Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer

IMPORTANCE: Application of deep learning algorithms to whole-slide pathology images can potentially improve diagnostic accuracy and efficiency. OBJECTIVE: Assess the performance of automated deep learning algorithms at detecting metastases in hematoxylin and eosin–stained tissue sections of lymph no...

Full description

Saved in:
Bibliographic Details
Published inJAMA : the journal of the American Medical Association Vol. 318; no. 22; pp. 2199 - 2210
Main Authors Ehteshami Bejnordi, Babak, Veta, Mitko, Johannes van Diest, Paul, van Ginneken, Bram, Karssemeijer, Nico, Litjens, Geert, van der Laak, Jeroen A. W. M, Hermsen, Meyke, Manson, Quirine F, Balkenhol, Maschenka, Geessink, Oscar, Stathonikos, Nikolaos, van Dijk, Marcory CRF, Bult, Peter, Beca, Francisco, Beck, Andrew H, Wang, Dayong, Khosla, Aditya, Gargeya, Rishab, Irshad, Humayun, Zhong, Aoxiao, Dou, Qi, Li, Quanzheng, Chen, Hao, Lin, Huang-Jing, Heng, Pheng-Ann, Haß, Christian, Bruni, Elia, Wong, Quincy, Halici, Ugur, Öner, Mustafa Ümit, Cetin-Atalay, Rengul, Berseth, Matt, Khvatkov, Vitali, Vylegzhanin, Alexei, Kraus, Oren, Shaban, Muhammad, Rajpoot, Nasir, Awan, Ruqayya, Sirinukunwattana, Korsuk, Qaiser, Talha, Tsang, Yee-Wah, Tellez, David, Annuscheit, Jonas, Hufnagl, Peter, Valkonen, Mira, Kartasalo, Kimmo, Latonen, Leena, Ruusuvuori, Pekka, Liimatainen, Kaisa, Albarqouni, Shadi, Mungal, Bharti, George, Ami, Demirci, Stefanie, Navab, Nassir, Watanabe, Seiryo, Seno, Shigeto, Takenaka, Yoichi, Matsuda, Hideo, Ahmady Phoulady, Hady, Kovalev, Vassili, Kalinovsky, Alexander, Liauchuk, Vitali, Bueno, Gloria, Fernandez-Carrobles, M. Milagro, Serrano, Ismael, Deniz, Oscar, Racoceanu, Daniel, Venâncio, Rui
Format Journal Article
LanguageEnglish
Published United States American Medical Association 12.12.2017
Subjects
Online AccessGet full text
ISSN0098-7484
1538-3598
1538-3598
DOI10.1001/jama.2017.14585

Cover

Abstract IMPORTANCE: Application of deep learning algorithms to whole-slide pathology images can potentially improve diagnostic accuracy and efficiency. OBJECTIVE: Assess the performance of automated deep learning algorithms at detecting metastases in hematoxylin and eosin–stained tissue sections of lymph nodes of women with breast cancer and compare it with pathologists’ diagnoses in a diagnostic setting. DESIGN, SETTING, AND PARTICIPANTS: Researcher challenge competition (CAMELYON16) to develop automated solutions for detecting lymph node metastases (November 2015-November 2016). A training data set of whole-slide images from 2 centers in the Netherlands with (n = 110) and without (n = 160) nodal metastases verified by immunohistochemical staining were provided to challenge participants to build algorithms. Algorithm performance was evaluated in an independent test set of 129 whole-slide images (49 with and 80 without metastases). The same test set of corresponding glass slides was also evaluated by a panel of 11 pathologists with time constraint (WTC) from the Netherlands to ascertain likelihood of nodal metastases for each slide in a flexible 2-hour session, simulating routine pathology workflow, and by 1 pathologist without time constraint (WOTC). EXPOSURES: Deep learning algorithms submitted as part of a challenge competition or pathologist interpretation. MAIN OUTCOMES AND MEASURES: The presence of specific metastatic foci and the absence vs presence of lymph node metastasis in a slide or image using receiver operating characteristic curve analysis. The 11 pathologists participating in the simulation exercise rated their diagnostic confidence as definitely normal, probably normal, equivocal, probably tumor, or definitely tumor. RESULTS: The area under the receiver operating characteristic curve (AUC) for the algorithms ranged from 0.556 to 0.994. The top-performing algorithm achieved a lesion-level, true-positive fraction comparable with that of the pathologist WOTC (72.4% [95% CI, 64.3%-80.4%]) at a mean of 0.0125 false-positives per normal whole-slide image. For the whole-slide image classification task, the best algorithm (AUC, 0.994 [95% CI, 0.983-0.999]) performed significantly better than the pathologists WTC in a diagnostic simulation (mean AUC, 0.810 [range, 0.738-0.884]; P < .001). The top 5 algorithms had a mean AUC that was comparable with the pathologist interpreting the slides in the absence of time constraints (mean AUC, 0.960 [range, 0.923-0.994] for the top 5 algorithms vs 0.966 [95% CI, 0.927-0.998] for the pathologist WOTC). CONCLUSIONS AND RELEVANCE: In the setting of a challenge competition, some deep learning algorithms achieved better diagnostic performance than a panel of 11 pathologists participating in a simulation exercise designed to mimic routine pathology workflow; algorithm performance was comparable with an expert pathologist interpreting whole-slide images without time constraints. Whether this approach has clinical utility will require evaluation in a clinical setting.
AbstractList Application of deep learning algorithms to whole-slide pathology images can potentially improve diagnostic accuracy and efficiency. Assess the performance of automated deep learning algorithms at detecting metastases in hematoxylin and eosin-stained tissue sections of lymph nodes of women with breast cancer and compare it with pathologists' diagnoses in a diagnostic setting. Researcher challenge competition (CAMELYON16) to develop automated solutions for detecting lymph node metastases (November 2015-November 2016). A training data set of whole-slide images from 2 centers in the Netherlands with (n = 110) and without (n = 160) nodal metastases verified by immunohistochemical staining were provided to challenge participants to build algorithms. Algorithm performance was evaluated in an independent test set of 129 whole-slide images (49 with and 80 without metastases). The same test set of corresponding glass slides was also evaluated by a panel of 11 pathologists with time constraint (WTC) from the Netherlands to ascertain likelihood of nodal metastases for each slide in a flexible 2-hour session, simulating routine pathology workflow, and by 1 pathologist without time constraint (WOTC). Deep learning algorithms submitted as part of a challenge competition or pathologist interpretation. The presence of specific metastatic foci and the absence vs presence of lymph node metastasis in a slide or image using receiver operating characteristic curve analysis. The 11 pathologists participating in the simulation exercise rated their diagnostic confidence as definitely normal, probably normal, equivocal, probably tumor, or definitely tumor. The area under the receiver operating characteristic curve (AUC) for the algorithms ranged from 0.556 to 0.994. The top-performing algorithm achieved a lesion-level, true-positive fraction comparable with that of the pathologist WOTC (72.4% [95% CI, 64.3%-80.4%]) at a mean of 0.0125 false-positives per normal whole-slide image. For the whole-slide image classification task, the best algorithm (AUC, 0.994 [95% CI, 0.983-0.999]) performed significantly better than the pathologists WTC in a diagnostic simulation (mean AUC, 0.810 [range, 0.738-0.884]; P < .001). The top 5 algorithms had a mean AUC that was comparable with the pathologist interpreting the slides in the absence of time constraints (mean AUC, 0.960 [range, 0.923-0.994] for the top 5 algorithms vs 0.966 [95% CI, 0.927-0.998] for the pathologist WOTC). In the setting of a challenge competition, some deep learning algorithms achieved better diagnostic performance than a panel of 11 pathologists participating in a simulation exercise designed to mimic routine pathology workflow; algorithm performance was comparable with an expert pathologist interpreting whole-slide images without time constraints. Whether this approach has clinical utility will require evaluation in a clinical setting.
IMPORTANCE: Application of deep learning algorithms to whole-slide pathology images can potentially improve diagnostic accuracy and efficiency. OBJECTIVE: Assess the performance of automated deep learning algorithms at detecting metastases in hematoxylin and eosin–stained tissue sections of lymph nodes of women with breast cancer and compare it with pathologists’ diagnoses in a diagnostic setting. DESIGN, SETTING, AND PARTICIPANTS: Researcher challenge competition (CAMELYON16) to develop automated solutions for detecting lymph node metastases (November 2015-November 2016). A training data set of whole-slide images from 2 centers in the Netherlands with (n = 110) and without (n = 160) nodal metastases verified by immunohistochemical staining were provided to challenge participants to build algorithms. Algorithm performance was evaluated in an independent test set of 129 whole-slide images (49 with and 80 without metastases). The same test set of corresponding glass slides was also evaluated by a panel of 11 pathologists with time constraint (WTC) from the Netherlands to ascertain likelihood of nodal metastases for each slide in a flexible 2-hour session, simulating routine pathology workflow, and by 1 pathologist without time constraint (WOTC). EXPOSURES: Deep learning algorithms submitted as part of a challenge competition or pathologist interpretation. MAIN OUTCOMES AND MEASURES: The presence of specific metastatic foci and the absence vs presence of lymph node metastasis in a slide or image using receiver operating characteristic curve analysis. The 11 pathologists participating in the simulation exercise rated their diagnostic confidence as definitely normal, probably normal, equivocal, probably tumor, or definitely tumor. RESULTS: The area under the receiver operating characteristic curve (AUC) for the algorithms ranged from 0.556 to 0.994. The top-performing algorithm achieved a lesion-level, true-positive fraction comparable with that of the pathologist WOTC (72.4% [95% CI, 64.3%-80.4%]) at a mean of 0.0125 false-positives per normal whole-slide image. For the whole-slide image classification task, the best algorithm (AUC, 0.994 [95% CI, 0.983-0.999]) performed significantly better than the pathologists WTC in a diagnostic simulation (mean AUC, 0.810 [range, 0.738-0.884]; P < .001). The top 5 algorithms had a mean AUC that was comparable with the pathologist interpreting the slides in the absence of time constraints (mean AUC, 0.960 [range, 0.923-0.994] for the top 5 algorithms vs 0.966 [95% CI, 0.927-0.998] for the pathologist WOTC). CONCLUSIONS AND RELEVANCE: In the setting of a challenge competition, some deep learning algorithms achieved better diagnostic performance than a panel of 11 pathologists participating in a simulation exercise designed to mimic routine pathology workflow; algorithm performance was comparable with an expert pathologist interpreting whole-slide images without time constraints. Whether this approach has clinical utility will require evaluation in a clinical setting.
This diagnostic accuracy study compares the ability of machine learning algorithms vs clinical pathologists to detect cancer metastases in whole-slide images of axillary lymph nodes dissected from women with breast cancer.
Application of deep learning algorithms to whole-slide pathology images can potentially improve diagnostic accuracy and efficiency.ImportanceApplication of deep learning algorithms to whole-slide pathology images can potentially improve diagnostic accuracy and efficiency.Assess the performance of automated deep learning algorithms at detecting metastases in hematoxylin and eosin-stained tissue sections of lymph nodes of women with breast cancer and compare it with pathologists' diagnoses in a diagnostic setting.ObjectiveAssess the performance of automated deep learning algorithms at detecting metastases in hematoxylin and eosin-stained tissue sections of lymph nodes of women with breast cancer and compare it with pathologists' diagnoses in a diagnostic setting.Researcher challenge competition (CAMELYON16) to develop automated solutions for detecting lymph node metastases (November 2015-November 2016). A training data set of whole-slide images from 2 centers in the Netherlands with (n = 110) and without (n = 160) nodal metastases verified by immunohistochemical staining were provided to challenge participants to build algorithms. Algorithm performance was evaluated in an independent test set of 129 whole-slide images (49 with and 80 without metastases). The same test set of corresponding glass slides was also evaluated by a panel of 11 pathologists with time constraint (WTC) from the Netherlands to ascertain likelihood of nodal metastases for each slide in a flexible 2-hour session, simulating routine pathology workflow, and by 1 pathologist without time constraint (WOTC).Design, Setting, and ParticipantsResearcher challenge competition (CAMELYON16) to develop automated solutions for detecting lymph node metastases (November 2015-November 2016). A training data set of whole-slide images from 2 centers in the Netherlands with (n = 110) and without (n = 160) nodal metastases verified by immunohistochemical staining were provided to challenge participants to build algorithms. Algorithm performance was evaluated in an independent test set of 129 whole-slide images (49 with and 80 without metastases). The same test set of corresponding glass slides was also evaluated by a panel of 11 pathologists with time constraint (WTC) from the Netherlands to ascertain likelihood of nodal metastases for each slide in a flexible 2-hour session, simulating routine pathology workflow, and by 1 pathologist without time constraint (WOTC).Deep learning algorithms submitted as part of a challenge competition or pathologist interpretation.ExposuresDeep learning algorithms submitted as part of a challenge competition or pathologist interpretation.The presence of specific metastatic foci and the absence vs presence of lymph node metastasis in a slide or image using receiver operating characteristic curve analysis. The 11 pathologists participating in the simulation exercise rated their diagnostic confidence as definitely normal, probably normal, equivocal, probably tumor, or definitely tumor.Main Outcomes and MeasuresThe presence of specific metastatic foci and the absence vs presence of lymph node metastasis in a slide or image using receiver operating characteristic curve analysis. The 11 pathologists participating in the simulation exercise rated their diagnostic confidence as definitely normal, probably normal, equivocal, probably tumor, or definitely tumor.The area under the receiver operating characteristic curve (AUC) for the algorithms ranged from 0.556 to 0.994. The top-performing algorithm achieved a lesion-level, true-positive fraction comparable with that of the pathologist WOTC (72.4% [95% CI, 64.3%-80.4%]) at a mean of 0.0125 false-positives per normal whole-slide image. For the whole-slide image classification task, the best algorithm (AUC, 0.994 [95% CI, 0.983-0.999]) performed significantly better than the pathologists WTC in a diagnostic simulation (mean AUC, 0.810 [range, 0.738-0.884]; P < .001). The top 5 algorithms had a mean AUC that was comparable with the pathologist interpreting the slides in the absence of time constraints (mean AUC, 0.960 [range, 0.923-0.994] for the top 5 algorithms vs 0.966 [95% CI, 0.927-0.998] for the pathologist WOTC).ResultsThe area under the receiver operating characteristic curve (AUC) for the algorithms ranged from 0.556 to 0.994. The top-performing algorithm achieved a lesion-level, true-positive fraction comparable with that of the pathologist WOTC (72.4% [95% CI, 64.3%-80.4%]) at a mean of 0.0125 false-positives per normal whole-slide image. For the whole-slide image classification task, the best algorithm (AUC, 0.994 [95% CI, 0.983-0.999]) performed significantly better than the pathologists WTC in a diagnostic simulation (mean AUC, 0.810 [range, 0.738-0.884]; P < .001). The top 5 algorithms had a mean AUC that was comparable with the pathologist interpreting the slides in the absence of time constraints (mean AUC, 0.960 [range, 0.923-0.994] for the top 5 algorithms vs 0.966 [95% CI, 0.927-0.998] for the pathologist WOTC).In the setting of a challenge competition, some deep learning algorithms achieved better diagnostic performance than a panel of 11 pathologists participating in a simulation exercise designed to mimic routine pathology workflow; algorithm performance was comparable with an expert pathologist interpreting whole-slide images without time constraints. Whether this approach has clinical utility will require evaluation in a clinical setting.Conclusions and RelevanceIn the setting of a challenge competition, some deep learning algorithms achieved better diagnostic performance than a panel of 11 pathologists participating in a simulation exercise designed to mimic routine pathology workflow; algorithm performance was comparable with an expert pathologist interpreting whole-slide images without time constraints. Whether this approach has clinical utility will require evaluation in a clinical setting.
