VOCCluster: Untargeted Metabolomics Feature Clustering Approach for Clinical Breath Gas Chromatography/Mass Spectrometry Data
Metabolic profiling of breath analysis involves processing, alignment, scaling, and clustering of thousands of features extracted from gas chromatography/mass spectrometry (GC/MS) data from hundreds of participants. The multistep data processing is complicated, operator error-prone, and time-consumi...
Saved in:
| Published in | Analytical chemistry (Washington) Vol. 92; no. 4; pp. 2937 - 2945 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
American Chemical Society
18.02.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0003-2700 1520-6882 1520-6882 |
| DOI | 10.1021/acs.analchem.9b03084 |
Cover
| Abstract | Metabolic profiling of breath analysis involves processing, alignment, scaling, and clustering of thousands of features extracted from gas chromatography/mass spectrometry (GC/MS) data from hundreds of participants. The multistep data processing is complicated, operator error-prone, and time-consuming. Automated algorithmic clustering methods that are able to cluster features in a fast and reliable way are necessary. These accelerate metabolic profiling and discovery platforms for next-generation medical diagnostic tools. Our unsupervised clustering technique, VOCCluster, prototyped in Python, handles features of deconvolved GC/MS breath data. VOCCluster was created from a heuristic ontology based on the observation of experts undertaking data processing with a suite of software packages. VOCCluster identifies and clusters groups of volatile organic compounds (VOCs) from deconvolved GC/MS breath with similar mass spectra and retention index profiles. VOCCluster was used to cluster more than 15 000 features extracted from 74 GC/MS clinical breath samples obtained from participants with cancer before and after a radiation therapy. Results were evaluated against a panel of ground truth compounds and compared to other clustering methods (DBSCAN and OPTICS) that were used in previous metabolomics studies. VOCCluster was able to cluster those features into 1081 groups (including endogenous and exogenous compounds and instrumental artifacts) with an accuracy rate of 96% (±0.04 at 95% confidence interval). |
|---|---|
| AbstractList | Metabolic profiling of breath analysis involves processing, alignment, scaling, and clustering of thousands of features extracted from gas chromatography/mass spectrometry (GC/MS) data from hundreds of participants. The multistep data processing is complicated, operator error-prone, and time-consuming. Automated algorithmic clustering methods that are able to cluster features in a fast and reliable way are necessary. These accelerate metabolic profiling and discovery platforms for next-generation medical diagnostic tools. Our unsupervised clustering technique, VOCCluster, prototyped in Python, handles features of deconvolved GC/MS breath data. VOCCluster was created from a heuristic ontology based on the observation of experts undertaking data processing with a suite of software packages. VOCCluster identifies and clusters groups of volatile organic compounds (VOCs) from deconvolved GC/MS breath with similar mass spectra and retention index profiles. VOCCluster