvRw5952rBKC4EODDyhHw-zN2k-HuLudjFZ4fzDAHjNltRv690x5Wo6Kdn6BS3KdTtLDcVE1JxXqmLA-VSzDnhaJ0vUHwMJYGfLWd2n76t6dvH9Ktx9szYJL9A2r3IPk1_8DPuXgftzdfrf8bHgzHlEtN_QympRK-F_At_4Z9X
CitedBy_id crossref_primary_10_1007_s10592_021_01338_1
crossref_primary_10_1002_ajb2_16432
crossref_primary_10_1071_BT20117
crossref_primary_10_3390_f14010157
crossref_primary_10_1071_BT18124
crossref_primary_10_1111_gcb_15031
crossref_primary_10_2478_sg_2020_0001
crossref_primary_10_1071_WR23124
crossref_primary_10_1093_pnasnexus_pgac115
crossref_primary_10_1111_aec_12789
Cites_doi 10.1007/BF02300753
10.1007/s12686-014-0368-4
10.1016/j.ecolmodel.2005.03.026
10.1046/j.1471-8286.2002.00228.x-i2
10.1038/nature.2016.19308
10.1002/2016GL068082
10.1111/j.1365-294X.2011.05164.x
10.1111/geb.12239
10.1111/geb.12389
10.1046/j.1365-294x.2001.01190.x
10.1111/j.1365-294X.2008.03887.x
10.1016/j.quascirev.2014.08.003
10.1111/j.1523-1739.1998.96489.x
10.1175/JCLI-D-13-00426.1
10.1126/science.1163886
10.3732/ajb.1500433
10.1093/bioinformatics/bts460
10.1111/j.1365-294X.2007.03425.x
10.1046/j.1471-8286.2003.00351.x
10.1007/s12686-014-0400-8
10.1111/j.0014-3820.2005.tb01814.x
10.2307/2844785
10.1111/jbi.12229
10.1111/j.1471-8286.2004.00770.x
10.1080/01916122.1994.9989437
10.26749/rstpp.132.15
10.26749/rstpp.111.1.55
10.1111/j.1365-294X.2007.03659.x
10.1371/journal.pone.0113749
10.1093/genetics/163.1.367
10.1046/j.1365-2540.1999.00558.x
10.1111/gcb.12674
10.1016/j.revpalbo.2007.03.002
10.1073/pnas.1407930111
10.1111/j.1365-294X.2012.05543.x
10.1093/bioinformatics/btn478
10.1111/j.1467-8470.1993.tb00648.x
10.1006/qres.1996.0032
10.22459/TA34.01.2012.14
10.1093/aob/mcu197
10.1071/BT9840613
10.1016/S1040-6182(98)00046-9
10.2307/1937722
10.26749/rstpp.135.41
10.1007/s10592-005-9098-1
10.1111/nph.13508
10.26749/rstpp.109.33
10.1093/jhered/89.3.238
10.1111/j.1471-8286.2004.00845.x
10.1111/j.1466-8238.2006.00280.x
ContentType Journal Article
Copyright Copyright © 2017 John Wiley & Sons Ltd.
2016 John Wiley & Sons Ltd
Copyright © 2017 John Wiley & Sons Ltd
Copyright_xml – notice: Copyright © 2017 John Wiley & Sons Ltd.