IMPORTANCE Application of deep learning algorithms to whole-slide pathology images can potentially improve diagnostic accuracy and efficiency. OBJECTIVE Assess the performance of automated deep learning algorithms at detecting metastases in hematoxylin and eosin-stained tissue sections of lymph nodes of women with breast cancer and compare it with pathologists' diagnoses in a diagnostic setting. DESIGN, SETTING. AND PARTICIPANTS Researcher challenge competition (CAM ELYON16) to develop automated solutions for detecting lymph node metastases (November 2015-November 2016). A training data set of whole-slide images from 2 centers in the Netherlands with (n = 110) and without (n = 160) nodal metastases verified by immunohistochemical staining were provided to challenge participants to build algorithms. Algorithm performance was evaluated in an independent test set of 129 whole-slide images (49 with and 80 without metastases). The same test set of corresponding glass slides was also evaluated by a panel of 11 pathologists with time constraint (WIC) from the Netherlands to ascertain likelihood of nodal metastases for each slide in a flexible 2-hour session, simulating routine pathology workflow, and by 1 pathologist without time constraint (WOTC). EXPOSURES Deep learning algorithms submitted as part of a challenge competition or pathologist interpretation. MAIN OUTCOMES AND MEASURES The presence of specific metastatic foci and the absence vs presence of lymph node metastasis in a slide or image using receiver operating characteristic curve analysis. The 11 pathologists participating in the simulation exercise rated their diagnostic confidence as definitely normal, probably normal, equivocal, probably tumor, or definitely tumor. RESULTS The area under the receiver operating characteristic curve (AUC) for the algorithms ranged from 0.556 to 0.994. The top-performing algorithm achieved a lesion-level, true-positive fraction comparable with that of the pathologist WOTC (72.4% [95% CI, 64.3%-80.4%]) at a mean of 0.0125 false-positives per normal whole-slide image. For the whole-slide image classification task, the best algorithm (AUC, 0.994 [95% CI, 0.983-0.999]) performed significantly better than the pathologists WTC in a diagnostic simulation (mean AUC, 0.810 [range, 0.738-0.884]; p < .001). The top 5 algorithms had a mean AUC that was comparable with the pathologist interpreting the slides in the absence of time constraints (mean AUC, 0.960 [range, 0.923-0.994] for the top 5 algorithms vs 0.966 [95% CI, 0.927-0.998] for the pathologist WOTC). CONCLUSIONS AND RELEVANCE In the setting of a challenge competition, some deep learning algorithms achieved better diagnostic performance than a panel of 11 pathologists participating in a simulation exercise designed to mimic routine pathology workflow; algorithm performance was comparable with an expert pathologist interpreting whole-slide images without time constraints. Whether this approach has clinical utility will require evaluation in a clinical setting.
Author Valkonen, Mira
Kartasalo, Kimmo
Khvatkov, Vitali
Latonen, Leena
Kalinovsky, Alexander
Liauchuk, Vitali
Mungal, Bharti
Litjens, Geert
Bruni, Elia
Seno, Shigeto
Qaiser, Talha
Kovalev, Vassili
Tsang, Yee-Wah
Veta, Mitko
van der Laak, Jeroen A. W. M
Ehteshami Bejnordi, Babak
Takenaka, Yoichi
van Ginneken, Bram
Stathonikos, Nikolaos
Vylegzhanin, Alexei
Watanabe, Seiryo
Deniz, Oscar
Tellez, David
Wang, Dayong
Wong, Quincy
Ruusuvuori, Pekka
Ahmady Phoulady, Hady
Chen, Hao
Beck, Andrew H
Dou, Qi
Öner, Mustafa Ümit
Hermsen, Meyke
Manson, Quirine F
Li, Quanzheng
Hufnagl, Peter
Rajpoot, Nasir
Karssemeijer, Nico
Geessink, Oscar
Zhong, Aoxiao
van Dijk, Marcory CRF
Kraus, Oren
Heng, Pheng-Ann
Halici, Ugur
Albarqouni, Shadi
Venâncio, Rui
Matsuda, Hideo
Awan, Ruqayya
Demirci, Stefanie
Johannes van Diest, Paul
George, Ami
Haß, Christian
Berseth, Matt
Racoceanu, Daniel
Fernandez-Carrobles, M. Milagro
Gargeya, Rishab
Serrano, Ismael
Lin, Huang-Jing
Cetin-Atalay, Rengul
Annuscheit, Jonas
Shaban, Muhammad
Irshad, Humayun
Sirinukunwattana, Korsuk
Bult, Peter
Bueno, Glo
AuthorAffiliation 29 Technical University of Munich, Munich, Germany
6 Rijnstate Hospital, Arnhem, the Netherlands
23 Department of Computer Science and Engineering, Qatar University, Doha, Qatar
18 NLP LOGIX, Jacksonville, Florida
36 Sorbonne University, Pierre and Marie Curie University, Paris, France
19 Smart Imaging Technologies, Houston, Texas
8 PathAI, Cambridge, Massachusetts
35 Pontifical Catholic University of Peru, San Miguel, Lima, Peru
32 Biomedical Image Analysis Department, United Institute of Informatics Problems, Belarus National Academy of Sciences, Minsk, Belarus
24 Hochschule für Technik und Wirtschaft, Berlin, Germany
33 Visilab, University of Castilla-La Mancha, Ciudad Real, Spain
13 ExB Research and Development GmbH, Munich, Germany
34 INSERM, Laboratoire d’Imagerie Biomédicale, Sorbonne Universiteś, Pierre and Marie Curie University, Paris, France
3 Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
30 Department of Bioinformatic Engineering, Osaka University
11
AuthorAffiliation_xml – name: 10 Harker School, San Jose, California
– name: 2 Medical Image Analysis Group, Eindhoven University of Technology, Eindhoven, the Netherlands
– name: 23 Department of Computer Science and Engineering, Qatar University, Doha, Qatar
– name: 26 BioMediTech Institute and Faculty of Biomedical Science and Engineering, Tampere University of Technology, Tampere, Finland
– name: 15 Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara, Turkey
– name: 22 Department of Pathology, University Hospitals Coventry and Warwickshire National Health Service Foundation Trust, Coventry, United Kingdom
– name: 29 Technical University of Munich, Munich, Germany
– name: 33 Visilab, University of Castilla-La Mancha, Ciudad Real, Spain
– name: 16 Neuroscience and Neurotechnology, Graduate School of Natural and Applied Sciences, Middle East Technical University, Ankara, Turkey
– name: 11 Center for Clinical Data Science, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
– name: 17 Cancer System Biology Laboratory, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
– name: 3 Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
– name: 35 Pontifical Catholic University of Peru, San Miguel, Lima, Peru
– name: 1 Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
– name: 12 Chinese University of Hong Kong, Hong Kong, China
– name: 34 INSERM, Laboratoire d’Imagerie Biomédicale, Sorbonne Universiteś, Pierre and Marie Curie University, Paris, France
– name: 36 Sorbonne University, Pierre and Marie Curie University, Paris, France
– name: 9 Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts
– name: 25 BioMediTech Institute and Faculty of Medicine and Life Sciences, Tampere University of Technology, Tampere, Finland
– name: 6 Rijnstate Hospital, Arnhem, the Netherlands
– name: 24 Hochschule für Technik und Wirtschaft, Berlin, Germany
– name: 32 Biomedical Image Analysis Department, United Institute of Informatics Problems, Belarus National Academy of Sciences, Minsk, Belarus
– name: 30 Department of Bioinformatic Engineering, Osaka University
– name: 31 University of South Florida, Tampa, Florida
– name: 21 Tissue Image Analytics Lab, Department of Computer Science, University of Warwick, Coventry, United Kingdom
– name: 27 Prostate Cancer Research Center, Faculty of Medicine and Life Sciences and BioMediTech, University of Tampere, Tampere, Finland
– name: 5 Laboratorium Pathologie Oost Nederland, Hengelo, the Netherlands
– name: 20 Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
– name: 4 Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
– name: 7 BeckLab, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
– name: 13 ExB Research and Development GmbH, Munich, Germany
– name: 19 Smart Imaging Technologies, Houston, Texas
– name: 14 Munich Business School, Munich, Germany
– name: 28 Faculty of Computing and Electrical Engineering, Tampere University of Technology, Pori, Finland
– name: 18 NLP LOGIX, Jacksonville, Florida
– name: 8 PathAI, Cambridge, Massachusetts
Author_xml – sequence: 1
  givenname: Babak
  surname: Ehteshami Bejnordi
  fullname: Ehteshami Bejnordi, Babak
– sequence: 2
  givenname: Mitko
  surname: Veta
  fullname: Veta, Mitko
– sequence: 3
  givenname: Paul
  surname: Johannes van Diest
  fullname: Johannes van Diest, Paul
– sequence: 4
  givenname: Bram
  surname: van Ginneken
  fullname: van Ginneken, Bram
– sequence: 5
  givenname: Nico
  surname: Karssemeijer
  fullname: Karssemeijer, Nico
– sequence: 6
  givenname: Geert
  surname: Litjens
  fullname: Litjens, Geert
– sequence: 7
  givenname: Jeroen A. W. M
  surname: van der Laak
  fullname: van der Laak, Jeroen A. W. M
– sequence: 9
  givenname: Meyke
  surname: Hermsen
  fullname: Hermsen, Meyke
– sequence: 10
  givenname: Quirine F
  surname: Manson
  fullname: Manson, Quirine F
– sequence: 11
  givenname: Maschenka
  surname: Balkenhol
  fullname: Balkenhol, Maschenka
– sequence: 12
  givenname: Oscar
  surname: Geessink
  fullname: Geessink, Oscar
– sequence: 13
  givenname: Nikolaos
  surname: Stathonikos
  fullname: Stathonikos, Nikolaos
– sequence: 14
  givenname: Marcory CRF
  surname: van Dijk
  fullname: van Dijk, Marcory CRF
– sequence: 15
  givenname: Peter
  surname: Bult
  fullname: Bult, Peter
– sequence: 16
  givenname: Francisco
  surname: Beca
  fullname: Beca, Francisco
– sequence: 17
  givenname: Andrew H
  surname: Beck
  fullname: Beck, Andrew H
– sequence: 18
  givenname: Dayong
  surname: Wang
  fullname: Wang, Dayong
– sequence: 19
  givenname: Aditya
  surname: Khosla
  fullname: Khosla, Aditya
– sequence: 20
  givenname: Rishab
  surname: Gargeya
  fullname: Gargeya, Rishab
– sequence: 21
  givenname: Humayun
  surname: Irshad
  fullname: Irshad, Humayun
– sequence: 22
  givenname: Aoxiao
  surname: Zhong
  fullname: Zhong, Aoxiao
– sequence: 23
  givenname: Qi
  surname: Dou
  fullname: Dou, Qi
– sequence: 24
  givenname: Quanzheng
  surname: Li
  fullname: Li, Quanzheng
– sequence: 25
  givenname: Hao
  surname: Chen
  fullname: Chen, Hao
– sequence: 26
  givenname: Huang-Jing
  surname: Lin
  fullname: Lin, Huang-Jing
– sequence: 27
  givenname: Pheng-Ann
  surname: Heng
  fullname: Heng, Pheng-Ann
– sequence: 28
  givenname: Christian
  surname: Haß
  fullname: Haß, Christian
– sequence: 29
  givenname: Elia
  surname: Bruni
  fullname: Bruni, Elia
– sequence: 30
  givenname: Quincy
  surname: Wong
  fullname: Wong, Quincy
– sequence: 31
  givenname: Ugur
  surname: Halici
  fullname: Halici, Ugur
– sequence: 32
  givenname: Mustafa Ümit
  surname: Öner
  fullname: Öner, Mustafa Ümit
– sequence: 33
  givenname: Rengul
  surname: Cetin-Atalay
  fullname: Cetin-Atalay, Rengul
– sequence: 34
  givenname: Matt
  surname: Berseth
  fullname: Berseth, Matt
– sequence: 35
  givenname: Vitali
  surname: Khvatkov
  fullname: Khvatkov, Vitali
– sequence: 36
  givenname: Alexei
  surname: Vylegzhanin
  fullname: Vylegzhanin, Alexei
– sequence: 37
  givenname: Oren
  surname: Kraus
  fullname: Kraus, Oren
– sequence: 38
  givenname: Muhammad
  surname: Shaban
  fullname: Shaban, Muhammad
– sequence: 39
  givenname: Nasir
  surname: Rajpoot
  fullname: Rajpoot, Nasir
– sequence: 40
  givenname: Ruqayya
  surname: Awan
  fullname: Awan, Ruqayya
– sequence: 41
  givenname: Korsuk
  surname: Sirinukunwattana
  fullname: Sirinukunwattana, Korsuk
– sequence: 42
  givenname: Talha
  surname: Qaiser
  fullname: Qaiser, Talha
– sequence: 43
  givenname: Yee-Wah
  surname: Tsang
  fullname: Tsang, Yee-Wah
– sequence: 44
  givenname: David
  surname: Tellez
  fullname: Tellez, David
– sequence: 45
  givenname: Jonas
  surname: Annuscheit
  fullname: Annuscheit, Jonas
– sequence: 46
  givenname: Peter
  surname: Hufnagl
  fullname: Hufnagl, Peter
– sequence: 47
  givenname: Mira
  surname: Valkonen
  fullname: Valkonen, Mira
– sequence: 48
  givenname: Kimmo
  surname: Kartasalo
  fullname: Kartasalo, Kimmo
– sequence: 49
  givenname: Leena
  surname: Latonen
  fullname: Latonen, Leena
– sequence: 50
  givenname: Pekka
  surname: Ruusuvuori
  fullname: Ruusuvuori, Pekka
– sequence: 51
  givenname: Kaisa
  surname: Liimatainen
  fullname: Liimatainen, Kaisa
– sequence: 52
  givenname: Shadi
  surname: Albarqouni
  fullname: Albarqouni, Shadi
– sequence: 53
  givenname: Bharti
  surname: Mungal
  fullname: Mungal, Bharti
– sequence: 54
  givenname: Ami
  surname: George
  fullname: George, Ami
– sequence: 55
  givenname: Stefanie
  surname: Demirci
  fullname: Demirci, Stefanie
– sequence: 56
  givenname: Nassir
  surname: Navab
  fullname: Navab, Nassir
– sequence: 57
  givenname: Seiryo
  surname: Watanabe
  fullname: Watanabe, Seiryo
– sequence: 58
  givenname: Shigeto
  surname: Seno
  fullname: Seno, Shigeto
– sequence: 59
  givenname: Yoichi
  surname: Takenaka
  fullname: Takenaka, Yoichi
– sequence: 60
  givenname: Hideo
  surname: Matsuda
  fullname: Matsuda, Hideo
– sequence: 61
  givenname: Hady
  surname: Ahmady Phoulady
  fullname: Ahmady Phoulady, Hady
– sequence: 62
  givenname: Vassili
  surname: Kovalev
  fullname: Kovalev, Vassili
– sequence: 63
  givenname: Alexander
  surname: Kalinovsky
  fullname: Kalinovsky, Alexander
– sequence: 64
  givenname: Vitali
  surname: Liauchuk
  fullname: Liauchuk, Vitali
– sequence: 65
  givenname: Gloria
  surname: Bueno
  fullname: Bueno, Gloria
– sequence: 66
  givenname: M. Milagro
  surname: Fernandez-Carrobles
  fullname: Fernandez-Carrobles, M. Milagro
– sequence: 67
  givenname: Ismael
  surname: Serrano
  fullname: Serrano, Ismael
– sequence: 68
  givenname: Oscar
  surname: Deniz
  fullname: Deniz, Oscar
– sequence: 69
  givenname: Daniel
  surname: Racoceanu
  fullname: Racoceanu, Daniel
– sequence: 70
  givenname: Rui
  surname: Venâncio
  fullname: Venâncio, Rui
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29234806$$D View this record in MEDLINE/PubMed
BookMark eNqNkc9vFCEUx4mpsdvq2cSDIfHSy25hBga4mKxbfyWrXjQ9Emb2zS6bGZgCo9n_voxbq_ZgJAQS3uf7zXtfztCJ8w4Qek7JghJCL_emN4uCULGgjEv-CM0oL-W85EqeoBkhSs4Fk-wUncW4J3nRUjxBp4UqSiZJNUPpypqt8zHZBi9jhBh7cAn7Fl8BDHgNJjjrtnjZbX2waddH3PqQiwmaZL2byPWhH3b4s98A_gTJxLwhYuvwtc9m-DrL8JsAuYBXxjUQnqLHrekiPLu7z9G3d2-_rj7M11_ef1wt13PDBEv5VJsCGJRMEM5AUjBC1Kao8qymUa3gLalqWiiiNplpCCWS1YoRWVNeCFOeI3L0Hd1gDj9M1-kh2N6Eg6ZETwHqKUA9Bah_Bpglr4-SYax72DQ5jGB-y7yx-u-Kszu99d81lwURpcgGF3cGwd-MEJPubWyg64wDP0ZNlagYY7IqMvrqAbr3Y3A5kUxJJaXIs2Tq5Z8d3bfy6w8zcHkEmuBjDND-x5D8gaKxyUzfmUey3T90L4666f2-j6riQrDyFiHZyG4
CitedBy_id crossref_primary_10_3390_jcm8101535
crossref_primary_10_1016_j_media_2022_102655
crossref_primary_10_12677_ACM_2024_142575
crossref_primary_10_1097_RTI_0000000000000387
crossref_primary_10_1111_his_14708
crossref_primary_10_1117_1_JMI_8_3_034501
crossref_primary_10_3389_frcmn_2022_907388
crossref_primary_10_1002_advs_201801479
crossref_primary_10_1016_j_media_2019_101544
crossref_primary_10_1016_j_bspc_2021_102921
crossref_primary_10_1016_j_media_2019_101549
crossref_primary_10_1136_bmjopen_2021_055346
crossref_primary_10_1016_j_media_2022_102652
crossref_primary_10_1109_ACCESS_2020_3010800
crossref_primary_10_1007_s10147_023_02356_4
crossref_primary_10_1038_s41467_019_13922_8
crossref_primary_10_1016_j_modpat_2023_100118
crossref_primary_10_1016_j_compbiomed_2024_108793
crossref_primary_10_1016_j_bspc_2023_105755
crossref_primary_10_1002_path_6027
crossref_primary_10_2196_12422
crossref_primary_10_1016_j_ejca_2023_04_023
crossref_primary_10_2196_33390
crossref_primary_10_1016_j_ajpath_2024_06_010
crossref_primary_10_1186_s12880_022_00844_z
crossref_primary_10_1038_s41698_024_00499_9
crossref_primary_10_3389_frvir_2021_721933
crossref_primary_10_1200_CCI_20_00139
crossref_primary_10_1186_s12967_021_03020_z
crossref_primary_10_2196_15963
crossref_primary_10_1007_s00292_020_00827_3
crossref_primary_10_1038_s41586_024_07618_3
crossref_primary_10_1109_ACCESS_2021_3080429
crossref_primary_10_1002_hep_31207
crossref_primary_10_1038_s41598_021_90444_8
crossref_primary_10_1016_j_media_2022_102676
crossref_primary_10_1007_s00371_021_02381_2
crossref_primary_10_1038_s41598_019_41479_5
crossref_primary_10_1016_j_media_2024_103289
crossref_primary_10_3389_fonc_2020_00743
crossref_primary_10_1038_s41467_023_37991_y
crossref_primary_10_1016_j_ajpath_2022_03_011
crossref_primary_10_1183_16000617_0181_2020
crossref_primary_10_1038_s41598_018_36404_1
crossref_primary_10_1038_s41467_022_31138_1
crossref_primary_10_1021_acs_nanolett_3c02206
crossref_primary_10_1093_jnen_nlab122
crossref_primary_10_20517_2394_5079_2024_79
crossref_primary_10_3390_app10093280
crossref_primary_10_3389_fonc_2022_998222
crossref_primary_10_3390_ijms22105385
crossref_primary_10_3390_curroncol31110530
crossref_primary_10_1016_j_eswa_2024_125362
crossref_primary_10_1016_j_media_2021_102337
crossref_primary_10_1038_s41377_019_0203_5
crossref_primary_10_1200_CCI_19_00068
crossref_primary_10_1007_s00261_019_02306_7
crossref_primary_10_1002_2056_4538_70003
crossref_primary_10_1016_j_media_2018_12_001
crossref_primary_10_1186_s40662_020_00182_7
crossref_primary_10_1016_j_eururo_2020_04_023
crossref_primary_10_1200_CCI_20_00110
crossref_primary_10_1002_2056_4538_70006
crossref_primary_10_1016_j_breast_2019_12_006
crossref_primary_10_1016_j_breast_2019_12_007
crossref_primary_10_1016_j_semcancer_2020_08_006
crossref_primary_10_1177_03000605211000157
crossref_primary_10_1109_TMI_2024_3404549
crossref_primary_10_1007_s13748_021_00233_7
crossref_primary_10_1016_j_artmed_2023_102568
crossref_primary_10_1186_s13075_021_02716_3
crossref_primary_10_1002_cam4_6437
crossref_primary_10_1038_s41523_022_00478_y
crossref_primary_10_5858_arpa_2019_0390_OA
crossref_primary_10_35712_aig_v5_i1_90096
crossref_primary_10_1017_S2633903X23000144
crossref_primary_10_1016_j_media_2023_102916
crossref_primary_10_1016_j_iswa_2025_200505
crossref_primary_10_1016_j_lungcan_2022_06_007
crossref_primary_10_1007_s13244_018_0639_9
crossref_primary_10_2196_17707
crossref_primary_10_1016_j_isci_2024_110590
crossref_primary_10_4103_jpi_jpi_25_18
crossref_primary_10_1002_aisy_202300885
crossref_primary_10_3390_curroncol31040135
crossref_primary_10_1016_j_isci_2022_105872
crossref_primary_10_3389_fonc_2024_1353446
crossref_primary_10_1038_s41598_023_27548_w
crossref_primary_10_2196_26646
crossref_primary_10_1007_s00428_021_03241_z
crossref_primary_10_1186_s12876_023_03067_w
crossref_primary_10_1109_ACCESS_2020_3029881
crossref_primary_10_3390_ijerph191811597
crossref_primary_10_1038_s41416_021_01386_x
crossref_primary_10_3389_fcomp_2021_747195
crossref_primary_10_1186_s12885_022_10488_5
crossref_primary_10_4103_jpi_jpi_37_20
crossref_primary_10_1109_JBHI_2023_3317067
crossref_primary_10_1038_s41746_020_0232_8
crossref_primary_10_2214_AJR_19_22573
crossref_primary_10_1016_j_euf_2019_11_003
crossref_primary_10_1016_j_jval_2019_02_012
crossref_primary_10_1016_j_media_2025_103500
crossref_primary_10_1177_15330338211027901
crossref_primary_10_1002_path_6094
crossref_primary_10_1200_CCI_23_00038
crossref_primary_10_17116_patol20248602165
crossref_primary_10_1038_s41551_023_01049_7
crossref_primary_10_1016_j_media_2021_102308
crossref_primary_10_1016_j_ajo_2019_02_028
crossref_primary_10_1109_ACCESS_2021_3113036
crossref_primary_10_1186_s12890_023_02537_x
crossref_primary_10_1080_0142159X_2023_2190483
crossref_primary_10_4103_jpi_jpi_49_19
crossref_primary_10_1016_j_bspc_2022_104564
crossref_primary_10_1016_j_eswa_2023_122418
crossref_primary_10_1371_journal_pone_0208366
crossref_primary_10_4103_jpi_jpi_49_20
crossref_primary_10_1097_PAS_0000000000002248
crossref_primary_10_1016_j_ajpath_2024_08_006
crossref_primary_10_3389_fphar_2020_01177
crossref_primary_10_1016_j_patrec_2024_06_028
crossref_primary_10_3389_fmed_2023_1195678
crossref_primary_10_1016_j_compbiomed_2024_109256
crossref_primary_10_3390_app13063752
crossref_primary_10_1038_s41379_022_01146_z
crossref_primary_10_1016_j_compbiomed_2022_105569
crossref_primary_10_1038_s41374_021_00597_3
crossref_primary_10_1038_s41388_023_02857_6
crossref_primary_10_1007_s40940_020_00132_8
crossref_primary_10_1109_TAI_2024_3361836
crossref_primary_10_3390_electronics11050682
crossref_primary_10_1016_j_media_2024_103203
crossref_primary_10_1186_s12967_022_03777_x
crossref_primary_10_1371_journal_pone_0222641
crossref_primary_10_1038_s41416_021_01640_2
crossref_primary_10_3390_jimaging10040081
crossref_primary_10_1186_s12903_024_04129_5
crossref_primary_10_1016_j_trecan_2024_08_008
crossref_primary_10_1038_s41379_021_00850_6
crossref_primary_10_3389_fbioe_2019_00198
crossref_primary_10_1007_s11605_019_04373_z
crossref_primary_10_1109_ACCESS_2019_2927792
crossref_primary_10_1038_s41467_020_18147_8
crossref_primary_10_1097_MNM_0000000000001193
crossref_primary_10_2482_haigan_60_81
crossref_primary_10_1371_journal_pdig_0000001
crossref_primary_10_3389_fmed_2021_754202
crossref_primary_10_3389_fmed_2024_1365524
crossref_primary_10_1038_s41598_021_82642_1
crossref_primary_10_1016_j_jpi_2023_100191
crossref_primary_10_37126_aige_v3_i3_16
crossref_primary_10_1136_thoraxjnl_2020_214556
crossref_primary_10_1001_jamaoto_2021_2028
crossref_primary_10_1148_radiol_2021210578
crossref_primary_10_14309_ctg_0000000000000045
crossref_primary_10_1007_s11042_023_17988_x
crossref_primary_10_1088_1742_6596_2547_1_012014
crossref_primary_10_3389_fnins_2018_00804
crossref_primary_10_1016_j_modpat_2025_100708
crossref_primary_10_3389_fonc_2021_762733
crossref_primary_10_3390_s21165486
crossref_primary_10_1016_S0140_6736_18_32209_8
crossref_primary_10_1007_s10278_023_00814_z
crossref_primary_10_1158_0008_5472_CAN_23_1349
crossref_primary_10_1002_jor_25295
crossref_primary_10_3390_diagnostics12020436
crossref_primary_10_3389_fpubh_2023_1196596
crossref_primary_10_1016_j_ebiom_2022_104426
crossref_primary_10_1093_ibd_izz196
crossref_primary_10_1111_cas_15514
crossref_primary_10_5858_arpa_2018_0147_OA
crossref_primary_10_1038_s41374_021_00540_6
crossref_primary_10_1002_alr_23083
crossref_primary_10_1097_PAP_0000000000000265
crossref_primary_10_1002_sam_11684
crossref_primary_10_1007_s12325_023_02527_9
crossref_primary_10_1016_j_media_2024_103251
crossref_primary_10_3233_CBM_230251
crossref_primary_10_1002_cncy_22443
crossref_primary_10_1109_ACCESS_2024_3403538
crossref_primary_10_1038_s41568_020_00327_9
crossref_primary_10_1007_s11042_023_15984_9
crossref_primary_10_1016_j_ibmed_2024_100138
crossref_primary_10_1016_j_xcrm_2023_101146
crossref_primary_10_2217_pme_2018_0035
crossref_primary_10_1016_j_clbc_2018_04_019
crossref_primary_10_1007_s11042_022_12824_0
crossref_primary_10_1111_imj_15017
crossref_primary_10_1063_5_0177640
crossref_primary_10_1186_s13045_023_01514_5
crossref_primary_10_1038_s41571_019_0252_y
crossref_primary_10_1364_BOE_432365
crossref_primary_10_1017_can_2020_27
crossref_primary_10_1016_j_acthis_2023_152057
crossref_primary_10_1038_s43856_022_00186_5
crossref_primary_10_1038_s41598_019_49710_z
crossref_primary_10_1002_jrsm_1649
crossref_primary_10_4103_digm_digm_1_19
crossref_primary_10_1007_s00595_022_02601_9
crossref_primary_10_1080_13548506_2025_2458254
crossref_primary_10_1038_s41467_018_07229_3
crossref_primary_10_1016_j_cca_2019_05_021
crossref_primary_10_1038_s41598_024_56355_0
crossref_primary_10_1109_TMI_2024_3447672
crossref_primary_10_3389_fonc_2020_01629
crossref_primary_10_1016_j_parkreldis_2021_03_004
crossref_primary_10_1016_j_oraloncology_2022_106070
crossref_primary_10_1097_JS9_0000000000001371
crossref_primary_10_1007_s12024_020_00307_3
crossref_primary_10_1016_j_media_2024_103230
crossref_primary_10_1007_s11845_023_03479_3
crossref_primary_10_3390_cancers12061604
crossref_primary_10_1109_TCI_2024_3522761
crossref_primary_10_2147_JHC_S382310
crossref_primary_10_1038_s42256_020_0200_7
crossref_primary_10_1016_j_semcancer_2023_06_003
crossref_primary_10_1016_S2589_7500_21_00235_1
crossref_primary_10_3390_cancers12071884
crossref_primary_10_1038_s41379_021_00904_9
crossref_primary_10_1111_den_13317
crossref_primary_10_3390_cancers14051159
crossref_primary_10_4103_jpi_jpi_98_20
crossref_primary_10_1158_2159_8290_CD_21_0090
crossref_primary_10_1007_s10994_020_05915_2
crossref_primary_10_1038_s41551_018_0210_5
crossref_primary_10_5528_wjtm_v9_i1_1
crossref_primary_10_1016_j_eng_2020_04_012
crossref_primary_10_1002_jrs_6224
crossref_primary_10_1007_s00761_024_01482_6
crossref_primary_10_3390_app10082929
crossref_primary_10_1093_eurheartj_ehz056
crossref_primary_10_1016_j_engappai_2025_110519
crossref_primary_10_1186_s13000_021_01126_y
crossref_primary_10_3389_fbinf_2023_1159381
crossref_primary_10_1016_j_ejca_2020_11_030