was used to cluster more than 15 000 features extracted from 74 GC/MS clinical breath samples obtained from participants with cancer before and after a radiation therapy. Results were evaluated against a panel of ground truth compounds and compared to other clustering methods (DBSCAN and OPTICS) that were used in previous metabolomics studies. VOCCluster was able to cluster those features into 1081 groups (including endogenous and exogenous compounds and instrumental artifacts) with an accuracy rate of 96% (±0.04 at 95% confidence interval). Metabolic profiling of breath analysis involves processing, alignment, scaling, and clustering of thousands of features extracted from gas chromatography/mass spectrometry (GC/MS) data from hundreds of participants. The multistep data processing is complicated, operator error-prone, and time-consuming. Automated algorithmic clustering methods that are able to cluster features in a fast and reliable way are necessary. These accelerate metabolic profiling and discovery platforms for next-generation medical diagnostic tools. Our unsupervised clustering technique, VOCCluster, prototyped in Python, handles features of deconvolved GC/MS breath data. VOCCluster was created from a heuristic ontology based on the observation of experts undertaking data processing with a suite of software packages. VOCCluster identifies and clusters groups of volatile organic compounds (VOCs) from deconvolved GC/MS breath with similar mass spectra and retention index profiles. VOCCluster was used to cluster more than 15 000 features extracted from 74 GC/MS clinical breath samples obtained from participants with cancer before and after a radiation therapy. Results were evaluated against a panel of ground truth compounds and compared to other clustering methods (DBSCAN and OPTICS) that were used in previous metabolomics studies. VOCCluster was able to cluster those features into 1081 groups (including endogenous and exogenous compounds and instrumental artifacts) with an accuracy rate of 96% (±0.04 at 95% confidence interval).Metabolic profiling of breath analysis involves processing, alignment, scaling, and clustering of thousands of features extracted from gas chromatography/mass spectrometry (GC/MS) data from hundreds of participants. The multistep data processing is complicated, operator error-prone, and time-consuming. Automated algorithmic clustering methods that are able to cluster features in a fast and reliable way are necessary. These accelerate metabolic profiling and discovery platforms for next-generation medical diagnostic tools. Our unsupervised clustering technique, VOCCluster, prototyped in Python, handles features of deconvolved GC/MS breath data. VOCCluster was created from a heuristic ontology based on the observation of experts undertaking data processing with a suite of software packages. VOCCluster identifies and clusters groups of volatile organic compounds (VOCs) from deconvolved GC/MS breath with similar mass spectra and retention index profiles. VOCCluster was used to cluster more than 15 000 features extracted from 74 GC/MS clinical breath samples obtained from participants with cancer before and after a radiation therapy. Results were evaluated against a panel of ground truth compounds and compared to other clustering methods (DBSCAN and OPTICS) that were used in previous metabolomics studies. VOCCluster was able to cluster those features into 1081 groups (including endogenous and exogenous compounds and instrumental artifacts) with an accuracy rate of 96% (±0.04 at 95% confidence interval). |
