Surface Modification of Poly(l-lactic acid) Membrane via Layer-by-Layer Assembly of Silver Nanoparticle-Embedded Polyelectrolyte Multilayer

The improvement of hydrophilicity, antibacterial activity, hemocompatibility, and cytocompatibility of poly(l-lactic acid) (PLLA) membrane was developed via polyelectrolyte multilayer (PEM) immobilization. Colloidal silver nanoparticles were prepared by using dextran sulfate (DS) as a stabilizer to...

Full description

Saved in:
Bibliographic Details
Published inBioconjugate chemistry Vol. 18; no. 5; pp. 1521 - 1529
Main Authors Yu, Da-Guang, Lin, Wen-Ching, Yang, Ming-Chien
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 01.09.2007
Subjects
Online AccessGet full text
ISSN1043-1802
1520-4812
DOI10.1021/bc060098s

Cover

Abstract The improvement of hydrophilicity, antibacterial activity, hemocompatibility, and cytocompatibility of poly(l-lactic acid) (PLLA) membrane was developed via polyelectrolyte multilayer (PEM) immobilization. Colloidal silver nanoparticles were prepared by using dextran sulfate (DS) as a stabilizer to precede chemical reduction by dextrose. The polysaccharide PEMs, including chitosan (CH) and dextran sulfate (DS)-stabilized silver nanosized colloid (DSS), were successfully deposited on the aminolyzed PLLA membrane in a layer-by-layer (LBL) self-assembly manner. The obtained results showed that the contact angle of PLLA membranes decreased with PEMs grafting layers and reached a steady value after four bilayers of coating, hence suggesting that full coverage was achieved. The PLLA−PEM membranes with DSS as the outermost layer could resist platelet adhesion and human plasma fibrinogen (HPF) adsorption, while prolonging the blood coagulation time. The PLLA−PEM membranes could possess antibacterial activity against Methicilin-resistant Staphylococus aureus (MRSA). In addition, the proliferation and viability of human endothelial cells (ECs) on PLLA−PEM membranes could be significantly improved. Overall results demonstrated that such a fast, easy processing and shape-independent method for an antithrombogenic coating can be used for applications in hemodialysis devices.
AbstractList The improvement of hydrophilicity, antibacterial activity, hemocompatibility, and cytocompatibility of poly(L-lactic acid) (PLLA) membrane was developed via polyelectrolyte multilayer (PEM) immobilization. Colloidal silver nanoparticles were prepared by using dextran sulfate (DS) as a stabilizer to precede chemical reduction by dextrose. The polysaccharide PEMs, including chitosan (CH) and dextran sulfate (DS)-stabilized silver nanosized colloid (DSS), were successfully deposited on the aminolyzed PLLA membrane in a layer-by-layer (LBL) self-assembly manner. The obtained results showed that the contact angle of PLLA membranes decreased with PEMs grafting layers and reached a steady value after four bilayers of coating, hence suggesting that full coverage was achieved. The PLLA-PEM membranes with DSS as the outermost layer could resist platelet adhesion and human plasma fibrinogen (HPF) adsorption, while prolonging the blood coagulation time. The PLLA-PEM membranes could possess antibacterial activity against Methicilin-resistant Staphylococus aureus (MRSA). In addition, the proliferation and viability of human endothelial cells (ECs) on PLLA-PEM membranes could be significantly improved. Overall results demonstrated that such a fast, easy processing and shape-independent method for an antithrombogenic coating can be used for applications in hemodialysis devices. [PUBLICATION ABSTRACT]
The improvement of hydrophilicity, antibacterial activity, hemocompatibility, and cytocompatibility of poly(l-lactic acid) (PLLA) membrane was developed via polyelectrolyte multilayer (PEM) immobilization. Colloidal silver nanoparticles were prepared by using dextran sulfate (DS) as a stabilizer to precede chemical reduction by dextrose. The polysaccharide PEMs, including chitosan (CH) and dextran sulfate (DS)-stabilized silver nanosized colloid (DSS), were successfully deposited on the aminolyzed PLLA membrane in a layer-by-layer (LBL) self-assembly manner. The obtained results showed that the contact angle of PLLA membranes decreased with PEMs grafting layers and reached a steady value after four bilayers of coating, hence suggesting that full coverage was achieved. The PLLA−PEM membranes with DSS as the outermost layer could resist platelet adhesion and human plasma fibrinogen (HPF) adsorption, while prolonging the blood coagulation time. The PLLA−PEM membranes could possess antibacterial activity against Methicilin-resistant Staphylococus aureus (MRSA). In addition, the proliferation and viability of human endothelial cells (ECs) on PLLA−PEM membranes could be significantly improved. Overall results demonstrated that such a fast, easy processing and shape-independent method for an antithrombogenic coating can be used for applications in hemodialysis devices.
The improvement of hydrophilicity, antibacterial activity, hemocompatibility, and cytocompatibility of poly(L-lactic acid) (PLLA) membrane was developed via polyelectrolyte multilayer (PEM) immobilization. Colloidal silver nanoparticles were prepared by using dextran sulfate (DS) as a stabilizer to precede chemical reduction by dextrose. The polysaccharide PEMs, including chitosan (CH) and dextran sulfate (DS)-stabilized silver nanosized colloid (DSS), were successfully deposited on the aminolyzed PLLA membrane in a layer-by-layer (LBL) self-assembly manner. The obtained results showed that the contact angle of PLLA membranes decreased with PEMs grafting layers and reached a steady value after four bilayers of coating, hence suggesting that full coverage was achieved. The PLLA-PEM membranes with DSS as the outermost layer could resist platelet adhesion and human plasma fibrinogen (HPF) adsorption, while prolonging the blood coagulation time. The PLLA-PEM membranes could possess antibacterial activity against Methicilin- resistant Staphylococus aureus (MRSA). In addition, the proliferation and viability of human endothelial cells (ECs) on PLLA-PEM membranes could be significantly improved. Overall results demonstrated that such a fast, easy processing and shape-independent method for an antithrombogenic coating can be used for applications in hemodialysis devices.
The improvement of hydrophilicity, antibacterial activity, hemocompatibility, and cytocompatibility of poly(L-lactic acid) (PLLA) membrane was developed via polyelectrolyte multilayer (PEM) immobilization. Colloidal silver nanoparticles were prepared by using dextran sulfate (DS) as a stabilizer to precede chemical reduction by dextrose. The polysaccharide PEMs, including chitosan (CH) and dextran sulfate (DS)-stabilized silver nanosized colloid (DSS), were successfully deposited on the aminolyzed PLLA membrane in a layer-by-layer (LBL) self-assembly manner. The obtained results showed that the contact angle of PLLA membranes decreased with PEMs grafting layers and reached a steady value after four bilayers of coating, hence suggesting that full coverage was achieved. The PLLA-PEM membranes with DSS as the outermost layer could resist platelet adhesion and human plasma fibrinogen (HPF) adsorption, while prolonging the blood coagulation time. The PLLA-PEM membranes could possess antibacterial activity against Methicilin-resistant Staphylococus aureus (MRSA). In addition, the proliferation and viability of human endothelial cells (ECs) on PLLA-PEM membranes could be significantly improved. Overall results demonstrated that such a fast, easy processing and shape-independent method for an antithrombogenic coating can be used for applications in hemodialysis devices.The improvement of hydrophilicity, antibacterial activity, hemocompatibility, and cytocompatibility of poly(L-lactic acid) (PLLA) membrane was developed via polyelectrolyte multilayer (PEM) immobilization. Colloidal silver nanoparticles were prepared by using dextran sulfate (DS) as a stabilizer to precede chemical reduction by dextrose. The polysaccharide PEMs, including chitosan (CH) and dextran sulfate (DS)-stabilized silver nanosized colloid (DSS), were successfully deposited on the aminolyzed PLLA membrane in a layer-by-layer (LBL) self-assembly manner. The obtained results showed that the contact angle of PLLA membranes decreased with PEMs grafting layers and reached a steady value after four bilayers of coating, hence suggesting that full coverage was achieved. The PLLA-PEM membranes with DSS as the outermost layer could resist platelet adhesion and human plasma fibrinogen (HPF) adsorption, while prolonging the blood coagulation time. The PLLA-PEM membranes could possess antibacterial activity against Methicilin-resistant Staphylococus aureus (MRSA). In addition, the proliferation and viability of human endothelial cells (ECs) on PLLA-PEM membranes could be significantly improved. Overall results demonstrated that such a fast, easy processing and shape-independent method for an antithrombogenic coating can be used for applications in hemodialysis devices.
Author Yang, Ming-Chien
Lin, Wen-Ching
Yu, Da-Guang
Author_xml – sequence: 1
  givenname: Da-Guang
  surname: Yu
  fullname: Yu, Da-Guang
– sequence: 2
  givenname: Wen-Ching
  surname: Lin
  fullname: Lin, Wen-Ching
– sequence: 3
  givenname: Ming-Chien
  surname: Yang
  fullname: Yang, Ming-Chien
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17688319$$D View this record in MEDLINE/PubMed
BookMark eNqFkd1qHCEAhaWkND_tRV-gDIWW5sJGR8fRyxDSH9ik6W7aW3HUAVNn3KgTus-Ql467myaQFnrlQb9z5HD2wc4YRgvAa4w-YlTjo04jhpDg6RnYw02NIOW43ikaUQIxR_Uu2E_pChUG8_oF2MUt45xgsQduF1PslbbVWTCud1plF8Yq9NVF8KsPHnqls9OV0s4cVmd26KIabXXjVDVTKxtht4IbUR2nVF79au1dOH9Trs7VGJYqFr-38HTorDHWbIKttzrHInL5ePLZ-XXGS_C8Vz7ZV_fnAfjx6fTy5Aucffv89eR4BhVtmwwb1nFKtRFMtFQx0XOMe86tqQkViBlBUKe4EIYbImjTKk5Y23Sal-5I0JYcgPfb3GUM15NNWQ4uaet9qRamJBmvOWNY_BesEW4bSkgB3z4Br8IUx1JC1rgkcdLwAr25h6ZusEYuoxtUXMk_YxTgcAvoGFKKtn9EkFwPLR-GLuzRE1a7vBkvR-X8Px1w63Ap298P0Sr-kqwlbSMvLxZy_pPj-fl3LOeFf7fllU6Pdf7OvQNi98SD
CitedBy_id crossref_primary_10_1016_j_colsurfb_2015_10_006
crossref_primary_10_1039_c0sm01330g
crossref_primary_10_1097_BCR_0b013e31827e7ef9
crossref_primary_10_1002_app_39658
crossref_primary_10_1155_2011_693759
crossref_primary_10_1021_bm1004838
crossref_primary_10_1002_adem_200800342
crossref_primary_10_1016_j_actbio_2015_11_010
crossref_primary_10_1016_j_colsurfa_2016_06_026
crossref_primary_10_1002_adfm_201002662
crossref_primary_10_1002_jbm_a_35804
crossref_primary_10_1021_bm100975w
crossref_primary_10_1016_j_chemosphere_2022_135626
crossref_primary_10_1016_j_jafr_2021_100257
crossref_primary_10_3390_nano10061177
crossref_primary_10_1002_pat_1459
crossref_primary_10_1016_j_actbio_2013_06_012
crossref_primary_10_1016_j_memsci_2014_11_004
crossref_primary_10_1163_156856209X410102
crossref_primary_10_1021_acsomega_3c02697
crossref_primary_10_1021_am201795g
crossref_primary_10_2147_IJN_S393207
crossref_primary_10_1016_j_ijpharm_2017_08_072
crossref_primary_10_1016_j_heliyon_2024_e40931
crossref_primary_10_1002_tcr_202000007
crossref_primary_10_1016_j_actbio_2009_02_016
crossref_primary_10_1016_j_ijpharm_2020_119291
crossref_primary_10_1016_j_ijbiomac_2014_11_044
crossref_primary_10_1021_ma901356s
crossref_primary_10_1016_j_colsurfb_2021_112121
crossref_primary_10_3390_polym14173685
crossref_primary_10_1007_s11426_008_0103_7
crossref_primary_10_1053_j_ackd_2013_08_005
crossref_primary_10_1016_j_jelechem_2017_11_034
crossref_primary_10_1021_acs_bioconjchem_7b00071
crossref_primary_10_1088_1674_1056_24_8_088701
crossref_primary_10_3389_fphar_2019_01121
crossref_primary_10_1016_j_progpolymsci_2021_101395
crossref_primary_10_3390_ijms14011629
crossref_primary_10_1016_j_talanta_2014_05_060
crossref_primary_10_1021_cr800208y
crossref_primary_10_1155_2015_535092
crossref_primary_10_1039_C4PY00870G
crossref_primary_10_1097_SLA_0b013e318256ff99
crossref_primary_10_1016_j_cis_2020_102280
crossref_primary_10_1179_1753555714Y_0000000233
crossref_primary_10_1007_s10965_015_0759_6
crossref_primary_10_1016_j_tsf_2010_04_022
crossref_primary_10_1021_acs_chemrev_7b00088
crossref_primary_10_1016_j_actbio_2016_04_033
crossref_primary_10_1016_j_surfcoat_2015_12_018
crossref_primary_10_3390_polym15010075
crossref_primary_10_1002_adtp_202400266
crossref_primary_10_1016_j_msec_2016_01_077
crossref_primary_10_1039_C5TB02358K
crossref_primary_10_1080_09205063_2019_1580954
crossref_primary_10_1088_0957_4484_26_42_422001
crossref_primary_10_1016_j_msec_2008_12_021
crossref_primary_10_1016_j_watres_2013_03_005
crossref_primary_10_1039_c2nr30379e
crossref_primary_10_1016_j_biomaterials_2010_01_119
crossref_primary_10_1080_00914037_2018_1525719
crossref_primary_10_1002_jbm_a_32872
crossref_primary_10_1021_am2003944
crossref_primary_10_1016_j_mtchem_2020_100295
crossref_primary_10_1016_j_micron_2008_07_003
crossref_primary_10_1016_j_msec_2018_02_011
crossref_primary_10_1021_acs_langmuir_5b02768
crossref_primary_10_1016_j_chemosphere_2020_129187
crossref_primary_10_1134_S1990519X14040075
crossref_primary_10_1021_bc200259c
crossref_primary_10_1021_la900349c
crossref_primary_10_1039_c2cc33850e
crossref_primary_10_1016_j_reactfunctpolym_2008_10_010
crossref_primary_10_1021_acs_langmuir_6b01397
crossref_primary_10_1016_j_jcis_2013_11_048
crossref_primary_10_1016_j_colsurfb_2008_12_020
crossref_primary_10_1016_j_ijbiomac_2020_03_180
crossref_primary_10_1021_cr300143v
crossref_primary_10_1002_app_31108
crossref_primary_10_1002_pat_1309
crossref_primary_10_1163_156856209X450748
crossref_primary_10_1002_mame_201600014
crossref_primary_10_1016_j_biomaterials_2009_09_092
crossref_primary_10_1016_j_memsci_2020_119019
Cites_doi 10.1016/0003-2697(85)90442-7
10.1016/j.biomaterials.2003.10.033
10.1016/0021-9797(86)90038-X
10.1021/bm020050r
10.1097/00002480-199709000-00034
10.1016/S0142-9612(03)00079-6
10.1016/j.colsurfb.2005.09.004
10.1021/nl005502p
10.1002/1097-4636(2000)53:6<621::AID-JBM2>3.0.CO;2-Q
10.1163/156856200743689
ContentType Journal Article
Copyright Copyright © 2007 American Chemical Society
Copyright American Chemical Society Sep 2007
Copyright_xml – notice: Copyright © 2007 American Chemical Society
– notice: Copyright American Chemical Society Sep 2007
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TM
8FD
FR3
P64
7QL
C1K
7X8
DOI 10.1021/bc060098s
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Engineering Research Database

Engineering Research Database
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1520-4812
EndPage 1529
ExternalDocumentID 1341782011
17688319
10_1021_bc060098s
ark_67375_TPS_RV81RNQ1_R
b480640101
Genre Journal Article
Feature
GroupedDBID -
23N
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ANTXH
AQSVZ
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
LG6
P2P
PQEST
PQQKQ
ROL
TN5
TWZ
UI2
VF5
VG9
W1F
X
XKZ
YZZ
---
-~X
ABJNI
ABQRX
ADHLV
AGXLV
AHGAQ
BAANH
BSCLL
CUPRZ
GGK
AAYXX
ABBLG
ABLBI
ACRPL
ADNMO
AEYZD
AGQPQ
ANPPW
CITATION
1WB
ABHMW
AFFNX
CGR
CUY
CVF
ECM
EIF
NPM
RNS
7QO
7TM
8FD
FR3
P64
7QL
C1K
7X8
ID FETCH-LOGICAL-a475t-56b844cd96974a69f811f88ed234906d930ba899d8d39457a83675bc818209473
IEDL.DBID ACS
ISSN 1043-1802
IngestDate Fri Jul 11 07:01:41 EDT 2025
Tue Oct 07 09:28:36 EDT 2025
Sun Aug 17 14:40:40 EDT 2025
Mon Jul 21 05:41:42 EDT 2025
Thu Apr 24 22:59:21 EDT 2025
Tue Jul 01 02:22:44 EDT 2025
Wed Oct 30 09:47:48 EDT 2024
Thu Aug 27 13:42:47 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a475t-56b844cd96974a69f811f88ed234906d930ba899d8d39457a83675bc818209473
Notes istex:3479D7889D098F106509C22263B739909907258A
ark:/67375/TPS-RV81RNQ1-R
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 17688319
PQID 216198358
PQPubID 45565
PageCount 9
ParticipantIDs proquest_miscellaneous_68286619
proquest_miscellaneous_20175433
proquest_journals_216198358
pubmed_primary_17688319
crossref_primary_10_1021_bc060098s
crossref_citationtrail_10_1021_bc060098s
istex_primary_ark_67375_TPS_RV81RNQ1_R
acs_journals_10_1021_bc060098s
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
ACJ
VG9
W1F
ANTXH
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-09-01
PublicationDateYYYYMMDD 2007-09-01
PublicationDate_xml – month: 09
  year: 2007
  text: 2007-09-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Bioconjugate chemistry
PublicationTitleAlternate Bioconjugate Chem
PublicationYear 2007
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Shin H. S. (bc060098sb00033/bc060098sb00033_1) 2004; 274
Kawashita M. (bc060098sb00022/bc060098sb00022_1) 2003; 66
Hutmacher D. W. (bc060098sb00002/bc060098sb00002_1) 2000
Yoshida K. (bc060098sb00020/bc060098sb00020_1) 1999; 47
bc060098sb00030/bc060098sb00030_1
Zhu Y. (bc060098sb00006/bc060098sb00006_1) 2004; 69
Ito Y. (bc060098sb00009/bc060098sb00009_1) 1997
Lin W. C. (bc060098sb00026/bc060098sb00026_1) 2005; 44
Liu X. (bc060098sb00015/bc060098sb00015_1) 2005
Baumann H. (bc060098sb00008/bc060098sb00008_1) 2000; 11
Smith P. K. (bc060098sb00031/bc060098sb00031_1) 1985; 150
Ren K. (bc060098sb00014/bc060098sb00014_1) 2005; 46
Hu Y. (bc060098sb00001/bc060098sb00001_1) 2003; 67
Klueh U. (bc060098sb00024/bc060098sb00024_1) 2000; 53
Lin W. C. (bc060098sb00027/bc060098sb00027_1) 2004
Thierry B. (bc060098sb00018/bc060098sb00018_1) 2003
Freier T. (bc060098sb00039/bc060098sb00039_1) 2005
Melaiye A. (bc060098sb00025/bc060098sb00025_1) 2005; 27
Balogh L. (bc060098sb00023/bc060098sb00023_1) 2001; 1
Serizawa T. (bc060098sb00037/bc060098sb00037_1) 2002
Amiji M. M. (bc060098sb00036/bc060098sb00036_1) 1996; 8
Jiang L. (bc060098sb00004/bc060098sb00004_1) 2006
bc060098sb00003/bc060098sb00003_1
Lee D. (bc060098sb00041/bc060098sb00041_1) 2005
Pan J. (bc060098sb00005/bc060098sb00005_1) 2005; 74
Ye S. (bc060098sb00013/bc060098sb00013_1) 2005; 106
Liu T. Y. (bc060098sb00028/bc060098sb00028_1) 2005
Ciapetti G. (bc060098sb00032/bc060098sb00032_1) 1994; 15
bc060098sb00035/bc060098sb00035_1
Lin W. C (bc060098sb00029/bc060098sb00029_1) 2005
Amaral I. F. (bc060098sb00040/bc060098sb00040_1) 2006; 76
Liu Y. (bc060098sb00012/bc060098sb00012_1) 2005
Zhao S. (bc060098sb00034/bc060098sb00034_1) 2006; 60
Boura C. (bc060098sb00017/bc060098sb00017_1) 2003
Jansen B. (bc060098sb00021/bc060098sb00021_1) 1994; 9
Meinhart J. (bc060098sb00011/bc060098sb00011_1) 1997; 43
bc060098sb00016/bc060098sb00016_1
Richert L. (bc060098sb00038/bc060098sb00038_1) 2002
Alt V. (bc060098sb00019/bc060098sb00019_1) 2004
Winterton L. C. (bc060098sb00007/bc060098sb00007_1) 1986; 111
References_xml – volume-title: Bioactive coatings of endovascular stents based on polyelectrolyte multilayers. Biomacromolecules 4, 1564−71
  year: 2003
  ident: bc060098sb00018/bc060098sb00018_1
– volume: 67
  year: 2003
  ident: bc060098sb00001/bc060098sb00001_1
  publication-title: J. Biomed. Mater. Res.
– volume: 150
  start-page: 85
  year: 1985
  ident: bc060098sb00031/bc060098sb00031_1
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(85)90442-7
– volume-title: Endothelial cells grown on thin polyelectrolyte mutlilayered films:  an evaluation of a new versatile surface modification. Biomaterials 24, 3521−30
  year: 2003
  ident: bc060098sb00017/bc060098sb00017_1
– ident: bc060098sb00016/bc060098sb00016_1
  doi: 10.1016/j.biomaterials.2003.10.033
– volume-title: Cell interactions with polyelectrolyte multilayer films. Biomacromolecules 3, 1170−8
  year: 2002
  ident: bc060098sb00038/bc060098sb00038_1
– volume: 111
  year: 1986
  ident: bc060098sb00007/bc060098sb00007_1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(86)90038-X
– volume: 27
  year: 2005
  ident: bc060098sb00025/bc060098sb00025_1
  publication-title: J. Am. Chem. Soc.
– volume: 8
  year: 1996
  ident: bc060098sb00036/bc060098sb00036_1
  publication-title: J. Biomed. Sci., Polym. Ed.
– volume: 44
  start-page: 92
  year: 2005
  ident: bc060098sb00026/bc060098sb00026_1
  publication-title: Colloids Surf., B
– ident: bc060098sb00003/bc060098sb00003_1
  doi: 10.1021/bm020050r
– volume: 60
  year: 2006
  ident: bc060098sb00034/bc060098sb00034_1
  publication-title: Mater. Lett.
– volume-title: Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles. Langmuir 21, 9651−59
  year: 2005
  ident: bc060098sb00041/bc060098sb00041_1
– volume-title: Enhancement of cell growth on a porous membrane co-immobilized with cell-growth and cell adhesion factors. Biomaterials 18, 197−202
  year: 1997
  ident: bc060098sb00009/bc060098sb00009_1
– volume: 66
  year: 2003
  ident: bc060098sb00022/bc060098sb00022_1
  publication-title: J. Biomed. Mater. Res., Part A
– volume: 76
  year: 2006
  ident: bc060098sb00040/bc060098sb00040_1
  publication-title: J. Biomed. Mater. Res., Part A
– volume: 274
  start-page: 94
  year: 2004
  ident: bc060098sb00033/bc060098sb00033_1
  publication-title: J. Colloid Interface Sci.
– volume-title: B 46, 117−26.
  year: 2005
  ident: bc060098sb00012/bc060098sb00012_1
– volume-title: Scaffolds in tissue engineering bone and cartilage. Biomaterials 21, 2529−43
  year: 2000
  ident: bc060098sb00002/bc060098sb00002_1
– volume-title: Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends. Biomacromolecules 7, 199−207
  year: 2006
  ident: bc060098sb00004/bc060098sb00004_1
– volume: 43
  year: 1997
  ident: bc060098sb00011/bc060098sb00011_1
  publication-title: ASAIO J.
  doi: 10.1097/00002480-199709000-00034
– volume-title: Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials 26, 5872−8
  year: 2005
  ident: bc060098sb00039/bc060098sb00039_1
– volume: 74
  year: 2005
  ident: bc060098sb00005/bc060098sb00005_1
  publication-title: J. Biomed. Mater. Res., Part B
– volume-title: Alternating bioactivity of polymeric layer-by-layer assemblies:  anticoagulation vs procoagulation of human blood. Biomacromolecules 3, 724−31
  year: 2002
  ident: bc060098sb00037/bc060098sb00037_1
– volume-title: An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 25, 4383−91
  year: 2004
  ident: bc060098sb00019/bc060098sb00019_1
– volume-title: Hemocompatibility and anaphylatoxin formation of protein-immobilizing polyacrylonitrile hemodialysis membrane. Biomaterials 26, 1437−44
  year: 2005
  ident: bc060098sb00028/bc060098sb00028_1
– volume: 69
  year: 2004
  ident: bc060098sb00006/bc060098sb00006_1
  publication-title: J. Biomed. Mater. Res., Part A
– ident: bc060098sb00030/bc060098sb00030_1
  doi: 10.1016/S0142-9612(03)00079-6
– volume: 46
  start-page: 63
  year: 2005
  ident: bc060098sb00014/bc060098sb00014_1
  publication-title: Colloids Surf., B
  doi: 10.1016/j.colsurfb.2005.09.004
– volume-title: Multilayer microcapsules as anti-cancer drug delivery vehicle:  Deposition, sustained release, and in vitro bioactivity. Macromol. Biosci. 5, 1209−19
  year: 2005
  ident: bc060098sb00015/bc060098sb00015_1
– volume: 47
  year: 1999
  ident: bc060098sb00020/bc060098sb00020_1
  publication-title: J. Biomed. Mater. Res.
– volume-title: Biomaterials 25
  year: 2004
  ident: bc060098sb00027/bc060098sb00027_1
– volume: 9
  start-page: 70
  year: 1994
  ident: bc060098sb00021/bc060098sb00021_1
  publication-title: J. Biomater. Appl.
– ident: bc060098sb00035/bc060098sb00035_1
– volume: 1
  start-page: 21
  year: 2001
  ident: bc060098sb00023/bc060098sb00023_1
  publication-title: Nano Lett.
  doi: 10.1021/nl005502p
– volume: 106
  year: 2005
  ident: bc060098sb00013/bc060098sb00013_1
  publication-title: J. Controlled Release
– volume: 53
  year: 2000
  ident: bc060098sb00024/bc060098sb00024_1
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/1097-4636(2000)53:6<621::AID-JBM2>3.0.CO;2-Q
– volume: 15
  start-page: 6
  year: 1994
  ident: bc060098sb00032/bc060098sb00032_1
  publication-title: Biomaterials
– volume-title: In-vitro hemocompatibility evaluation of a thermoplastic polyurethane membrane with surface-immobilized water-soluble chitosan and heparin. Macromol. Biosci. 5,1013−21
  year: 2005
  ident: bc060098sb00029/bc060098sb00029_1
– volume: 11
  year: 2000
  ident: bc060098sb00008/bc060098sb00008_1
  publication-title: J. Biomater. Sci., Polym. Ed.
  doi: 10.1163/156856200743689
SSID ssj0009182
Score 2.219639
Snippet The improvement of hydrophilicity, antibacterial activity, hemocompatibility, and cytocompatibility of poly(l-lactic acid) (PLLA) membrane was developed via...
The improvement of hydrophilicity, antibacterial activity, hemocompatibility, and cytocompatibility of poly(L-lactic acid) (PLLA) membrane was developed via...
SourceID proquest
pubmed
crossref
istex
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1521
SubjectTerms Adsorption
Biocompatible Materials - chemistry
Biocompatible Materials - metabolism
Cells
Chemical reduction
Chitosan - chemistry
Dextran Sulfate - chemistry
Electrolytes
Electrolytes - chemistry
Endothelial Cells - cytology
Endothelial Cells - metabolism
Fibrinogen - chemistry
Fibrinogen - metabolism
Hemodialysis
Histological Techniques
Humans
Lactic Acid - chemistry
Lactic Acid - metabolism
Materials Testing
Membranes
Membranes, Artificial
Nanoparticles
Nanoparticles - chemistry
Platelet Adhesiveness - physiology
Polyesters
Polymers - chemistry
Polymers - metabolism
Polysaccharides - chemistry
Silver
Silver - chemistry
Staphylococcus aureus - metabolism
Staphylococcus infections
Sulfates
Surface Properties
Title Surface Modification of Poly(l-lactic acid) Membrane via Layer-by-Layer Assembly of Silver Nanoparticle-Embedded Polyelectrolyte Multilayer
URI http://dx.doi.org/10.1021/bc060098s
https://api.istex.fr/ark:/67375/TPS-RV81RNQ1-R/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/17688319
https://www.proquest.com/docview/216198358
https://www.proquest.com/docview/20175433
https://www.proquest.com/docview/68286619
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1520-4812
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009182
  issn: 1043-1802
  databaseCode: ACS
  dateStart: 19900101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELfGJgQvMDY-wmBYgKbtwSMfjmM_lrJpQnQa7Yb2FvkrUrU0QW2KKP8C_zTnfLRCW-HNUs6O5Tuf73y_OyP0XlGQBMsY4ZyCg5JJSqAhie9LEDApuWYuOXlwzs6u6Ofr-HoDvVsTwQ-DD0r7zFW9nN1DWyFLEofb6_VHq8q6AW9Cmq7WJndwne1bXd3Ro2d_HT1bbhV_rrcr6_Pl9DH61GXpNLCSm-N5pY71r9tFG_819W30qLUvca8RiCdowxY7aLdXgG89WeADXCM-66v0HXT_Y9d60O_efdtFv0fzaSa1xYPSOBxRzTpcZviizBeHOcnrtCos9dgc4YGdgLtdWPxjLPEXCfY7UQtSN7CLJ09UvnB9R2OHwMagy8FJb-ZGTibKgtoz9cDtczz5ooIfO5Bj7sZ4iq5OTy77Z6R9soFImsQViZnilGojGPgpkomMB0HGuTVhRIXPjIh8JcHFM9xEgsaJ5BF4LEpzV0de0CR6hjaLsrAvEDZxaEOtwZxMJGgZI6zwIyuyMGM0MVp4aB94mrZbbpbW0fQwSJeL7qHDjt2pbgueu3c38rtI3y5JvzdVPu4iOqhlZkkhpzcOFpfE6eXFKB1-48Hw_GuQDj201wnVanohmNYCzF3uoTfLr8BZF58BNpVzIAHtGNMoWk_BXNI_jOOh542srmYLbiMHdfryf6uyhx4219MOJvcKbVbTuX0NdlWl9ut99QfOMBpn
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fb9MwELdgExovMDYGYbBZCE3jISN_HMd-LNWmAm012g7tLXJsR6qWNqhJEeEr8KU5O2krYBO8WcrZudiX853v_DuE3qQEJEFT6jJGwEHJBHGhIVzPEyBgQjBJzeXkwZD2rsjH6-i6hckxd2GAiRJGKm0Qf4Mu4L9LpUcN-GV5H21HlPjG0ep0xxuAXZ81kU0DuclM1s7uX13NDiTL33agbTOZ3-82L-02c_G4qVdkGbTZJTdnyyo9kz_-wG78vy_YRY9aaxN3GvF4gu7p-R7a78zB057V-ATb_E97sL6HHrxftXa6qypw--jneLnIhNR4UCiTVWQXEhcZvizy-jR3c3vJCgs5VW_xQM_A-Z5r_G0qcF-ANe-mtWsb2ESXZ2lem77jqcnHxqDZwWVveHPPZ6kGJajswG1xnryu4MUm5TE3YzxFVxfnk27PbQs4uILEUeVGNGWESMUpeC2C8oz5fsaYVkFIuEcVD71UgMOnmAo5iWLBQvBfUskMqjwncXiAtubFXD9HWEWBDqQE4zIWoHMU19wLNc-CjJJYSe6gI5jzpP0By8TG1gM_WU-6g05Xq57IFv7cVOHIbyN9vSb92mB-3EZ0YkVnTSEWNyZJLo6SyeU4GX1h_mj42U9GDjpcydaGvQAMbQ7GL3PQ8foprKyJ1sAyFUsgAV0ZkTC8m4IaCAAYx0HPGpHdcAtOJAPl-uJfs3KMdnqTQT_pfxh-OkQPm4Nrk0D3Em1Vi6V-BRZXlR7ZX-0X4XMiyQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgEx8vMDbYymCzEJrGQ0Y-HMd-HGXVgLWUdkN7ixzbkaqlzdQPRPkX-Ke5c9JWwCZ4s9SLe7HP5_vlzj8T8jpjYAmWc08IBgAlV8yDhvJ8X4GBKSU0x8PJ7Q4_vWAfL-PLGijiWRhQYgI9TVwSH1f1tclrhoHgbaZ9jgSYk7tkPeawxDEUavZXJLuBqLKbSLspsHJn469HcRfSk992oXUc0O-3h5huq2k9Jp-XSroKk6uj2TQ70j_-4G_8_7fYII_qqJMeV2byhNyxo02ydTwCxD2c0wPq6kDdB_ZNcu_dovWgubgNbov87M_GudKWtkuD1UVuQmmZ025ZzA8Lr3CHrajSA_OGtu0QQPjI0m8DRc8URPVeNvdcg2KWeZgVc3y2P8C6bAoeHqB7pZt3MswsOEPjOq4v6SnmU_hjLH0ssI-n5KJ1ct489eqLHDzFknjqxTwTjGkjOaAXxWUugiAXwpowYtLnRkZ-pgD4GWEiyeJEiQhwTKYFsstLlkTPyNqoHNkdQk0c2lBrCDITBb7HSCv9yMo8zDlLjJYNsgfjntYLcZK6HHsYpMtBb5DDxcynuqZBx9s4iptEXy1Fryvuj5uEDpz5LCXU-AqL5ZI4Pe_2095XEfQ6X4K01yC7C_taqRdCwC0hCBYNsr_8FWYWszYwTeUMRMBnxiyKbpfgSAUA_TTIdmW2K20BTApwss__NSr75H73fSs9-9D5tEseVt-vsY7uBVmbjmf2JQRe02zPrbZfS3IlTA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+Modification+of+Poly%28+l+-lactic+acid%29+Membrane+via+Layer-by-Layer+Assembly+of+Silver+Nanoparticle-Embedded+Polyelectrolyte+Multilayer&rft.jtitle=Bioconjugate+chemistry&rft.au=Yu%2C+Da-Guang&rft.au=Lin%2C+Wen-Ching&rft.au=Yang%2C+Ming-Chien&rft.date=2007-09-01&rft.issn=1043-1802&rft.eissn=1520-4812&rft.volume=18&rft.issue=5&rft.spage=1521&rft.epage=1529&rft_id=info:doi/10.1021%2Fbc060098s&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_bc060098s
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1043-1802&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1043-1802&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1043-1802&client=summon