crossref_primary_10_1007_s00330_020_07431_2
crossref_primary_10_1186_s12938_024_01299_9
crossref_primary_10_1016_j_bspc_2021_103451
crossref_primary_10_3389_fmed_2021_816281
crossref_primary_10_1016_j_hlpt_2019_03_004
crossref_primary_10_1016_S2589_7500_23_00095_X
crossref_primary_10_1016_j_ebiom_2018_09_023
crossref_primary_10_1038_s41591_024_03141_0
crossref_primary_10_3389_fphar_2022_1080273
crossref_primary_10_1016_j_isci_2023_108712
crossref_primary_10_1038_s41416_023_02262_6
crossref_primary_10_1038_s41563_019_0345_0
crossref_primary_10_3390_diagnostics12051272
crossref_primary_10_3389_fonc_2023_1094869
crossref_primary_10_1200_CCI_18_00157
crossref_primary_10_1007_s00068_020_01444_8
crossref_primary_10_1371_journal_pmed_1002730
crossref_primary_10_3389_fcvm_2021_724183
crossref_primary_10_3390_biomedicines12102315
crossref_primary_10_3390_biom11020264
crossref_primary_10_3390_diagnostics15030252
crossref_primary_10_1136_bmjhci_2021_100466
crossref_primary_10_1016_j_cmpb_2022_106785
crossref_primary_10_1038_s41598_023_28164_4
crossref_primary_10_1016_j_kint_2020_07_044
crossref_primary_10_1038_s41598_022_18436_w
crossref_primary_10_1126_sciadv_adg2690
crossref_primary_10_1002_cam4_70069
crossref_primary_10_1111_jop_13042
crossref_primary_10_3389_fonc_2022_1022967
crossref_primary_10_1111_his_15153
crossref_primary_10_4103_jpi_jpi_42_18
crossref_primary_10_61186_iau_34_3_207
crossref_primary_10_1158_1078_0432_CCR_20_4119
crossref_primary_10_1007_s11042_020_08891_w
crossref_primary_10_4103_ijo_IJO_1840_21
crossref_primary_10_1145_3416965
crossref_primary_10_3389_fonc_2021_721460
crossref_primary_10_1007_s00428_018_2485_z
crossref_primary_10_1038_s41523_022_00491_1
crossref_primary_10_1109_TMI_2023_3337549
crossref_primary_10_1080_10408363_2021_1943302
crossref_primary_10_1016_j_patcog_2024_110621
crossref_primary_10_1007_s10120_020_01093_1
crossref_primary_10_1016_j_ajpath_2019_08_014
crossref_primary_10_1177_0192623319881401
crossref_primary_10_1016_j_bspc_2025_107731
crossref_primary_10_2196_19416
crossref_primary_10_3390_medicina57040351
crossref_primary_10_1109_TMI_2024_3446716
crossref_primary_10_3390_jcm12010385
crossref_primary_10_1016_j_ophtha_2018_01_034
crossref_primary_10_1111_pin_13309
crossref_primary_10_1136_jclinpath_2020_206908
crossref_primary_10_1016_j_bspc_2024_106590
crossref_primary_10_1016_j_ejca_2020_11_020
crossref_primary_10_1038_s41598_019_53911_x
crossref_primary_10_1002_ima_23125
crossref_primary_10_1159_000500900
crossref_primary_10_3390_jimaging8080213
crossref_primary_10_1007_s10586_022_03951_2
crossref_primary_10_1016_j_techsoc_2023_102321
crossref_primary_10_1016_j_compbiomed_2023_107663
crossref_primary_10_1002_jrs_6204
crossref_primary_10_1016_j_heliyon_2022_e12431
crossref_primary_10_1016_j_imed_2023_05_001
crossref_primary_10_1002_mco2_487
crossref_primary_10_1002_adtp_201900127
crossref_primary_10_3390_diagnostics12030768
crossref_primary_10_1002_lary_28539
crossref_primary_10_7759_cureus_11137
crossref_primary_10_1038_s41598_018_37638_9
crossref_primary_10_3390_app11062751
crossref_primary_10_1016_j_cmpb_2021_106047
crossref_primary_10_1080_03007995_2019_1706043
crossref_primary_10_1109_TMI_2021_3123461
crossref_primary_10_1038_s41416_021_01689_z
crossref_primary_10_1002_cac2_12215
crossref_primary_10_1111_epi_16447
crossref_primary_10_25259_IJDVL_518_19
crossref_primary_10_1109_TMI_2021_3055290
crossref_primary_10_1097_JCMA_0000000000000416
crossref_primary_10_1371_journal_pone_0273383
crossref_primary_10_1007_s11033_024_10051_4
crossref_primary_10_1093_ajcp_aqac117
crossref_primary_10_1007_s12312_019_00734_6
crossref_primary_10_1016_j_iliver_2024_100082
crossref_primary_10_1080_14737140_2021_1951240
crossref_primary_10_1093_jamia_ocaa115
crossref_primary_10_1016_j_dsp_2021_103196
crossref_primary_10_3390_cancers14112590
crossref_primary_10_1109_ACCESS_2021_3060765
crossref_primary_10_3390_diagnostics12040990
crossref_primary_10_1038_s41591_023_02643_7
crossref_primary_10_1088_2057_1976_ac7ad9
crossref_primary_10_3892_ol_2023_14062
crossref_primary_10_1016_j_tranon_2023_101855
crossref_primary_10_3390_cancers16020430
crossref_primary_10_1186_s12935_021_02165_7
crossref_primary_10_3390_life14101256
crossref_primary_10_1038_s41523_021_00378_7
crossref_primary_10_1007_s12312_020_00749_4
crossref_primary_10_1117_1_JMI_11_1_017501
crossref_primary_10_1016_j_compbiomed_2023_107201
crossref_primary_10_1097_MD_0000000000021518
crossref_primary_10_1007_s10676_023_09676_z
crossref_primary_10_1016_j_compbiomed_2022_106073
crossref_primary_10_1016_j_media_2023_102891
crossref_primary_10_1007_s12194_019_00552_4
crossref_primary_10_1007_s10549_019_05281_1
crossref_primary_10_1016_j_media_2020_101954
crossref_primary_10_1371_journal_pone_0304702
crossref_primary_10_1016_j_cmpb_2021_106464
crossref_primary_10_3389_pore_2024_1611815
crossref_primary_10_61186_ijbc_15_3_4
crossref_primary_10_3389_ti_2024_12973
crossref_primary_10_1038_s41467_024_49017_2
crossref_primary_10_3342_kjorl_hns_2020_00633
crossref_primary_10_1038_s41423_020_00565_9
crossref_primary_10_1016_j_asoc_2021_107886
crossref_primary_10_3390_cancers13040661
crossref_primary_10_1016_j_media_2020_101942
crossref_primary_10_1038_s41467_021_21467_y
crossref_primary_10_1038_s41523_020_0154_2
crossref_primary_10_1093_bioinformatics_btaf024
crossref_primary_10_1371_journal_pone_0251553
crossref_primary_10_1016_j_compbiomed_2021_104837
crossref_primary_10_1016_j_compmedimag_2022_102053
crossref_primary_10_1109_TMI_2021_3059699
crossref_primary_10_1371_journal_pcbi_1007313
crossref_primary_10_1007_s44206_024_00121_2
crossref_primary_10_1186_s12885_019_5827_6
crossref_primary_10_1016_j_celrep_2022_110424
crossref_primary_10_1016_j_acra_2019_10_001
crossref_primary_10_1038_s41379_021_00859_x
crossref_primary_10_1002_stem_3371
crossref_primary_10_1016_j_trecan_2019_02_002
crossref_primary_10_3390_cancers16132391
crossref_primary_10_1038_s41598_020_80881_2
crossref_primary_10_1186_s12967_021_03117_5
crossref_primary_10_1038_s43018_021_00236_2
crossref_primary_10_1186_s13000_023_01432_7
crossref_primary_10_1016_j_ejca_2021_03_018
crossref_primary_10_1016_j_ejca_2023_113504
crossref_primary_10_3390_jcm13174979
crossref_primary_10_1371_journal_pone_0227401
crossref_primary_10_1002_lrh2_10204
crossref_primary_10_1055_s_0042_1755571
crossref_primary_10_2196_59045
crossref_primary_10_3389_fgene_2023_1087432
crossref_primary_10_3390_app10186428
crossref_primary_10_1038_s41746_020_0272_0
crossref_primary_10_1007_s12032_022_01711_1
crossref_primary_10_1155_2021_9025470
crossref_primary_10_1016_j_compbiomed_2021_104890
crossref_primary_10_1186_s40494_024_01292_4
crossref_primary_10_1007_s00521_021_06851_5
crossref_primary_10_1007_s10462_025_11117_w
crossref_primary_10_1051_shsconf_202213903005
crossref_primary_10_1016_j_kint_2024_12_007
crossref_primary_10_1093_database_baac093
crossref_primary_10_1007_s42600_024_00375_2
crossref_primary_10_2478_picbe_2022_0024
crossref_primary_10_1038_s42256_019_0052_1
crossref_primary_10_1002_psp4_12418
crossref_primary_10_1097_MD_0000000000016119
crossref_primary_10_1016_j_ejro_2020_100316
crossref_primary_10_3390_ijms20184414
crossref_primary_10_1109_TAI_2024_3454591
crossref_primary_10_3390_jimaging6090092
crossref_primary_10_1007_s11831_021_09582_x
crossref_primary_10_1109_ACCESS_2022_3204000
crossref_primary_10_1186_s13244_022_01345_x
crossref_primary_10_1177_1553350621996961
crossref_primary_10_1371_journal_pone_0292063
crossref_primary_10_1097_MS9_0000000000002238
crossref_primary_10_1001_jamanetworkopen_2019_3963
crossref_primary_10_1186_s13071_022_05640_w
crossref_primary_10_1038_s41467_022_34703_w
crossref_primary_10_1038_s41746_021_00417_4
crossref_primary_10_1007_s00101_020_00764_z
crossref_primary_10_1016_j_compbiomed_2023_107268
crossref_primary_10_3390_cancers14061370
crossref_primary_10_1007_s13402_023_00851_4
crossref_primary_10_2147_CMAR_S312608
crossref_primary_10_1053_j_semdp_2023_01_001
crossref_primary_10_1016_j_imed_2021_04_003
crossref_primary_10_1371_journal_pone_0251521
crossref_primary_10_1002_ima_22666
crossref_primary_10_1177_20552076221089099
crossref_primary_10_1016_j_media_2022_102580
crossref_primary_10_3390_app14072900
crossref_primary_10_1016_j_bspc_2024_106519
crossref_primary_10_1111_bph_15633
crossref_primary_10_36401_IDDB_24_X2
crossref_primary_10_1111_nan_12770
crossref_primary_10_3390_diagnostics11111983
crossref_primary_10_1016_j_media_2023_102881
crossref_primary_10_1016_j_ipm_2021_102657
crossref_primary_10_1007_s12609_022_00450_6
crossref_primary_10_1016_j_media_2023_102813
crossref_primary_10_1016_j_acra_2024_07_036
crossref_primary_10_3390_cancers15133428
crossref_primary_10_1016_j_cdtm_2019_12_002
crossref_primary_10_1016_j_media_2025_103468
crossref_primary_10_2174_1389201024666230411091057
crossref_primary_10_1177_19160216251326590
crossref_primary_10_1016_j_media_2021_102256
crossref_primary_10_1016_j_smim_2020_101411
crossref_primary_10_1136_gutjnl_2019_320466
crossref_primary_10_3389_fonc_2024_1275769
crossref_primary_10_1016_j_bspc_2022_104283
crossref_primary_10_1016_j_jneumeth_2020_108853
crossref_primary_10_1016_j_bspc_2023_105874
crossref_primary_10_1136_gutjnl_2020_320930
crossref_primary_10_1513_AnnalsATS_201908_608ED
crossref_primary_10_1109_TMI_2024_3381239
crossref_primary_10_1007_s12652_023_04599_5
crossref_primary_10_1016_j_knosys_2021_107090
crossref_primary_10_1097_MD_0000000000019157
crossref_primary_10_1016_j_ejmp_2021_03_026
crossref_primary_10_2196_23436
crossref_primary_10_1016_j_isci_2024_110645
crossref_primary_10_1158_2159_8290_CD_23_1199
crossref_primary_10_1038_s41523_022_00488_w
crossref_primary_10_1155_2019_1870975
crossref_primary_10_1007_s10549_023_06970_8
crossref_primary_10_1093_bib_bbae421
crossref_primary_10_3390_cancers15164144
crossref_primary_10_1016_j_media_2022_102559
crossref_primary_10_1016_j_artmed_2020_101918
crossref_primary_10_1016_j_eswa_2020_113387
crossref_primary_10_1016_j_ucl_2020_09_004
crossref_primary_10_15407_fz65_04_073
crossref_primary_10_1007_s00464_023_09990_z
crossref_primary_10_1136_bjophthalmol_2018_313706
crossref_primary_10_1016_j_media_2024_103162
crossref_primary_10_1111_his_13760
crossref_primary_10_3934_math_2024222
crossref_primary_10_3390_app13074333
crossref_primary_10_1016_j_ebiom_2020_103029
crossref_primary_10_1016_j_imu_2021_100598
crossref_primary_10_3748_wjg_v29_i3_536
crossref_primary_10_1109_ACCESS_2022_3160290
crossref_primary_10_1001_jama_2019_16489
crossref_primary_10_1186_s12885_024_12849_8
crossref_primary_10_1016_j_media_2023_102845
crossref_primary_10_3390_microorganisms12081734
crossref_primary_10_1136_bmjopen_2020_046265
crossref_primary_10_1002_path_6168
crossref_primary_10_1038_s41467_021_22188_y
crossref_primary_10_3389_fmed_2022_893208
crossref_primary_10_1002_path_6163
crossref_primary_10_1111_cas_14377
crossref_primary_10_3348_jksr_2024_0052
crossref_primary_10_4196_kjpp_2020_24_1_89
crossref_primary_10_1186_s12859_019_2605_z
crossref_primary_10_1177_15330338221142674
crossref_primary_10_1038_s41585_019_0193_3
crossref_primary_10_1155_2022_8574000
crossref_primary_10_1111_jgh_15190
crossref_primary_10_1186_s12937_022_00793_x
crossref_primary_10_1109_TMI_2022_3191398
crossref_primary_10_1007_s11654_021_00298_9
crossref_primary_10_1038_s41598_023_46619_6
crossref_primary_10_1016_j_compmedimag_2023_102288
crossref_primary_10_1016_j_compbiomed_2024_109327
crossref_primary_10_1109_ACCESS_2024_3487260
crossref_primary_10_1109_JBHI_2020_3039741
crossref_primary_10_1145_3449084
crossref_primary_10_1016_j_iotech_2020_04_001
crossref_primary_10_3390_mti2030047
crossref_primary_10_1155_2022_6841334
crossref_primary_10_1109_RBME_2024_3357877
crossref_primary_10_1016_j_labinv_2025_104121
crossref_primary_10_1108_K_03_2021_0170
crossref_primary_10_1016_j_compbiomed_2024_108489
crossref_primary_10_1109_TETC_2024_3487258
crossref_primary_10_1016_j_bspc_2023_104577
crossref_primary_10_1002_cam4_5478
crossref_primary_10_1007_s12072_019_09937_4
crossref_primary_10_1039_D2LC00478J
crossref_primary_10_1016_j_ajpath_2023_06_004
crossref_primary_10_1016_j_media_2023_102802
crossref_primary_10_1073_pnas_1908021116
crossref_primary_10_1016_j_ejca_2019_04_021
crossref_primary_10_1016_j_media_2023_102809
crossref_primary_10_1007_s00761_019_00679_4