| Author | Eddleston, Michael Soltoggio, Andrea Darnley, Kareen Thomas, C. L. Paul Nailon, William H Alkhalifah, Yaser Phillips, Iain McLaren, Duncan Salman, Dahlia |
| AuthorAffiliation | Department of Chemistry Pharmacology, Toxicology and Therapeutics Unit Edinburgh Cancer Centre Department of Computer Science |
| AuthorAffiliation_xml | – name: Pharmacology, Toxicology and Therapeutics Unit – name: Department of Computer Science – name: Department of Chemistry – name: Edinburgh Cancer Centre |
| Author_xml | – sequence: 1 givenname: Yaser surname: Alkhalifah fullname: Alkhalifah, Yaser – sequence: 2 givenname: Iain surname: Phillips fullname: Phillips, Iain – sequence: 3 givenname: Andrea surname: Soltoggio fullname: Soltoggio, Andrea – sequence: 4 givenname: Kareen surname: Darnley fullname: Darnley, Kareen organization: Edinburgh Cancer Centre – sequence: 5 givenname: William H surname: Nailon fullname: Nailon, William H organization: Edinburgh Cancer Centre – sequence: 6 givenname: Duncan surname: McLaren fullname: McLaren, Duncan organization: Edinburgh Cancer Centre – sequence: 7 givenname: Michael surname: Eddleston fullname: Eddleston, Michael organization: Pharmacology, Toxicology and Therapeutics Unit – sequence: 8 givenname: C. L. Paul orcidid: 0000-0003-4631-6417 surname: Thomas fullname: Thomas, C. L. Paul – sequence: 9 givenname: Dahlia orcidid: 0000-0002-5354-2407 surname: Salman fullname: Salman, Dahlia email: D.Salman@lboro.ac.uk |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31791122$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkbFu2zAQQIkiReOk_YOiINCli5wjRUlUtlRN0gIJMrTpSpzok6VAEl2SGjz03yPDdocMzUTg-N7hgHfGTkY3EmMfBSwFSHGBNixxxN62NCzLGlLQ6g1biExCkmstT9gCANJEFgCn7CyEJwAhQOTv2GkqilIIKRfs7--HquqnEMlf8scxol9TpBW_p4i1693Q2cBvCOPkiR_Ablzzq83GO7Qtb5yf593YWez5Vz-TLb_FwKvWuwGjW3vctNuLewyB_9yQjfOYot_ybxjxPXvbYB_ow-E9Z48317-q78ndw-2P6uouQVVkMcmbAmpVQ22zAqmERskUUlQ6041OSYGyGVqV1VikJZVWiWaVUa0IdQGNbtJz9mW_dz76z0QhmqELlvoeR3JTMFIBqBxEKV5HUwm6yHOdzujnF-iTm_ycZEflADLXuZqpTwdqqgdamY3vBvRbc2wwA5d7wHoXgqfG2C5i7NwYPXa9EWB2wc0c3ByDm0PwWVYv5OP-VzTYa7vff1f_V3kGepPECA |
| CitedBy_id | crossref_primary_10_1088_1752_7163_aba816 crossref_primary_10_1109_RBME_2024_3481360 crossref_primary_10_1080_10408347_2021_1889961 crossref_primary_10_1371_journal_pone_0260098 crossref_primary_10_1002_ansa_202000162 crossref_primary_10_1002_jms_4782 crossref_primary_10_1088_1752_7163_ac3565 crossref_primary_10_1007_s10462_023_10391_w crossref_primary_10_1007_s11306_020_01657_3 crossref_primary_10_1007_s11306_024_02104_3 crossref_primary_10_1016_j_talanta_2023_124254 crossref_primary_10_1016_j_trac_2022_116540 crossref_primary_10_1016_j_cscee_2022_100197 crossref_primary_10_1016_j_eswa_2021_115938 crossref_primary_10_3390_horticulturae9101094 crossref_primary_10_1371_journal_pone_0265399 crossref_primary_10_1016_j_eehl_2024_05_001 crossref_primary_10_3390_metabo11110753 crossref_primary_10_1038_s41598_020_79014_6 crossref_primary_10_3390_bios12100858 crossref_primary_10_1016_j_trac_2022_116599 crossref_primary_10_1021_acs_analchem_1c03163 crossref_primary_10_1002_EXP_20210222 crossref_primary_10_1016_j_atmosenv_2024_120836 crossref_primary_10_1016_j_biosx_2024_100459 crossref_primary_10_1002_rcm_9406 crossref_primary_10_1016_j_bios_2024_116001 crossref_primary_10_1002_jsfa_11353 crossref_primary_10_1016_j_trac_2024_117783 |
| Cites_doi | 10.1016/j.jchromb.2017.06.002 10.1002/widm.30 10.1007/s10549-010-1317-x 10.1016/j.atmosenv.2007.10.024 10.1038/sj.bjc.6605810 10.1016/S1044-0305(99)00047-1 10.1021/ac991142i 10.1186/2047-217X-2-13 10.1016/S1044-0305(01)00327-0 10.3390/metabo5020344 10.1007/s11306-005-1106-4 10.4155/bio.12.193 10.5772/9385 10.1186/1477-5956-5-3 10.3390/metabo4020465 10.1021/acs.jproteome.7b00427 10.1016/1044-0305(94)87009-8 10.1007/s11306-015-0823-6 10.1007/s11306-015-0882-8 10.1002/ijc.29701 10.1016/j.jchromb.2008.08.031 10.1088/1752-7155/8/3/034001 10.1038/nmeth.3583 10.1016/j.jchromb.2007.11.008 10.1093/bioinformatics/btl085 10.1088/1752-7155/10/2/026011 10.1002/9780470516898 |
| ContentType | Journal Article |
| Copyright | Copyright American Chemical Society Feb 18, 2020 |
| Copyright_xml | – notice: Copyright American Chemical Society Feb 18, 2020 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
| DOI | 10.1021/acs.analchem.9b03084 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Materials Research Database AGRICOLA MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| EISSN | 1520-6882 |
| EndPage | 2945 |
| ExternalDocumentID | 31791122 10_1021_acs_analchem_9b03084 b206487794 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | - .K2 02 1AW 23M 53T 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABOCM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACNCT ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 D0L DZ EBS ED ED~ F20 F5P GNL IH9 IHE JG JG~ K2 P2P PQEST PQQKQ ROL RXW TAE TN5 UHB UI2 UKR VF5 VG9 VQA W1F WH7 X X6Y XFK YZZ --- -DZ -~X .DC 4.4 53G 6J9 AAHBH AAYXX ABBLG ABHFT ABHMW ABJNI ABLBI ABQRX ACBEA ACGFO ACKOT ADHLV AGXLV AHGAQ CITATION CUPRZ GGK KZ1 LMP XSW ZCA ~02 CGR CUY CVF ECM EIF NPM YIN 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-a475t-6f70b4b0bc57ae90f42303a4858f83e404c5ac45ba739e9c41fd5eb4ea870f8f3 |
| IEDL.DBID | ACS |
| ISSN | 0003-2700 1520-6882 |
| IngestDate | Thu Oct 02 11:11:54 EDT 2025 Fri Jul 11 07:51:23 EDT 2025 Mon Jun 30 08:29:36 EDT 2025 Wed Feb 19 02:29:56 EST 2025 Tue Jul 01 04:15:23 EDT 2025 Thu Apr 24 23:12:28 EDT 2025 Thu Aug 27 22:10:25 EDT 2020 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a475t-6f70b4b0bc57ae90f42303a4858f83e404c5ac45ba739e9c41fd5eb4ea870f8f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5354-2407 0000-0003-4631-6417 |
| PMID | 31791122 |
| PQID | 2360026864 |
| PQPubID | 45400 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_2400460191 proquest_miscellaneous_2320876683 proquest_journals_2360026864 pubmed_primary_31791122 crossref_citationtrail_10_1021_acs_analchem_9b03084 crossref_primary_10_1021_acs_analchem_9b03084 acs_journals_10_1021_acs_analchem_9b03084 |
| ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-02-18 |
| PublicationDateYYYYMMDD | 2020-02-18 |
| PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-18 day: 18 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Washington |
| PublicationTitle | Analytical chemistry (Washington) |
| PublicationTitleAlternate | Anal. Chem |
| PublicationYear | 2020 |
| Publisher | American Chemical Society |
| Publisher_xml | – name: American Chemical Society |
| References | ref9/cit9 ref6/cit6 ref3/cit3 ref27/cit27 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 Amann A. (ref2/cit2) 2013 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref7/cit7 |
| References_xml | – ident: ref15/cit15 doi: 10.1016/j.jchromb.2017.06.002 – ident: ref24/cit24 doi: 10.1002/widm.30 – ident: ref11/cit11 doi: 10.1007/s10549-010-1317-x – ident: ref26/cit26 – ident: ref31/cit31 – ident: ref16/cit16 doi: 10.1016/j.atmosenv.2007.10.024 – ident: ref27/cit27 doi: 10.1016/j.jchromb.2017.06.002 – ident: ref10/cit10 doi: 10.1038/sj.bjc.6605810 – ident: ref32/cit32 doi: 10.1016/S1044-0305(99)00047-1 – ident: ref22/cit22 doi: 10.1021/ac991142i – ident: ref33/cit33 doi: 10.1186/2047-217X-2-13 – ident: ref30/cit30 doi: 10.1016/S1044-0305(01)00327-0 – ident: ref17/cit17 doi: 10.3390/metabo5020344 – ident: ref5/cit5 doi: 10.1007/s11306-005-1106-4 – ident: ref7/cit7 doi: 10.4155/bio.12.193 – ident: ref14/cit14 doi: 10.5772/9385 – ident: ref23/cit23 – ident: ref28/cit28 doi: 10.1186/1477-5956-5-3 – ident: ref1/cit1 doi: 10.3390/metabo4020465 – volume-title: Volatile Biomarkers: Non-Invasive Diagnosis in Physiology and Medicine year: 2013 ident: ref2/cit2 – ident: ref25/cit25 doi: 10.1021/acs.jproteome.7b00427 – ident: ref29/cit29 doi: 10.1016/1044-0305(94)87009-8 – ident: ref20/cit20 doi: 10.1007/s11306-015-0823-6 – ident: ref4/cit4 doi: 10.1007/s11306-015-0882-8 – ident: ref9/cit9 doi: 10.1002/ijc.29701 – ident: ref13/cit13 doi: 10.1016/j.jchromb.2008.08.031 – ident: ref12/cit12 doi: 10.1088/1752-7155/8/3/034001 – ident: ref19/cit19 doi: 10.1038/nmeth.3583 – ident: ref8/cit8 doi: 10.1016/j.jchromb.2007.11.008 – ident: ref21/cit21 doi: 10.1093/bioinformatics/btl085 – ident: ref6/cit6 doi: 10.1088/1752-7155/10/2/026011 – ident: ref3/cit3 doi: 10.1002/9780470516898 |
| SSID | ssj0011016 |
| Score | 2.477363 |
| Snippet | Metabolic profiling of breath analysis involves processing, alignment, scaling, and clustering of thousands of features extracted from gas chromatography/mass... |
| SourceID | proquest pubmed crossref acs |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2937 |
| SubjectTerms | Algorithms automation Breath Tests Chemistry Chromatography Cluster Analysis Clustering computer software confidence interval Confidence intervals Data processing Diagnostic software Diagnostic systems experts Feature extraction Gas chromatography Gas Chromatography-Mass Spectrometry Ground truth Humans information processing Mass spectra Mass spectrometry Mass spectroscopy Metabolism Metabolomics neoplasms Optics Organic compounds Radiation therapy radiotherapy Scientific imaging Software Spectroscopy VOCs Volatile organic compounds Volatile Organic Compounds - analysis Volatile Organic Compounds - metabolism |
| Title | VOCCluster: Untargeted Metabolomics Feature Clustering Approach for Clinical Breath Gas Chromatography/Mass Spectrometry Data |
