VOCCluster: Untargeted Metabolomics Feature Clustering Approach for Clinical Breath Gas Chromatography/Mass Spectrometry Data

Metabolic profiling of breath analysis involves processing, alignment, scaling, and clustering of thousands of features extracted from gas chromatography/mass spectrometry (GC/MS) data from hundreds of participants. The multistep data processing is complicated, operator error-prone, and time-consumi...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 92; no. 4; pp. 2937 - 2945
Main Authors Alkhalifah, Yaser, Phillips, Iain, Soltoggio, Andrea, Darnley, Kareen, Nailon, William H, McLaren, Duncan, Eddleston, Michael, Thomas, C. L. Paul, Salman, Dahlia
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 18.02.2020
Subjects
Online AccessGet full text
ISSN0003-2700
1520-6882
1520-6882
DOI10.1021/acs.analchem.9b03084

Cover

Abstract Metabolic profiling of breath analysis involves processing, alignment, scaling, and clustering of thousands of features extracted from gas chromatography/mass spectrometry (GC/MS) data from hundreds of participants. The multistep data processing is complicated, operator error-prone, and time-consuming. Automated algorithmic clustering methods that are able to cluster features in a fast and reliable way are necessary. These accelerate metabolic profiling and discovery platforms for next-generation medical diagnostic tools. Our unsupervised clustering technique, VOCCluster, prototyped in Python, handles features of deconvolved GC/MS breath data. VOCCluster was created from a heuristic ontology based on the observation of experts undertaking data processing with a suite of software packages. VOCCluster identifies and clusters groups of volatile organic compounds (VOCs) from deconvolved GC/MS breath with similar mass spectra and retention index profiles. VOCCluster was used to cluster more than 15 000 features extracted from 74 GC/MS clinical breath samples obtained from participants with cancer before and after a radiation therapy. Results were evaluated against a panel of ground truth compounds and compared to other clustering methods (DBSCAN and OPTICS) that were used in previous metabolomics studies. VOCCluster was able to cluster those features into 1081 groups (including endogenous and exogenous compounds and instrumental artifacts) with an accuracy rate of 96% (±0.04 at 95% confidence interval).
AbstractList Metabolic profiling of breath analysis involves processing, alignment, scaling, and clustering of thousands of features extracted from gas chromatography/mass spectrometry (GC/MS) data from hundreds of participants. The multistep data processing is complicated, operator error-prone, and time-consuming. Automated algorithmic clustering methods that are able to cluster features in a fast and reliable way are necessary. These accelerate metabolic profiling and discovery platforms for next-generation medical diagnostic tools. Our unsupervised clustering technique, VOCCluster, prototyped in Python, handles features of deconvolved GC/MS breath data. VOCCluster was created from a heuristic ontology based on the observation of experts undertaking data processing with a suite of software packages. VOCCluster identifies and clusters groups of volatile organic compounds (VOCs) from deconvolved GC/MS breath with similar mass spectra and retention index profiles. VOCCluster was used to cluster more than 15 000 features extracted from 74 GC/MS clinical breath samples obtained from participants with cancer before and after a radiation therapy. Results were evaluated against a panel of ground truth compounds and compared to other clustering methods (DBSCAN and OPTICS) that were used in previous metabolomics studies. VOCCluster was able to cluster those features into 1081 groups (including endogenous and exogenous compounds and instrumental artifacts) with an accuracy rate of 96% (±0.04 at 95% confidence interval).
Metabolic profiling of breath analysis involves processing, alignment, scaling, and clustering of thousands of features extracted from gas chromatography/mass spectrometry (GC/MS) data from hundreds of participants. The multistep data processing is complicated, operator error-prone, and time-consuming. Automated algorithmic clustering methods that are able to cluster features in a fast and reliable way are necessary. These accelerate metabolic profiling and discovery platforms for next-generation medical diagnostic tools. Our unsupervised clustering technique, VOCCluster, prototyped in Python, handles features of deconvolved GC/MS breath data. VOCCluster was created from a heuristic ontology based on the observation of experts undertaking data processing with a suite of software packages. VOCCluster identifies and clusters groups of volatile organic compounds (VOCs) from deconvolved GC/MS breath with similar mass spectra and retention index profiles. VOCCluster was used to cluster more than 15 000 features extracted from 74 GC/MS clinical breath samples obtained from participants with cancer before and after a radiation therapy. Results were evaluated against a panel of ground truth compounds and compared to other clustering methods (DBSCAN and OPTICS) that were used in previous metabolomics studies. VOCCluster was able to cluster those features into 1081 groups (including endogenous and exogenous compounds and instrumental artifacts) with an accuracy rate of 96% (±0.04 at 95% confidence interval).Metabolic profiling of breath analysis involves processing, alignment, scaling, and clustering of thousands of features extracted from gas chromatography/mass spectrometry (GC/MS) data from hundreds of participants. The multistep data processing is complicated, operator error-prone, and time-consuming. Automated algorithmic clustering methods that are able to cluster features in a fast and reliable way are necessary. These accelerate metabolic profiling and discovery platforms for next-generation medical diagnostic tools. Our unsupervised clustering technique, VOCCluster, prototyped in Python, handles features of deconvolved GC/MS breath data. VOCCluster was created from a heuristic ontology based on the observation of experts undertaking data processing with a suite of software packages. VOCCluster identifies and clusters groups of volatile organic compounds (VOCs) from deconvolved GC/MS breath with similar mass spectra and retention index profiles. VOCCluster was used to cluster more than 15 000 features extracted from 74 GC/MS clinical breath samples obtained from participants with cancer before and after a radiation therapy. Results were evaluated against a panel of ground truth compounds and compared to other clustering methods (DBSCAN and OPTICS) that were used in previous metabolomics studies. VOCCluster was able to cluster those features into 1081 groups (including endogenous and exogenous compounds and instrumental artifacts) with an accuracy rate of 96% (±0.04 at 95% confidence interval).
Author Eddleston, Michael
Soltoggio, Andrea
Darnley, Kareen
Thomas, C. L. Paul
Nailon, William H
Alkhalifah, Yaser
Phillips, Iain
McLaren, Duncan
Salman, Dahlia
AuthorAffiliation Department of Chemistry
Pharmacology, Toxicology and Therapeutics Unit
Edinburgh Cancer Centre
Department of Computer Science
AuthorAffiliation_xml – name: Pharmacology, Toxicology and Therapeutics Unit
– name: Department of Computer Science
– name: Department of Chemistry
– name: Edinburgh Cancer Centre
Author_xml – sequence: 1
  givenname: Yaser
  surname: Alkhalifah
  fullname: Alkhalifah, Yaser
– sequence: 2
  givenname: Iain
  surname: Phillips
  fullname: Phillips, Iain
– sequence: 3
  givenname: Andrea
  surname: Soltoggio
  fullname: Soltoggio, Andrea
– sequence: 4
  givenname: Kareen
  surname: Darnley
  fullname: Darnley, Kareen
  organization: Edinburgh Cancer Centre
– sequence: 5
  givenname: William H
  surname: Nailon
  fullname: Nailon, William H
  organization: Edinburgh Cancer Centre
– sequence: 6
  givenname: Duncan
  surname: McLaren
  fullname: McLaren, Duncan
  organization: Edinburgh Cancer Centre
– sequence: 7
  givenname: Michael
  surname: Eddleston
  fullname: Eddleston, Michael
  organization: Pharmacology, Toxicology and Therapeutics Unit
– sequence: 8
  givenname: C. L. Paul
  orcidid: 0000-0003-4631-6417
  surname: Thomas
  fullname: Thomas, C. L. Paul
– sequence: 9
  givenname: Dahlia
  orcidid: 0000-0002-5354-2407
  surname: Salman
  fullname: Salman, Dahlia
  email: D.Salman@lboro.ac.uk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31791122$$D View this record in MEDLINE/PubMed
BookMark eNqFkbFu2zAQQIkiReOk_YOiINCli5wjRUlUtlRN0gIJMrTpSpzok6VAEl2SGjz03yPDdocMzUTg-N7hgHfGTkY3EmMfBSwFSHGBNixxxN62NCzLGlLQ6g1biExCkmstT9gCANJEFgCn7CyEJwAhQOTv2GkqilIIKRfs7--HquqnEMlf8scxol9TpBW_p4i1693Q2cBvCOPkiR_Ablzzq83GO7Qtb5yf593YWez5Vz-TLb_FwKvWuwGjW3vctNuLewyB_9yQjfOYot_ybxjxPXvbYB_ow-E9Z48317-q78ndw-2P6uouQVVkMcmbAmpVQ22zAqmERskUUlQ6041OSYGyGVqV1VikJZVWiWaVUa0IdQGNbtJz9mW_dz76z0QhmqELlvoeR3JTMFIBqBxEKV5HUwm6yHOdzujnF-iTm_ycZEflADLXuZqpTwdqqgdamY3vBvRbc2wwA5d7wHoXgqfG2C5i7NwYPXa9EWB2wc0c3ByDm0PwWVYv5OP-VzTYa7vff1f_V3kGepPECA
CitedBy_id crossref_primary_10_1088_1752_7163_aba816
crossref_primary_10_1109_RBME_2024_3481360
crossref_primary_10_1080_10408347_2021_1889961
crossref_primary_10_1371_journal_pone_0260098
crossref_primary_10_1002_ansa_202000162
crossref_primary_10_1002_jms_4782
crossref_primary_10_1088_1752_7163_ac3565
crossref_primary_10_1007_s10462_023_10391_w
crossref_primary_10_1007_s11306_020_01657_3
crossref_primary_10_1007_s11306_024_02104_3
crossref_primary_10_1016_j_talanta_2023_124254
crossref_primary_10_1016_j_trac_2022_116540
crossref_primary_10_1016_j_cscee_2022_100197
crossref_primary_10_1016_j_eswa_2021_115938
crossref_primary_10_3390_horticulturae9101094
crossref_primary_10_1371_journal_pone_0265399
crossref_primary_10_1016_j_eehl_2024_05_001
crossref_primary_10_3390_metabo11110753
crossref_primary_10_1038_s41598_020_79014_6
crossref_primary_10_3390_bios12100858
crossref_primary_10_1016_j_trac_2022_116599
crossref_primary_10_1021_acs_analchem_1c03163
crossref_primary_10_1002_EXP_20210222
crossref_primary_10_1016_j_atmosenv_2024_120836
crossref_primary_10_1016_j_biosx_2024_100459
crossref_primary_10_1002_rcm_9406
crossref_primary_10_1016_j_bios_2024_116001
crossref_primary_10_1002_jsfa_11353
crossref_primary_10_1016_j_trac_2024_117783
Cites_doi 10.1016/j.jchromb.2017.06.002
10.1002/widm.30
10.1007/s10549-010-1317-x
10.1016/j.atmosenv.2007.10.024
10.1038/sj.bjc.6605810
10.1016/S1044-0305(99)00047-1
10.1021/ac991142i
10.1186/2047-217X-2-13
10.1016/S1044-0305(01)00327-0
10.3390/metabo5020344
10.1007/s11306-005-1106-4
10.4155/bio.12.193
10.5772/9385
10.1186/1477-5956-5-3
10.3390/metabo4020465
10.1021/acs.jproteome.7b00427
10.1016/1044-0305(94)87009-8
10.1007/s11306-015-0823-6
10.1007/s11306-015-0882-8
10.1002/ijc.29701
10.1016/j.jchromb.2008.08.031
10.1088/1752-7155/8/3/034001
10.1038/nmeth.3583
10.1016/j.jchromb.2007.11.008
10.1093/bioinformatics/btl085
10.1088/1752-7155/10/2/026011
10.1002/9780470516898
ContentType Journal Article
Copyright Copyright American Chemical Society Feb 18, 2020
Copyright_xml – notice: Copyright American Chemical Society Feb 18, 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
DOI 10.1021/acs.analchem.9b03084
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
AGRICOLA
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-6882
EndPage 2945
ExternalDocumentID 31791122
10_1021_acs_analchem_9b03084
b206487794
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
1AW
23M
53T
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABOCM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACNCT
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
D0L
DZ
EBS
ED
ED~
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
P2P
PQEST
PQQKQ
ROL
RXW
TAE
TN5
UHB
UI2
UKR
VF5
VG9
VQA
W1F
WH7
X
X6Y
XFK
YZZ
---
-DZ
-~X
.DC
4.4
53G
6J9
AAHBH
AAYXX
ABBLG
ABHFT
ABHMW
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ACKOT
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
KZ1
LMP
XSW
ZCA
~02
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
ID FETCH-LOGICAL-a475t-6f70b4b0bc57ae90f42303a4858f83e404c5ac45ba739e9c41fd5eb4ea870f8f3
IEDL.DBID ACS
ISSN 0003-2700
1520-6882
IngestDate Thu Oct 02 11:11:54 EDT 2025
Fri Jul 11 07:51:23 EDT 2025
Mon Jun 30 08:29:36 EDT 2025
Wed Feb 19 02:29:56 EST 2025
Tue Jul 01 04:15:23 EDT 2025
Thu Apr 24 23:12:28 EDT 2025
Thu Aug 27 22:10:25 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a475t-6f70b4b0bc57ae90f42303a4858f83e404c5ac45ba739e9c41fd5eb4ea870f8f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5354-2407
0000-0003-4631-6417
PMID 31791122
PQID 2360026864
PQPubID 45400
PageCount 9
ParticipantIDs proquest_miscellaneous_2400460191
proquest_miscellaneous_2320876683
proquest_journals_2360026864
pubmed_primary_31791122
crossref_citationtrail_10_1021_acs_analchem_9b03084
crossref_primary_10_1021_acs_analchem_9b03084
acs_journals_10_1021_acs_analchem_9b03084
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-18
PublicationDateYYYYMMDD 2020-02-18
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-18
  day: 18
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Analytical chemistry (Washington)
PublicationTitleAlternate Anal. Chem
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref3/cit3
ref27/cit27
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
Amann A. (ref2/cit2) 2013
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref15/cit15
  doi: 10.1016/j.jchromb.2017.06.002
– ident: ref24/cit24
  doi: 10.1002/widm.30
– ident: ref11/cit11
  doi: 10.1007/s10549-010-1317-x
– ident: ref26/cit26
– ident: ref31/cit31
– ident: ref16/cit16
  doi: 10.1016/j.atmosenv.2007.10.024
– ident: ref27/cit27
  doi: 10.1016/j.jchromb.2017.06.002
– ident: ref10/cit10
  doi: 10.1038/sj.bjc.6605810
– ident: ref32/cit32
  doi: 10.1016/S1044-0305(99)00047-1
– ident: ref22/cit22
  doi: 10.1021/ac991142i
– ident: ref33/cit33
  doi: 10.1186/2047-217X-2-13
– ident: ref30/cit30
  doi: 10.1016/S1044-0305(01)00327-0
– ident: ref17/cit17
  doi: 10.3390/metabo5020344
– ident: ref5/cit5
  doi: 10.1007/s11306-005-1106-4
– ident: ref7/cit7
  doi: 10.4155/bio.12.193
– ident: ref14/cit14
  doi: 10.5772/9385
– ident: ref23/cit23
– ident: ref28/cit28
  doi: 10.1186/1477-5956-5-3
– ident: ref1/cit1
  doi: 10.3390/metabo4020465
– volume-title: Volatile Biomarkers: Non-Invasive Diagnosis in Physiology and Medicine
  year: 2013
  ident: ref2/cit2
– ident: ref25/cit25
  doi: 10.1021/acs.jproteome.7b00427
– ident: ref29/cit29
  doi: 10.1016/1044-0305(94)87009-8
– ident: ref20/cit20
  doi: 10.1007/s11306-015-0823-6
– ident: ref4/cit4
  doi: 10.1007/s11306-015-0882-8
– ident: ref9/cit9
  doi: 10.1002/ijc.29701
– ident: ref13/cit13
  doi: 10.1016/j.jchromb.2008.08.031
– ident: ref12/cit12
  doi: 10.1088/1752-7155/8/3/034001
– ident: ref19/cit19
  doi: 10.1038/nmeth.3583
– ident: ref8/cit8
  doi: 10.1016/j.jchromb.2007.11.008
– ident: ref21/cit21
  doi: 10.1093/bioinformatics/btl085
– ident: ref6/cit6
  doi: 10.1088/1752-7155/10/2/026011
– ident: ref3/cit3
  doi: 10.1002/9780470516898
SSID ssj0011016
Score 2.477363
Snippet Metabolic profiling of breath analysis involves processing, alignment, scaling, and clustering of thousands of features extracted from gas chromatography/mass...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2937
SubjectTerms Algorithms
automation
Breath Tests
Chemistry
Chromatography
Cluster Analysis
Clustering
computer software
confidence interval
Confidence intervals
Data processing
Diagnostic software
Diagnostic systems
experts
Feature extraction
Gas chromatography
Gas Chromatography-Mass Spectrometry
Ground truth
Humans
information processing
Mass spectra
Mass spectrometry
Mass spectroscopy
Metabolism
Metabolomics
neoplasms
Optics
Organic compounds
Radiation therapy
radiotherapy
Scientific imaging
Software
Spectroscopy
VOCs
Volatile organic compounds
Volatile Organic Compounds - analysis
Volatile Organic Compounds - metabolism
Title VOCCluster: Untargeted Metabolomics Feature Clustering Approach for Clinical Breath Gas Chromatography/Mass Spectrometry Data
URI http://dx.doi.org/10.1021/acs.analchem.9b03084
https://www.ncbi.nlm.nih.gov/pubmed/31791122
https://www.proquest.com/docview/2360026864
https://www.proquest.com/docview/2320876683
https://www.proquest.com/docview/2400460191
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: ACS online
  customDbUrl:
  eissn: 1520-6882
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011016
  issn: 0003-2700
  databaseCode: ACS
  dateStart: 19470121
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOQAHHuW1UJCRuHDINvEjcbgtgVIhLT2URb1FtuOoEtu0apILEv-dmcTZ8lApXONxZI_H8TcZzzcAr1Ti8btoXETkYpFU6KBob3BBfKVjXWlVc8p3Xn5K91fy45E6unAUf4_g82TXuHZuUKk4h5N5bolfRV6HGzzNMrrCtygON1ED8kSnCnkUUJ1S5S55Cx1Irv31QLoEZQ6nzd5dOJhydsZLJl_nfWfn7tufFI7_OJF7cCcAT7YYLeU-XPPNNtwspnpv23D7J2rCB_D9y0FRrHuiUXjDVs14YdxXbOk7NJs15TK3jPBjf-5ZEMSObBE4yhmCYRZIR9fsLUHTY_bBtIzYeBElB6bs3SWCd3Z4NtTiOfE4EPbOdOYhrPbefy72o1CqITIyU12U1llspY2tU5nxeVwjSouFkVrpWgsvY-mUcVJZk4nc504mdaW8lWgWWVzrWjyCrea08U-AeVOLSlVcOMWlUiZPcmsd0dCj8yOdnMFr1GQZtlpbDlF0npT0cFJvGdQ7AzGtbekC5zmV3lhf0Sva9DobOT-ukN-ZzOZiWFxQxDPVKTa_3DTjklJAxjT-tCcZToyAqRZ_kZFDfi-61TN4PJrkZlCCuGUTzp_-h0qewS1Ovwyopo3ega3uvPfPEVd19sWwmX4ACrcfnA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT9VAEJ4gHpCDKIo-QV0TLx76aLu77Zbbo4pP5eEBHuHW7G63MeFRCG0vJv53Z_raoiZIuHZnm-nstPtNZ-cbgPcycPhd1NYjcjFPSAxQlNO4IC5XvsqVLEKqd54dRdO5-Homz1ZA9rUwqESFd6raJP4Nu0CwS9c02hYf5WKcGKJZEQ_goYxEQDHXJD0ekgcUkPaN8iiv2lfM3XIX2pds9fe-dAvYbDedgw04HdRtz5qcj5vajO3Pf5gc7_08T-BxB0PZZOk3T2HFlZuwlvbd3zZh_Q-iwmfw6_R7mi4aIlXYY_NyeXzc5WzmanSiBVU2V4zQZHPtWCeIE9mkYyxnCI1ZR0G6YPsEVH-wz7pixM2LmLnjzd6dIZRnx1dtZ54Lh4qwj7rWz2F-8OkknXpd4wZPi1jWXlTEvhHGN1bG2iV-gZjN51ooqQrFnfCFldoKaXTME5dYERS5dEagk8R-oQq-BavlZeleAnO64LnMQ25lKKTUSZAYY4mUHkMhYcUIPqAls-7Fq7I2px4GGV3szZt15h0B75c4sx0DOjXiWNwxyxtmXS0ZQO6Q3-m950atkFP-M1IRDr8bhnFJKT2jS3fZkExI_ICR4v-REW21LwbZI3ix9MxBKU5Ms0EYvrqHSd7C2vRkdpgdfjn6tg2PQvqZQN1u1A6s1teNe42IqzZv2vfrN1_pJ_4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSDwOPMproYCRuHDINvEjcbiVlKU8tiCVRRWXyHZsIbFNV01yQeK_M5N1QkEqFVz90ng8jj9nPN8Q8kwmDr6L2kZILhYJCRcU5TQsiKtUrColPcN45_l-urcQbw_l4alUXyBEAyM1vRMfd_Wq8oFhINnGcg36hekcTXODVCviIrkkU9jtiIqKg9GBgJfSIVke-laHqLkzRsGzyTa_n01nAM7-4JndIF9Gkfv3Jt-mXWum9vsfbI7_Naeb5HqAo3RnbT-3yAVXb5IrxZAFbpNcO0VYeJv8-PyhKJYdkiu8oIt6_YzcVXTuWjCmJUY4NxRRZXfiaGgIHelOYC6nAJFpoCJd0pcIWL_S17qhyNEL2DnwZ2_PAdLTg1WfoefIgSB0V7f6DlnMXn0q9qKQwCHSIpNtlPosNsLExspMuzz2gN1iroWSyivuRCys1FZIozOeu9yKxFfSGQHGksVeeX6XbNTHtbtPqNOeV7Ji3EompNR5khtjkZwerkTCigl5DposwwZsyt63zpISCwf1lkG9E8KHZS5tYELHhBzLc3pFY6_VmgnknPZbgwX9Eotx9IOmKoXqp2M1LCm6aXTtjjtsw5AnMFX8L21EH_ULl-0Jube2zlEojoyzCWMP_kElT8jlj7uz8v2b_XcPyVWG_xQw6Y3aIhvtSeceAfBqzeN-i_0EyCcqgQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VOCCluster%3A+Untargeted+Metabolomics+Feature+Clustering+Approach+for+Clinical+Breath+Gas+Chromatography%2FMass+Spectrometry+Data&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Alkhalifah%2C+Yaser&rft.au=Phillips%2C+Iain&rft.au=Soltoggio%2C+Andrea&rft.au=Darnley%2C+Kareen&rft.date=2020-02-18&rft.pub=American+Chemical+Society&rft.issn=0003-2700&rft.eissn=1520-6882&rft.volume=92&rft.issue=4&rft.spage=2937&rft_id=info:doi/10.1021%2Facs.analchem.9b03084&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon