A computational design optimization method for rockfall protection embankments
In this study, an optimization method based on numerical rockfall simulation is proposed to determine the layout design of a protection embankment, including its position and length on a construction site. Stopping rockfalls farther away from the slope toe requires a lower embankment since the movem...
Saved in:
Published in | Engineering geology Vol. 284; p. 105920 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0013-7952 1872-6917 1872-6917 |
DOI | 10.1016/j.enggeo.2020.105920 |
Cover
Abstract | In this study, an optimization method based on numerical rockfall simulation is proposed to determine the layout design of a protection embankment, including its position and length on a construction site. Stopping rockfalls farther away from the slope toe requires a lower embankment since the movement of the rockfall decreases with the runout distance and, at the same time, a longer embankment due to the lateral deviation from the central rockfall path. This complicated relation makes the layout design difficult. The proposed method mainly focuses on two design parameters: the distance from the slope toe and the embankment length. With regard to these two decision variables, an optimization problem is formulated, with the aim of minimizing the installation cost of an embankment, which is subject to the global performance requirement for arresting rockfalls. Solving this problem leads to the identification of an optimal layout plan for an embankment at the site of interest. The optimization result is objective and quantitative; therefore, it allows us to choose the best one from several embankment types with different design conditions and costs. To evaluate the performance of the proposed method, an application example was conducted using a virtual rock-slope model. In this application, we employed the discrete element method for the rockfall trajectory simulations. The optimization process was then conducted on 50 different groups of computed trajectories to determine the most economical and stable construction plan among several embankment types and all possible layouts. The reliability of the result was also supported by the fact that the variations in the optimal solutions were reduced with the increase in the sample size.
•Optimal layout design method of a rockfall protection embankment is proposed.•Results of numerical simulations are efficiently utilized in the optimization process.•The method allows to minimize the construction cost subject to the safety requirement.•Performance is verified through an application example with several embankment types.•Reliability of optimal solutions is supported by discussion of sample data size. |
---|---|
AbstractList | In this study, an optimization method based on numerical rockfall simulation is proposed to determine the layout design of a protection embankment, including its position and length on a construction site. Stopping rockfalls farther away from the slope toe requires a lower embankment since the movement of the rockfall decreases with the runout distance and, at the same time, a longer embankment due to the lateral deviation from the central rockfall path. This complicated relation makes the layout design difficult. The proposed method mainly focuses on two design parameters: the distance from the slope toe and the embankment length. With regard to these two decision variables, an optimization problem is formulated, with the aim of minimizing the installation cost of an embankment, which is subject to the global performance requirement for arresting rockfalls. Solving this problem leads to the identification of an optimal layout plan for an embankment at the site of interest. The optimization result is objective and quantitative; therefore, it allows us to choose the best one from several embankment types with different design conditions and costs. To evaluate the performance of the proposed method, an application example was conducted using a virtual rock-slope model. In this application, we employed the discrete element method for the rockfall trajectory simulations. The optimization process was then conducted on 50 different groups of computed trajectories to determine the most economical and stable construction plan among several embankment types and all possible layouts. The reliability of the result was also supported by the fact that the variations in the optimal solutions were reduced with the increase in the sample size.
•Optimal layout design method of a rockfall protection embankment is proposed.•Results of numerical simulations are efficiently utilized in the optimization process.•The method allows to minimize the construction cost subject to the safety requirement.•Performance is verified through an application example with several embankment types.•Reliability of optimal solutions is supported by discussion of sample data size. In this study, an optimization method based on numerical rockfall simulation is proposed to determine the layout design of a protection embankment, including its position and length on a construction site. Stopping rockfalls farther away from the slope toe requires a lower embankment since the movement of the rockfall decreases with the runout distance and, at the same time, a longer embankment due to the lateral deviation from the central rockfall path. This complicated relation makes the layout design difficult. The proposed method mainly focuses on two design parameters: the distance from the slope toe and the embankment length. With regard to these two decision variables, an optimization problem is formulated, with the aim of minimizing the installation cost of an embankment, which is subject to the global performance requirement for arresting rockfalls. Solving this problem leads to the identification of an optimal layout plan for an embankment at the site of interest. The optimization result is objective and quantitative; therefore, it allows us to choose the best one from several embankment types with different design conditions and costs. To evaluate the performance of the proposed method, an application example was conducted using a virtual rock-slope model. In this application, we employed the discrete element method for the rockfall trajectory simulations. The optimization process was then conducted on 50 different groups of computed trajectories to determine the most economical and stable construction plan among several embankment types and all possible layouts. The reliability of the result was also supported by the fact that the variations in the optimal solutions were reduced with the increase in the sample size. |
ArticleNumber | 105920 |
Author | Terada, Kenjiro Hayashi, Shunsuke Kanno, Hasuka Moriguchi, Shuji |
Author_xml | – sequence: 1 givenname: Hasuka surname: Kanno fullname: Kanno, Hasuka email: hasuka.kanno.r7@dc.tohoku.ac.jp organization: Graduate School of Engineering, Tohoku University, Aza-Aoba 6-6-04, Aramaki, Aoba-ku, Sendai, Japan – sequence: 2 givenname: Shuji surname: Moriguchi fullname: Moriguchi, Shuji organization: IRIDeS, Tohoku University, Aza-Aoba 468-1, Aramaki, Aoba-ku, Sendai, Japan – sequence: 3 givenname: Shunsuke surname: Hayashi fullname: Hayashi, Shunsuke organization: Department of Industrial and System Engineering, Faculty of Science and Engineering, Hosei University, Kajino-cho 3-7-2, Koganei-shi, Tokyo, Japan – sequence: 4 givenname: Kenjiro surname: Terada fullname: Terada, Kenjiro organization: IRIDeS, Tohoku University, Aza-Aoba 468-1, Aramaki, Aoba-ku, Sendai, Japan |
BookMark | eNqNkLtOJDEQRS3ESgzs_sEGHZL04Gc_CJAQ4iUhNtmNLY9dHjx0243tAQ1fv900EQEQlapu3aqrc4j2ffCA0G-ClwST6mSzBL9eQ1hSTKeRaCneQwvS1LSsWlLvowXGhJV1K-gBOkxpM7UY1wt0f17o0A_brLILXnWFgeTWvghDdr17fZsWPeSHYAobYhGDfrSq64ohhgz6TYZ-pfxjDz6nn-jHqCb49V6P0L-ry78XN-Xdn-vbi_O7UvGa59IazCleNZy3loqVYQTbMbqylSFCa22BNzVuRAVWKN4yZrgQvGJYEdMyYOwIifnu1g9q9zIGkkN0vYo7SbCcoMiNnKHICYqcoYy-49k3xn_aQsqyd0lD1ykPYZskFYK0lDXVtHo6r-oYUopgpXYzpRyV6776wz-YvxnvbLbByO7ZQZRJO_AajIsjbGmC-_zAf-y1oeI |
CitedBy_id | crossref_primary_10_1016_j_cageo_2024_105573 crossref_primary_10_1016_j_enggeo_2022_106948 crossref_primary_10_1007_s10346_024_02391_w crossref_primary_10_1007_s00603_023_03497_8 crossref_primary_10_2208_jscejge_78_3_210 crossref_primary_10_3390_geosciences13060182 crossref_primary_10_3390_geosciences13120368 crossref_primary_10_1007_s11069_024_06959_6 crossref_primary_10_1007_s11831_021_09688_2 crossref_primary_10_1016_j_sandf_2023_101272 crossref_primary_10_1007_s11069_024_06980_9 crossref_primary_10_1007_s10346_024_02256_2 crossref_primary_10_1016_j_enggeo_2023_107000 crossref_primary_10_2208_journalofjsce_23_15035 crossref_primary_10_4164_sptj_59_226 crossref_primary_10_2208_journalofjsce_24_15030 crossref_primary_10_1016_j_sandf_2024_101531 crossref_primary_10_1680_jgein_23_00159 crossref_primary_10_1016_j_probengmech_2022_103339 |
Cites_doi | 10.1109/TAC.1974.1100705 10.1002/2016JF004060 10.1016/j.geomorph.2010.01.002 10.1007/s10064-015-0718-9 10.5194/nhess-9-1059-2009 10.1007/BF01020418 10.1016/j.proeng.2016.08.462 10.1007/s00603-015-0886-8 10.1016/j.engstruct.2012.07.008 10.5194/nhess-11-2617-2011 10.1139/t97-009 10.1016/j.enggeo.2018.06.008 10.1007/s10346-007-0081-4 10.1007/s00603-010-0110-9 10.1016/j.engstruct.2020.110553 10.1007/s11069-015-2084-0 10.1016/j.ijrmms.2012.12.029 10.5194/nhess-5-621-2005 10.1016/j.engstruct.2010.08.025 10.5194/nhess-9-1835-2009 10.1016/j.ijrmms.2014.02.008 10.1007/s00603-013-0540-2 10.1016/j.enggeo.2014.10.008 10.1016/j.sandf.2015.09.006 10.1061/(ASCE)0733-9364(2005)131:11(1186) 10.1139/t98-106 10.1007/s006030050006 10.1016/j.enggeo.2014.01.004 10.1007/s00603-017-1394-9 10.1016/j.enggeo.2012.12.012 10.1016/S0169-555X(98)00116-0 10.1016/j.enggeo.2018.12.011 10.1680/geot.1979.29.1.47 10.1007/s11044-013-9393-4 10.1007/s10346-010-0200-5 10.5194/nhess-9-1189-2009 |
ContentType | Journal Article |
Copyright | 2020 The Authors |
Copyright_xml | – notice: 2020 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 ADTOC UNPAY |
DOI | 10.1016/j.enggeo.2020.105920 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-6917 |
ExternalDocumentID | 10.1016/j.enggeo.2020.105920 10_1016_j_enggeo_2020_105920 S0013795220318172 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6I. 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LY3 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEP SES SET SEW SPC SPCBC SSE SSZ T5K TN5 VH1 WUQ XOL XPP ZCG ZMT ZY4 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 ADTOC AGCQF UNPAY |
ID | FETCH-LOGICAL-a474t-fd0420b8449f25bd310f020af6d15cccfe4870856ef5a4933d4554630a1d93e33 |
IEDL.DBID | .~1 |
ISSN | 0013-7952 1872-6917 |
IngestDate | Fri Sep 19 05:56:31 EDT 2025 Wed Oct 01 12:54:22 EDT 2025 Wed Oct 01 05:18:26 EDT 2025 Thu Apr 24 23:07:21 EDT 2025 Fri Feb 23 02:45:20 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Disaster Prevention Protection embankment Optimization Problem Discrete Element Method Risk Reduction Rockfall |
Language | English |
License | This is an open access article under the CC BY license. cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a474t-fd0420b8449f25bd310f020af6d15cccfe4870856ef5a4933d4554630a1d93e33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0013795220318172 |
PQID | 2551923860 |
PQPubID | 24069 |
ParticipantIDs | unpaywall_primary_10_1016_j_enggeo_2020_105920 proquest_miscellaneous_2551923860 crossref_citationtrail_10_1016_j_enggeo_2020_105920 crossref_primary_10_1016_j_enggeo_2020_105920 elsevier_sciencedirect_doi_10_1016_j_enggeo_2020_105920 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2021 2021-04-00 20210401 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
PublicationDecade | 2020 |
PublicationTitle | Engineering geology |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Cundall, Strack (bb0055) 1979; 29 Li, Lan (bb0130) 2015; 74 El-Rayes, Khalafallah (bb0065) 2005; 131 Wei, Chen, Lee, Huang, Lin, Chi, Lin (bb0210) 2014; 183 Plassiard, Donzé (bb0175) 2010; 32 Toe, Mentani, Govoni, Bourrier, Gottardi, Lambert (bb0195) 2018; 51 Crosta, Agliardi (bb0050) 2004; 4 Mavrouli, Corominas (bb0150) 2010; 7 Bunce, Cruden, Morgenstern (bb0035) 1997; 34 Chiaro, Kiyota, Pokhrel, Goda, Katagiri, Sharma (bb0040) 2015; 55 Lambert, Bourrier, Toe (bb0115) 2013; 60 Shen, Zhao, Dai, Jiang, Zhou (bb0185) 2019; 249 Ronco, Oggeri, Peila (bb0180) 2009; 9 Agliardi, Crosta, Frattini (bb0005) 2009; 9 Japan-Road-Association (bb0090) 2002 Lan, Martin, Zhou, Lim (bb0120) 2010; 118 Bourrier, Lambert, Baroth (bb0020) 2015; 48 Core Team (bb0045) 2017 Peila, Oggeri, Castiglia (bb0170) 2007; 4 Macciotta, Martin, Edwards, Cruden, Keegan (bb0135) 2015; 9 Zhao, Crosta, Utili, De Blasio (bb0215) 2017; 122 Masuya, Amanuma, Nishikawa, Tsuji (bb0140) 2009; 9 Peila, Pelizza, Sassudelli (bb0165) 1998; 31 De Biagi, Marchelli, Peila (bb0060) 2020; 213 Mentani, Govoni, Gottardi, Lambert, Bourrier, Toe (bb0155) 2016; 158 Thoeni, Giacomini, Lambert, Sloan, Carter (bb0190) 2014; 68 Bertrand, Trad, Limam, Silvani (bb0015) 2012; 45 Volkwein, Schellenberg, Labiouse, Agliardi, Berger, Bourrier, Dorren, Gerber, Jaboyedoff (bb0200) 2011; 11 Moon, Oh, Mun (bb0160) 2014; 172 Akaike (bb0010) 1974; 19 Bourrier, Baroth, Lambert (bb0025) 2016; 81 Heim (bb0075) 1932; 20 Gentilini, Gottardi, Govoni, Mentani, Ubertini (bb0070) 2013; 50 Wang, Tonon (bb0205) 2011; 44 Japan-Road-Association (bb0095) 2017 Leine, Schweizer, Christen, Glover, Bartelt, Gerber (bb0125) 2014; 32 Lambert, Bourrier (bb0105) 2013; 154 Jaboyedoff, Dudt, Labiouse (bb0085) 2005; 5 Kobayashi, Harp, Kagawa (bb0100) 1990; 23 Lambert, Kister (bb0110) 2018; 243 Hungr, Evans, Hazzard (bb0080) 1999; 36 Matsuoka, Sakai (bb0145) 1999; 28 Breugnot, Lambert, Villard, Gotteland (bb0030) 2016; 49 Lambert (10.1016/j.enggeo.2020.105920_bb0105) 2013; 154 Thoeni (10.1016/j.enggeo.2020.105920_bb0190) 2014; 68 Bourrier (10.1016/j.enggeo.2020.105920_bb0025) 2016; 81 Chiaro (10.1016/j.enggeo.2020.105920_bb0040) 2015; 55 Crosta (10.1016/j.enggeo.2020.105920_bb0050) 2004; 4 Japan-Road-Association (10.1016/j.enggeo.2020.105920_bb0095) 2017 Toe (10.1016/j.enggeo.2020.105920_bb0195) 2018; 51 Masuya (10.1016/j.enggeo.2020.105920_bb0140) 2009; 9 Gentilini (10.1016/j.enggeo.2020.105920_bb0070) 2013; 50 Breugnot (10.1016/j.enggeo.2020.105920_bb0030) 2016; 49 Lan (10.1016/j.enggeo.2020.105920_bb0120) 2010; 118 Bourrier (10.1016/j.enggeo.2020.105920_bb0020) 2015; 48 Bertrand (10.1016/j.enggeo.2020.105920_bb0015) 2012; 45 Li (10.1016/j.enggeo.2020.105920_bb0130) 2015; 74 Leine (10.1016/j.enggeo.2020.105920_bb0125) 2014; 32 Shen (10.1016/j.enggeo.2020.105920_bb0185) 2019; 249 Wei (10.1016/j.enggeo.2020.105920_bb0210) 2014; 183 Jaboyedoff (10.1016/j.enggeo.2020.105920_bb0085) 2005; 5 Volkwein (10.1016/j.enggeo.2020.105920_bb0200) 2011; 11 Agliardi (10.1016/j.enggeo.2020.105920_bb0005) 2009; 9 Lambert (10.1016/j.enggeo.2020.105920_bb0115) 2013; 60 Mentani (10.1016/j.enggeo.2020.105920_bb0155) 2016; 158 Wang (10.1016/j.enggeo.2020.105920_bb0205) 2011; 44 Bunce (10.1016/j.enggeo.2020.105920_bb0035) 1997; 34 Moon (10.1016/j.enggeo.2020.105920_bb0160) 2014; 172 Ronco (10.1016/j.enggeo.2020.105920_bb0180) 2009; 9 Japan-Road-Association (10.1016/j.enggeo.2020.105920_bb0090) 2002 Core Team (10.1016/j.enggeo.2020.105920_bb0045) 2017 Cundall (10.1016/j.enggeo.2020.105920_bb0055) 1979; 29 El-Rayes (10.1016/j.enggeo.2020.105920_bb0065) 2005; 131 De Biagi (10.1016/j.enggeo.2020.105920_bb0060) 2020; 213 Lambert (10.1016/j.enggeo.2020.105920_bb0110) 2018; 243 Heim (10.1016/j.enggeo.2020.105920_bb0075) 1932; 20 Hungr (10.1016/j.enggeo.2020.105920_bb0080) 1999; 36 Macciotta (10.1016/j.enggeo.2020.105920_bb0135) 2015; 9 Peila (10.1016/j.enggeo.2020.105920_bb0170) 2007; 4 Mavrouli (10.1016/j.enggeo.2020.105920_bb0150) 2010; 7 Kobayashi (10.1016/j.enggeo.2020.105920_bb0100) 1990; 23 Matsuoka (10.1016/j.enggeo.2020.105920_bb0145) 1999; 28 Akaike (10.1016/j.enggeo.2020.105920_bb0010) 1974; 19 Peila (10.1016/j.enggeo.2020.105920_bb0165) 1998; 31 Plassiard (10.1016/j.enggeo.2020.105920_bb0175) 2010; 32 Zhao (10.1016/j.enggeo.2020.105920_bb0215) 2017; 122 |
References_xml | – year: 2002 ident: bb0090 article-title: Survey Research Data of Rockfall Simulation Method: Reference Material for the Rockfall Measure Handbook – year: 2017 ident: bb0095 article-title: Manual for Anti-Impact Structures against Falling Rocks – volume: 20 year: 1932 ident: bb0075 article-title: Bergsturz und menschenleben (Landslides and human lives) – volume: 36 start-page: 224 year: 1999 end-page: 238 ident: bb0080 article-title: Magnitude and frequency of rock falls and rock slides along the main transportation corridors of southwestern British Columbia publication-title: Can. Geotech. J. – volume: 9 start-page: 1835 year: 2009 end-page: 1843 ident: bb0140 article-title: Basic rockfall simulation with consideration of vegetation and application to protection measure publication-title: Nat. Hazards Earth Syst. Sci. – volume: 118 start-page: 213 year: 2010 end-page: 223 ident: bb0120 article-title: Rockfall hazard analysis using LiDAR and spatial modeling publication-title: Geomorphology – volume: 19 start-page: 716 year: 1974 end-page: 723 ident: bb0010 article-title: A new look at the statistical model identification publication-title: IEEE Trans. Autom. Control – volume: 50 start-page: 96 year: 2013 end-page: 106 ident: bb0070 article-title: Design of falling rock protection barriers using numerical models publication-title: Eng. Struct. – volume: 11 start-page: 2617 year: 2011 end-page: 2651 ident: bb0200 article-title: Rockfall characterisation and structural protection - a review publication-title: Nat. Hazards Earth Syst. Sci. – volume: 9 start-page: 171 year: 2015 end-page: 186 ident: bb0135 article-title: Quantifying weather conditions for rock fall hazard management publication-title: Georisk – volume: 5 start-page: 621 year: 2005 end-page: 632 ident: bb0085 article-title: An attempt to refine rockfall hazard zoning based on the kinetic energy, frequency and fragmentation degree publication-title: Nat. Hazards Earth Syst. Sci. – volume: 34 start-page: 344 year: 1997 end-page: 356 ident: bb0035 article-title: Assessment of the hazard from rock fall on a highway publication-title: Can. Geotech. J. – volume: 249 start-page: 60 year: 2019 end-page: 70 ident: bb0185 article-title: DEM analyses of rock block shape effect on the response of rockfall impact against a soil buffering layer publication-title: Eng. Geol. – volume: 4 start-page: 255 year: 2007 end-page: 265 ident: bb0170 article-title: Ground reinforced embankments for rockfall protection: design and evaluation of full scale tests publication-title: Landslides – volume: 81 start-page: 365 year: 2016 end-page: 385 ident: bb0025 article-title: Accounting for the variability of rock detachment conditions in designing rockfall protection structures publication-title: Nat. Hazards – volume: 172 start-page: 41 year: 2014 end-page: 56 ident: bb0160 article-title: Practical design of rockfall catchfence at urban area from a numerical analysis approach publication-title: Eng. Geol. – volume: 213 start-page: 110553 year: 2020 ident: bb0060 article-title: Reliability analysis and partial safety factors approach for rockfall protection structures publication-title: Eng. Struct. – volume: 131 start-page: 1186 year: 2005 end-page: 1195 ident: bb0065 article-title: Trade-off between safety and cost in planning construction site layouts publication-title: J. Constr. Eng. Manag. – volume: 55 start-page: 1030 year: 2015 end-page: 1043 ident: bb0040 article-title: Reconnaissance report on geotechnical and structural damage caused by the 2015 Gorkha Earthquake, Nepal publication-title: Soils Found. – year: 2017 ident: bb0045 article-title: R: A Language and Environment for Statistical Computing – volume: 23 start-page: 1 year: 1990 end-page: 20 ident: bb0100 article-title: Simulation of rockfalls triggered by earthquakes publication-title: Rock Mech. Rock. Eng. – volume: 158 start-page: 398 year: 2016 end-page: 403 ident: bb0155 article-title: A new approach to evaluate the effectiveness of rockfall barriers publication-title: Proc. Eng. – volume: 154 start-page: 77 year: 2013 end-page: 88 ident: bb0105 article-title: Design of rockfall protection embankments: a review publication-title: Eng. Geol. – volume: 51 start-page: 1097 year: 2018 end-page: 1109 ident: bb0195 article-title: Introducing meta-models for a more efficient hazard mitigation strategy with rockfall protection barriers publication-title: Rock Mech. Rock. Eng. – volume: 31 start-page: 1 year: 1998 end-page: 24 ident: bb0165 article-title: Evaluation of behaviour of rockfall restraining nets by full scale tests publication-title: Rock Mech. Rock. Eng. – volume: 243 start-page: 1 year: 2018 end-page: 9 ident: bb0110 article-title: Efficiency assessment of existing rockfall protection embankments based on an impact strength criterion publication-title: Eng. Geol. – volume: 29 start-page: 47 year: 1979 end-page: 65 ident: bb0055 article-title: A discrete numerical model for granular assemblies publication-title: Géotechnique – volume: 60 start-page: 26 year: 2013 end-page: 36 ident: bb0115 article-title: Improving three-dimensional rockfall trajectory simulation codes for assessing the efficiency of protective embankments publication-title: Int. J. Rock Mech. Min. Sci. – volume: 28 start-page: 309 year: 1999 end-page: 328 ident: bb0145 article-title: Rockfall activity from an alpine cliff during thawing periods publication-title: Geomorphology – volume: 122 start-page: 678 year: 2017 end-page: 695 ident: bb0215 article-title: Investigation of rock fragmentation during rockfalls and rock avalanches via 3-D discrete element analyses publication-title: J. Geophys. Res. Earth Surf. – volume: 32 start-page: 3817 year: 2010 end-page: 3826 ident: bb0175 article-title: Optimizing the design of rockfall embankments with a discrete element method publication-title: Eng. Struct. – volume: 45 start-page: 885 year: 2012 end-page: 900 ident: bb0015 article-title: Full-scale dynamic analysis of an innovative rockfall fence under impact using the discrete element method: from the local scale to the structure scale publication-title: Rock Mech. Rock. Eng. – volume: 49 start-page: 1831 year: 2016 end-page: 1848 ident: bb0030 article-title: A discrete/continuous coupled approach for modeling impacts on cellular geostructures publication-title: Rock Mech. Rock. Eng. – volume: 44 start-page: 23 year: 2011 end-page: 35 ident: bb0205 article-title: Discrete element modeling of rock fragmentation upon impact in rock fall analysis publication-title: Rock Mech. Rock. Eng. – volume: 4 start-page: 583 year: 2004 end-page: 598 ident: bb0050 article-title: Parametric evaluation of 3D dispersion of rockfall trajectories publication-title: NHESS – volume: 74 start-page: 1163 year: 2015 end-page: 1176 ident: bb0130 article-title: Probabilistic modeling of rockfall trajectories: a review publication-title: Bull. Eng. Geol. Environ. – volume: 7 start-page: 169 year: 2010 end-page: 180 ident: bb0150 article-title: Vulnerability of simple reinforced concrete buildings to damage by rockfalls publication-title: Landslides – volume: 183 start-page: 116 year: 2014 end-page: 126 ident: bb0210 article-title: The mechanism of rockfall disaster: a case study from Badouzih, Keelung, in northern Taiwan publication-title: Eng. Geol. – volume: 9 start-page: 1189 year: 2009 end-page: 1199 ident: bb0180 article-title: Design of reinforced ground embankments used for rockfall protection publication-title: Nat. Hazards Earth Syst. Sci. – volume: 68 start-page: 107 year: 2014 end-page: 119 ident: bb0190 article-title: A 3D discrete element modelling approach for rockfall analysis with drapery systems publication-title: Int. J. Rock Mech. Min. Sci. – volume: 48 start-page: 247 year: 2015 end-page: 259 ident: bb0020 article-title: A reliability-based approach for the design of rockfall protection fences publication-title: Rock Mech. Rock. Eng. – volume: 9 start-page: 1059 year: 2009 end-page: 1073 ident: bb0005 article-title: Integrating rockfall risk assessment and countermeasure design by 3D modelling techniques publication-title: Nat. Hazards Earth Syst. Sci. – volume: 32 start-page: 241 year: 2014 end-page: 271 ident: bb0125 article-title: Simulation of rockfall trajectories with consideration of rock shape publication-title: Multi. Syst. Dyn. – volume: 20 year: 1932 ident: 10.1016/j.enggeo.2020.105920_bb0075 – volume: 19 start-page: 716 year: 1974 ident: 10.1016/j.enggeo.2020.105920_bb0010 article-title: A new look at the statistical model identification publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.1974.1100705 – volume: 122 start-page: 678 year: 2017 ident: 10.1016/j.enggeo.2020.105920_bb0215 article-title: Investigation of rock fragmentation during rockfalls and rock avalanches via 3-D discrete element analyses publication-title: J. Geophys. Res. Earth Surf. doi: 10.1002/2016JF004060 – volume: 118 start-page: 213 year: 2010 ident: 10.1016/j.enggeo.2020.105920_bb0120 article-title: Rockfall hazard analysis using LiDAR and spatial modeling publication-title: Geomorphology doi: 10.1016/j.geomorph.2010.01.002 – volume: 74 start-page: 1163 year: 2015 ident: 10.1016/j.enggeo.2020.105920_bb0130 article-title: Probabilistic modeling of rockfall trajectories: a review publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-015-0718-9 – volume: 9 start-page: 1059 year: 2009 ident: 10.1016/j.enggeo.2020.105920_bb0005 article-title: Integrating rockfall risk assessment and countermeasure design by 3D modelling techniques publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-9-1059-2009 – volume: 23 start-page: 1 year: 1990 ident: 10.1016/j.enggeo.2020.105920_bb0100 article-title: Simulation of rockfalls triggered by earthquakes publication-title: Rock Mech. Rock. Eng. doi: 10.1007/BF01020418 – volume: 158 start-page: 398 year: 2016 ident: 10.1016/j.enggeo.2020.105920_bb0155 article-title: A new approach to evaluate the effectiveness of rockfall barriers publication-title: Proc. Eng. doi: 10.1016/j.proeng.2016.08.462 – volume: 49 start-page: 1831 year: 2016 ident: 10.1016/j.enggeo.2020.105920_bb0030 article-title: A discrete/continuous coupled approach for modeling impacts on cellular geostructures publication-title: Rock Mech. Rock. Eng. doi: 10.1007/s00603-015-0886-8 – volume: 50 start-page: 96 year: 2013 ident: 10.1016/j.enggeo.2020.105920_bb0070 article-title: Design of falling rock protection barriers using numerical models publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2012.07.008 – volume: 11 start-page: 2617 year: 2011 ident: 10.1016/j.enggeo.2020.105920_bb0200 article-title: Rockfall characterisation and structural protection - a review publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-11-2617-2011 – volume: 34 start-page: 344 year: 1997 ident: 10.1016/j.enggeo.2020.105920_bb0035 article-title: Assessment of the hazard from rock fall on a highway publication-title: Can. Geotech. J. doi: 10.1139/t97-009 – volume: 4 start-page: 583 year: 2004 ident: 10.1016/j.enggeo.2020.105920_bb0050 article-title: Parametric evaluation of 3D dispersion of rockfall trajectories publication-title: NHESS – volume: 243 start-page: 1 year: 2018 ident: 10.1016/j.enggeo.2020.105920_bb0110 article-title: Efficiency assessment of existing rockfall protection embankments based on an impact strength criterion publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2018.06.008 – volume: 4 start-page: 255 year: 2007 ident: 10.1016/j.enggeo.2020.105920_bb0170 article-title: Ground reinforced embankments for rockfall protection: design and evaluation of full scale tests publication-title: Landslides doi: 10.1007/s10346-007-0081-4 – volume: 44 start-page: 23 year: 2011 ident: 10.1016/j.enggeo.2020.105920_bb0205 article-title: Discrete element modeling of rock fragmentation upon impact in rock fall analysis publication-title: Rock Mech. Rock. Eng. doi: 10.1007/s00603-010-0110-9 – volume: 213 start-page: 110553 year: 2020 ident: 10.1016/j.enggeo.2020.105920_bb0060 article-title: Reliability analysis and partial safety factors approach for rockfall protection structures publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2020.110553 – volume: 81 start-page: 365 year: 2016 ident: 10.1016/j.enggeo.2020.105920_bb0025 article-title: Accounting for the variability of rock detachment conditions in designing rockfall protection structures publication-title: Nat. Hazards doi: 10.1007/s11069-015-2084-0 – year: 2002 ident: 10.1016/j.enggeo.2020.105920_bb0090 – volume: 60 start-page: 26 year: 2013 ident: 10.1016/j.enggeo.2020.105920_bb0115 article-title: Improving three-dimensional rockfall trajectory simulation codes for assessing the efficiency of protective embankments publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2012.12.029 – volume: 5 start-page: 621 year: 2005 ident: 10.1016/j.enggeo.2020.105920_bb0085 article-title: An attempt to refine rockfall hazard zoning based on the kinetic energy, frequency and fragmentation degree publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-5-621-2005 – year: 2017 ident: 10.1016/j.enggeo.2020.105920_bb0095 – volume: 32 start-page: 3817 year: 2010 ident: 10.1016/j.enggeo.2020.105920_bb0175 article-title: Optimizing the design of rockfall embankments with a discrete element method publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2010.08.025 – volume: 9 start-page: 1835 year: 2009 ident: 10.1016/j.enggeo.2020.105920_bb0140 article-title: Basic rockfall simulation with consideration of vegetation and application to protection measure publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-9-1835-2009 – volume: 68 start-page: 107 year: 2014 ident: 10.1016/j.enggeo.2020.105920_bb0190 article-title: A 3D discrete element modelling approach for rockfall analysis with drapery systems publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2014.02.008 – volume: 48 start-page: 247 year: 2015 ident: 10.1016/j.enggeo.2020.105920_bb0020 article-title: A reliability-based approach for the design of rockfall protection fences publication-title: Rock Mech. Rock. Eng. doi: 10.1007/s00603-013-0540-2 – volume: 183 start-page: 116 year: 2014 ident: 10.1016/j.enggeo.2020.105920_bb0210 article-title: The mechanism of rockfall disaster: a case study from Badouzih, Keelung, in northern Taiwan publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2014.10.008 – volume: 55 start-page: 1030 year: 2015 ident: 10.1016/j.enggeo.2020.105920_bb0040 article-title: Reconnaissance report on geotechnical and structural damage caused by the 2015 Gorkha Earthquake, Nepal publication-title: Soils Found. doi: 10.1016/j.sandf.2015.09.006 – volume: 131 start-page: 1186 year: 2005 ident: 10.1016/j.enggeo.2020.105920_bb0065 article-title: Trade-off between safety and cost in planning construction site layouts publication-title: J. Constr. Eng. Manag. doi: 10.1061/(ASCE)0733-9364(2005)131:11(1186) – volume: 36 start-page: 224 year: 1999 ident: 10.1016/j.enggeo.2020.105920_bb0080 article-title: Magnitude and frequency of rock falls and rock slides along the main transportation corridors of southwestern British Columbia publication-title: Can. Geotech. J. doi: 10.1139/t98-106 – volume: 31 start-page: 1 year: 1998 ident: 10.1016/j.enggeo.2020.105920_bb0165 article-title: Evaluation of behaviour of rockfall restraining nets by full scale tests publication-title: Rock Mech. Rock. Eng. doi: 10.1007/s006030050006 – volume: 9 start-page: 171 year: 2015 ident: 10.1016/j.enggeo.2020.105920_bb0135 article-title: Quantifying weather conditions for rock fall hazard management publication-title: Georisk – volume: 172 start-page: 41 year: 2014 ident: 10.1016/j.enggeo.2020.105920_bb0160 article-title: Practical design of rockfall catchfence at urban area from a numerical analysis approach publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2014.01.004 – volume: 51 start-page: 1097 year: 2018 ident: 10.1016/j.enggeo.2020.105920_bb0195 article-title: Introducing meta-models for a more efficient hazard mitigation strategy with rockfall protection barriers publication-title: Rock Mech. Rock. Eng. doi: 10.1007/s00603-017-1394-9 – volume: 154 start-page: 77 year: 2013 ident: 10.1016/j.enggeo.2020.105920_bb0105 article-title: Design of rockfall protection embankments: a review publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2012.12.012 – volume: 28 start-page: 309 year: 1999 ident: 10.1016/j.enggeo.2020.105920_bb0145 article-title: Rockfall activity from an alpine cliff during thawing periods publication-title: Geomorphology doi: 10.1016/S0169-555X(98)00116-0 – volume: 249 start-page: 60 year: 2019 ident: 10.1016/j.enggeo.2020.105920_bb0185 article-title: DEM analyses of rock block shape effect on the response of rockfall impact against a soil buffering layer publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2018.12.011 – volume: 29 start-page: 47 year: 1979 ident: 10.1016/j.enggeo.2020.105920_bb0055 article-title: A discrete numerical model for granular assemblies publication-title: Géotechnique doi: 10.1680/geot.1979.29.1.47 – volume: 45 start-page: 885 year: 2012 ident: 10.1016/j.enggeo.2020.105920_bb0015 article-title: Full-scale dynamic analysis of an innovative rockfall fence under impact using the discrete element method: from the local scale to the structure scale publication-title: Rock Mech. Rock. Eng. – volume: 32 start-page: 241 year: 2014 ident: 10.1016/j.enggeo.2020.105920_bb0125 article-title: Simulation of rockfall trajectories with consideration of rock shape publication-title: Multi. Syst. Dyn. doi: 10.1007/s11044-013-9393-4 – year: 2017 ident: 10.1016/j.enggeo.2020.105920_bb0045 – volume: 7 start-page: 169 year: 2010 ident: 10.1016/j.enggeo.2020.105920_bb0150 article-title: Vulnerability of simple reinforced concrete buildings to damage by rockfalls publication-title: Landslides doi: 10.1007/s10346-010-0200-5 – volume: 9 start-page: 1189 year: 2009 ident: 10.1016/j.enggeo.2020.105920_bb0180 article-title: Design of reinforced ground embankments used for rockfall protection publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-9-1189-2009 |
SSID | ssj0013007 |
Score | 2.4037216 |
Snippet | In this study, an optimization method based on numerical rockfall simulation is proposed to determine the layout design of a protection embankment, including... |
SourceID | unpaywall proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 105920 |
SubjectTerms | Disaster Prevention Discrete Element Method Optimization Problem Protection embankment Risk Reduction Rockfall rockfalls sample size system optimization |
SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9jO4gHv8WJSgSPdqxNmrbHIY4hbHhwME8hzcfAbd3QFdG_3pe2GVMYm-cm4TV5SX4v7-OH0B1tq4AIRrxUi9CjKtZeGhnQ5cSXNIENpYoHt_6A9Yb0aRSOauje5cL88t8XcVg6G4-LNL2gIKVNAjDQG8y6k-qoMRw8d14dSUGUFAQ7fhwFHgMzxGXKbRhm0020hjT38mwhvj7FdLp26XQPUd-JW8aaTFr5Mm3J7z-VHHf9nyN0UKFP3CnV5RjVdHaC9tdqEp6iQQfLgumheiXEqojxwHM4W2ZV0iYueacxAF4MF-DEgOi4qvhgP-tZKrJJkTx3hobdx5eHnleRLniCRnTpGQXbuJ3GlCYmCFMF8M-AqMIw5YdSSqPBxAGcxrQJBU0IUdQGupG28FVCNCHnqJ7NM32BsJAaBjBECQa4xwghmfAt92LMpI41ayLiFoDLqiK5JcaYchd69sbL2eJ2tng5W03krXotyoocW9pHbm15hSpKtMBhbbb0vHWqwGHTWU-KyPQ8_-Bgh1lkHDNo01rpyE7iXP63wxWqL99zfQ3YZ5neVCr_A4_UAM0 priority: 102 providerName: Unpaywall |
Title | A computational design optimization method for rockfall protection embankments |
URI | https://dx.doi.org/10.1016/j.enggeo.2020.105920 https://www.proquest.com/docview/2551923860 https://doi.org/10.1016/j.enggeo.2020.105920 |
UnpaywallVersion | publishedVersion |
Volume | 284 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-6917 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0013007 issn: 0013-7952 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-6917 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0013007 issn: 0013-7952 databaseCode: ACRLP dateStart: 19950501 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-6917 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0013007 issn: 0013-7952 databaseCode: AIKHN dateStart: 19950501 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1872-6917 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0013007 issn: 0013-7952 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-6917 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0013007 issn: 0013-7952 databaseCode: AKRWK dateStart: 19650801 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DD-pB_MT5MSJ4rVuXNG2PYzimYvHgQE8hzYeoWzd0Q7z4t_uSpnOCMPFUaJM2fXl5-SX5vfcQOqMt1SaCkSDXIgqoSnSQxwZ0OQ0lTWFAKbfhdpOx_oBe3Uf3NdStfGEsrdLb_tKmO2vt7zS9NJuTpyfr4xuSOAX8YPUS5mHrwU6ZpfWdf4bfJwmt0mXaZjGwpSv3Ocfx0sXjo3MBbLuEt6nN-v379LQAP9dmxUR8vIvhcGEm6m2hTQ8hcads5Taq6WIHbSwEFtxFWQdLl67Bb_Vh5YgaeAwGYuQ9L3GZPBoDasUwi70Y-BT2YRvsYz3KRfHiPOD20KB3cdftBz5zQiBoTKeBUTAWW3lCaWraUa4Awxn4R2GYCiMppdGwTgGwxbSJBE0JUdSy1UhLhColmpB9tFKMC32AsJAaXmCIEgzAixFCMhHaBIoJkzrRrI5IJTAufVhxm91iyCv-2DMvxcytmHkp5joK5rUmZViNJeXjqi_4D_XgYPmX1Dytuo7DyLHHIaLQ49kbh8WUhbcJgzLn8z79U3MO_92cI7TetqwYx_05RivT15k-AVgzzRtObxtotXN53c_gOshuOw9fTfj5fA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHIAD4inGM0hcC-uSZu1xQqABYyeQuEVpHgi2dRNsQvx7nDQdQ0ICcW2bNnUc-0ti-wM4ZQ3dpJLTKDcyiZhOTZS3LOpyFiuW4YTSfsPtrsc7D-zmMXlcgIsqF8aFVQbbX9p0b63DlfMgzfPx87PL8Y1pK0P84PQS_fAiLLEEbXINltrXt53e12FCo8yadkQGrkGVQefDvEzx9OSzAJue8zZzxN8_e6g5BLo8Lcby410OBnPO6God1gKKJO2yoxuwYIpNWJ2rLbgFvTZRnrEh7PYR7WM1yAhtxDAkX5KSP5ogcCXoyPoWP0VC5QZ32wxzWfR9Etw2PFxd3l90okCeEEnWYpPIapyOjTxlLLPNJNcI4yz-o7Rcx4lSyhpcqiDe4sYmkmWUauYC1mhDxjqjhtIdqBWjwuwCkcrgCyzVkiN-sVIqLmPHoZhyZVLD60ArgQkVKos7gouBqELIXkQpZuHELEox1yGatRqXlTV-eb5VjYX4piECjf8vLU-qoRM4edyJiCzMaPomcD3lEG7K8Zmz2Zj-qTt7_-7OMSx37u-6onvdu92HlaYLkvGhQAdQm7xOzSGinEl-FLT4E_S--nc |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9jO4gHv8WJSgSPdqxNmrbHIY4hbHhwME8hzcfAbd3QFdG_3pe2GVMYm-cm4TV5SX4v7-OH0B1tq4AIRrxUi9CjKtZeGhnQ5cSXNIENpYoHt_6A9Yb0aRSOauje5cL88t8XcVg6G4-LNL2gIKVNAjDQG8y6k-qoMRw8d14dSUGUFAQ7fhwFHgMzxGXKbRhm0020hjT38mwhvj7FdLp26XQPUd-JW8aaTFr5Mm3J7z-VHHf9nyN0UKFP3CnV5RjVdHaC9tdqEp6iQQfLgumheiXEqojxwHM4W2ZV0iYueacxAF4MF-DEgOi4qvhgP-tZKrJJkTx3hobdx5eHnleRLniCRnTpGQXbuJ3GlCYmCFMF8M-AqMIw5YdSSqPBxAGcxrQJBU0IUdQGupG28FVCNCHnqJ7NM32BsJAaBjBECQa4xwghmfAt92LMpI41ayLiFoDLqiK5JcaYchd69sbL2eJ2tng5W03krXotyoocW9pHbm15hSpKtMBhbbb0vHWqwGHTWU-KyPQ8_-Bgh1lkHDNo01rpyE7iXP63wxWqL99zfQ3YZ5neVCr_A4_UAM0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+computational+design+optimization+method+for+rockfall+protection+embankments&rft.jtitle=Engineering+geology&rft.au=Kanno%2C+Hasuka&rft.au=Moriguchi%2C+Shuji&rft.au=Hayashi%2C+Shunsuke&rft.au=Terada%2C+Kenjiro&rft.date=2021-04-01&rft.issn=0013-7952&rft.volume=284&rft.spage=105920&rft_id=info:doi/10.1016%2Fj.enggeo.2020.105920&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enggeo_2020_105920 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-7952&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-7952&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-7952&client=summon |