– notice: 2016 John Wiley & Sons Ltd
– notice: Copyright © 2017 John Wiley & Sons Ltd
DBID AAYXX
CITATION
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
DOI 10.1111/jbi.12919
DatabaseName CrossRef
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Entomology Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Biology
Ecology
EISSN 1365-2699
EndPage 1267
ExternalDocumentID 10_1111_jbi_12919
JBI12919
44342862
Genre article
GeographicLocations Australia
Tasmania Australia
Tasmania
GeographicLocations_xml – name: Tasmania Australia
– name: Australia
– name: Tasmania
GrantInformation_xml – fundername: Japan Society for the Promotion of Science Grant‐in‐Aid for Scientific Research
  funderid: 26850098; 13J06059
– fundername: Environment Research and Technology Development Fund of the Ministry of the Environment
  funderid: 4‐1403
– fundername: Australian Research Council
  funderid: DP110101950; DP120100501
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1OC
29J
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABJNI
ABLJU
ABPLY
ABPPZ
ABPVW
ABSQW
ABTLG
ABXSQ
ACAHQ
ACCZN
ACGFS
ACHIC
ACPOU
ACPRK
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ANHSF
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
TN5
UB1
W8V
W99
WBKPD
WIH
WIK
WMRSR
WOHZO
WQJ
WSUWO
WXSBR
XG1
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
1OB
31~
AAHHS
AAISJ
AANHP
ABEML
ACBWZ
ACCFJ
ACRPL
ACSCC
ACYXJ
ADNMO
ADULT
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AI.
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
BDRZF
CAG
COF
DOOOF
EQZMY
ESX
FEDTE
GTFYD
HF~
HGD
HQ2
HTVGU
HVGLF
H~9
JSODD
SAMSI
VH1
VOH
VQP
WRC
AAYXX
AGQPQ
CITATION
7SN
7SS
8FD
C1K
FR3
P64
RC3
7S9
L.6
ID FETCH-LOGICAL-a4769-c261bd52395aebe0e666f0b868c26309c57f52539b5a86f1a87cf5294122aca93
IEDL.DBID DR2
ISSN 0305-0270
IngestDate Fri Jul 11 18:29:58 EDT 2025
Fri Jul 25 12:06:53 EDT 2025
Thu Apr 24 23:06:42 EDT 2025
Tue Jul 01 01:14:13 EDT 2025
Wed Jan 22 16:45:09 EST 2025
Thu Jul 03 22:06:22 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#am
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4769-c261bd52395aebe0e666f0b868c26309c57f52539b5a86f1a87cf5294122aca93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2020-2470
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jbi.12919
PQID 1900023411
PQPubID 1086398
PageCount 14
ParticipantIDs proquest_miscellaneous_2000467142
proquest_journals_1900023411
crossref_citationtrail_10_1111_jbi_12919
crossref_primary_10_1111_jbi_12919
wiley_primary_10_1111_jbi_12919_JBI12919
jstor_primary_44342862
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2017
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: June 2017
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Journal of biogeography
PublicationYear 2017
Publisher John Wiley & Sons Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons Ltd
– name: Wiley Subscription Services, Inc
References 1999; 57–58
2007; 146
1983; 19
2004; 4
1978; 38
1999; 83
2016; 103
2014b; 102
1998; 89
2014b; 7
2014; 23
1977
2001; 135
1993; 31
2016; 43
2011; 20
2003; 3
2008; 24
2012; 28
2014; 9
2012; 21
1998; 12
2009; 324
1975; 109
2014a; 27
2003; 163
2001; 10
2014a; 7
2012
2011
2008; 17
2009
2006; 7
2002; 2
1997
1995
2015; 208
2014; 41
2014; 111
1998; 132
1981; 62
2014; 114
2007; 16
2006; 190
1984; 32
2015; 21
2005; 5
2016; 530
1981; 15
2016
1961
2015
2014
1994; 18
2005; 59
2003; 300
1989; 14
2016; 25
1996; 45
e_1_2_7_5_1
Gibson N. (e_1_2_7_21_1) 1995
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
Eckenwalder J.E. (e_1_2_7_14_1) 2009
e_1_2_7_49_1
e_1_2_7_28_1
Valière N. (e_1_2_7_56_1) 2002; 2
Jeffreys H. (e_1_2_7_25_1) 1961
Astorga G. (e_1_2_7_4_1) 2016
e_1_2_7_50_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
Macphail M. (e_1_2_7_35_1) 1981; 15
e_1_2_7_6_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
Kirkpatrick J.B. (e_1_2_7_30_1) 1975; 109
e_1_2_7_46_1
Ogden J. (e_1_2_7_42_1) 1978; 38
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Williams M.A.J. (e_1_2_7_59_1) 1997
e_1_2_7_51_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – year: 2011
– year: 2009
– volume: 132
  start-page: 15
  year: 1998
  end-page: 29
  article-title: Changes in southwestern Tasmanian fire regimes since the early 1800s
  publication-title: Papers and proceedings of the Royal Society of Tasmania
– volume: 111
  start-page: 14489
  year: 2014
  end-page: 14493
  article-title: Conifer species adapt to low‐rainfall climates by following one of two divergent pathways
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 163
  start-page: 367
  year: 2003
  end-page: 374
  article-title: Bayesian analysis of genetic differentiation between populations
  publication-title: Genetics
– volume: 89
  start-page: 238
  year: 1998
  end-page: 247
  article-title: Distortion of allele frequency distributions provides a test for recent population bottlenecks
  publication-title: Journal of Heredity
– volume: 12
  start-page: 844
  year: 1998
  end-page: 855
  article-title: Identifying populations for conservation on the basis of genetic markers
  publication-title: Conservation Biology
– volume: 32
  start-page: 613
  year: 1984
  end-page: 629
  article-title: The impact of fire on Tasmanian alpine vegetation and soils
  publication-title: Australian Journal of Botany
– volume: 530
  start-page: 137
  year: 2016
  article-title: Tasmanian bushfires threaten iconic ancient forests
  publication-title: Nature
– volume: 146
  start-page: 146
  year: 2007
  end-page: 168
  article-title: Modern pollen–vegetation relationships in western Tasmania, Australia
  publication-title: Review of Palaeobotany and Palynology
– volume: 16
  start-page: 234
  year: 2007
  end-page: 245
  article-title: Ice age legacies in the geographical distribution of tree species richness in Europe
  publication-title: Global Ecology and Biogeography
– volume: 62
  start-page: 563
  year: 1981
  end-page: 570
  article-title: Freezing resistance of trees of the south temperate zone, especially subalpine species of Australasia
  publication-title: Ecology
– year: 2014
– volume: 109
  start-page: 33
  year: 1975
  end-page: 38
  article-title: Plant species diversity of the Lake Dora islands, Tasmania
  publication-title: Papers and Proceedings of the Royal Society of Tasmania
– volume: 57–58
  start-page: 5
  year: 1999
  end-page: 23
  article-title: Late Pleistocene vegetation and climate history of Lake Selina, western Tasmania
  publication-title: Quaternary International
– volume: 7
  start-page: 369
  year: 2014b
  end-page: 372
  article-title: Development of nuclear microsatellite markers for the Tasmanian endemic conifer Hook. F. (Cupressaceae)
  publication-title: Conservation Genetics Resources
– year: 1961
– volume: 19
  start-page: 153
  year: 1983
  end-page: 170
  article-title: Accuracy of estimated phylogenetic trees from molecular data
  publication-title: Journal of Molecular Evolution
– volume: 20
  start-page: 3144
  year: 2011
  end-page: 3155
  article-title: Ecology and life history affect different aspects of the population structure of 27 high‐alpine plants
  publication-title: Molecular Ecology
– volume: 24
  start-page: 2498
  year: 2008
  end-page: 2504
  article-title: ADZE: a rarefaction approach for counting alleles private to combinations of populations
  publication-title: Bioinformatics
– volume: 324
  start-page: 481
  year: 2009
  end-page: 484
  article-title: Fire in the Earth system
  publication-title: Science
– volume: 23
  start-page: 1186
  year: 2014
  end-page: 1197
  article-title: Environmental niche modelling fails to predict Last Glacial Maximum refugia: niche shifts, microrefugia or incorrect palaeoclimate estimates?
  publication-title: Global Ecology and Biogeography
– year: 1997
– volume: 114
  start-page: 1687
  year: 2014
  end-page: 1700
  article-title: Evidence for cryptic northern refugia in the last glacial period in
  publication-title: Annals of Botany
– start-page: 297
  year: 2012
  end-page: 328
– volume: 9
  start-page: e113749
  year: 2014
  article-title: Improving the use of species distribution models in conservation planning and management under climate change
  publication-title: PLoS ONE
– volume: 7
  start-page: 477
  year: 2014a
  end-page: 481
  article-title: Development of nuclear and mitochondrial microsatellite markers for the relictual conifer genus (Cupressaceae)
  publication-title: Conservation Genetics Resources
– volume: 31
  start-page: 26
  year: 1993
  end-page: 38
  article-title: Quaternary organic deposit from Newton Creek valley, western Tasmania
  publication-title: Australian Geographical Studies
– volume: 17
  start-page: 4015
  year: 2008
  end-page: 4026
  article-title: GST and its relatives do not measure differentiation
  publication-title: Molecular Ecology
– volume: 10
  start-page: 305
  year: 2001
  end-page: 318
  article-title: Detection of reduction in population size using data from microsatellite loci
  publication-title: Molecular Ecology
– volume: 38
  start-page: 1
  year: 1978
  end-page: 13
  article-title: Investigations of the dendrochronology of the genus D. Don (Taxodiaceae) in Tasmania
  publication-title: Tree‐Ring Bulletin
– year: 2015
– volume: 14
  start-page: 39
  year: 1989
  end-page: 51
  article-title: Regeneration patterns in populations of D. from Tasmania
  publication-title: Journal of Biogeography
– volume: 21
  start-page: 445
  year: 2015
  end-page: 458
  article-title: Effects of high‐severity fire drove the population collapse of the subalpine Tasmanian endemic conifer
  publication-title: Global Change Biology
– volume: 5
  start-page: 187
  year: 2005
  end-page: 189
  article-title: HP‐RARE 1.0: a computer program for performing rarefaction on measures of allelic richness
  publication-title: Molecular Ecology Notes
– volume: 3
  start-page: 167
  year: 2003
  end-page: 169
  article-title: Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets
  publication-title: Molecular Ecology Notes
– volume: 190
  start-page: 231
  year: 2006
  end-page: 259
  article-title: Maximum entropy modeling of species geographic distributions
  publication-title: Ecological Modelling
– volume: 45
  start-page: 312
  year: 1996
  end-page: 320
  article-title: Mid‐Holocene hemlock decline in eastern North America linked with phytophagous insect activity
  publication-title: Quaternary Research
– volume: 17
  start-page: 1170
  year: 2008
  end-page: 1188
  article-title: Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond
  publication-title: Molecular Ecology
– volume: 41
  start-page: 476
  year: 2014
  end-page: 488
  article-title: The legacy of mid‐Holocene fire on a Tasmanian montane landscape
  publication-title: Journal of Biogeography
– volume: 2
  start-page: 377
  year: 2002
  end-page: 379
  article-title: GIMLET: a computer program for analysing genetic individual identification data
  publication-title: Molecular Ecology Notes
– volume: 7
  start-page: 295
  year: 2006
  end-page: 302
  article-title: Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation
  publication-title: Conservation Genetics
– volume: 43
  start-page: 1702
  year: 2016
  end-page: 1709
  article-title: The Southern Annular Mode determines inter‐annual and centennial‐scale fire activity in temperate southwest Tasmania, Australia
  publication-title: Geophysical Research Letters
– volume: 103
  start-page: 246
  year: 2016
  end-page: 259
  article-title: Transient hybridization, not homoploid hybrid speciation, between ancient and deeply divergent conifers
  publication-title: American Journal of Botany
– volume: 15
  start-page: 22
  year: 1981
  article-title: A history of fire in the forest
  publication-title: Fire and Forest Management in Tasmania: Tasmanian Conservation Trust, Hobart
– volume: 300
  start-page: 1563
  year: 2003
  end-page: 1565
  article-title: Glacial refugia: hotspots but not melting pots of genetic diversity
  publication-title: Science
– year: 2016
– year: 1977
– volume: 59
  start-page: 1633
  year: 2005
  end-page: 1638
  article-title: A standardized genetic differentiation measure
  publication-title: Evolution
– volume: 21
  start-page: 2369
  year: 2012
  end-page: 2382
  article-title: Forest fragmentation genetics in a formerly widespread island endemic tree: (Dipterocarpaceae)
  publication-title: Molecular Ecology
– volume: 25
  start-page: 127
  year: 2016
  end-page: 140
  article-title: Palaeoendemic plants provide evidence for persistence of open, well‐watered vegetation since the Cretaceous
  publication-title: Global Ecology and Biogeography
– volume: 102
  start-page: 39
  year: 2014b
  end-page: 53
  article-title: Continuing upward trend in Mt Read Huon pine ring widths–Temperature or divergence?
  publication-title: Quaternary Science Reviews
– volume: 4
  start-page: 792
  year: 2004
  end-page: 794
  article-title: GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms
  publication-title: Molecular Ecology Notes
– volume: 208
  start-page: 960
  year: 2015
  end-page: 972
  article-title: How do cold‐sensitive species endure ice ages? Phylogeographic and paleodistribution models of postglacial range expansion of the mesothermic drought‐tolerant conifer
  publication-title: New Phytologist
– volume: 83
  start-page: 145
  year: 1999
  end-page: 154
  article-title: Isolation by distance in a continuous population: reconciliation between spatial autocorrelation analysis and population genetics models
  publication-title: Heredity
– year: 1995
– volume: 135
  start-page: 41
  year: 2001
  end-page: 50
  article-title: Impacts of dieback at Pine Lake, Tasmania
  publication-title: Papers and Proceedings of the Royal Society of Tasmania
– volume: 28
  start-page: 2537
  year: 2012
  end-page: 2539
  article-title: GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update
  publication-title: Bioinformatics
– volume: 18
  start-page: 33
  year: 1994
  end-page: 40
  article-title: Paleoenvironments of Tasmania inferred from a 5‐75 KA marine pollen record
  publication-title: Palynology
– volume: 27
  start-page: 3848
  year: 2014a
  end-page: 3868
  article-title: Future Australian severe thunderstorm environments. Part II: the influence of a strongly warming climate on convective environments
  publication-title: Journal of Climate
– ident: e_1_2_7_41_1
  doi: 10.1007/BF02300753
– volume: 15
  start-page: 22
  year: 1981
  ident: e_1_2_7_35_1
  article-title: A history of fire in the forest
  publication-title: Fire and Forest Management in Tasmania: Tasmanian Conservation Trust, Hobart
– ident: e_1_2_7_51_1
  doi: 10.1007/s12686-014-0368-4
– ident: e_1_2_7_47_1
  doi: 10.1016/j.ecolmodel.2005.03.026
– volume: 2
  start-page: 377
  year: 2002
  ident: e_1_2_7_56_1
  article-title: GIMLET: a computer program for analysing genetic individual identification data
  publication-title: Molecular Ecology Notes
  doi: 10.1046/j.1471-8286.2002.00228.x-i2
– volume: 38
  start-page: 1
  year: 1978
  ident: e_1_2_7_42_1
  article-title: Investigations of the dendrochronology of the genus Athrotaxis D. Don (Taxodiaceae) in Tasmania
  publication-title: Tree‐Ring Bulletin
– volume-title: Conifers of southern Australia
  year: 1995
  ident: e_1_2_7_21_1
– ident: e_1_2_7_37_1
  doi: 10.1038/nature.2016.19308
– ident: e_1_2_7_36_1
  doi: 10.1002/2016GL068082
– ident: e_1_2_7_17_1
– ident: e_1_2_7_40_1
  doi: 10.1111/j.1365-294X.2011.05164.x
– ident: e_1_2_7_60_1
  doi: 10.1111/geb.12239
– volume-title: Quaternary environments
  year: 1997
  ident: e_1_2_7_59_1
– ident: e_1_2_7_26_1
  doi: 10.1111/geb.12389
– ident: e_1_2_7_20_1
  doi: 10.1046/j.1365-294x.2001.01190.x
– ident: e_1_2_7_27_1
  doi: 10.1111/j.1365-294X.2008.03887.x
– ident: e_1_2_7_3_1
  doi: 10.1016/j.quascirev.2014.08.003
– ident: e_1_2_7_43_1
– ident: e_1_2_7_45_1
  doi: 10.1111/j.1523-1739.1998.96489.x
– ident: e_1_2_7_2_1
  doi: 10.1175/JCLI-D-13-00426.1
– ident: e_1_2_7_6_1
  doi: 10.1126/science.1163886
– ident: e_1_2_7_49_1
– ident: e_1_2_7_61_1
  doi: 10.3732/ajb.1500433
– ident: e_1_2_7_44_1
  doi: 10.1093/bioinformatics/bts460
– ident: e_1_2_7_46_1
  doi: 10.1111/j.1365-294X.2007.03425.x
– volume-title: Conifers of the world: the complete reference
  year: 2009
  ident: e_1_2_7_14_1
– ident: e_1_2_7_13_1
  doi: 10.1046/j.1471-8286.2003.00351.x
– ident: e_1_2_7_50_1
  doi: 10.1007/s12686-014-0400-8
– volume-title: LGM patterns of vegetation in south‐central tasmania: a view based on plant macrofossils
  year: 2016
  ident: e_1_2_7_4_1
– ident: e_1_2_7_23_1
  doi: 10.1111/j.0014-3820.2005.tb01814.x
– ident: e_1_2_7_12_1
  doi: 10.2307/2844785
– ident: e_1_2_7_19_1
  doi: 10.1111/jbi.12229
– ident: e_1_2_7_39_1
  doi: 10.1111/j.1471-8286.2004.00770.x
– ident: e_1_2_7_57_1
  doi: 10.1080/01916122.1994.9989437
– ident: e_1_2_7_38_1
  doi: 10.26749/rstpp.132.15
– ident: e_1_2_7_31_1
  doi: 10.26749/rstpp.111.1.55
– ident: e_1_2_7_15_1
  doi: 10.1111/j.1365-294X.2007.03659.x
– ident: e_1_2_7_48_1
  doi: 10.1371/journal.pone.0113749
– ident: e_1_2_7_11_1
  doi: 10.1093/genetics/163.1.367
– ident: e_1_2_7_22_1
  doi: 10.1046/j.1365-2540.1999.00558.x
– ident: e_1_2_7_24_1
  doi: 10.1111/gcb.12674
– ident: e_1_2_7_18_1
  doi: 10.1016/j.revpalbo.2007.03.002
– ident: e_1_2_7_7_1
  doi: 10.1073/pnas.1407930111
– ident: e_1_2_7_16_1
  doi: 10.1111/j.1365-294X.2012.05543.x
– ident: e_1_2_7_55_1
  doi: 10.1093/bioinformatics/btn478
– ident: e_1_2_7_9_1
  doi: 10.1111/j.1467-8470.1993.tb00648.x
– ident: e_1_2_7_5_1
  doi: 10.1006/qres.1996.0032
– ident: e_1_2_7_8_1
  doi: 10.22459/TA34.01.2012.14
– ident: e_1_2_7_29_1
  doi: 10.1093/aob/mcu197
– ident: e_1_2_7_32_1
  doi: 10.1071/BT9840613
– ident: e_1_2_7_10_1
  doi: 10.1016/S1040-6182(98)00046-9
– ident: e_1_2_7_52_1
  doi: 10.2307/1937722
– ident: e_1_2_7_58_1
  doi: 10.26749/rstpp.135.41
– volume-title: Theory of probability
  year: 1961
  ident: e_1_2_7_25_1
– ident: e_1_2_7_33_1
  doi: 10.1007/s10592-005-9098-1
– ident: e_1_2_7_53_1
  doi: 10.1111/nph.13508
– volume: 109
  start-page: 33
  year: 1975
  ident: e_1_2_7_30_1
  article-title: Plant species diversity of the Lake Dora islands, Tasmania
  publication-title: Papers and Proceedings of the Royal Society of Tasmania
  doi: 10.26749/rstpp.109.33
– ident: e_1_2_7_34_1
  doi: 10.1093/jhered/89.3.238
– ident: e_1_2_7_28_1
  doi: 10.1111/j.1471-8286.2004.00845.x
– ident: e_1_2_7_54_1
  doi: 10.1111/j.1466-8238.2006.00280.x
SSID ssj0009534
Score 2.2726386
Snippet Aim: The impacts of Holocene fires on the genetic architecture of fire-intolerant species have largely been overlooked. Here, we investigate the relative...
Aim The impacts of Holocene fires on the genetic architecture of fire‐intolerant species have largely been overlooked. Here, we investigate the relative...
Aim The impacts of Holocene fires on the genetic architecture of fire-intolerant species have largely been overlooked. Here, we investigate the relative...
AIM: The impacts of Holocene fires on the genetic architecture of fire‐intolerant species have largely been overlooked. Here, we investigate the relative...
SourceID proquest
crossref
wiley
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1254
SubjectTerms alpine coniferous heath
Athrotaxis cupressoides
Biodiversity
Climate
Climate change
comparative population genetics
Conifers
Correlation
Diselma archeri
expressed sequence tags
Fire
fire history
fire resistance
Fires
fossils
Genetic divergence
Genetic diversity
Genetic structure
genetic variation
genotyping
Glacial periods
Glaciation
Glaciology
Heterozygosity
Holocene
Last Glacial Maximum
lightning
microsatellite repeats
Microsatellites
montane rain forest
Plant diversity
Plant species
Population genetics
Population studies
Populations
Rain
rain forests
Rainforests
Species diversity
Studies
Tasmania
Title Fire is a major driver of patterns of genetic diversity in two co-occurring Tasmanian palaeoendemic conifers
URI https://www.jstor.org/stable/44342862
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjbi.12919
https://www.proquest.com/docview/1900023411
https://www.proquest.com/docview/2000467142
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEC5CQOLFRzS4mkhHPOQyyzy6Z7rxFGOWGNCDJJCDMPRrzObRE3Z2kXjKT8hvzC-xuufBRhQkt2Kmel5d1fWY6q8A3qvY2KriNsIYuYioFSrilPFIqVxY9A-oMD418OVrfnBMD0_YyQp86PfCtPgQQ8LNa0ZYr72CS9UsK7majtFYBcjPJMs9bv6nb-kS4G7WQkf54rS0iDtUoVDF04-8Z4vacsR7juayuxrszeQpfO-ftC0zOR8v5mqsf_0B4vjAV3kGTzo_lOy2gvMcVqxbh0dtZ8prpPZ1R611bdJPr1-Am-ACSaYNkeRSntUzYma-rIPUFbkKOJ2u8TTKpN8aSUxf80Gmjsx_1kTXdze3tdY-7eh-kCPZePQN6XD0hbS1z8Zf4jgM0X3BTfMSjif7R3sHUdewIZK0yEWkMRxTBkNbwSQKR2wxNqpixXOOZ7JYaFZULGWZUEzyvEokLzQeEDRJU6mlyDZg1dXOvgIiJboOHIPB2Eiq0ljwzBqmjGDGJOg1jWCnn7pSd2jmvqnGRTlENWpaho86gncD61UL4fE3po0w_wMHpRlGZnk6gs1eIMpOvZsyEQEoiCbJCLaH06iY_m-LdLZeNL6_Z4xWKKF4iZ0w-_--e3n48XMgXv8_6xt4nHoXI2SENmF1PlvYLXSQ5upt0ITfh3kLTg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRahceFcsFDCIQy9Z5WEntsQFUFfb0vaAtlIvKPIrZaF1qs2uUDnxE_iN_BLGzkNbBBLiZsV2Xp6xvxmPvwF4pWJjq4rbCG3kIqJWqIhTxiOlcmERH1BhvGvg6DifntCDU3a6Aa_7szAtP8TgcPOaEeZrr-DeIb2u5Wo-xtXKc37eCPtzHhJ9SNcod7OWPMqHp6VF3PEKhTievuu11agNSLwGNdcBa1hxJnfgY_-ubaDJl_Fqqcb62280jv_7MXfhdgdFyZtWdu7BhnX34WabnPIKS3u6K211mdI_XT0AN8E5kswbIsmF_FwviFn4yA5SV-QyUHW6xpdRLP3pSGL6sA8yd2T5tSa6_vn9R6219zy6MzKTjSfgkA57n0tbe4f8BfZDK93H3DQP4WSyN3s3jbqcDZGkRS4ijRaZMmjdCiZRPmKL5lEVK55zrMlioVlRsZRlQjHJ8yqRvNB4QdAkTaWWItuGTVc7-wiIlIgeONqDsZFUpbHgmTVMGcGMSRA4jWC3H7tSd4TmPq_GeTkYNmpehp86gpdD08uWxeNPjbaDAAwtKM3QOMvTEez0ElF2Gt6UiQhcQTRJRvBiqEbd9Bsu0tl61fgUnzEuRAnFW-yG4f_708uDt_uh8Pjfmz6Hrens6LA83D9-_wRupR5xBAfRDmwuFyv7FPHSUj0LavELN8cPbA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRUAvvCsWChjEoZes8rATW5x4dNUWqBBqpR6QIr9StrTOarMrVE78BH4jv4Sx89AWgYS4Wck4L3s830zG3wA8V7GxVcVthD5yEVErVMQp45FSubCID6gwPjTw_iDfPaL7x-x4DV70e2Fafogh4OY1I6zXXsFnplpVcjUdo7HylJ9XaI5m0iOij-kK427Wckf57LS0iDtaoZDG03e9ZIzafMRLSHMVrwaDM7kJn_pHbfNMvoyXCzXW335jcfzPd7kFNzogSl62M-c2rFl3B662pSkvsLWju9b1rk7654u74Ca4QpJpQyQ5l6f1nJi5z-sgdUVmgajTNb6Nk9LvjSSmT_ogU0cWX2ui65_ff9Ra-7ijOyGHsvH0G9Jh7zNpax-OP8d-6KP7jJvmHhxNdg5f70ZdxYZI0iIXkUZ_TBn0bQWTODtii85RFSueczyTxUKzomIpy4RikudVInmh8YCgSZpKLUW2CeuudvY-ECkRO3D0BmMjqUpjwTNrmDKCGZMgbBrBdj90pe7ozH1VjbNycGvUtAwfdQTPBtFZy-HxJ6HNMP6DBKUZumZ5OoKtfkKUnX43ZSICUxBNkhE8HU6jZvrfLdLZetn4Ap8xmqGE4iW2w-j__e7l_qu90Hjw76JP4NqHN5Py3d7B24ewkXq4EaJDW7C-mC_tIwRLC_U4KMUvABUOGw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fire+is+a+major+driver+of+patterns+of+genetic+diversity+in+two+co-occurring+Tasmanian+palaeoendemic+conifers&rft.jtitle=Journal+of+biogeography&rft.au=Worth%2C+James+R.+P.&rft.au=Jordan%2C+Gregory+J.&rft.au=Marthick%2C+James+R.&rft.au=Sakaguchi%2C+Shota&rft.date=2017-06-01&rft.pub=John+Wiley+%26+Sons+Ltd&rft.issn=0305-0270&rft.eissn=1365-2699&rft.volume=44&rft.issue=6&rft.spage=1254&rft.epage=1267&rft_id=info:doi/10.1111%2Fjbi.12919&rft.externalDocID=44342862
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0270&client=summon