| URI | http://dx.doi.org/10.1021/acs.analchem.9b03084 https://www.ncbi.nlm.nih.gov/pubmed/31791122 https://www.proquest.com/docview/2360026864 https://www.proquest.com/docview/2320876683 https://www.proquest.com/docview/2400460191 |
| Volume | 92 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: ACS online customDbUrl: eissn: 1520-6882 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011016 issn: 0003-2700 databaseCode: ACS dateStart: 19470121 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOQAHHuW1UJCRuHDINvEjcbgtgVIhLT2URb1FtuOoEtu0apILEv-dmcTZ8lApXONxZI_H8TcZzzcAr1Ti8btoXETkYpFU6KBob3BBfKVjXWlVc8p3Xn5K91fy45E6unAUf4_g82TXuHZuUKk4h5N5bolfRV6HGzzNMrrCtygON1ED8kSnCnkUUJ1S5S55Cx1Irv31QLoEZQ6nzd5dOJhydsZLJl_nfWfn7tufFI7_OJF7cCcAT7YYLeU-XPPNNtwspnpv23D7J2rCB_D9y0FRrHuiUXjDVs14YdxXbOk7NJs15TK3jPBjf-5ZEMSObBE4yhmCYRZIR9fsLUHTY_bBtIzYeBElB6bs3SWCd3Z4NtTiOfE4EPbOdOYhrPbefy72o1CqITIyU12U1llspY2tU5nxeVwjSouFkVrpWgsvY-mUcVJZk4nc504mdaW8lWgWWVzrWjyCrea08U-AeVOLSlVcOMWlUiZPcmsd0dCj8yOdnMFr1GQZtlpbDlF0npT0cFJvGdQ7AzGtbekC5zmV3lhf0Sva9DobOT-ukN-ZzOZiWFxQxDPVKTa_3DTjklJAxjT-tCcZToyAqRZ_kZFDfi-61TN4PJrkZlCCuGUTzp_-h0qewS1Ovwyopo3ega3uvPfPEVd19sWwmX4ACrcfnA |
| linkProvider | American Chemical Society |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BT9VAEJ4gHpCDKIo-QV0TLx76aLu77Zbbo4pP5eEBHuHW7G63MeFRCG0vJv53Z_raoiZIuHZnm-nstPtNZ-cbgPcycPhd1NYjcjFPSAxQlNO4IC5XvsqVLEKqd54dRdO5-Homz1ZA9rUwqESFd6raJP4Nu0CwS9c02hYf5WKcGKJZEQ_goYxEQDHXJD0ekgcUkPaN8iiv2lfM3XIX2pds9fe-dAvYbDedgw04HdRtz5qcj5vajO3Pf5gc7_08T-BxB0PZZOk3T2HFlZuwlvbd3zZh_Q-iwmfw6_R7mi4aIlXYY_NyeXzc5WzmanSiBVU2V4zQZHPtWCeIE9mkYyxnCI1ZR0G6YPsEVH-wz7pixM2LmLnjzd6dIZRnx1dtZ54Lh4qwj7rWz2F-8OkknXpd4wZPi1jWXlTEvhHGN1bG2iV-gZjN51ooqQrFnfCFldoKaXTME5dYERS5dEagk8R-oQq-BavlZeleAnO64LnMQ25lKKTUSZAYY4mUHkMhYcUIPqAls-7Fq7I2px4GGV3szZt15h0B75c4sx0DOjXiWNwxyxtmXS0ZQO6Q3-m950atkFP-M1IRDr8bhnFJKT2jS3fZkExI_ICR4v-REW21LwbZI3ix9MxBKU5Ms0EYvrqHSd7C2vRkdpgdfjn6tg2PQvqZQN1u1A6s1teNe42IqzZv2vfrN1_pJ_4 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSDwOPMproYCRuHDINvEjcbiVlKU8tiCVRRWXyHZsIbFNV01yQeK_M5N1QkEqFVz90ng8jj9nPN8Q8kwmDr6L2kZILhYJCRcU5TQsiKtUrColPcN45_l-urcQbw_l4alUXyBEAyM1vRMfd_Wq8oFhINnGcg36hekcTXODVCviIrkkU9jtiIqKg9GBgJfSIVke-laHqLkzRsGzyTa_n01nAM7-4JndIF9Gkfv3Jt-mXWum9vsfbI7_Naeb5HqAo3RnbT-3yAVXb5IrxZAFbpNcO0VYeJv8-PyhKJYdkiu8oIt6_YzcVXTuWjCmJUY4NxRRZXfiaGgIHelOYC6nAJFpoCJd0pcIWL_S17qhyNEL2DnwZ2_PAdLTg1WfoefIgSB0V7f6DlnMXn0q9qKQwCHSIpNtlPosNsLExspMuzz2gN1iroWSyivuRCys1FZIozOeu9yKxFfSGQHGksVeeX6XbNTHtbtPqNOeV7Ji3EompNR5khtjkZwerkTCigl5DposwwZsyt63zpISCwf1lkG9E8KHZS5tYELHhBzLc3pFY6_VmgnknPZbgwX9Eotx9IOmKoXqp2M1LCm6aXTtjjtsw5AnMFX8L21EH_ULl-0Jube2zlEojoyzCWMP_kElT8jlj7uz8v2b_XcPyVWG_xQw6Y3aIhvtSeceAfBqzeN-i_0EyCcqgQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VOCCluster%3A+Untargeted+Metabolomics+Feature+Clustering+Approach+for+Clinical+Breath+Gas+Chromatography%2FMass+Spectrometry+Data&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Alkhalifah%2C+Yaser&rft.au=Phillips%2C+Iain&rft.au=Soltoggio%2C+Andrea&rft.au=Darnley%2C+Kareen&rft.date=2020-02-18&rft.pub=American+Chemical+Society&rft.issn=0003-2700&rft.eissn=1520-6882&rft.volume=92&rft.issue=4&rft.spage=2937&rft_id=info:doi/10.1021%2Facs.analchem.9b03084&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon |