A computational design optimization method for rockfall protection embankments

In this study, an optimization method based on numerical rockfall simulation is proposed to determine the layout design of a protection embankment, including its position and length on a construction site. Stopping rockfalls farther away from the slope toe requires a lower embankment since the movem...

Full description

Saved in:
Bibliographic Details
Published inEngineering geology Vol. 284; p. 105920
Main Authors Kanno, Hasuka, Moriguchi, Shuji, Hayashi, Shunsuke, Terada, Kenjiro
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2021
Subjects
Online AccessGet full text
ISSN0013-7952
1872-6917
1872-6917
DOI10.1016/j.enggeo.2020.105920

Cover

Abstract In this study, an optimization method based on numerical rockfall simulation is proposed to determine the layout design of a protection embankment, including its position and length on a construction site. Stopping rockfalls farther away from the slope toe requires a lower embankment since the movement of the rockfall decreases with the runout distance and, at the same time, a longer embankment due to the lateral deviation from the central rockfall path. This complicated relation makes the layout design difficult. The proposed method mainly focuses on two design parameters: the distance from the slope toe and the embankment length. With regard to these two decision variables, an optimization problem is formulated, with the aim of minimizing the installation cost of an embankment, which is subject to the global performance requirement for arresting rockfalls. Solving this problem leads to the identification of an optimal layout plan for an embankment at the site of interest. The optimization result is objective and quantitative; therefore, it allows us to choose the best one from several embankment types with different design conditions and costs. To evaluate the performance of the proposed method, an application example was conducted using a virtual rock-slope model. In this application, we employed the discrete element method for the rockfall trajectory simulations. The optimization process was then conducted on 50 different groups of computed trajectories to determine the most economical and stable construction plan among several embankment types and all possible layouts. The reliability of the result was also supported by the fact that the variations in the optimal solutions were reduced with the increase in the sample size. •Optimal layout design method of a rockfall protection embankment is proposed.•Results of numerical simulations are efficiently utilized in the optimization process.•The method allows to minimize the construction cost subject to the safety requirement.•Performance is verified through an application example with several embankment types.•Reliability of optimal solutions is supported by discussion of sample data size.
AbstractList In this study, an optimization method based on numerical rockfall simulation is proposed to determine the layout design of a protection embankment, including its position and length on a construction site. Stopping rockfalls farther away from the slope toe requires a lower embankment since the movement of the rockfall decreases with the runout distance and, at the same time, a longer embankment due to the lateral deviation from the central rockfall path. This complicated relation makes the layout design difficult. The proposed method mainly focuses on two design parameters: the distance from the slope toe and the embankment length. With regard to these two decision variables, an optimization problem is formulated, with the aim of minimizing the installation cost of an embankment, which is subject to the global performance requirement for arresting rockfalls. Solving this problem leads to the identification of an optimal layout plan for an embankment at the site of interest. The optimization result is objective and quantitative; therefore, it allows us to choose the best one from several embankment types with different design conditions and costs. To evaluate the performance of the proposed method, an application example was conducted using a virtual rock-slope model. In this application, we employed the discrete element method for the rockfall trajectory simulations. The optimization process was then conducted on 50 different groups of computed trajectories to determine the most economical and stable construction plan among several embankment types and all possible layouts. The reliability of the result was also supported by the fact that the variations in the optimal solutions were reduced with the increase in the sample size. •Optimal layout design method of a rockfall protection embankment is proposed.•Results of numerical simulations are efficiently utilized in the optimization process.•The method allows to minimize the construction cost subject to the safety requirement.•Performance is verified through an application example with several embankment types.•Reliability of optimal solutions is supported by discussion of sample data size.
In this study, an optimization method based on numerical rockfall simulation is proposed to determine the layout design of a protection embankment, including its position and length on a construction site. Stopping rockfalls farther away from the slope toe requires a lower embankment since the movement of the rockfall decreases with the runout distance and, at the same time, a longer embankment due to the lateral deviation from the central rockfall path. This complicated relation makes the layout design difficult. The proposed method mainly focuses on two design parameters: the distance from the slope toe and the embankment length. With regard to these two decision variables, an optimization problem is formulated, with the aim of minimizing the installation cost of an embankment, which is subject to the global performance requirement for arresting rockfalls. Solving this problem leads to the identification of an optimal layout plan for an embankment at the site of interest. The optimization result is objective and quantitative; therefore, it allows us to choose the best one from several embankment types with different design conditions and costs. To evaluate the performance of the proposed method, an application example was conducted using a virtual rock-slope model. In this application, we employed the discrete element method for the rockfall trajectory simulations. The optimization process was then conducted on 50 different groups of computed trajectories to determine the most economical and stable construction plan among several embankment types and all possible layouts. The reliability of the result was also supported by the fact that the variations in the optimal solutions were reduced with the increase in the sample size.
ArticleNumber 105920
Author Terada, Kenjiro
Hayashi, Shunsuke
Kanno, Hasuka
Moriguchi, Shuji
Author_xml – sequence: 1
  givenname: Hasuka
  surname: Kanno
  fullname: Kanno, Hasuka
  email: hasuka.kanno.r7@dc.tohoku.ac.jp
  organization: Graduate School of Engineering, Tohoku University, Aza-Aoba 6-6-04, Aramaki, Aoba-ku, Sendai, Japan
– sequence: 2
  givenname: Shuji
  surname: Moriguchi
  fullname: Moriguchi, Shuji
  organization: IRIDeS, Tohoku University, Aza-Aoba 468-1, Aramaki, Aoba-ku, Sendai, Japan
– sequence: 3
  givenname: Shunsuke
  surname: Hayashi
  fullname: Hayashi, Shunsuke
  organization: Department of Industrial and System Engineering, Faculty of Science and Engineering, Hosei University, Kajino-cho 3-7-2, Koganei-shi, Tokyo, Japan
– sequence: 4
  givenname: Kenjiro
  surname: Terada
  fullname: Terada, Kenjiro
  organization: IRIDeS, Tohoku University, Aza-Aoba 468-1, Aramaki, Aoba-ku, Sendai, Japan
BookMark eNqNkLtOJDEQRS3ESgzs_sEGHZL04Gc_CJAQ4iUhNtmNLY9dHjx0243tAQ1fv900EQEQlapu3aqrc4j2ffCA0G-ClwST6mSzBL9eQ1hSTKeRaCneQwvS1LSsWlLvowXGhJV1K-gBOkxpM7UY1wt0f17o0A_brLILXnWFgeTWvghDdr17fZsWPeSHYAobYhGDfrSq64ohhgz6TYZ-pfxjDz6nn-jHqCb49V6P0L-ry78XN-Xdn-vbi_O7UvGa59IazCleNZy3loqVYQTbMbqylSFCa22BNzVuRAVWKN4yZrgQvGJYEdMyYOwIifnu1g9q9zIGkkN0vYo7SbCcoMiNnKHICYqcoYy-49k3xn_aQsqyd0lD1ykPYZskFYK0lDXVtHo6r-oYUopgpXYzpRyV6776wz-YvxnvbLbByO7ZQZRJO_AajIsjbGmC-_zAf-y1oeI
CitedBy_id crossref_primary_10_1016_j_cageo_2024_105573
crossref_primary_10_1016_j_enggeo_2022_106948
crossref_primary_10_1007_s10346_024_02391_w
crossref_primary_10_1007_s00603_023_03497_8
crossref_primary_10_2208_jscejge_78_3_210
crossref_primary_10_3390_geosciences13060182
crossref_primary_10_3390_geosciences13120368
crossref_primary_10_1007_s11069_024_06959_6
crossref_primary_10_1007_s11831_021_09688_2
crossref_primary_10_1016_j_sandf_2023_101272
crossref_primary_10_1007_s11069_024_06980_9
crossref_primary_10_1007_s10346_024_02256_2
crossref_primary_10_1016_j_enggeo_2023_107000
crossref_primary_10_2208_journalofjsce_23_15035
crossref_primary_10_4164_sptj_59_226
crossref_primary_10_2208_journalofjsce_24_15030
crossref_primary_10_1016_j_sandf_2024_101531
crossref_primary_10_1680_jgein_23_00159
crossref_primary_10_1016_j_probengmech_2022_103339
Cites_doi 10.1109/TAC.1974.1100705
10.1002/2016JF004060
10.1016/j.geomorph.2010.01.002
10.1007/s10064-015-0718-9
10.5194/nhess-9-1059-2009
10.1007/BF01020418
10.1016/j.proeng.2016.08.462
10.1007/s00603-015-0886-8
10.1016/j.engstruct.2012.07.008
10.5194/nhess-11-2617-2011
10.1139/t97-009
10.1016/j.enggeo.2018.06.008
10.1007/s10346-007-0081-4
10.1007/s00603-010-0110-9
10.1016/j.engstruct.2020.110553
10.1007/s11069-015-2084-0
10.1016/j.ijrmms.2012.12.029
10.5194/nhess-5-621-2005
10.1016/j.engstruct.2010.08.025
10.5194/nhess-9-1835-2009
10.1016/j.ijrmms.2014.02.008
10.1007/s00603-013-0540-2
10.1016/j.enggeo.2014.10.008
10.1016/j.sandf.2015.09.006
10.1061/(ASCE)0733-9364(2005)131:11(1186)
10.1139/t98-106
10.1007/s006030050006
10.1016/j.enggeo.2014.01.004
10.1007/s00603-017-1394-9
10.1016/j.enggeo.2012.12.012
10.1016/S0169-555X(98)00116-0
10.1016/j.enggeo.2018.12.011
10.1680/geot.1979.29.1.47
10.1007/s11044-013-9393-4
10.1007/s10346-010-0200-5
10.5194/nhess-9-1189-2009
ContentType Journal Article
Copyright 2020 The Authors
Copyright_xml – notice: 2020 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
ADTOC
UNPAY
DOI 10.1016/j.enggeo.2020.105920
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-6917
ExternalDocumentID 10.1016/j.enggeo.2020.105920
10_1016_j_enggeo_2020_105920
S0013795220318172
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LY3
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEP
SES
SET
SEW
SPC
SPCBC
SSE
SSZ
T5K
TN5
VH1
WUQ
XOL
XPP
ZCG
ZMT
ZY4
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-a474t-fd0420b8449f25bd310f020af6d15cccfe4870856ef5a4933d4554630a1d93e33
IEDL.DBID .~1
ISSN 0013-7952
1872-6917
IngestDate Fri Sep 19 05:56:31 EDT 2025
Wed Oct 01 12:54:22 EDT 2025
Wed Oct 01 05:18:26 EDT 2025
Thu Apr 24 23:07:21 EDT 2025
Fri Feb 23 02:45:20 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Disaster Prevention
Protection embankment
Optimization Problem
Discrete Element Method
Risk Reduction
Rockfall
Language English
License This is an open access article under the CC BY license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a474t-fd0420b8449f25bd310f020af6d15cccfe4870856ef5a4933d4554630a1d93e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0013795220318172
PQID 2551923860
PQPubID 24069
ParticipantIDs unpaywall_primary_10_1016_j_enggeo_2020_105920
proquest_miscellaneous_2551923860
crossref_citationtrail_10_1016_j_enggeo_2020_105920
crossref_primary_10_1016_j_enggeo_2020_105920
elsevier_sciencedirect_doi_10_1016_j_enggeo_2020_105920
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationTitle Engineering geology
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cundall, Strack (bb0055) 1979; 29
Li, Lan (bb0130) 2015; 74
El-Rayes, Khalafallah (bb0065) 2005; 131
Wei, Chen, Lee, Huang, Lin, Chi, Lin (bb0210) 2014; 183
Plassiard, Donzé (bb0175) 2010; 32
Toe, Mentani, Govoni, Bourrier, Gottardi, Lambert (bb0195) 2018; 51
Crosta, Agliardi (bb0050) 2004; 4
Mavrouli, Corominas (bb0150) 2010; 7
Bunce, Cruden, Morgenstern (bb0035) 1997; 34
Chiaro, Kiyota, Pokhrel, Goda, Katagiri, Sharma (bb0040) 2015; 55
Lambert, Bourrier, Toe (bb0115) 2013; 60
Shen, Zhao, Dai, Jiang, Zhou (bb0185) 2019; 249
Ronco, Oggeri, Peila (bb0180) 2009; 9
Agliardi, Crosta, Frattini (bb0005) 2009; 9
Japan-Road-Association (bb0090) 2002
Lan, Martin, Zhou, Lim (bb0120) 2010; 118
Bourrier, Lambert, Baroth (bb0020) 2015; 48
Core Team (bb0045) 2017
Peila, Oggeri, Castiglia (bb0170) 2007; 4
Macciotta, Martin, Edwards, Cruden, Keegan (bb0135) 2015; 9
Zhao, Crosta, Utili, De Blasio (bb0215) 2017; 122
Masuya, Amanuma, Nishikawa, Tsuji (bb0140) 2009; 9
Peila, Pelizza, Sassudelli (bb0165) 1998; 31
De Biagi, Marchelli, Peila (bb0060) 2020; 213
Mentani, Govoni, Gottardi, Lambert, Bourrier, Toe (bb0155) 2016; 158
Thoeni, Giacomini, Lambert, Sloan, Carter (bb0190) 2014; 68
Bertrand, Trad, Limam, Silvani (bb0015) 2012; 45
Volkwein, Schellenberg, Labiouse, Agliardi, Berger, Bourrier, Dorren, Gerber, Jaboyedoff (bb0200) 2011; 11
Moon, Oh, Mun (bb0160) 2014; 172
Akaike (bb0010) 1974; 19
Bourrier, Baroth, Lambert (bb0025) 2016; 81
Heim (bb0075) 1932; 20
Gentilini, Gottardi, Govoni, Mentani, Ubertini (bb0070) 2013; 50
Wang, Tonon (bb0205) 2011; 44
Japan-Road-Association (bb0095) 2017
Leine, Schweizer, Christen, Glover, Bartelt, Gerber (bb0125) 2014; 32
Lambert, Bourrier (bb0105) 2013; 154
Jaboyedoff, Dudt, Labiouse (bb0085) 2005; 5
Kobayashi, Harp, Kagawa (bb0100) 1990; 23
Lambert, Kister (bb0110) 2018; 243
Hungr, Evans, Hazzard (bb0080) 1999; 36
Matsuoka, Sakai (bb0145) 1999; 28
Breugnot, Lambert, Villard, Gotteland (bb0030) 2016; 49
Lambert (10.1016/j.enggeo.2020.105920_bb0105) 2013; 154
Thoeni (10.1016/j.enggeo.2020.105920_bb0190) 2014; 68
Bourrier (10.1016/j.enggeo.2020.105920_bb0025) 2016; 81
Chiaro (10.1016/j.enggeo.2020.105920_bb0040) 2015; 55
Crosta (10.1016/j.enggeo.2020.105920_bb0050) 2004; 4
Japan-Road-Association (10.1016/j.enggeo.2020.105920_bb0095) 2017
Toe (10.1016/j.enggeo.2020.105920_bb0195) 2018; 51
Masuya (10.1016/j.enggeo.2020.105920_bb0140) 2009; 9
Gentilini (10.1016/j.enggeo.2020.105920_bb0070) 2013; 50
Breugnot (10.1016/j.enggeo.2020.105920_bb0030) 2016; 49
Lan (10.1016/j.enggeo.2020.105920_bb0120) 2010; 118
Bourrier (10.1016/j.enggeo.2020.105920_bb0020) 2015; 48
Bertrand (10.1016/j.enggeo.2020.105920_bb0015) 2012; 45
Li (10.1016/j.enggeo.2020.105920_bb0130) 2015; 74
Leine (10.1016/j.enggeo.2020.105920_bb0125) 2014; 32
Shen (10.1016/j.enggeo.2020.105920_bb0185) 2019; 249
Wei (10.1016/j.enggeo.2020.105920_bb0210) 2014; 183
Jaboyedoff (10.1016/j.enggeo.2020.105920_bb0085) 2005; 5
Volkwein (10.1016/j.enggeo.2020.105920_bb0200) 2011; 11
Agliardi (10.1016/j.enggeo.2020.105920_bb0005) 2009; 9
Lambert (10.1016/j.enggeo.2020.105920_bb0115) 2013; 60
Mentani (10.1016/j.enggeo.2020.105920_bb0155) 2016; 158
Wang (10.1016/j.enggeo.2020.105920_bb0205) 2011; 44
Bunce (10.1016/j.enggeo.2020.105920_bb0035) 1997; 34
Moon (10.1016/j.enggeo.2020.105920_bb0160) 2014; 172
Ronco (10.1016/j.enggeo.2020.105920_bb0180) 2009; 9
Japan-Road-Association (10.1016/j.enggeo.2020.105920_bb0090) 2002
Core Team (10.1016/j.enggeo.2020.105920_bb0045) 2017
Cundall (10.1016/j.enggeo.2020.105920_bb0055) 1979; 29
El-Rayes (10.1016/j.enggeo.2020.105920_bb0065) 2005; 131
De Biagi (10.1016/j.enggeo.2020.105920_bb0060) 2020; 213
Lambert (10.1016/j.enggeo.2020.105920_bb0110) 2018; 243
Heim (10.1016/j.enggeo.2020.105920_bb0075) 1932; 20
Hungr (10.1016/j.enggeo.2020.105920_bb0080) 1999; 36
Macciotta (10.1016/j.enggeo.2020.105920_bb0135) 2015; 9
Peila (10.1016/j.enggeo.2020.105920_bb0170) 2007; 4
Mavrouli (10.1016/j.enggeo.2020.105920_bb0150) 2010; 7
Kobayashi (10.1016/j.enggeo.2020.105920_bb0100) 1990; 23
Matsuoka (10.1016/j.enggeo.2020.105920_bb0145) 1999; 28
Akaike (10.1016/j.enggeo.2020.105920_bb0010) 1974; 19
Peila (10.1016/j.enggeo.2020.105920_bb0165) 1998; 31
Plassiard (10.1016/j.enggeo.2020.105920_bb0175) 2010; 32
Zhao (10.1016/j.enggeo.2020.105920_bb0215) 2017; 122
References_xml – year: 2002
  ident: bb0090
  article-title: Survey Research Data of Rockfall Simulation Method: Reference Material for the Rockfall Measure Handbook
– year: 2017
  ident: bb0095
  article-title: Manual for Anti-Impact Structures against Falling Rocks
– volume: 20
  year: 1932
  ident: bb0075
  article-title: Bergsturz und menschenleben (Landslides and human lives)
– volume: 36
  start-page: 224
  year: 1999
  end-page: 238
  ident: bb0080
  article-title: Magnitude and frequency of rock falls and rock slides along the main transportation corridors of southwestern British Columbia
  publication-title: Can. Geotech. J.
– volume: 9
  start-page: 1835
  year: 2009
  end-page: 1843
  ident: bb0140
  article-title: Basic rockfall simulation with consideration of vegetation and application to protection measure
  publication-title: Nat. Hazards Earth Syst. Sci.
– volume: 118
  start-page: 213
  year: 2010
  end-page: 223
  ident: bb0120
  article-title: Rockfall hazard analysis using LiDAR and spatial modeling
  publication-title: Geomorphology
– volume: 19
  start-page: 716
  year: 1974
  end-page: 723
  ident: bb0010
  article-title: A new look at the statistical model identification
  publication-title: IEEE Trans. Autom. Control
– volume: 50
  start-page: 96
  year: 2013
  end-page: 106
  ident: bb0070
  article-title: Design of falling rock protection barriers using numerical models
  publication-title: Eng. Struct.
– volume: 11
  start-page: 2617
  year: 2011
  end-page: 2651
  ident: bb0200
  article-title: Rockfall characterisation and structural protection - a review
  publication-title: Nat. Hazards Earth Syst. Sci.
– volume: 9
  start-page: 171
  year: 2015
  end-page: 186
  ident: bb0135
  article-title: Quantifying weather conditions for rock fall hazard management
  publication-title: Georisk
– volume: 5
  start-page: 621
  year: 2005
  end-page: 632
  ident: bb0085
  article-title: An attempt to refine rockfall hazard zoning based on the kinetic energy, frequency and fragmentation degree
  publication-title: Nat. Hazards Earth Syst. Sci.
– volume: 34
  start-page: 344
  year: 1997
  end-page: 356
  ident: bb0035
  article-title: Assessment of the hazard from rock fall on a highway
  publication-title: Can. Geotech. J.
– volume: 249
  start-page: 60
  year: 2019
  end-page: 70
  ident: bb0185
  article-title: DEM analyses of rock block shape effect on the response of rockfall impact against a soil buffering layer
  publication-title: Eng. Geol.
– volume: 4
  start-page: 255
  year: 2007
  end-page: 265
  ident: bb0170
  article-title: Ground reinforced embankments for rockfall protection: design and evaluation of full scale tests
  publication-title: Landslides
– volume: 81
  start-page: 365
  year: 2016
  end-page: 385
  ident: bb0025
  article-title: Accounting for the variability of rock detachment conditions in designing rockfall protection structures
  publication-title: Nat. Hazards
– volume: 172
  start-page: 41
  year: 2014
  end-page: 56
  ident: bb0160
  article-title: Practical design of rockfall catchfence at urban area from a numerical analysis approach
  publication-title: Eng. Geol.
– volume: 213
  start-page: 110553
  year: 2020
  ident: bb0060
  article-title: Reliability analysis and partial safety factors approach for rockfall protection structures
  publication-title: Eng. Struct.
– volume: 131
  start-page: 1186
  year: 2005
  end-page: 1195
  ident: bb0065
  article-title: Trade-off between safety and cost in planning construction site layouts
  publication-title: J. Constr. Eng. Manag.
– volume: 55
  start-page: 1030
  year: 2015
  end-page: 1043
  ident: bb0040
  article-title: Reconnaissance report on geotechnical and structural damage caused by the 2015 Gorkha Earthquake, Nepal
  publication-title: Soils Found.
– year: 2017
  ident: bb0045
  article-title: R: A Language and Environment for Statistical Computing
– volume: 23
  start-page: 1
  year: 1990
  end-page: 20
  ident: bb0100
  article-title: Simulation of rockfalls triggered by earthquakes
  publication-title: Rock Mech. Rock. Eng.
– volume: 158
  start-page: 398
  year: 2016
  end-page: 403
  ident: bb0155
  article-title: A new approach to evaluate the effectiveness of rockfall barriers
  publication-title: Proc. Eng.
– volume: 154
  start-page: 77
  year: 2013
  end-page: 88
  ident: bb0105
  article-title: Design of rockfall protection embankments: a review
  publication-title: Eng. Geol.
– volume: 51
  start-page: 1097
  year: 2018
  end-page: 1109
  ident: bb0195
  article-title: Introducing meta-models for a more efficient hazard mitigation strategy with rockfall protection barriers
  publication-title: Rock Mech. Rock. Eng.
– volume: 31
  start-page: 1
  year: 1998
  end-page: 24
  ident: bb0165
  article-title: Evaluation of behaviour of rockfall restraining nets by full scale tests
  publication-title: Rock Mech. Rock. Eng.
– volume: 243
  start-page: 1
  year: 2018
  end-page: 9
  ident: bb0110
  article-title: Efficiency assessment of existing rockfall protection embankments based on an impact strength criterion
  publication-title: Eng. Geol.
– volume: 29
  start-page: 47
  year: 1979
  end-page: 65
  ident: bb0055
  article-title: A discrete numerical model for granular assemblies
  publication-title: Géotechnique
– volume: 60
  start-page: 26
  year: 2013
  end-page: 36
  ident: bb0115
  article-title: Improving three-dimensional rockfall trajectory simulation codes for assessing the efficiency of protective embankments
  publication-title: Int. J. Rock Mech. Min. Sci.
– volume: 28
  start-page: 309
  year: 1999
  end-page: 328
  ident: bb0145
  article-title: Rockfall activity from an alpine cliff during thawing periods
  publication-title: Geomorphology
– volume: 122
  start-page: 678
  year: 2017
  end-page: 695
  ident: bb0215
  article-title: Investigation of rock fragmentation during rockfalls and rock avalanches via 3-D discrete element analyses
  publication-title: J. Geophys. Res. Earth Surf.
– volume: 32
  start-page: 3817
  year: 2010
  end-page: 3826
  ident: bb0175
  article-title: Optimizing the design of rockfall embankments with a discrete element method
  publication-title: Eng. Struct.
– volume: 45
  start-page: 885
  year: 2012
  end-page: 900
  ident: bb0015
  article-title: Full-scale dynamic analysis of an innovative rockfall fence under impact using the discrete element method: from the local scale to the structure scale
  publication-title: Rock Mech. Rock. Eng.
– volume: 49
  start-page: 1831
  year: 2016
  end-page: 1848
  ident: bb0030
  article-title: A discrete/continuous coupled approach for modeling impacts on cellular geostructures
  publication-title: Rock Mech. Rock. Eng.
– volume: 44
  start-page: 23
  year: 2011
  end-page: 35
  ident: bb0205
  article-title: Discrete element modeling of rock fragmentation upon impact in rock fall analysis
  publication-title: Rock Mech. Rock. Eng.
– volume: 4
  start-page: 583
  year: 2004
  end-page: 598
  ident: bb0050
  article-title: Parametric evaluation of 3D dispersion of rockfall trajectories
  publication-title: NHESS
– volume: 74
  start-page: 1163
  year: 2015
  end-page: 1176
  ident: bb0130
  article-title: Probabilistic modeling of rockfall trajectories: a review
  publication-title: Bull. Eng. Geol. Environ.
– volume: 7
  start-page: 169
  year: 2010
  end-page: 180
  ident: bb0150
  article-title: Vulnerability of simple reinforced concrete buildings to damage by rockfalls
  publication-title: Landslides
– volume: 183
  start-page: 116
  year: 2014
  end-page: 126
  ident: bb0210
  article-title: The mechanism of rockfall disaster: a case study from Badouzih, Keelung, in northern Taiwan
  publication-title: Eng. Geol.
– volume: 9
  start-page: 1189
  year: 2009
  end-page: 1199
  ident: bb0180
  article-title: Design of reinforced ground embankments used for rockfall protection
  publication-title: Nat. Hazards Earth Syst. Sci.
– volume: 68
  start-page: 107
  year: 2014
  end-page: 119
  ident: bb0190
  article-title: A 3D discrete element modelling approach for rockfall analysis with drapery systems
  publication-title: Int. J. Rock Mech. Min. Sci.
– volume: 48
  start-page: 247
  year: 2015
  end-page: 259
  ident: bb0020
  article-title: A reliability-based approach for the design of rockfall protection fences
  publication-title: Rock Mech. Rock. Eng.
– volume: 9
  start-page: 1059
  year: 2009
  end-page: 1073
  ident: bb0005
  article-title: Integrating rockfall risk assessment and countermeasure design by 3D modelling techniques
  publication-title: Nat. Hazards Earth Syst. Sci.
– volume: 32
  start-page: 241
  year: 2014
  end-page: 271
  ident: bb0125
  article-title: Simulation of rockfall trajectories with consideration of rock shape
  publication-title: Multi. Syst. Dyn.
– volume: 20
  year: 1932
  ident: 10.1016/j.enggeo.2020.105920_bb0075
– volume: 19
  start-page: 716
  year: 1974
  ident: 10.1016/j.enggeo.2020.105920_bb0010
  article-title: A new look at the statistical model identification
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1974.1100705
– volume: 122
  start-page: 678
  year: 2017
  ident: 10.1016/j.enggeo.2020.105920_bb0215
  article-title: Investigation of rock fragmentation during rockfalls and rock avalanches via 3-D discrete element analyses
  publication-title: J. Geophys. Res. Earth Surf.
  doi: 10.1002/2016JF004060
– volume: 118
  start-page: 213
  year: 2010
  ident: 10.1016/j.enggeo.2020.105920_bb0120
  article-title: Rockfall hazard analysis using LiDAR and spatial modeling
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2010.01.002
– volume: 74
  start-page: 1163
  year: 2015
  ident: 10.1016/j.enggeo.2020.105920_bb0130
  article-title: Probabilistic modeling of rockfall trajectories: a review
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-015-0718-9
– volume: 9
  start-page: 1059
  year: 2009
  ident: 10.1016/j.enggeo.2020.105920_bb0005
  article-title: Integrating rockfall risk assessment and countermeasure design by 3D modelling techniques
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-9-1059-2009
– volume: 23
  start-page: 1
  year: 1990
  ident: 10.1016/j.enggeo.2020.105920_bb0100
  article-title: Simulation of rockfalls triggered by earthquakes
  publication-title: Rock Mech. Rock. Eng.
  doi: 10.1007/BF01020418
– volume: 158
  start-page: 398
  year: 2016
  ident: 10.1016/j.enggeo.2020.105920_bb0155
  article-title: A new approach to evaluate the effectiveness of rockfall barriers
  publication-title: Proc. Eng.
  doi: 10.1016/j.proeng.2016.08.462
– volume: 49
  start-page: 1831
  year: 2016
  ident: 10.1016/j.enggeo.2020.105920_bb0030
  article-title: A discrete/continuous coupled approach for modeling impacts on cellular geostructures
  publication-title: Rock Mech. Rock. Eng.
  doi: 10.1007/s00603-015-0886-8
– volume: 50
  start-page: 96
  year: 2013
  ident: 10.1016/j.enggeo.2020.105920_bb0070
  article-title: Design of falling rock protection barriers using numerical models
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2012.07.008
– volume: 11
  start-page: 2617
  year: 2011
  ident: 10.1016/j.enggeo.2020.105920_bb0200
  article-title: Rockfall characterisation and structural protection - a review
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-11-2617-2011
– volume: 34
  start-page: 344
  year: 1997
  ident: 10.1016/j.enggeo.2020.105920_bb0035
  article-title: Assessment of the hazard from rock fall on a highway
  publication-title: Can. Geotech. J.
  doi: 10.1139/t97-009
– volume: 4
  start-page: 583
  year: 2004
  ident: 10.1016/j.enggeo.2020.105920_bb0050
  article-title: Parametric evaluation of 3D dispersion of rockfall trajectories
  publication-title: NHESS
– volume: 243
  start-page: 1
  year: 2018
  ident: 10.1016/j.enggeo.2020.105920_bb0110
  article-title: Efficiency assessment of existing rockfall protection embankments based on an impact strength criterion
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2018.06.008
– volume: 4
  start-page: 255
  year: 2007
  ident: 10.1016/j.enggeo.2020.105920_bb0170
  article-title: Ground reinforced embankments for rockfall protection: design and evaluation of full scale tests
  publication-title: Landslides
  doi: 10.1007/s10346-007-0081-4
– volume: 44
  start-page: 23
  year: 2011
  ident: 10.1016/j.enggeo.2020.105920_bb0205
  article-title: Discrete element modeling of rock fragmentation upon impact in rock fall analysis
  publication-title: Rock Mech. Rock. Eng.
  doi: 10.1007/s00603-010-0110-9
– volume: 213
  start-page: 110553
  year: 2020
  ident: 10.1016/j.enggeo.2020.105920_bb0060
  article-title: Reliability analysis and partial safety factors approach for rockfall protection structures
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2020.110553
– volume: 81
  start-page: 365
  year: 2016
  ident: 10.1016/j.enggeo.2020.105920_bb0025
  article-title: Accounting for the variability of rock detachment conditions in designing rockfall protection structures
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-015-2084-0
– year: 2002
  ident: 10.1016/j.enggeo.2020.105920_bb0090
– volume: 60
  start-page: 26
  year: 2013
  ident: 10.1016/j.enggeo.2020.105920_bb0115
  article-title: Improving three-dimensional rockfall trajectory simulation codes for assessing the efficiency of protective embankments
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2012.12.029
– volume: 5
  start-page: 621
  year: 2005
  ident: 10.1016/j.enggeo.2020.105920_bb0085
  article-title: An attempt to refine rockfall hazard zoning based on the kinetic energy, frequency and fragmentation degree
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-5-621-2005
– year: 2017
  ident: 10.1016/j.enggeo.2020.105920_bb0095
– volume: 32
  start-page: 3817
  year: 2010
  ident: 10.1016/j.enggeo.2020.105920_bb0175
  article-title: Optimizing the design of rockfall embankments with a discrete element method
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2010.08.025
– volume: 9
  start-page: 1835
  year: 2009
  ident: 10.1016/j.enggeo.2020.105920_bb0140
  article-title: Basic rockfall simulation with consideration of vegetation and application to protection measure
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-9-1835-2009
– volume: 68
  start-page: 107
  year: 2014
  ident: 10.1016/j.enggeo.2020.105920_bb0190
  article-title: A 3D discrete element modelling approach for rockfall analysis with drapery systems
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2014.02.008
– volume: 48
  start-page: 247
  year: 2015
  ident: 10.1016/j.enggeo.2020.105920_bb0020
  article-title: A reliability-based approach for the design of rockfall protection fences
  publication-title: Rock Mech. Rock. Eng.
  doi: 10.1007/s00603-013-0540-2
– volume: 183
  start-page: 116
  year: 2014
  ident: 10.1016/j.enggeo.2020.105920_bb0210
  article-title: The mechanism of rockfall disaster: a case study from Badouzih, Keelung, in northern Taiwan
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2014.10.008
– volume: 55
  start-page: 1030
  year: 2015
  ident: 10.1016/j.enggeo.2020.105920_bb0040
  article-title: Reconnaissance report on geotechnical and structural damage caused by the 2015 Gorkha Earthquake, Nepal
  publication-title: Soils Found.
  doi: 10.1016/j.sandf.2015.09.006
– volume: 131
  start-page: 1186
  year: 2005
  ident: 10.1016/j.enggeo.2020.105920_bb0065
  article-title: Trade-off between safety and cost in planning construction site layouts
  publication-title: J. Constr. Eng. Manag.
  doi: 10.1061/(ASCE)0733-9364(2005)131:11(1186)
– volume: 36
  start-page: 224
  year: 1999
  ident: 10.1016/j.enggeo.2020.105920_bb0080
  article-title: Magnitude and frequency of rock falls and rock slides along the main transportation corridors of southwestern British Columbia
  publication-title: Can. Geotech. J.
  doi: 10.1139/t98-106
– volume: 31
  start-page: 1
  year: 1998
  ident: 10.1016/j.enggeo.2020.105920_bb0165
  article-title: Evaluation of behaviour of rockfall restraining nets by full scale tests
  publication-title: Rock Mech. Rock. Eng.
  doi: 10.1007/s006030050006
– volume: 9
  start-page: 171
  year: 2015
  ident: 10.1016/j.enggeo.2020.105920_bb0135
  article-title: Quantifying weather conditions for rock fall hazard management
  publication-title: Georisk
– volume: 172
  start-page: 41
  year: 2014
  ident: 10.1016/j.enggeo.2020.105920_bb0160
  article-title: Practical design of rockfall catchfence at urban area from a numerical analysis approach
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2014.01.004
– volume: 51
  start-page: 1097
  year: 2018
  ident: 10.1016/j.enggeo.2020.105920_bb0195
  article-title: Introducing meta-models for a more efficient hazard mitigation strategy with rockfall protection barriers
  publication-title: Rock Mech. Rock. Eng.
  doi: 10.1007/s00603-017-1394-9
– volume: 154
  start-page: 77
  year: 2013
  ident: 10.1016/j.enggeo.2020.105920_bb0105
  article-title: Design of rockfall protection embankments: a review
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2012.12.012
– volume: 28
  start-page: 309
  year: 1999
  ident: 10.1016/j.enggeo.2020.105920_bb0145
  article-title: Rockfall activity from an alpine cliff during thawing periods
  publication-title: Geomorphology
  doi: 10.1016/S0169-555X(98)00116-0
– volume: 249
  start-page: 60
  year: 2019
  ident: 10.1016/j.enggeo.2020.105920_bb0185
  article-title: DEM analyses of rock block shape effect on the response of rockfall impact against a soil buffering layer
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2018.12.011
– volume: 29
  start-page: 47
  year: 1979
  ident: 10.1016/j.enggeo.2020.105920_bb0055
  article-title: A discrete numerical model for granular assemblies
  publication-title: Géotechnique
  doi: 10.1680/geot.1979.29.1.47
– volume: 45
  start-page: 885
  year: 2012
  ident: 10.1016/j.enggeo.2020.105920_bb0015
  article-title: Full-scale dynamic analysis of an innovative rockfall fence under impact using the discrete element method: from the local scale to the structure scale
  publication-title: Rock Mech. Rock. Eng.
– volume: 32
  start-page: 241
  year: 2014
  ident: 10.1016/j.enggeo.2020.105920_bb0125
  article-title: Simulation of rockfall trajectories with consideration of rock shape
  publication-title: Multi. Syst. Dyn.
  doi: 10.1007/s11044-013-9393-4
– year: 2017
  ident: 10.1016/j.enggeo.2020.105920_bb0045
– volume: 7
  start-page: 169
  year: 2010
  ident: 10.1016/j.enggeo.2020.105920_bb0150
  article-title: Vulnerability of simple reinforced concrete buildings to damage by rockfalls
  publication-title: Landslides
  doi: 10.1007/s10346-010-0200-5
– volume: 9
  start-page: 1189
  year: 2009
  ident: 10.1016/j.enggeo.2020.105920_bb0180
  article-title: Design of reinforced ground embankments used for rockfall protection
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-9-1189-2009
SSID ssj0013007
Score 2.4037216
Snippet In this study, an optimization method based on numerical rockfall simulation is proposed to determine the layout design of a protection embankment, including...
SourceID unpaywall
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105920
SubjectTerms Disaster Prevention
Discrete Element Method
Optimization Problem
Protection embankment
Risk Reduction
Rockfall
rockfalls
sample size
system optimization
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9jO4gHv8WJSgSPdqxNmrbHIY4hbHhwME8hzcfAbd3QFdG_3pe2GVMYm-cm4TV5SX4v7-OH0B1tq4AIRrxUi9CjKtZeGhnQ5cSXNIENpYoHt_6A9Yb0aRSOauje5cL88t8XcVg6G4-LNL2gIKVNAjDQG8y6k-qoMRw8d14dSUGUFAQ7fhwFHgMzxGXKbRhm0020hjT38mwhvj7FdLp26XQPUd-JW8aaTFr5Mm3J7z-VHHf9nyN0UKFP3CnV5RjVdHaC9tdqEp6iQQfLgumheiXEqojxwHM4W2ZV0iYueacxAF4MF-DEgOi4qvhgP-tZKrJJkTx3hobdx5eHnleRLniCRnTpGQXbuJ3GlCYmCFMF8M-AqMIw5YdSSqPBxAGcxrQJBU0IUdQGupG28FVCNCHnqJ7NM32BsJAaBjBECQa4xwghmfAt92LMpI41ayLiFoDLqiK5JcaYchd69sbL2eJ2tng5W03krXotyoocW9pHbm15hSpKtMBhbbb0vHWqwGHTWU-KyPQ8_-Bgh1lkHDNo01rpyE7iXP63wxWqL99zfQ3YZ5neVCr_A4_UAM0
  priority: 102
  providerName: Unpaywall
Title A computational design optimization method for rockfall protection embankments
URI https://dx.doi.org/10.1016/j.enggeo.2020.105920
https://www.proquest.com/docview/2551923860
https://doi.org/10.1016/j.enggeo.2020.105920
UnpaywallVersion publishedVersion
Volume 284
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-6917
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0013007
  issn: 0013-7952
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-6917
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0013007
  issn: 0013-7952
  databaseCode: ACRLP
  dateStart: 19950501
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-6917
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0013007
  issn: 0013-7952
  databaseCode: AIKHN
  dateStart: 19950501
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 1872-6917
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0013007
  issn: 0013-7952
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-6917
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0013007
  issn: 0013-7952
  databaseCode: AKRWK
  dateStart: 19650801
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DD-pB_MT5MSJ4rVuXNG2PYzimYvHgQE8hzYeoWzd0Q7z4t_uSpnOCMPFUaJM2fXl5-SX5vfcQOqMt1SaCkSDXIgqoSnSQxwZ0OQ0lTWFAKbfhdpOx_oBe3Uf3NdStfGEsrdLb_tKmO2vt7zS9NJuTpyfr4xuSOAX8YPUS5mHrwU6ZpfWdf4bfJwmt0mXaZjGwpSv3Ocfx0sXjo3MBbLuEt6nN-v379LQAP9dmxUR8vIvhcGEm6m2hTQ8hcads5Taq6WIHbSwEFtxFWQdLl67Bb_Vh5YgaeAwGYuQ9L3GZPBoDasUwi70Y-BT2YRvsYz3KRfHiPOD20KB3cdftBz5zQiBoTKeBUTAWW3lCaWraUa4Awxn4R2GYCiMppdGwTgGwxbSJBE0JUdSy1UhLhColmpB9tFKMC32AsJAaXmCIEgzAixFCMhHaBIoJkzrRrI5IJTAufVhxm91iyCv-2DMvxcytmHkp5joK5rUmZViNJeXjqi_4D_XgYPmX1Dytuo7DyLHHIaLQ49kbh8WUhbcJgzLn8z79U3MO_92cI7TetqwYx_05RivT15k-AVgzzRtObxtotXN53c_gOshuOw9fTfj5fA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHIAD4inGM0hcC-uSZu1xQqABYyeQuEVpHgi2dRNsQvx7nDQdQ0ICcW2bNnUc-0ti-wM4ZQ3dpJLTKDcyiZhOTZS3LOpyFiuW4YTSfsPtrsc7D-zmMXlcgIsqF8aFVQbbX9p0b63DlfMgzfPx87PL8Y1pK0P84PQS_fAiLLEEbXINltrXt53e12FCo8yadkQGrkGVQefDvEzx9OSzAJue8zZzxN8_e6g5BLo8Lcby410OBnPO6God1gKKJO2yoxuwYIpNWJ2rLbgFvTZRnrEh7PYR7WM1yAhtxDAkX5KSP5ogcCXoyPoWP0VC5QZ32wxzWfR9Etw2PFxd3l90okCeEEnWYpPIapyOjTxlLLPNJNcI4yz-o7Rcx4lSyhpcqiDe4sYmkmWUauYC1mhDxjqjhtIdqBWjwuwCkcrgCyzVkiN-sVIqLmPHoZhyZVLD60ArgQkVKos7gouBqELIXkQpZuHELEox1yGatRqXlTV-eb5VjYX4piECjf8vLU-qoRM4edyJiCzMaPomcD3lEG7K8Zmz2Zj-qTt7_-7OMSx37u-6onvdu92HlaYLkvGhQAdQm7xOzSGinEl-FLT4E_S--nc
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9jO4gHv8WJSgSPdqxNmrbHIY4hbHhwME8hzcfAbd3QFdG_3pe2GVMYm-cm4TV5SX4v7-OH0B1tq4AIRrxUi9CjKtZeGhnQ5cSXNIENpYoHt_6A9Yb0aRSOauje5cL88t8XcVg6G4-LNL2gIKVNAjDQG8y6k-qoMRw8d14dSUGUFAQ7fhwFHgMzxGXKbRhm0020hjT38mwhvj7FdLp26XQPUd-JW8aaTFr5Mm3J7z-VHHf9nyN0UKFP3CnV5RjVdHaC9tdqEp6iQQfLgumheiXEqojxwHM4W2ZV0iYueacxAF4MF-DEgOi4qvhgP-tZKrJJkTx3hobdx5eHnleRLniCRnTpGQXbuJ3GlCYmCFMF8M-AqMIw5YdSSqPBxAGcxrQJBU0IUdQGupG28FVCNCHnqJ7NM32BsJAaBjBECQa4xwghmfAt92LMpI41ayLiFoDLqiK5JcaYchd69sbL2eJ2tng5W03krXotyoocW9pHbm15hSpKtMBhbbb0vHWqwGHTWU-KyPQ8_-Bgh1lkHDNo01rpyE7iXP63wxWqL99zfQ3YZ5neVCr_A4_UAM0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+computational+design+optimization+method+for+rockfall+protection+embankments&rft.jtitle=Engineering+geology&rft.au=Kanno%2C+Hasuka&rft.au=Moriguchi%2C+Shuji&rft.au=Hayashi%2C+Shunsuke&rft.au=Terada%2C+Kenjiro&rft.date=2021-04-01&rft.issn=0013-7952&rft.volume=284&rft.spage=105920&rft_id=info:doi/10.1016%2Fj.enggeo.2020.105920&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enggeo_2020_105920
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-7952&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-7952&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-7952&client=summon