Surface Modification of Poly(l-lactic acid) Membrane via Layer-by-Layer Assembly of Silver Nanoparticle-Embedded Polyelectrolyte Multilayer
The improvement of hydrophilicity, antibacterial activity, hemocompatibility, and cytocompatibility of poly(l-lactic acid) (PLLA) membrane was developed via polyelectrolyte multilayer (PEM) immobilization. Colloidal silver nanoparticles were prepared by using dextran sulfate (DS) as a stabilizer to...
Saved in:
| Published in | Bioconjugate chemistry Vol. 18; no. 5; pp. 1521 - 1529 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
American Chemical Society
01.09.2007
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1043-1802 1520-4812 |
| DOI | 10.1021/bc060098s |
Cover
| Abstract | The improvement of hydrophilicity, antibacterial activity, hemocompatibility, and cytocompatibility of poly(l-lactic acid) (PLLA) membrane was developed via polyelectrolyte multilayer (PEM) immobilization. Colloidal silver nanoparticles were prepared by using dextran sulfate (DS) as a stabilizer to precede chemical reduction by dextrose. The polysaccharide PEMs, including chitosan (CH) and dextran sulfate (DS)-stabilized silver nanosized colloid (DSS), were successfully deposited on the aminolyzed PLLA membrane in a layer-by-layer (LBL) self-assembly manner. The obtained results showed that the contact angle of PLLA membranes decreased with PEMs grafting layers and reached a steady value after four bilayers of coating, hence suggesting that full coverage was achieved. The PLLA−PEM membranes with DSS as the outermost layer could resist platelet adhesion and human plasma fibrinogen (HPF) adsorption, while prolonging the blood coagulation time. The PLLA−PEM membranes could possess antibacterial activity against Methicilin-resistant Staphylococus aureus (MRSA). In addition, the proliferation and viability of human endothelial cells (ECs) on PLLA−PEM membranes could be significantly improved. Overall results demonstrated that such a fast, easy processing and shape-independent method for an antithrombogenic coating can be used for applications in hemodialysis devices. |
|---|---|
| AbstractList | The improvement of hydrophilicity, antibacterial activity, hemocompatibility, and cytocompatibility of poly(L-lactic acid) (PLLA) membrane was developed via polyelectrolyte multilayer (PEM) immobilization. Colloidal silver nanoparticles were prepared by using dextran sulfate (DS) as a stabilizer to precede chemical reduction by dextrose. The polysaccharide PEMs, including chitosan (CH) and dextran sulfate (DS)-stabilized silver nanosized colloid (DSS), were successfully deposited on the aminolyzed PLLA membrane in a layer-by-layer (LBL) self-assembly manner. The obtained results showed that the contact angle of PLLA membranes decreased with PEMs grafting layers and reached a steady value after four bilayers of coating, hence suggesting that full coverage was achieved. The PLLA-PEM membranes with DSS as the outermost layer could resist platelet adhesion and human plasma fibrinogen (HPF) adsorption, while prolonging the blood coagulation time. The PLLA-PEM membranes could possess antibacterial activity against Methicilin-resistant Staphylococus aureus (MRSA). In addition, the proliferation and viability of human endothelial cells (ECs) on PLLA-PEM membranes could be significantly improved. Overall results demonstrated that such a fast, easy processing and shape-independent method for an antithrombogenic coating can be used for applications in hemodialysis devices. [PUBLICATION ABSTRACT] The improvement of hydrophilicity, antibacterial activity, hemocompatibility, and cytocompatibility of poly(l-lactic acid) (PLLA) membrane was developed via polyelectrolyte multilayer (PEM) immobilization. Colloidal silver nanoparticles were prepared by using dextran sulfate (DS) as a stabilizer to precede chemical reduction by dextrose. The polysaccharide PEMs, including chitosan (CH) and dextran sulfate (DS)-stabilized silver nanosized colloid (DSS), were successfully deposited on the aminolyzed PLLA membrane in a layer-by-layer (LBL) self-assembly manner. The obtained results showed that the contact angle of PLLA membranes decreased with PEMs grafting layers and reached a steady value after four bilayers of coating, hence suggesting that full coverage was achieved. The PLLA−PEM membranes with DSS as the outermost layer could resist platelet adhesion and human plasma fibrinogen (HPF) adsorption, while prolonging the blood coagulation time. The PLLA−PEM membranes could possess antibacterial activity against Methicilin-resistant Staphylococus aureus (MRSA). In addition, the proliferation and viability of human endothelial cells (ECs) on PLLA−PEM membranes could be significantly improved. Overall results demonstrated that such a fast, easy processing and shape-independent method for an antithrombogenic coating can be used for applications in hemodialysis devices. The improvement of hydrophilicity, antibacterial activity, hemocompatibility, and cytocompatibility of poly(L-lactic acid) (PLLA) membrane was developed via polyelectrolyte multilayer (PEM) immobilization. Colloidal silver nanoparticles were prepared by using dextran sulfate (DS) as a stabilizer to precede chemical reduction by dextrose. The polysaccharide PEMs, including chitosan (CH) and dextran sulfate (DS)-stabilized silver nanosized colloid (DSS), were successfully deposited on the aminolyzed PLLA membrane in a layer-by-layer (LBL) self-assembly manner. The obtained results showed that the contact angle of PLLA membranes decreased with PEMs grafting layers and reached a steady value after four bilayers of coating, hence suggesting that full coverage was achieved. The PLLA-PEM membranes with DSS as the outermost layer could resist platelet adhesion and human plasma fibrinogen (HPF) adsorption, while prolonging the blood coagulation time. The PLLA-PEM membranes could possess antibacterial activity against Methicilin- resistant Staphylococus aureus (MRSA). In addition, the proliferation and viability of human endothelial cells (ECs) on PLLA-PEM membranes could be significantly improved. Overall results demonstrated that such a fast, easy processing and shape-independent method for an antithrombogenic coating can be used for applications in hemodialysis devices. The improvement of hydrophilicity, antibacterial activity, hemocompatibility, and cytocompatibility of poly(L-lactic acid) (PLLA) membrane was developed via polyelectrolyte multilayer (PEM) immobilization. Colloidal silver nanoparticles were prepared by using dextran sulfate (DS) as a stabilizer to precede chemical reduction by dextrose. The polysaccharide PEMs, including chitosan (CH) and dextran sulfate (DS)-stabilized silver nanosized colloid (DSS), were successfully deposited on the aminolyzed PLLA membrane in a layer-by-layer (LBL) self-assembly manner. The obtained results showed that the contact angle of PLLA membranes decreased with PEMs grafting layers and reached a steady value after four bilayers of coating, hence suggesting that full coverage was achieved. The PLLA-PEM membranes with DSS as the outermost layer could resist platelet adhesion and human plasma fibrinogen (HPF) adsorption, while prolonging the blood coagulation time. The PLLA-PEM membranes could possess antibacterial activity against Methicilin-resistant Staphylococus aureus (MRSA). In addition, the proliferation and viability of human endothelial cells (ECs) on PLLA-PEM membranes could be significantly improved. Overall results demonstrated that such a fast, easy processing and shape-independent method for an antithrombogenic coating can be used for applications in hemodialysis devices.The improvement of hydrophilicity, antibacterial activity, hemocompatibility, and cytocompatibility of poly(L-lactic acid) (PLLA) membrane was developed via polyelectrolyte multilayer (PEM) immobilization. Colloidal silver nanoparticles were prepared by using dextran sulfate (DS) as a stabilizer to precede chemical reduction by dextrose. The polysaccharide PEMs, including chitosan (CH) and dextran sulfate (DS)-stabilized silver nanosized colloid (DSS), were successfully deposited on the aminolyzed PLLA membrane in a layer-by-layer (LBL) self-assembly manner. The obtained results showed that the contact angle of PLLA membranes decreased with PEMs grafting layers and reached a steady value after four bilayers of coating, hence suggesting that full coverage was achieved. The PLLA-PEM membranes with DSS as the outermost layer could resist platelet adhesion and human plasma fibrinogen (HPF) adsorption, while prolonging the blood coagulation time. The PLLA-PEM membranes could possess antibacterial activity against Methicilin-resistant Staphylococus aureus (MRSA). In addition, the proliferation and viability of human endothelial cells (ECs) on PLLA-PEM membranes could be significantly improved. Overall results demonstrated that such a fast, easy processing and shape-independent method for an antithrombogenic coating can be used for applications in hemodialysis devices. |
| Author | Yang, Ming-Chien Lin, Wen-Ching Yu, Da-Guang |
| Author_xml | – sequence: 1 givenname: Da-Guang surname: Yu fullname: Yu, Da-Guang – sequence: 2 givenname: Wen-Ching surname: Lin fullname: Lin, Wen-Ching – sequence: 3 givenname: Ming-Chien surname: Yang fullname: Yang, Ming-Chien |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17688319$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkd1qHCEAhaWkND_tRV-gDIWW5sJGR8fRyxDSH9ik6W7aW3HUAVNn3KgTus-Ql467myaQFnrlQb9z5HD2wc4YRgvAa4w-YlTjo04jhpDg6RnYw02NIOW43ikaUQIxR_Uu2E_pChUG8_oF2MUt45xgsQduF1PslbbVWTCud1plF8Yq9NVF8KsPHnqls9OV0s4cVmd26KIabXXjVDVTKxtht4IbUR2nVF79au1dOH9Trs7VGJYqFr-38HTorDHWbIKttzrHInL5ePLZ-XXGS_C8Vz7ZV_fnAfjx6fTy5Aucffv89eR4BhVtmwwb1nFKtRFMtFQx0XOMe86tqQkViBlBUKe4EIYbImjTKk5Y23Sal-5I0JYcgPfb3GUM15NNWQ4uaet9qRamJBmvOWNY_BesEW4bSkgB3z4Br8IUx1JC1rgkcdLwAr25h6ZusEYuoxtUXMk_YxTgcAvoGFKKtn9EkFwPLR-GLuzRE1a7vBkvR-X8Px1w63Ap298P0Sr-kqwlbSMvLxZy_pPj-fl3LOeFf7fllU6Pdf7OvQNi98SD |
| CitedBy_id | crossref_primary_10_1016_j_colsurfb_2015_10_006 crossref_primary_10_1039_c0sm01330g crossref_primary_10_1097_BCR_0b013e31827e7ef9 crossref_primary_10_1002_app_39658 crossref_primary_10_1155_2011_693759 crossref_primary_10_1021_bm1004838 crossref_primary_10_1002_adem_200800342 crossref_primary_10_1016_j_actbio_2015_11_010 crossref_primary_10_1016_j_colsurfa_2016_06_026 crossref_primary_10_1002_adfm_201002662 crossref_primary_10_1002_jbm_a_35804 crossref_primary_10_1021_bm100975w crossref_primary_10_1016_j_chemosphere_2022_135626 crossref_primary_10_1016_j_jafr_2021_100257 crossref_primary_10_3390_nano10061177 crossref_primary_10_1002_pat_1459 crossref_primary_10_1016_j_actbio_2013_06_012 crossref_primary_10_1016_j_memsci_2014_11_004 crossref_primary_10_1163_156856209X410102 crossref_primary_10_1021_acsomega_3c02697 crossref_primary_10_1021_am201795g crossref_primary_10_2147_IJN_S393207 crossref_primary_10_1016_j_ijpharm_2017_08_072 crossref_primary_10_1016_j_heliyon_2024_e40931 crossref_primary_10_1002_tcr_202000007 crossref_primary_10_1016_j_actbio_2009_02_016 crossref_primary_10_1016_j_ijpharm_2020_119291 crossref_primary_10_1016_j_ijbiomac_2014_11_044 crossref_primary_10_1021_ma901356s crossref_primary_10_1016_j_colsurfb_2021_112121 crossref_primary_10_3390_polym14173685 crossref_primary_10_1007_s11426_008_0103_7 crossref_primary_10_1053_j_ackd_2013_08_005 crossref_primary_10_1016_j_jelechem_2017_11_034 crossref_primary_10_1021_acs_bioconjchem_7b00071 crossref_primary_10_1088_1674_1056_24_8_088701 crossref_primary_10_3389_fphar_2019_01121 crossref_primary_10_1016_j_progpolymsci_2021_101395 crossref_primary_10_3390_ijms14011629 crossref_primary_10_1016_j_talanta_2014_05_060 crossref_primary_10_1021_cr800208y crossref_primary_10_1155_2015_535092 crossref_primary_10_1039_C4PY00870G crossref_primary_10_1097_SLA_0b013e318256ff99 crossref_primary_10_1016_j_cis_2020_102280 crossref_primary_10_1179_1753555714Y_0000000233 crossref_primary_10_1007_s10965_015_0759_6 crossref_primary_10_1016_j_tsf_2010_04_022 crossref_primary_10_1021_acs_chemrev_7b00088 crossref_primary_10_1016_j_actbio_2016_04_033 crossref_primary_10_1016_j_surfcoat_2015_12_018 crossref_primary_10_3390_polym15010075 crossref_primary_10_1002_adtp_202400266 crossref_primary_10_1016_j_msec_2016_01_077 crossref_primary_10_1039_C5TB02358K crossref_primary_10_1080_09205063_2019_1580954 crossref_primary_10_1088_0957_4484_26_42_422001 crossref_primary_10_1016_j_msec_2008_12_021 crossref_primary_10_1016_j_watres_2013_03_005 crossref_primary_10_1039_c2nr30379e crossref_primary_10_1016_j_biomaterials_2010_01_119 crossref_primary_10_1080_00914037_2018_1525719 crossref_primary_10_1002_jbm_a_32872 crossref_primary_10_1021_am2003944 crossref_primary_10_1016_j_mtchem_2020_100295 crossref_primary_10_1016_j_micron_2008_07_003 crossref_primary_10_1016_j_msec_2018_02_011 crossref_primary_10_1021_acs_langmuir_5b02768 crossref_primary_10_1016_j_chemosphere_2020_129187 crossref_primary_10_1134_S1990519X14040075 crossref_primary_10_1021_bc200259c crossref_primary_10_1021_la900349c crossref_primary_10_1039_c2cc33850e crossref_primary_10_1016_j_reactfunctpolym_2008_10_010 crossref_primary_10_1021_acs_langmuir_6b01397 crossref_primary_10_1016_j_jcis_2013_11_048 crossref_primary_10_1016_j_colsurfb_2008_12_020 crossref_primary_10_1016_j_ijbiomac_2020_03_180 crossref_primary_10_1021_cr300143v crossref_primary_10_1002_app_31108 crossref_primary_10_1002_pat_1309 crossref_primary_10_1163_156856209X450748 crossref_primary_10_1002_mame_201600014 crossref_primary_10_1016_j_biomaterials_2009_09_092 crossref_primary_10_1016_j_memsci_2020_119019 |
| Cites_doi | 10.1016/0003-2697(85)90442-7 10.1016/j.biomaterials.2003.10.033 10.1016/0021-9797(86)90038-X 10.1021/bm020050r 10.1097/00002480-199709000-00034 10.1016/S0142-9612(03)00079-6 10.1016/j.colsurfb.2005.09.004 10.1021/nl005502p 10.1002/1097-4636(2000)53:6<621::AID-JBM2>3.0.CO;2-Q 10.1163/156856200743689 |
| ContentType | Journal Article |
| Copyright | Copyright © 2007 American Chemical Society Copyright American Chemical Society Sep 2007 |
| Copyright_xml | – notice: Copyright © 2007 American Chemical Society – notice: Copyright American Chemical Society Sep 2007 |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7TM 8FD FR3 P64 7QL C1K 7X8 |
| DOI | 10.1021/bc060098s |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitleList | Engineering Research Database Engineering Research Database MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry Biology |
| EISSN | 1520-4812 |
| EndPage | 1529 |
| ExternalDocumentID | 1341782011 17688319 10_1021_bc060098s ark_67375_TPS_RV81RNQ1_R b480640101 |
| Genre | Journal Article Feature |
| GroupedDBID | - 23N 4.4 53G 55A 5GY 5VS 7~N AABXI ABMVS ABUCX ACGFS ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS ANTXH AQSVZ CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ LG6 P2P PQEST PQQKQ ROL TN5 TWZ UI2 VF5 VG9 W1F X XKZ YZZ --- -~X ABJNI ABQRX ADHLV AGXLV AHGAQ BAANH BSCLL CUPRZ GGK AAYXX ABBLG ABLBI ACRPL ADNMO AEYZD AGQPQ ANPPW CITATION 1WB ABHMW AFFNX CGR CUY CVF ECM EIF NPM RNS 7QO 7TM 8FD FR3 P64 7QL C1K 7X8 |
| ID | FETCH-LOGICAL-a475t-56b844cd96974a69f811f88ed234906d930ba899d8d39457a83675bc818209473 |
| IEDL.DBID | ACS |
| ISSN | 1043-1802 |
| IngestDate | Fri Jul 11 07:01:41 EDT 2025 Tue Oct 07 09:28:36 EDT 2025 Sun Aug 17 14:40:40 EDT 2025 Mon Jul 21 05:41:42 EDT 2025 Thu Apr 24 22:59:21 EDT 2025 Tue Jul 01 02:22:44 EDT 2025 Wed Oct 30 09:47:48 EDT 2024 Thu Aug 27 13:42:47 EDT 2020 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a475t-56b844cd96974a69f811f88ed234906d930ba899d8d39457a83675bc818209473 |
| Notes | istex:3479D7889D098F106509C22263B739909907258A ark:/67375/TPS-RV81RNQ1-R SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PMID | 17688319 |
| PQID | 216198358 |
| PQPubID | 45565 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_68286619 proquest_miscellaneous_20175433 proquest_journals_216198358 pubmed_primary_17688319 crossref_primary_10_1021_bc060098s crossref_citationtrail_10_1021_bc060098s istex_primary_ark_67375_TPS_RV81RNQ1_R acs_journals_10_1021_bc060098s |
| ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N ACJ VG9 W1F ANTXH ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2007-09-01 |
| PublicationDateYYYYMMDD | 2007-09-01 |
| PublicationDate_xml | – month: 09 year: 2007 text: 2007-09-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Washington |
| PublicationTitle | Bioconjugate chemistry |
| PublicationTitleAlternate | Bioconjugate Chem |
| PublicationYear | 2007 |
| Publisher | American Chemical Society |
| Publisher_xml | – name: American Chemical Society |
| References | Shin H. S. (bc060098sb00033/bc060098sb00033_1) 2004; 274 Kawashita M. (bc060098sb00022/bc060098sb00022_1) 2003; 66 Hutmacher D. W. (bc060098sb00002/bc060098sb00002_1) 2000 Yoshida K. (bc060098sb00020/bc060098sb00020_1) 1999; 47 bc060098sb00030/bc060098sb00030_1 Zhu Y. (bc060098sb00006/bc060098sb00006_1) 2004; 69 Ito Y. (bc060098sb00009/bc060098sb00009_1) 1997 Lin W. C. (bc060098sb00026/bc060098sb00026_1) 2005; 44 Liu X. (bc060098sb00015/bc060098sb00015_1) 2005 Baumann H. (bc060098sb00008/bc060098sb00008_1) 2000; 11 Smith P. K. (bc060098sb00031/bc060098sb00031_1) 1985; 150 Ren K. (bc060098sb00014/bc060098sb00014_1) 2005; 46 Hu Y. (bc060098sb00001/bc060098sb00001_1) 2003; 67 Klueh U. (bc060098sb00024/bc060098sb00024_1) 2000; 53 Lin W. C. (bc060098sb00027/bc060098sb00027_1) 2004 Thierry B. (bc060098sb00018/bc060098sb00018_1) 2003 Freier T. (bc060098sb00039/bc060098sb00039_1) 2005 Melaiye A. (bc060098sb00025/bc060098sb00025_1) 2005; 27 Balogh L. (bc060098sb00023/bc060098sb00023_1) 2001; 1 Serizawa T. (bc060098sb00037/bc060098sb00037_1) 2002 Amiji M. M. (bc060098sb00036/bc060098sb00036_1) 1996; 8 Jiang L. (bc060098sb00004/bc060098sb00004_1) 2006 bc060098sb00003/bc060098sb00003_1 Lee D. (bc060098sb00041/bc060098sb00041_1) 2005 Pan J. (bc060098sb00005/bc060098sb00005_1) 2005; 74 Ye S. (bc060098sb00013/bc060098sb00013_1) 2005; 106 Liu T. Y. (bc060098sb00028/bc060098sb00028_1) 2005 Ciapetti G. (bc060098sb00032/bc060098sb00032_1) 1994; 15 bc060098sb00035/bc060098sb00035_1 Lin W. C (bc060098sb00029/bc060098sb00029_1) 2005 Amaral I. F. (bc060098sb00040/bc060098sb00040_1) 2006; 76 Liu Y. (bc060098sb00012/bc060098sb00012_1) 2005 Zhao S. (bc060098sb00034/bc060098sb00034_1) 2006; 60 Boura C. (bc060098sb00017/bc060098sb00017_1) 2003 Jansen B. (bc060098sb00021/bc060098sb00021_1) 1994; 9 Meinhart J. (bc060098sb00011/bc060098sb00011_1) 1997; 43 bc060098sb00016/bc060098sb00016_1 Richert L. (bc060098sb00038/bc060098sb00038_1) 2002 Alt V. (bc060098sb00019/bc060098sb00019_1) 2004 Winterton L. C. (bc060098sb00007/bc060098sb00007_1) 1986; 111 |
| References_xml | – volume-title: Bioactive coatings of endovascular stents based on polyelectrolyte multilayers. Biomacromolecules 4, 1564−71 year: 2003 ident: bc060098sb00018/bc060098sb00018_1 – volume: 67 year: 2003 ident: bc060098sb00001/bc060098sb00001_1 publication-title: J. Biomed. Mater. Res. – volume: 150 start-page: 85 year: 1985 ident: bc060098sb00031/bc060098sb00031_1 publication-title: Anal. Biochem. doi: 10.1016/0003-2697(85)90442-7 – volume-title: Endothelial cells grown on thin polyelectrolyte mutlilayered films: an evaluation of a new versatile surface modification. Biomaterials 24, 3521−30 year: 2003 ident: bc060098sb00017/bc060098sb00017_1 – ident: bc060098sb00016/bc060098sb00016_1 doi: 10.1016/j.biomaterials.2003.10.033 – volume-title: Cell interactions with polyelectrolyte multilayer films. Biomacromolecules 3, 1170−8 year: 2002 ident: bc060098sb00038/bc060098sb00038_1 – volume: 111 year: 1986 ident: bc060098sb00007/bc060098sb00007_1 publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(86)90038-X – volume: 27 year: 2005 ident: bc060098sb00025/bc060098sb00025_1 publication-title: J. Am. Chem. Soc. – volume: 8 year: 1996 ident: bc060098sb00036/bc060098sb00036_1 publication-title: J. Biomed. Sci., Polym. Ed. – volume: 44 start-page: 92 year: 2005 ident: bc060098sb00026/bc060098sb00026_1 publication-title: Colloids Surf., B – ident: bc060098sb00003/bc060098sb00003_1 doi: 10.1021/bm020050r – volume: 60 year: 2006 ident: bc060098sb00034/bc060098sb00034_1 publication-title: Mater. Lett. – volume-title: Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles. Langmuir 21, 9651−59 year: 2005 ident: bc060098sb00041/bc060098sb00041_1 – volume-title: Enhancement of cell growth on a porous membrane co-immobilized with cell-growth and cell adhesion factors. Biomaterials 18, 197−202 year: 1997 ident: bc060098sb00009/bc060098sb00009_1 – volume: 66 year: 2003 ident: bc060098sb00022/bc060098sb00022_1 publication-title: J. Biomed. Mater. Res., Part A – volume: 76 year: 2006 ident: bc060098sb00040/bc060098sb00040_1 publication-title: J. Biomed. Mater. Res., Part A – volume: 274 start-page: 94 year: 2004 ident: bc060098sb00033/bc060098sb00033_1 publication-title: J. Colloid Interface Sci. – volume-title: B 46, 117−26. year: 2005 ident: bc060098sb00012/bc060098sb00012_1 – volume-title: Scaffolds in tissue engineering bone and cartilage. Biomaterials 21, 2529−43 year: 2000 ident: bc060098sb00002/bc060098sb00002_1 – volume-title: Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends. Biomacromolecules 7, 199−207 year: 2006 ident: bc060098sb00004/bc060098sb00004_1 – volume: 43 year: 1997 ident: bc060098sb00011/bc060098sb00011_1 publication-title: ASAIO J. doi: 10.1097/00002480-199709000-00034 – volume-title: Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials 26, 5872−8 year: 2005 ident: bc060098sb00039/bc060098sb00039_1 – volume: 74 year: 2005 ident: bc060098sb00005/bc060098sb00005_1 publication-title: J. Biomed. Mater. Res., Part B – volume-title: Alternating bioactivity of polymeric layer-by-layer assemblies: anticoagulation vs procoagulation of human blood. Biomacromolecules 3, 724−31 year: 2002 ident: bc060098sb00037/bc060098sb00037_1 – volume-title: An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 25, 4383−91 year: 2004 ident: bc060098sb00019/bc060098sb00019_1 – volume-title: Hemocompatibility and anaphylatoxin formation of protein-immobilizing polyacrylonitrile hemodialysis membrane. Biomaterials 26, 1437−44 year: 2005 ident: bc060098sb00028/bc060098sb00028_1 – volume: 69 year: 2004 ident: bc060098sb00006/bc060098sb00006_1 publication-title: J. Biomed. Mater. Res., Part A – ident: bc060098sb00030/bc060098sb00030_1 doi: 10.1016/S0142-9612(03)00079-6 – volume: 46 start-page: 63 year: 2005 ident: bc060098sb00014/bc060098sb00014_1 publication-title: Colloids Surf., B doi: 10.1016/j.colsurfb.2005.09.004 – volume-title: Multilayer microcapsules as anti-cancer drug delivery vehicle: Deposition, sustained release, and in vitro bioactivity. Macromol. Biosci. 5, 1209−19 year: 2005 ident: bc060098sb00015/bc060098sb00015_1 – volume: 47 year: 1999 ident: bc060098sb00020/bc060098sb00020_1 publication-title: J. Biomed. Mater. Res. – volume-title: Biomaterials 25 year: 2004 ident: bc060098sb00027/bc060098sb00027_1 – volume: 9 start-page: 70 year: 1994 ident: bc060098sb00021/bc060098sb00021_1 publication-title: J. Biomater. Appl. – ident: bc060098sb00035/bc060098sb00035_1 – volume: 1 start-page: 21 year: 2001 ident: bc060098sb00023/bc060098sb00023_1 publication-title: Nano Lett. doi: 10.1021/nl005502p – volume: 106 year: 2005 ident: bc060098sb00013/bc060098sb00013_1 publication-title: J. Controlled Release – volume: 53 year: 2000 ident: bc060098sb00024/bc060098sb00024_1 publication-title: J. Biomed. Mater. Res. doi: 10.1002/1097-4636(2000)53:6<621::AID-JBM2>3.0.CO;2-Q – volume: 15 start-page: 6 year: 1994 ident: bc060098sb00032/bc060098sb00032_1 publication-title: Biomaterials – volume-title: In-vitro hemocompatibility evaluation of a thermoplastic polyurethane membrane with surface-immobilized water-soluble chitosan and heparin. Macromol. Biosci. 5,1013−21 year: 2005 ident: bc060098sb00029/bc060098sb00029_1 – volume: 11 year: 2000 ident: bc060098sb00008/bc060098sb00008_1 publication-title: J. Biomater. Sci., Polym. Ed. doi: 10.1163/156856200743689 |
| SSID | ssj0009182 |
| Score | 2.219639 |
| Snippet | The improvement of hydrophilicity, antibacterial activity, hemocompatibility, and cytocompatibility of poly(l-lactic acid) (PLLA) membrane was developed via... The improvement of hydrophilicity, antibacterial activity, hemocompatibility, and cytocompatibility of poly(L-lactic acid) (PLLA) membrane was developed via... |
| SourceID | proquest pubmed crossref istex acs |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1521 |
| SubjectTerms | Adsorption Biocompatible Materials - chemistry Biocompatible Materials - metabolism Cells Chemical reduction Chitosan - chemistry Dextran Sulfate - chemistry Electrolytes Electrolytes - chemistry Endothelial Cells - cytology Endothelial Cells - metabolism Fibrinogen - chemistry Fibrinogen - metabolism Hemodialysis Histological Techniques Humans Lactic Acid - chemistry Lactic Acid - metabolism Materials Testing Membranes Membranes, Artificial Nanoparticles Nanoparticles - chemistry Platelet Adhesiveness - physiology Polyesters Polymers - chemistry Polymers - metabolism Polysaccharides - chemistry Silver Silver - chemistry Staphylococcus aureus - metabolism Staphylococcus infections Sulfates Surface Properties |
| Title | Surface Modification of Poly(l-lactic acid) Membrane via Layer-by-Layer Assembly of Silver Nanoparticle-Embedded Polyelectrolyte Multilayer |
| URI | http://dx.doi.org/10.1021/bc060098s https://api.istex.fr/ark:/67375/TPS-RV81RNQ1-R/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/17688319 https://www.proquest.com/docview/216198358 https://www.proquest.com/docview/20175433 https://www.proquest.com/docview/68286619 |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1520-4812 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009182 issn: 1043-1802 databaseCode: ACS dateStart: 19900101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELfGJgQvMDY-wmBYgKbtwSMfjmM_lrJpQnQa7Yb2FvkrUrU0QW2KKP8C_zTnfLRCW-HNUs6O5Tuf73y_OyP0XlGQBMsY4ZyCg5JJSqAhie9LEDApuWYuOXlwzs6u6Ofr-HoDvVsTwQ-DD0r7zFW9nN1DWyFLEofb6_VHq8q6AW9Cmq7WJndwne1bXd3Ro2d_HT1bbhV_rrcr6_Pl9DH61GXpNLCSm-N5pY71r9tFG_819W30qLUvca8RiCdowxY7aLdXgG89WeADXCM-66v0HXT_Y9d60O_efdtFv0fzaSa1xYPSOBxRzTpcZviizBeHOcnrtCos9dgc4YGdgLtdWPxjLPEXCfY7UQtSN7CLJ09UvnB9R2OHwMagy8FJb-ZGTibKgtoz9cDtczz5ooIfO5Bj7sZ4iq5OTy77Z6R9soFImsQViZnilGojGPgpkomMB0HGuTVhRIXPjIh8JcHFM9xEgsaJ5BF4LEpzV0de0CR6hjaLsrAvEDZxaEOtwZxMJGgZI6zwIyuyMGM0MVp4aB94mrZbbpbW0fQwSJeL7qHDjt2pbgueu3c38rtI3y5JvzdVPu4iOqhlZkkhpzcOFpfE6eXFKB1-48Hw_GuQDj201wnVanohmNYCzF3uoTfLr8BZF58BNpVzIAHtGNMoWk_BXNI_jOOh542srmYLbiMHdfryf6uyhx4219MOJvcKbVbTuX0NdlWl9ut99QfOMBpn |
| linkProvider | American Chemical Society |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fb9MwELdgExovMDYGYbBZCE3jISN_HMd-LNWmAm012g7tLXJsR6qWNqhJEeEr8KU5O2krYBO8WcrZudiX853v_DuE3qQEJEFT6jJGwEHJBHGhIVzPEyBgQjBJzeXkwZD2rsjH6-i6hckxd2GAiRJGKm0Qf4Mu4L9LpUcN-GV5H21HlPjG0ep0xxuAXZ81kU0DuclM1s7uX13NDiTL33agbTOZ3-82L-02c_G4qVdkGbTZJTdnyyo9kz_-wG78vy_YRY9aaxN3GvF4gu7p-R7a78zB057V-ATb_E97sL6HHrxftXa6qypw--jneLnIhNR4UCiTVWQXEhcZvizy-jR3c3vJCgs5VW_xQM_A-Z5r_G0qcF-ANe-mtWsb2ESXZ2lem77jqcnHxqDZwWVveHPPZ6kGJajswG1xnryu4MUm5TE3YzxFVxfnk27PbQs4uILEUeVGNGWESMUpeC2C8oz5fsaYVkFIuEcVD71UgMOnmAo5iWLBQvBfUskMqjwncXiAtubFXD9HWEWBDqQE4zIWoHMU19wLNc-CjJJYSe6gI5jzpP0By8TG1gM_WU-6g05Xq57IFv7cVOHIbyN9vSb92mB-3EZ0YkVnTSEWNyZJLo6SyeU4GX1h_mj42U9GDjpcydaGvQAMbQ7GL3PQ8foprKyJ1sAyFUsgAV0ZkTC8m4IaCAAYx0HPGpHdcAtOJAPl-uJfs3KMdnqTQT_pfxh-OkQPm4Nrk0D3Em1Vi6V-BRZXlR7ZX-0X4XMiyQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgEx8vMDbYymCzEJrGQ0Y-HMd-HGXVgLWUdkN7ixzbkaqlzdQPRPkX-Ke5c9JWwCZ4s9SLe7HP5_vlzj8T8jpjYAmWc08IBgAlV8yDhvJ8X4GBKSU0x8PJ7Q4_vWAfL-PLGijiWRhQYgI9TVwSH1f1tclrhoHgbaZ9jgSYk7tkPeawxDEUavZXJLuBqLKbSLspsHJn469HcRfSk992oXUc0O-3h5huq2k9Jp-XSroKk6uj2TQ70j_-4G_8_7fYII_qqJMeV2byhNyxo02ydTwCxD2c0wPq6kDdB_ZNcu_dovWgubgNbov87M_GudKWtkuD1UVuQmmZ025ZzA8Lr3CHrajSA_OGtu0QQPjI0m8DRc8URPVeNvdcg2KWeZgVc3y2P8C6bAoeHqB7pZt3MswsOEPjOq4v6SnmU_hjLH0ssI-n5KJ1ct489eqLHDzFknjqxTwTjGkjOaAXxWUugiAXwpowYtLnRkZ-pgD4GWEiyeJEiQhwTKYFsstLlkTPyNqoHNkdQk0c2lBrCDITBb7HSCv9yMo8zDlLjJYNsgfjntYLcZK6HHsYpMtBb5DDxcynuqZBx9s4iptEXy1Fryvuj5uEDpz5LCXU-AqL5ZI4Pe_2095XEfQ6X4K01yC7C_taqRdCwC0hCBYNsr_8FWYWszYwTeUMRMBnxiyKbpfgSAUA_TTIdmW2K20BTApwss__NSr75H73fSs9-9D5tEseVt-vsY7uBVmbjmf2JQRe02zPrbZfS3IlTA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+Modification+of+Poly%28+l+-lactic+acid%29+Membrane+via+Layer-by-Layer+Assembly+of+Silver+Nanoparticle-Embedded+Polyelectrolyte+Multilayer&rft.jtitle=Bioconjugate+chemistry&rft.au=Yu%2C+Da-Guang&rft.au=Lin%2C+Wen-Ching&rft.au=Yang%2C+Ming-Chien&rft.date=2007-09-01&rft.issn=1043-1802&rft.eissn=1520-4812&rft.volume=18&rft.issue=5&rft.spage=1521&rft.epage=1529&rft_id=info:doi/10.1021%2Fbc060098s&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_bc060098s |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1043-1802&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1043-1802&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1043-1802&client=summon |