crossref_primary_10_1016_j_cmpb_2025_108614
crossref_primary_10_2196_27850
crossref_primary_10_1038_s41746_019_0189_7
crossref_primary_10_3390_cells12141847
crossref_primary_10_1016_j_pdpdt_2024_104236
crossref_primary_10_1016_j_ajpath_2024_01_016
crossref_primary_10_1097_MD_0000000000033070
crossref_primary_10_3389_fonc_2022_924945
crossref_primary_10_1016_j_ajpath_2024_01_009
crossref_primary_10_1016_j_irbm_2020_05_005
crossref_primary_10_3390_jpm11121280
crossref_primary_10_1016_j_aiia_2024_02_002
crossref_primary_10_1007_s10815_020_01950_z
crossref_primary_10_3390_electronics10050562
crossref_primary_10_1097_JS9_0000000000000380
crossref_primary_10_1007_s00330_024_10854_w
crossref_primary_10_1016_j_isci_2023_108468
crossref_primary_10_1109_ACCESS_2024_3516535
crossref_primary_10_3892_ol_2025_14936
crossref_primary_10_1159_000518494
crossref_primary_10_1109_TCBB_2019_2960019
crossref_primary_10_3389_fonc_2021_703033
crossref_primary_10_1007_s11548_024_03309_6
crossref_primary_10_1109_JBHI_2023_3276778
crossref_primary_10_3390_electronics13132456
crossref_primary_10_1001_jamanetworkopen_2019_8777
crossref_primary_10_3390_cancers15143635
crossref_primary_10_1016_j_urolonc_2019_03_002
crossref_primary_10_3892_br_2019_1199
crossref_primary_10_1007_s00330_020_07062_7
crossref_primary_10_1007_s10489_020_01695_3
crossref_primary_10_1093_braincomms_fcab293
crossref_primary_10_1038_s41467_019_10212_1
crossref_primary_10_1016_j_jpi_2024_100367
crossref_primary_10_1038_s41467_024_48667_6
crossref_primary_10_1016_j_jpi_2024_100363
crossref_primary_10_1109_TMI_2020_2971006
crossref_primary_10_1111_bjd_18026
crossref_primary_10_1159_000493575
crossref_primary_10_3904_kjim_2020_020
crossref_primary_10_1016_j_knosys_2022_110168
crossref_primary_10_1111_jop_13578
crossref_primary_10_3390_s19132969
crossref_primary_10_1002_cac2_12012
crossref_primary_10_1016_j_modpat_2023_100417
crossref_primary_10_3390_s19092167
crossref_primary_10_1038_s42003_021_02758_y
crossref_primary_10_1111_exsy_13047
crossref_primary_10_1158_0008_5472_CAN_20_0668
crossref_primary_10_1073_pnas_2013571117
crossref_primary_10_1097_CORR_0000000000000687
crossref_primary_10_1016_j_neuint_2021_105015
crossref_primary_10_1007_s12687_023_00678_4
crossref_primary_10_2106_JBJS_RVW_23_00232
crossref_primary_10_1016_S0007_4551_21_00635_4
crossref_primary_10_1177_10815589231171402
crossref_primary_10_1200_CCI_20_00074
crossref_primary_10_1109_ACCESS_2024_3488188
crossref_primary_10_3346_jkms_2018_33_e152
crossref_primary_10_1038_s41374_019_0275_0
crossref_primary_10_1371_journal_pone_0302169
crossref_primary_10_1016_j_compbiomed_2022_105219
crossref_primary_10_1016_j_media_2024_103132
crossref_primary_10_1016_j_euo_2023_10_018
crossref_primary_10_12688_f1000research_19037_1
crossref_primary_10_1007_s10916_021_01786_9
crossref_primary_10_1007_s10278_023_00802_3
crossref_primary_10_1007_s11654_024_00572_6
crossref_primary_10_1371_journal_pone_0232376
crossref_primary_10_1089_omi_2019_0038
crossref_primary_10_1371_journal_pdig_0000145
crossref_primary_10_2174_1386207325666220304112914
crossref_primary_10_1016_j_smhl_2024_100474
crossref_primary_10_1038_s41523_019_0134_6
crossref_primary_10_4103_jpi_jpi_83_20
crossref_primary_10_1080_16549716_2022_2067389
crossref_primary_10_1002_ajim_23037
crossref_primary_10_1200_CCI_19_00126
crossref_primary_10_1016_j_acra_2022_12_038
crossref_primary_10_5694_mja2_50294
crossref_primary_10_1007_s11356_023_28576_9
crossref_primary_10_3390_biom9110673
crossref_primary_10_1111_his_15067
crossref_primary_10_1016_j_euf_2020_12_008
crossref_primary_10_1038_s41598_021_99940_3
crossref_primary_10_1016_j_media_2024_103124
crossref_primary_10_1186_s12859_019_2969_0
crossref_primary_10_1177_10935266211059809
crossref_primary_10_1038_s41598_022_19112_9
crossref_primary_10_1115_1_4065756
crossref_primary_10_1126_scitranslmed_abk2756
crossref_primary_10_1200_CCI_20_00049
crossref_primary_10_7202_1077638ar
crossref_primary_10_3348_kjr_2022_0548
crossref_primary_10_1038_s41598_024_80495_y
crossref_primary_10_2196_56306
crossref_primary_10_1371_journal_pone_0233678
crossref_primary_10_1038_s41551_020_00682_w
crossref_primary_10_1007_s00259_019_04371_y
crossref_primary_10_3390_jcm8060844
crossref_primary_10_3390_biom11091310
crossref_primary_10_3390_biomedinformatics4010028
crossref_primary_10_2196_18418
crossref_primary_10_1002_advs_201901519
crossref_primary_10_3390_diagnostics12112724
crossref_primary_10_1016_j_compbiomed_2023_107726
crossref_primary_10_1016_j_smrv_2020_101313
crossref_primary_10_1016_j_ajpath_2020_03_012
crossref_primary_10_1007_s11884_023_00734_2
crossref_primary_10_1016_j_ajpath_2020_03_013
crossref_primary_10_1016_j_bbcan_2020_188452
crossref_primary_10_1055_s_0041_1735577
crossref_primary_10_1016_S0140_6736_19_32998_8
crossref_primary_10_2196_38039
crossref_primary_10_31083_j_fbl2707212
crossref_primary_10_1155_2022_2805607
crossref_primary_10_1007_s11760_023_02697_7
crossref_primary_10_1186_s12916_021_01942_5
crossref_primary_10_1109_ACCESS_2020_2993788
crossref_primary_10_1016_j_cobeha_2020_07_008
crossref_primary_10_1016_j_cjca_2021_11_008
crossref_primary_10_3389_fonc_2022_1008537
crossref_primary_10_3390_cancers14194744
crossref_primary_10_3390_cancers16111981
crossref_primary_10_1109_ACCESS_2021_3086892
crossref_primary_10_1016_j_jpi_2024_100408
crossref_primary_10_1038_s41598_019_40364_5
crossref_primary_10_1159_000539010
crossref_primary_10_1109_JBHI_2020_2992878
crossref_primary_10_1016_j_heliyon_2022_e10578
crossref_primary_10_1002_jrs_6365
crossref_primary_10_1155_2024_5057538
crossref_primary_10_3390_diagnostics14131442
crossref_primary_10_1016_j_compbiomed_2023_107742
crossref_primary_10_1007_s00500_021_06620_5
crossref_primary_10_5009_gnl18384
crossref_primary_10_5858_arpa_2023_0406_OA
crossref_primary_10_1109_ACCESS_2022_3143345
crossref_primary_10_3348_kjr_2023_0393
crossref_primary_10_37126_aige_v1_i2_33
crossref_primary_10_1259_bjr_20190762
crossref_primary_10_1371_journal_pcbi_1008349
crossref_primary_10_1016_j_patol_2024_04_003
crossref_primary_10_1109_ACCESS_2024_3486757
crossref_primary_10_1097_MD_0000000000015133
crossref_primary_10_1109_TAI_2023_3246032
crossref_primary_10_1097_SLA_0000000000003778
crossref_primary_10_1007_s00521_022_07857_3
crossref_primary_10_1038_s41598_022_25618_z
crossref_primary_10_1038_s41591_024_02856_4
crossref_primary_10_1038_s41433_024_03026_z
crossref_primary_10_1016_j_eswa_2024_123893
crossref_primary_10_1038_s41467_022_30746_1
crossref_primary_10_1186_s13000_021_01136_w
crossref_primary_10_1016_j_giec_2020_08_006
crossref_primary_10_1016_j_hest_2020_01_006
crossref_primary_10_1038_s41746_022_00648_z
crossref_primary_10_1101_cshperspect_a041584
crossref_primary_10_1109_TMI_2024_3453386
crossref_primary_10_1002_jrs_6302
crossref_primary_10_1038_s41597_023_02457_9
crossref_primary_10_2174_1872212117666230130100048
crossref_primary_10_1016_j_gie_2018_10_027
crossref_primary_10_35712_aig_v2_i2_10
crossref_primary_10_1007_s11042_023_16292_y
crossref_primary_10_3389_fonc_2022_683792
crossref_primary_10_1016_j_csbj_2021_12_028
crossref_primary_10_1016_j_cmpb_2023_107631
crossref_primary_10_1016_j_patcog_2024_110745
crossref_primary_10_1016_j_bja_2019_07_025
crossref_primary_10_2147_JMDH_S485724
crossref_primary_10_1016_j_jcmg_2019_06_009
crossref_primary_10_1109_TMI_2022_3163232
crossref_primary_10_1093_ajcp_aqaa077
crossref_primary_10_1186_s42492_024_00181_8
crossref_primary_10_1038_s41598_018_31883_8
crossref_primary_10_1038_s41598_021_01911_1
crossref_primary_10_3389_fonc_2022_1040238
crossref_primary_10_4103_digm_digm_8_19
crossref_primary_10_1038_s41598_021_02168_4
crossref_primary_10_1038_s41467_024_51465_9
crossref_primary_10_1038_s41598_022_22506_4
crossref_primary_10_1016_j_jasc_2019_03_003
crossref_primary_10_1038_s41377_021_00674_8
crossref_primary_10_1016_j_bspc_2020_102388
crossref_primary_10_3390_diagnostics12112794
crossref_primary_10_1016_j_eclinm_2024_102580
crossref_primary_10_4103_jpi_jpi_31_18
crossref_primary_10_2957_kanzo_61_623
crossref_primary_10_1016_j_heliyon_2023_e19229
crossref_primary_10_1038_s41523_023_00562_x
crossref_primary_10_1016_j_cmpb_2023_107617
crossref_primary_10_1038_s41467_022_34245_1
crossref_primary_10_1002_path_5797
crossref_primary_10_1016_j_patter_2023_100725
crossref_primary_10_1016_j_engappai_2024_109573
crossref_primary_10_3389_fmed_2022_976467
crossref_primary_10_3390_jcm14061802
crossref_primary_10_1109_TMI_2021_3056023
crossref_primary_10_1186_s12913_018_3359_4
crossref_primary_10_1016_j_compmedimag_2023_102230
crossref_primary_10_1016_j_media_2020_101849
crossref_primary_10_1109_TMI_2019_2907049
crossref_primary_10_1148_ryai_2020190102
crossref_primary_10_1016_j_imu_2020_100329
crossref_primary_10_3390_healthcare8030291
crossref_primary_10_1002_widm_1410
crossref_primary_10_3389_ti_2023_11783
crossref_primary_10_1016_j_gie_2019_03_019
crossref_primary_10_1016_j_compmedimag_2023_102238
crossref_primary_10_1016_j_mtbio_2023_100820
crossref_primary_10_1109_ACCESS_2022_3163384
crossref_primary_10_1016_j_ccell_2021_04_002
crossref_primary_10_1007_s10278_022_00722_8
crossref_primary_10_3389_fneur_2024_1409962
crossref_primary_10_3390_jimaging10100252
crossref_primary_10_1007_s40139_020_00217_7
crossref_primary_10_1016_j_cmpbup_2022_100055
crossref_primary_10_1002_path_5331
crossref_primary_10_1016_j_compbiomed_2023_107336
crossref_primary_10_1038_s41598_021_99015_3
crossref_primary_10_1371_journal_pmed_1002686
crossref_primary_10_1001_jamaophthalmol_2019_2004
crossref_primary_10_1016_j_media_2022_102482
crossref_primary_10_1016_j_media_2022_102485
crossref_primary_10_1016_j_xcrm_2022_100872
crossref_primary_10_1111_ddg_15194
crossref_primary_10_1038_s41598_022_07808_x
crossref_primary_10_1186_s13014_019_1392_z
crossref_primary_10_1016_j_soin_2019_06_006
crossref_primary_10_1136_leader_2018_000071
crossref_primary_10_5009_gnl220071
crossref_primary_10_1016_j_egyai_2023_100241
crossref_primary_10_1016_j_icte_2020_04_010
crossref_primary_10_3390_app10061988
crossref_primary_10_3390_su151813951
crossref_primary_10_1016_j_ijrobp_2024_01_201
crossref_primary_10_1038_s41374_021_00647_w
crossref_primary_10_1038_s41598_021_91634_0
crossref_primary_10_1016_j_media_2020_101813
crossref_primary_10_1016_j_chbah_2024_100116
crossref_primary_10_1109_TMI_2024_3475587
crossref_primary_10_4143_crt_2022_055
crossref_primary_10_1038_s41598_021_98480_0
crossref_primary_10_1016_j_crad_2021_01_015
crossref_primary_10_1016_j_media_2019_03_014
crossref_primary_10_1111_cyt_13333
crossref_primary_10_1186_s40644_023_00527_0
crossref_primary_10_1002_nbm_70001
crossref_primary_10_3390_diagnostics13071308
crossref_primary_10_1007_s10552_024_01942_9
crossref_primary_10_1016_j_media_2023_102748
crossref_primary_10_2139_ssrn_3967040
crossref_primary_10_3390_cancers14215264
crossref_primary_10_1007_s00428_019_02577_x
crossref_primary_10_1109_ACCESS_2022_3197189
crossref_primary_10_1007_s12652_021_03618_7
crossref_primary_10_1016_j_semcancer_2023_02_006
crossref_primary_10_1007_s10815_023_02745_8
crossref_primary_10_3390_diagnostics13213331
crossref_primary_10_1016_j_acra_2019_06_018
crossref_primary_10_1109_TCBB_2021_3062230
crossref_primary_10_1109_ACCESS_2019_2923688
crossref_primary_10_1364_BOE_10_000892
crossref_primary_10_3390_app12199823
crossref_primary_10_3390_cancers12123562
crossref_primary_10_1016_j_cmpb_2019_01_008
crossref_primary_10_1016_j_ibmed_2021_100031
crossref_primary_10_1038_s41571_021_00560_7
crossref_primary_10_1016_j_media_2023_102755
crossref_primary_10_1155_2021_5499385
crossref_primary_10_1002_cam4_2802
crossref_primary_10_1016_j_csbj_2021_10_009
crossref_primary_10_1002_path_6238
crossref_primary_10_1590_0103_11042019s211
crossref_primary_10_1002_cam4_7253
crossref_primary_10_2139_ssrn_4098973
crossref_primary_10_5664_jcsm_8388
crossref_primary_10_1002_ncp_10271
crossref_primary_10_1016_j_media_2023_102752
crossref_primary_10_1109_ACCESS_2019_2921027
crossref_primary_10_1016_j_media_2022_102474
crossref_primary_10_3390_jpm13081219
crossref_primary_10_1038_s41598_019_53405_w
crossref_primary_10_4103_jpi_jpi_11_20
crossref_primary_10_1186_s41232_019_0103_3
crossref_primary_10_1016_S2589_7500_21_00065_0
crossref_primary_10_1002_ima_22309
crossref_primary_10_1038_s41598_020_70629_3
crossref_primary_10_2215_CJN_09990819
crossref_primary_10_1016_j_amsu_2021_102922
crossref_primary_10_1038_s41598_020_68611_0
crossref_primary_10_1177_15553434221104615
crossref_primary_10_4103_jpi_jpi_11_19
crossref_primary_10_1016_j_media_2023_102762
crossref_primary_10_1245_s10434_024_16519_8
crossref_primary_10_1016_j_media_2023_102763
crossref_primary_10_1016_j_ijleo_2022_170238
crossref_primary_10_1002_lrh2_10315
crossref_primary_10_1016_j_humpath_2022_11_007
crossref_primary_10_1016_j_media_2022_102462
crossref_primary_10_1007_s00521_020_05218_6
crossref_primary_10_1007_s42452_024_06093_9
crossref_primary_10_1007_s00146_023_01803_0
crossref_primary_10_1038_s41551_019_0504_2
crossref_primary_10_1038_s41551_022_00879_1
crossref_primary_10_4240_wjgs_v15_i10_2234
crossref_primary_10_1146_annurev_cancerbio_062822_010523
crossref_primary_10_1186_s12967_024_04915_3
crossref_primary_10_1016_j_xcrm_2024_101697
crossref_primary_10_1038_s41591_019_0539_7
crossref_primary_10_1109_ACCESS_2020_3005228
crossref_primary_10_1155_2022_9910471
crossref_primary_10_1186_s12916_023_03095_z
crossref_primary_10_1097_MD_0000000000034211
crossref_primary_10_3390_cells10040787
crossref_primary_10_1016_j_media_2021_102141
crossref_primary_10_1016_S2468_1253_18_30282_6
crossref_primary_10_1016_j_ccc_2023_02_001
crossref_primary_10_1109_JBHI_2020_3030853
crossref_primary_10_1111_neup_12880
crossref_primary_10_1093_bib_bbac367
crossref_primary_10_1007_s00439_019_01970_5
crossref_primary_10_1007_s11042_022_13419_5
crossref_primary_10_1371_journal_pone_0282577
crossref_primary_10_1016_j_jid_2018_01_028
crossref_primary_10_1038_s41551_018_0305_z
crossref_primary_10_1002_pmic_202000077
crossref_primary_10_1016_j_prp_2020_153040
crossref_primary_10_3390_diagnostics13061038
crossref_primary_10_3348_jksr_2018_78_5_301
crossref_primary_10_3389_fonc_2022_925079
crossref_primary_10_1038_s41591_022_01709_2
crossref_primary_10_1016_j_cgh_2020_03_034
crossref_primary_10_1109_TMI_2021_3140140
crossref_primary_10_1136_jclinpath_2018_205536
crossref_primary_10_1002_advs_202203949
crossref_primary_10_3390_diagnostics10070466
crossref_primary_10_1016_j_semcancer_2021_04_013
crossref_primary_10_3389_fmed_2021_777142
crossref_primary_10_1021_acs_analchem_8b05821
crossref_primary_10_1186_s11689_024_09579_0
crossref_primary_10_1109_JBHI_2024_3439499
crossref_primary_10_1016_j_artmed_2021_102197
crossref_primary_10_1109_ACCESS_2020_3020802
crossref_primary_10_1148_radiol_2019182627
crossref_primary_10_1177_0300985817753869
crossref_primary_10_1007_s10151_018_1847_5
crossref_primary_10_1093_jamia_ocz230
crossref_primary_10_1109_ACCESS_2019_2929365
crossref_primary_10_1016_j_ibmed_2020_100004
crossref_primary_10_3390_biology11010047
crossref_primary_10_1097_ALN_0000000000002960
crossref_primary_10_1038_s41746_024_01106_8
crossref_primary_10_1177_09622802221111539
crossref_primary_10_1016_j_labinv_2023_100302
crossref_primary_10_1109_TMI_2022_3171418
crossref_primary_10_3348_kjr_2019_0821
crossref_primary_10_1259_bjro_20190020
crossref_primary_10_1016_j_compmedimag_2024_102427
crossref_primary_10_3390_app10103359
crossref_primary_10_1148_radiol_2019182622
crossref_primary_10_1038_s41591_024_02915_w
crossref_primary_10_1007_s11684_020_0761_1
crossref_primary_10_1016_j_cmpb_2022_106914
crossref_primary_10_1016_j_patcog_2024_111242
crossref_primary_10_1186_s13058_024_01895_6
crossref_primary_10_1016_j_bspc_2022_104374
crossref_primary_10_1038_s41467_021_26643_8
crossref_primary_10_1145_3615862
crossref_primary_10_1007_s44206_023_00072_0
crossref_primary_10_1093_comjnl_bxab145
crossref_primary_10_1016_j_media_2024_103088
crossref_primary_10_1007_s11042_024_19313_6
crossref_primary_10_1109_JPROC_2021_3054390
crossref_primary_10_1097_PRS_0000000000009312
crossref_primary_10_1007_s00428_021_03141_2
crossref_primary_10_3390_diagnostics11071192
crossref_primary_10_3389_fmed_2023_1173616
crossref_primary_10_1177_00027642211066046
crossref_primary_10_1038_s41698_019_0078_1
crossref_primary_10_1109_TMI_2024_3420804
crossref_primary_10_3389_fmed_2021_695185
crossref_primary_10_3390_diagnostics13071277
crossref_primary_10_7717_peerj_8242
crossref_primary_10_7759_cureus_54858
crossref_primary_10_1038_s41467_024_49153_9
crossref_primary_10_1007_s00330_020_07339_x
crossref_primary_10_1093_jnci_djac108
crossref_primary_10_1016_j_cell_2019_11_013
crossref_primary_10_1038_s44222_023_00096_8
crossref_primary_10_1158_2643_3230_BCD_21_0219
crossref_primary_10_1117_1_JMI_6_2_027501
crossref_primary_10_1007_s00761_023_01359_0
crossref_primary_10_1016_j_heliyon_2024_e29249
crossref_primary_10_1002_ima_22812
crossref_primary_10_1055_a_1194_8771
crossref_primary_10_3389_fbioe_2018_00075
crossref_primary_10_1007_s00330_019_06318_1
crossref_primary_10_1038_s41598_020_58467_9
crossref_primary_10_1111_ajt_15850
crossref_primary_10_1002_cpe_8263
crossref_primary_10_1007_s00428_019_02594_w
crossref_primary_10_3390_diagnostics13243685
crossref_primary_10_1145_3577011
crossref_primary_10_1186_s12885_019_5646_9
crossref_primary_10_3390_ijms23094645
crossref_primary_10_1016_j_jtcvs_2020_05_054
crossref_primary_10_1016_j_pathol_2024_05_012
crossref_primary_10_1038_s41379_021_00919_2
crossref_primary_10_3390_app14083451
crossref_primary_10_1002_int_22955
crossref_primary_10_1097_PAS_0000000000001151
crossref_primary_10_1007_s00535_022_01849_9
crossref_primary_10_3390_biomedicines11020335
crossref_primary_10_4103_sjoralsci_sjoralsci_19_22
crossref_primary_10_1016_j_hansur_2024_101717
crossref_primary_10_1109_RBME_2021_3131358
crossref_primary_10_1371_journal_pone_0294923
crossref_primary_10_1016_j_jbi_2019_103301
crossref_primary_10_1016_j_ebiom_2019_10_033
crossref_primary_10_1097_PPO_0000000000000498
crossref_primary_10_1109_ACCESS_2021_3081915
crossref_primary_10_3389_fonc_2020_601869
crossref_primary_10_1136_bmjopen_2022_069181
crossref_primary_10_1038_s41598_022_27211_w
crossref_primary_10_1016_j_modpat_2022_100015
crossref_primary_10_1038_s41598_018_37492_9
crossref_primary_10_1093_neuros_nyz452
crossref_primary_10_3390_cancers14235778
crossref_primary_10_1007_s00432_023_04967_w
crossref_primary_10_1038_s41598_019_50313_x
crossref_primary_10_1109_RBME_2023_3297604
crossref_primary_10_1002_2056_4538_12366
crossref_primary_10_4103_jpi_jpi_60_18
crossref_primary_10_1186_s12957_022_02531_3
crossref_primary_10_3390_ijms231911326
crossref_primary_10_1016_j_compmedimag_2021_101974
crossref_primary_10_4103_CTD_CTD_11_24
crossref_primary_10_3390_bioengineering10040458
crossref_primary_10_1097_XCS_0000000000001147
crossref_primary_10_3390_cancers14153780
crossref_primary_10_1016_j_gie_2023_06_056
crossref_primary_10_2139_ssrn_4132904
crossref_primary_10_1016_j_bspc_2020_101913
crossref_primary_10_1016_j_bbe_2019_05_010
crossref_primary_10_1016_j_csbj_2024_12_033
crossref_primary_10_1007_s10994_022_06207_7
crossref_primary_10_1002_rcs_70009
crossref_primary_10_1007_s11892_019_1189_3
crossref_primary_10_1016_j_modpat_2022_100033
crossref_primary_10_3389_fonc_2021_734015
crossref_primary_10_1038_s41598_020_77777_6
crossref_primary_10_1002_path_5819
crossref_primary_10_1016_j_annpat_2019_01_003
crossref_primary_10_1016_j_modpat_2023_100316
crossref_primary_10_1016_j_modpat_2024_100657
crossref_primary_10_2139_ssrn_3900405
crossref_primary_10_1038_s41598_021_87644_7
crossref_primary_10_5858_arpa_2023_0042_CP
crossref_primary_10_1109_ACCESS_2024_3385340
crossref_primary_10_1093_bioinformatics_btab380
crossref_primary_10_1371_journal_pgen_1011168
crossref_primary_10_1007_s10120_023_01451_9
crossref_primary_10_3390_cancers15153991
crossref_primary_10_1007_s11548_021_02549_0
crossref_primary_10_3390_diagnostics13061060
crossref_primary_10_3390_ijerph17061982
crossref_primary_10_1002_1878_0261_12920
crossref_primary_10_1016_j_ipm_2022_103225
crossref_primary_10_7717_peerj_8668
crossref_primary_10_1007_s00330_020_07544_8
crossref_primary_10_1016_j_modpat_2023_100327
crossref_primary_10_1016_j_inffus_2025_103027
crossref_primary_10_3390_biomedinformatics4010008
crossref_primary_10_1093_aje_kwae215
crossref_primary_10_1177_10935266241299073
crossref_primary_10_1093_database_baaa010
crossref_primary_10_1007_s40747_023_01175_4
crossref_primary_10_1109_TMI_2020_3043641
crossref_primary_10_1016_j_ajpath_2022_06_009
crossref_primary_10_1093_gigascience_giae057
crossref_primary_10_1093_nsr_nwae186
crossref_primary_10_4048_jbc_2023_26_e45
crossref_primary_10_1016_j_modpat_2024_100636
crossref_primary_10_1016_j_mpdhp_2023_07_002
crossref_primary_10_1186_s13000_023_01375_z
crossref_primary_10_1002_path_5831
crossref_primary_10_1038_s41431_024_01782_w
crossref_primary_10_1038_s41467_020_15432_4
crossref_primary_10_1053_j_ajkd_2019_05_020
crossref_primary_10_3390_cancers14071740
crossref_primary_10_1097_WNO_0000000000001358
crossref_primary_10_4103_jdmimsu_jdmimsu_436_21
crossref_primary_10_1145_3648359
crossref_primary_10_1016_j_ebiom_2021_103492
crossref_primary_10_1200_CCI_18_00002
crossref_primary_10_1001_jamaophthalmol_2018_1934
crossref_primary_10_3390_s22197492
crossref_primary_10_1016_j_identj_2022_03_001
crossref_primary_10_12677_ACM_2023_13122654
crossref_primary_10_3390_healthcare10010010
crossref_primary_10_1016_S2589_7500_20_30003_0
crossref_primary_10_1088_1742_6596_1642_1_012018
crossref_primary_10_1016_j_jpi_2022_100185
crossref_primary_10_1371_journal_pone_0220640
crossref_primary_10_3390_cancers11121860
crossref_primary_10_1080_09720502_2020_1857905
crossref_primary_10_1093_jamia_ocaa341
crossref_primary_10_1007_s11517_023_02829_8
crossref_primary_10_1093_jamia_ocaa342
crossref_primary_10_1016_j_neunet_2021_12_014
crossref_primary_10_1136_bjophthalmol_2018_313290
crossref_primary_10_1148_ryai_2019180019
crossref_primary_10_1007_s11042_022_12559_y
crossref_primary_10_12968_hmed_2018_79_12_676
crossref_primary_10_1002_mp_15966
crossref_primary_10_1016_j_compbiomed_2022_106228
crossref_primary_10_1148_radiol_2017171920
crossref_primary_10_1007_s13246_023_01249_0
crossref_primary_10_1016_j_preteyeres_2024_101291
crossref_primary_10_1016_S2589_7500_19_30123_2
crossref_primary_10_1038_s41591_024_02857_3
crossref_primary_10_1016_j_media_2020_101786
crossref_primary_10_1016_j_media_2020_101789
crossref_primary_10_3389_fimmu_2020_01036
crossref_primary_10_1109_TPAMI_2019_2936841
crossref_primary_10_1200_CCI_21_00103
crossref_primary_10_1016_j_inffus_2024_102690
crossref_primary_10_1073_pnas_1912707116
crossref_primary_10_1136_gutjnl_2020_322880
crossref_primary_10_1186_s12903_023_03251_0
crossref_primary_10_2139_ssrn_3986719
crossref_primary_10_1016_j_radonc_2024_110367
crossref_primary_10_1371_journal_pone_0275378
crossref_primary_10_1016_j_jpi_2022_100160
crossref_primary_10_1126_sciadv_abh2724
crossref_primary_10_3390_make3010012
crossref_primary_10_1053_j_jvca_2019_03_043
crossref_primary_10_1088_1361_6463_aca104
crossref_primary_10_1109_JTEHM_2022_3156851
crossref_primary_10_3390_diagnostics13081420
crossref_primary_10_1016_j_isci_2023_107635
crossref_primary_10_1007_s11042_023_15065_x
crossref_primary_10_1016_j_jpi_2022_100174
crossref_primary_10_1016_j_cjca_2021_03_003
crossref_primary_10_1097_DCR_0000000000002570
crossref_primary_10_1109_ACCESS_2023_3343465
crossref_primary_10_1109_JBHI_2023_3327489
crossref_primary_10_1016_j_eswa_2025_127164
crossref_primary_10_1049_ipr2_12652
crossref_primary_10_1136_bmj_2023_076175
crossref_primary_10_1038_s41698_023_00451_3
crossref_primary_10_3389_fneur_2022_791816
crossref_primary_10_1016_j_neucom_2019_10_085
crossref_primary_10_1145_3345318
crossref_primary_10_1109_MPUL_2018_2857226
crossref_primary_10_1177_10732748221095946
crossref_primary_10_1016_j_jpi_2022_100142
crossref_primary_10_1038_s41598_023_42045_w
crossref_primary_10_1148_ryai_210299
crossref_primary_10_1016_j_jpi_2022_100146
crossref_primary_10_1016_j_jpi_2022_100147
crossref_primary_10_1111_his_15327
crossref_primary_10_5009_gnl19334
crossref_primary_10_1097_PGP_0000000000000615
crossref_primary_10_1038_s41591_019_0574_4
crossref_primary_10_1634_theoncologist_2019_0261
crossref_primary_10_1109_TIP_2021_3127847
crossref_primary_10_3389_fmed_2020_00318
crossref_primary_10_1177_10668969221113475
crossref_primary_10_3390_app12020681
crossref_primary_10_1148_ryai_2019180061
crossref_primary_10_1016_j_jpi_2022_100151
crossref_primary_10_1016_j_compbiomed_2022_106265
crossref_primary_10_4155_bio_2023_0193
crossref_primary_10_1109_TMI_2019_2933656
crossref_primary_10_1016_j_bspc_2024_106351
crossref_primary_10_1177_0269216318810421
crossref_primary_10_3390_cancers13061325
crossref_primary_10_1016_j_cmpb_2021_106278
crossref_primary_10_3390_cancers15092491
crossref_primary_10_1186_s12967_022_03615_0
crossref_primary_10_1038_s41591_021_01343_4
crossref_primary_10_1038_s41598_022_05001_8
crossref_primary_10_1177_0840470419859017
crossref_primary_10_1080_13645706_2019_1575882
crossref_primary_10_2139_ssrn_3901785
crossref_primary_10_1038_s41598_025_86544_4
crossref_primary_10_1002_ijc_33260
crossref_primary_10_1038_s41746_023_00795_x
crossref_primary_10_1097_MD_0000000000035030
crossref_primary_10_1007_s42979_023_02413_9
crossref_primary_10_1016_j_eswa_2024_123783
crossref_primary_10_1038_s41551_021_00789_8
crossref_primary_10_1109_ACCESS_2019_2948430
crossref_primary_10_1016_j_jpi_2022_100139
crossref_primary_10_1007_s13402_019_00429_z
crossref_primary_10_4103_jpi_jpi_64_19
crossref_primary_10_1007_s00428_021_03213_3
crossref_primary_10_3390_cancers12102934
crossref_primary_10_1001_jamanetworkopen_2020_32269
crossref_primary_10_1001_jamanetworkopen_2019_7700
crossref_primary_10_1109_TMI_2018_2879369
crossref_primary_10_1111_his_15352
crossref_primary_10_1007_s11684_020_0762_0
crossref_primary_10_1038_s41598_024_80292_7
crossref_primary_10_1016_j_csbj_2023_08_012
crossref_primary_10_1109_TMI_2021_3091178
crossref_primary_10_1016_j_cose_2022_102933
crossref_primary_10_1155_2022_8904768
crossref_primary_10_1016_S2589_7500_23_00027_4
crossref_primary_10_1109_ACCESS_2020_3004766
crossref_primary_10_1038_s41598_018_35274_x
crossref_primary_10_2967_jnumed_122_264138
crossref_primary_10_35712_aig_v4_i3_64
crossref_primary_10_1007_s11760_024_03254_6
crossref_primary_10_1016_j_jpi_2022_100103
crossref_primary_10_1148_radiol_222976
crossref_primary_10_1002_ijc_33288
crossref_primary_10_1111_jgh_15673
crossref_primary_10_1016_j_pcl_2020_04_012
crossref_primary_10_1002_lpor_202401975
crossref_primary_10_1136_gutjnl_2023_329512
crossref_primary_10_1016_j_ajpath_2023_03_012
crossref_primary_10_1016_j_jpi_2022_100115
crossref_primary_10_1016_j_semcancer_2023_09_006
crossref_primary_10_1007_s11831_022_09733_8
crossref_primary_10_1038_s41598_018_22254_4
crossref_primary_10_1038_s41467_019_13647_8
crossref_primary_10_1038_s41591_019_0508_1
crossref_primary_10_3390_s22218454
crossref_primary_10_1038_s41598_022_11826_0
crossref_primary_10_1155_2021_9610830
crossref_primary_10_1007_s12257_023_0164_7
crossref_primary_10_3390_molecules29133164
crossref_primary_10_1109_TMI_2022_3157983
crossref_primary_10_1134_S1054661821010120
crossref_primary_10_1136_bmjopen_2022_067437
crossref_primary_10_3389_fonc_2023_1239788
crossref_primary_10_1038_s42256_020_0183_4
crossref_primary_10_3390_math9131574
crossref_primary_10_1016_j_cmpb_2022_106953
crossref_primary_10_3390_medicina56090455
crossref_primary_10_1038_s41598_020_65405_2
crossref_primary_10_1016_S1470_2045_19_30739_9
crossref_primary_10_1371_journal_pone_0213007
crossref_primary_10_1016_j_semcancer_2023_09_001
crossref_primary_10_1093_ilar_ily004
crossref_primary_10_1038_s41379_018_0073_z
crossref_primary_10_3390_cancers14215322
crossref_primary_10_1016_S2589_7500_19_30132_3
crossref_primary_10_1093_jncics_pkaa119
crossref_primary_10_1136_jclinpath_2020_206715
crossref_primary_10_1186_s12880_024_01260_1
crossref_primary_10_3390_jimaging6060039
crossref_primary_10_1177_00187208251320589
crossref_primary_10_1016_j_ajpath_2019_05_007
crossref_primary_10_3390_curroncol30020125
crossref_primary_10_3390_cancers14215312
crossref_primary_10_1007_s12551_018_0449_9
crossref_primary_10_1155_2021_5557168
crossref_primary_10_37549_AR2873
crossref_primary_10_1038_s41598_022_04951_3
crossref_primary_10_1183_13993003_01660_2018
crossref_primary_10_1038_s41598_023_46472_7
crossref_primary_10_1016_j_prp_2025_155836
crossref_primary_10_1016_j_clnesp_2023_07_082
crossref_primary_10_1007_s43441_021_00355_z
crossref_primary_10_1177_11769351241290608
crossref_primary_10_3390_genes10010018
crossref_primary_10_1038_s41467_021_21674_7
crossref_primary_10_1210_clinem_dgab870
crossref_primary_10_3389_fimmu_2024_1438247
crossref_primary_10_1145_3554729
crossref_primary_10_1161_CIRCEP_120_008518
crossref_primary_10_1016_j_imed_2023_08_001
crossref_primary_10_1109_JBHI_2020_2983206
crossref_primary_10_1111_ceo_13670
crossref_primary_10_1177_03009858231189205
crossref_primary_10_1016_j_acra_2020_12_001
crossref_primary_10_1038_s41467_021_21896_9
crossref_primary_10_1038_s41374_021_00537_1
crossref_primary_10_1109_JSTQE_2018_2859234
crossref_primary_10_3389_fpsyg_2019_02925
crossref_primary_10_1016_j_ipm_2019_102175
crossref_primary_10_4018_IJSSMET_2020040102
crossref_primary_10_5858_arpa_2019_0004_OA
crossref_primary_10_3390_diagnostics14050524
crossref_primary_10_3390_cancers14112775
crossref_primary_10_1088_1755_1315_440_4_042056
crossref_primary_10_1002_hbm_25219
crossref_primary_10_3390_app12010013
crossref_primary_10_3389_fbioe_2019_00300
crossref_primary_10_1109_TMI_2023_3264781
crossref_primary_10_1038_s41746_020_0274_y
crossref_primary_10_3390_cancers15225389
crossref_primary_10_1093_jmicro_dfac051
crossref_primary_10_1089_fpsam_2020_0556
crossref_primary_10_1155_2022_4601696
crossref_primary_10_3390_cancers13215368
crossref_primary_10_1002_lio2_742
crossref_primary_10_1371_journal_pone_0249450
crossref_primary_10_1016_j_mcpdig_2024_02_003
crossref_primary_10_1016_j_compbiomed_2023_107034
crossref_primary_10_1097_WNO_0000000000000827
crossref_primary_10_1016_j_modpat_2024_100508
crossref_primary_10_2196_16912
crossref_primary_10_1109_TMI_2023_3241204
crossref_primary_10_3390_cancers12082031
crossref_primary_10_3390_biomedinformatics4040115
crossref_primary_10_1002_ctm2_1299
crossref_primary_10_1016_j_jebdp_2024_102077
crossref_primary_10_1097_BSD_0000000000001208
crossref_primary_10_1016_j_urology_2021_09_027
crossref_primary_10_1177_1538574420954299
crossref_primary_10_1371_journal_pmed_1003246
crossref_primary_10_1177_0192623321993425
crossref_primary_10_1186_s12913_020_4925_0
crossref_primary_10_1038_s41523_018_0084_4
crossref_primary_10_1097_BOT_0000000000001663
crossref_primary_10_35713_aic_v3_i2_17
crossref_primary_10_1111_his_13991
crossref_primary_10_1038_s41598_020_66333_x
crossref_primary_10_1109_ACCESS_2021_3060926
crossref_primary_10_3390_jcm11082143
crossref_primary_10_1177_00187208231197347
crossref_primary_10_1109_TMI_2023_3263010
crossref_primary_10_1007_s00521_024_09660_8
crossref_primary_10_1109_JBHI_2024_3426068
crossref_primary_10_1016_j_bpg_2021_101745
crossref_primary_10_1109_TMI_2019_2891305
crossref_primary_10_1051_shsconf_202110204019
crossref_primary_10_1016_j_jacc_2018_03_523
crossref_primary_10_3390_diagnostics14111115
crossref_primary_10_1002_imo2_19
crossref_primary_10_1097_MS9_0000000000001733
crossref_primary_10_3390_bioengineering11121243
crossref_primary_10_1007_s42979_022_01076_2
crossref_primary_10_1007_s11042_024_18810_y
crossref_primary_10_1136_flgastro_2018_101047
crossref_primary_10_1016_j_ejca_2021_08_039
crossref_primary_10_1007_s12553_024_00825_y
crossref_primary_10_1007_s00281_021_00847_y
crossref_primary_10_1038_s41598_024_63022_x
crossref_primary_10_1016_j_cmpbup_2023_100097
crossref_primary_10_3389_fmed_2021_746307
crossref_primary_10_3390_cancers11091325
crossref_primary_10_1016_j_media_2021_102004
crossref_primary_10_1007_s00330_021_08320_y
crossref_primary_10_1088_2057_1976_ac53bd
crossref_primary_10_1038_s43018_020_0099_2
crossref_primary_10_1177_1541931218621276
crossref_primary_10_3389_fbioe_2019_00246
crossref_primary_10_1148_radiol_2019191225
crossref_primary_10_1093_bib_bbaa237
crossref_primary_10_1007_s10055_021_00550_1
crossref_primary_10_1016_j_ajpath_2021_02_024
crossref_primary_10_1038_s41598_021_98857_1
crossref_primary_10_3389_fphys_2024_1279982
crossref_primary_10_3390_math11010110
crossref_primary_10_1007_s11227_020_03321_y
crossref_primary_10_1364_BOE_530534
crossref_primary_10_3390_diagnostics14192174
crossref_primary_10_4103_jpi_jpi_24_19
crossref_primary_10_1007_s00330_023_09465_8
crossref_primary_10_1038_s41379_019_0434_2
crossref_primary_10_1155_2022_6333573
crossref_primary_10_1007_s11227_020_03432_6
crossref_primary_10_1007_s13402_019_00445_z
crossref_primary_10_1155_2022_1918379
crossref_primary_10_3390_jcm9061981
crossref_primary_10_3892_ijo_2023_5555
crossref_primary_10_1097_MPG_0000000000003057
crossref_primary_10_1002_pros_24721
crossref_primary_10_1002_cjp2_127
crossref_primary_10_1016_j_critrevonc_2022_103601
crossref_primary_10_3389_fphy_2022_991279
crossref_primary_10_1109_TFUZZ_2024_3373534
crossref_primary_10_1007_s42979_021_00784_5
crossref_primary_10_1038_s41598_023_27743_9
crossref_primary_10_1038_s41598_020_61055_6
crossref_primary_10_1109_TMI_2020_3046636
crossref_primary_10_1200_EDBK_238891
crossref_primary_10_1001_jamanetworkopen_2020_20961
crossref_primary_10_3389_fonc_2022_830910
crossref_primary_10_1111_ijlh_13089
crossref_primary_10_3390_ijms21186652
crossref_primary_10_1109_MTS_2022_3197273
crossref_primary_10_1016_j_thorsurg_2019_03_011
crossref_primary_10_1111_his_14820
crossref_primary_10_1073_pnas_1903376116
crossref_primary_10_1109_ACCESS_2019_2929258
crossref_primary_10_1097_DCR_0000000000002931
crossref_primary_10_3389_fonc_2023_1215729
crossref_primary_10_1016_j_esmorw_2024_100062
crossref_primary_10_1038_s41746_019_0112_2
crossref_primary_10_1097_GOX_0000000000002113
crossref_primary_10_1097_MCG_0000000000001423
crossref_primary_10_1200_CCI_22_00181
crossref_primary_10_1016_j_media_2024_103342
crossref_primary_10_1016_j_bspc_2022_104428
crossref_primary_10_1038_s41598_022_17606_0
crossref_primary_10_11622_smedj_2019047
crossref_primary_10_3390_healthcare11182518
crossref_primary_10_1002_mef2_38
crossref_primary_10_1016_j_future_2020_05_007
crossref_primary_10_1016_j_labinv_2023_100225
crossref_primary_10_1038_s41598_020_64156_4
crossref_primary_10_1097_CCO_0000000000000731
crossref_primary_10_1109_ACCESS_2019_2913255
crossref_primary_10_1007_s00428_021_03244_w
crossref_primary_10_1016_j_jpi_2023_100298
crossref_primary_10_1007_s10916_018_1151_y
crossref_primary_10_1073_pnas_1912400117
crossref_primary_10_1007_s10278_019_00180_9
crossref_primary_10_1109_JBHI_2021_3108999
crossref_primary_10_1088_1361_6560_ac0f30
crossref_primary_10_1038_s41467_021_25138_w
crossref_primary_10_3389_fbioe_2022_857377
crossref_primary_10_1155_2021_5682288
crossref_primary_10_3390_diagnostics13101793
crossref_primary_10_1186_s13000_020_00957_5
crossref_primary_10_1016_j_dajour_2023_100298
crossref_primary_10_1038_s41591_018_0300_7
crossref_primary_10_3390_cancers17020197
crossref_primary_10_1177_00187208221111236
crossref_primary_10_1038_s41597_024_03473_z
crossref_primary_10_1016_j_compbiomed_2024_109149
crossref_primary_10_1038_s41598_023_40833_y
crossref_primary_10_1109_TMI_2018_2867350
crossref_primary_10_1088_1361_6560_acde3f
crossref_primary_10_1097_PAP_0000000000000322
crossref_primary_10_1016_j_radonc_2021_06_019
crossref_primary_10_1111_jdv_16185
crossref_primary_10_1007_s00167_021_06838_8
crossref_primary_10_1093_jnci_djaa008
crossref_primary_10_1002_path_5921
crossref_primary_10_1053_j_semnuclmed_2025_01_008
crossref_primary_10_3390_diagnostics12020309
crossref_primary_10_1038_s43856_022_00165_w
crossref_primary_10_1016_j_bj_2021_08_011
crossref_primary_10_1016_j_compmedimag_2021_101866
crossref_primary_10_1097_CM9_0000000000001401
crossref_primary_10_1007_s00399_020_00735_2
crossref_primary_10_1016_j_compmedimag_2021_101865
crossref_primary_10_1038_s41598_023_30944_x
crossref_primary_10_1111_den_13507
crossref_primary_10_1016_j_jpi_2025_100421
crossref_primary_10_1109_TVCG_2018_2864816
crossref_primary_10_1016_j_compmedimag_2021_101861
crossref_primary_10_1001_jamanetworkopen_2019_1095
crossref_primary_10_1080_0142159X_2023_2180340
crossref_primary_10_14202_vetworld_2024_1667_1671
crossref_primary_10_1088_1361_6560_ac910a
crossref_primary_10_1016_j_ejso_2024_108369
crossref_primary_10_1007_s00259_023_06213_4
crossref_primary_10_1007_s40846_020_00545_4
crossref_primary_10_1007_s11042_024_20391_9
crossref_primary_10_3390_cancers13195010
crossref_primary_10_3390_diagnostics12051042
crossref_primary_10_1136_bmjnph_2020_000200
crossref_primary_10_1016_j_amjsurg_2021_05_002
crossref_primary_10_1007_s00330_023_10483_9
crossref_primary_10_1007_s10278_022_00618_7
crossref_primary_10_1038_d41586_018_02881_7
crossref_primary_10_1038_s41598_025_91587_8
crossref_primary_10_3390_jcm10225326
crossref_primary_10_1097_01_APO_0000656988_16221_04
crossref_primary_10_1016_j_bspc_2022_103564
crossref_primary_10_2139_ssrn_4141964
crossref_primary_10_1016_j_compbiomed_2022_106335
crossref_primary_10_1097_CM9_0000000000000532
crossref_primary_10_1038_s41598_019_50567_5
crossref_primary_10_1016_j_modpat_2024_100531
crossref_primary_10_1016_j_media_2023_103047
crossref_primary_10_1016_j_mlwa_2024_100592
crossref_primary_10_1016_j_media_2021_101996
crossref_primary_10_1016_j_oraloncology_2020_104885
crossref_primary_10_1152_physrev_00033_2022
crossref_primary_10_1016_j_modpat_2023_100216
crossref_primary_10_1097_MD_0000000000015845
crossref_primary_10_1007_s10462_021_10121_0
crossref_primary_10_1016_j_crmeth_2023_100517
crossref_primary_10_1016_j_ejmp_2021_04_006
crossref_primary_10_1016_j_mlwa_2024_100579
crossref_primary_10_1016_j_bspc_2025_107599
crossref_primary_10_1055_s_0044_1791954
crossref_primary_10_1186_s13058_024_01794_w
crossref_primary_10_1038_s41586_024_07894_z
crossref_primary_10_1177_20552076221114204
crossref_primary_10_1016_j_media_2020_101695
crossref_primary_10_2214_AJR_18_20464
crossref_primary_10_1080_10408363_2018_1561640
crossref_primary_10_1007_s00292_018_0540_9
crossref_primary_10_1056_NEJMra1814259
crossref_primary_10_1371_journal_pone_0231653
crossref_primary_10_1016_j_chbah_2023_100021
crossref_primary_10_3748_wjg_v27_i21_2818
crossref_primary_10_17085_apm_2018_13_3_248
crossref_primary_10_1007_s00432_022_04161_4
crossref_primary_10_15406_jsrt_2024_09_00168
crossref_primary_10_7181_acfs_2021_00507
crossref_primary_10_3389_fonc_2024_1437252
crossref_primary_10_3348_jksr_2019_80_2_259
crossref_primary_10_1016_j_seizure_2021_05_023
crossref_primary_10_1136_bjophthalmol_2018_313173
crossref_primary_10_1159_000503291
crossref_primary_10_1016_j_media_2021_101977
crossref_primary_10_1007_s10489_020_01978_9
crossref_primary_10_1016_j_neucom_2020_04_008
crossref_primary_10_3389_fnins_2023_1217629
crossref_primary_10_1002_path_5509
crossref_primary_10_1109_ACCESS_2020_2993536
crossref_primary_10_1038_s41598_024_56820_w
crossref_primary_10_1016_j_ejro_2021_100388
crossref_primary_10_1109_ACCESS_2019_2898044
crossref_primary_10_3390_cancers16213619
crossref_primary_10_3390_healthcare9101298
crossref_primary_10_1038_s41746_019_0191_0
crossref_primary_10_1002_wcms_1568
crossref_primary_10_1007_s12072_022_10321_y
crossref_primary_10_1109_TMI_2022_3198526
crossref_primary_10_1016_j_jocn_2019_05_019
crossref_primary_10_1109_ACCESS_2019_2923002
crossref_primary_10_2139_ssrn_3895629
crossref_primary_10_7861_fhj_2021_0095
crossref_primary_10_1016_j_media_2023_103000
crossref_primary_10_1111_den_13880
crossref_primary_10_3390_diagnostics13010100
crossref_primary_10_1111_cas_14927
crossref_primary_10_1016_j_cmpb_2023_107816
crossref_primary_10_1016_j_media_2021_101955
crossref_primary_10_3390_cancers14143349
crossref_primary_10_1097_MOU_0000000000000813
crossref_primary_10_3389_fgene_2021_661109
crossref_primary_10_3390_diagnostics11112074
crossref_primary_10_5858_arpa_2018_0223_CP
crossref_primary_10_1016_j_jisa_2021_102949
crossref_primary_10_1038_s41551_023_01056_8
crossref_primary_10_1016_j_csbj_2021_09_001
crossref_primary_10_2139_ssrn_4019923
crossref_primary_10_29328_journal_apcr_1001040
crossref_primary_10_1007_s10549_021_06098_7
crossref_primary_10_1177_0300985818771146
crossref_primary_10_1109_JBHI_2020_2983730
crossref_primary_10_3389_fonc_2022_894978
crossref_primary_10_1109_RBME_2020_3013489
crossref_primary_10_1016_j_jpi_2023_100305
crossref_primary_10_1158_1078_0432_CCR_19_1495
crossref_primary_10_3390_cancers14215424
crossref_primary_10_1097_PAP_0000000000000414
crossref_primary_10_1111_his_15205
crossref_primary_10_1002_cyto_a_23701
crossref_primary_10_1093_gigascience_giac056
crossref_primary_10_3390_diagnostics10121060
crossref_primary_10_5858_arpa_2022_0457_RA
crossref_primary_10_1007_s00423_021_02348_w
crossref_primary_10_1021_acsnano_9b08151
crossref_primary_10_1109_ACCESS_2022_3176091
crossref_primary_10_1016_S2589_7500_19_30004_4
crossref_primary_10_1038_s43018_024_00788_z
crossref_primary_10_1109_JBHI_2023_3298798
crossref_primary_10_4236_oju_2021_111003
crossref_primary_10_1186_s12911_022_01776_y
crossref_primary_10_1007_s43681_020_00035_y
crossref_primary_10_1038_s41416_021_01511_w
crossref_primary_10_1097_MOO_0000000000000697
crossref_primary_10_1073_pnas_2111547119
crossref_primary_10_3390_life13041029
crossref_primary_10_1016_j_lungcan_2020_07_003
crossref_primary_10_1016_S2352_3026_20_30121_6
crossref_primary_10_1038_s41433_019_0577_x
crossref_primary_10_1016_j_tibtech_2024_02_009
crossref_primary_10_1016_S1470_2045_23_00061_X
crossref_primary_10_3390_horticulturae10030197
crossref_primary_10_1097_ALN_0000000000002384
crossref_primary_10_1155_2021_6683931
crossref_primary_10_1109_ACCESS_2023_3240515
crossref_primary_10_1093_jnci_djy222
crossref_primary_10_1038_s41379_021_00807_9
crossref_primary_10_1016_j_modpat_2024_100496
crossref_primary_10_3390_s23020988
crossref_primary_10_1111_resp_14344
crossref_primary_10_1186_s12967_020_02658_5
crossref_primary_10_1007_s10585_019_09975_0
crossref_primary_10_1109_JBHI_2024_3485703
crossref_primary_10_1038_s41698_025_00804_0
crossref_primary_10_1111_cts_12884
crossref_primary_10_1038_s41585_022_00583_4
crossref_primary_10_1016_j_mcpro_2021_100140
crossref_primary_10_1155_2021_8890513
crossref_primary_10_3934_mbe_2023496
crossref_primary_10_2174_0115701638262066231030052520
crossref_primary_10_1200_CCI_24_00193
crossref_primary_10_1016_j_modpat_2024_100487
crossref_primary_10_1016_j_molmed_2024_11_009
crossref_primary_10_4103_jpi_jpi_53_18
crossref_primary_10_1007_s10585_021_10144_5
crossref_primary_10_1007_s00432_023_04787_y
crossref_primary_10_3390_jcm9113697
crossref_primary_10_1007_s42519_021_00193_0
crossref_primary_10_1016_j_ophtha_2018_11_015
crossref_primary_10_1080_16878507_2021_1981753
crossref_primary_10_1002_path_5565
crossref_primary_10_1016_S1470_2045_19_30738_7
crossref_primary_10_3390_mps7060096
crossref_primary_10_1016_j_modpat_2023_100195
crossref_primary_10_1016_j_oooo_2021_10_004
crossref_primary_10_1016_j_preteyeres_2018_07_004
crossref_primary_10_1016_j_mlwa_2021_100198
crossref_primary_10_3390_cancers12020507
crossref_primary_10_1007_s12021_020_09492_6
crossref_primary_10_2174_1381612825666190320135137
crossref_primary_10_1016_j_eswa_2024_125862
crossref_primary_10_1186_s13000_021_01085_4
crossref_primary_10_1016_j_tranon_2021_101161
crossref_primary_10_1038_s41598_021_87748_0
crossref_primary_10_1109_JPROC_2021_3052449
crossref_primary_10_2139_ssrn_3935673
crossref_primary_10_1016_j_compbiomed_2024_108714
crossref_primary_10_1038_s41598_023_40424_x
crossref_primary_10_1007_s11060_024_04665_8
crossref_primary_10_1109_TMI_2020_3013246
crossref_primary_10_1111_jgh_15306
crossref_primary_10_3389_fonc_2022_927426
crossref_primary_10_1109_TPAMI_2022_3209652
crossref_primary_10_1001_jamanetworkopen_2019_5822
crossref_primary_10_1016_j_ajpath_2024_04_007
crossref_primary_10_1016_j_fmre_2021_06_013
crossref_primary_10_1111_codi_14991
crossref_primary_10_1097_RCT_0000000000001575
crossref_primary_10_1111_ddg_15194_g
crossref_primary_10_3748_wjg_v28_i22_2457
crossref_primary_10_1002_path_5586
crossref_primary_10_1093_ehjimp_qyae141
crossref_primary_10_1093_gigascience_giy065
crossref_primary_10_1093_jjco_hyae066
crossref_primary_10_3390_sym12010154
crossref_primary_10_1038_s41374_021_00601_w
crossref_primary_10_5334_egems_287
crossref_primary_10_1177_1756284820910659
crossref_primary_10_1158_1078_0432_CCR_20_3159
crossref_primary_10_1167_tvst_8_6_37
crossref_primary_10_31083_j_fbl2709254
crossref_primary_10_1038_s41591_021_01620_2
crossref_primary_10_1097_APO_0000000000000406
crossref_primary_10_1001_jama_2019_4914
crossref_primary_10_1016_j_annonc_2021_09_007
crossref_primary_10_1016_j_compbiomed_2021_104726
crossref_primary_10_1038_s41523_021_00268_y
crossref_primary_10_1007_s00330_020_06771_3
crossref_primary_10_1038_s43018_025_00917_2
crossref_primary_10_1097_GCO_0000000000000559
crossref_primary_10_1007_s00535_022_01908_1
crossref_primary_10_3390_app10124059
crossref_primary_10_1093_jmp_jhab036
crossref_primary_10_1093_nutrit_nuac033
crossref_primary_10_3390_cancers13102419
crossref_primary_10_1016_j_bspc_2024_106899
crossref_primary_10_1016_j_cmpb_2022_106655
crossref_primary_10_1016_j_acra_2024_10_011
crossref_primary_10_1016_j_prp_2024_155671
crossref_primary_10_3390_sym13010102
crossref_primary_10_1007_s11060_023_04306_6
crossref_primary_10_1002_ctm2_129
crossref_primary_10_1038_s41467_025_57587_y
crossref_primary_10_1016_j_dld_2019_12_146
crossref_primary_10_1016_j_ijmedinf_2019_103973
crossref_primary_10_3390_ijerph192114327
crossref_primary_10_1038_s41568_022_00502_0
crossref_primary_10_1145_3491223
crossref_primary_10_1038_s41379_021_00838_2
crossref_primary_10_3390_jcm7100322
crossref_primary_10_4103_jpi_jpi_5_20
crossref_primary_10_1016_j_chemolab_2023_104820
crossref_primary_10_3390_cancers11030361
crossref_primary_10_1038_s41388_023_02797_1
crossref_primary_10_1109_RBME_2024_3425769
crossref_primary_10_1016_j_media_2022_102685
crossref_primary_10_1109_ACCESS_2021_3107163
crossref_primary_10_1109_ACCESS_2024_3450121
crossref_primary_10_1016_j_ijmedinf_2018_11_007
crossref_primary_10_1007_s11695_021_05548_x
crossref_primary_10_1038_s41551_019_0472_6
crossref_primary_10_1002_gcc_23177
crossref_primary_10_2174_0929867328666211108110731
crossref_primary_10_1038_s41379_020_0529_9
crossref_primary_10_1038_s41379_020_00674_w
crossref_primary_10_1259_bjr_20210637
crossref_primary_10_1002_jbio_202000227
crossref_primary_10_1038_s41379_022_01073_z
crossref_primary_10_1016_j_compmedimag_2022_102136
crossref_primary_10_1016_j_ccell_2023_08_006
crossref_primary_10_1001_jamaophthalmol_2019_3501
crossref_primary_10_1038_s41523_021_00357_y
crossref_primary_10_1093_etojnl_vgae038
crossref_primary_10_3389_fonc_2022_879308
crossref_primary_10_1016_j_ctrv_2022_102498
crossref_primary_10_1007_s11604_018_0793_5
crossref_primary_10_1016_j_jfma_2022_05_004
crossref_primary_10_1007_s11063_022_10928_0
crossref_primary_10_1111_his_14779
crossref_primary_10_1016_j_cclet_2024_109884
crossref_primary_10_1186_s12909_024_05760_0
crossref_primary_10_1111_his_14304
crossref_primary_10_1038_s41598_020_60969_5
crossref_primary_10_1007_s13139_023_00821_6
ContentType Journal Article
Copyright Copyright American Medical Association Dec 12, 2017
Copyright 2017 American Medical Association. All Rights Reserved.
Copyright_xml – notice: Copyright American Medical Association Dec 12, 2017
– notice: Copyright 2017 American Medical Association. All Rights Reserved.
CorporateAuthor and the CAMELYON16 Consortium
the CAMELYON16 Consortium
CorporateAuthor_xml – name: and the CAMELYON16 Consortium
– name: the CAMELYON16 Consortium
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7TK
7TS
7U7
7U9
8FD
C1K
FR3
H94
K9.
M7N
NAPCQ
P64
RC3
7X8
5PM
ADTOC
UNPAY
DOI 10.1001/jama.2017.14585
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Toxicology Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Nursing & Allied Health Premium
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Machine Learning Detection of Breast Cancer Lymph Node Metastases
EISSN 1538-3598
EndPage 2210
ExternalDocumentID 10.1001/jama.2017.14585
PMC5820737
29234806
10_1001_jama_2017_14585
2665774
Genre Journal Article
Comparative Study
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID ---
-ET
-~X
.55
.XZ
0R~
0WA
186
18M
29J
2CT
2FS
2KS
2WC
354
39C
4.4
53G
5GY
5RE
6TJ
85S
AAIKC
AAMNW
AAQOH
AAQQT
AAWTL
ABBLC
ABCQX
ABEHJ
ABIVO
ABOCM
ABPMR
ABPPZ
ABRSH
ABWJO
ACGFS
ACNCT
ACPRK
ACQAM
ADBBV
ADUKH
AETEA
AFCHL
AFFDN
AFFNX
AFRAH
AGFXO
AGHSJ
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AMJDE
ANMPU
BKOMP
BRYMA
C45
CJ0
CS3
EAM
EBD
EBS
EJD
EMOBN
EX3
F5P
GX1
HF~
KOO
KQ8
L7B
MVM
N4W
N9A
NEJ
NYF
OBH
OCB
OGEVE
OHH
OK1
OMK
OVD
P2P
PQQKQ
QJJ
RAJ
RNS
S10
SJN
SV3
TEORI
TN5
UHB
UKR
UPT
VVN
WH7
WOW
X7M
XHN
XSW
XZL
YCJ
YFH
YOC
YPV
YQT
YQY
YR2
YSK
YYM
YZZ
ZA5
ZCA
~H1
AAYXX
ACAHW
ADXHL
ARBJA
CITATION
H13
YR5
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7TK
7TS
7U7
7U9
8FD
ABUFD
C1K
FR3
H94
K9.
M7N
NAPCQ
P64
RC3
7X8
5PM
.GJ
1CY
1KJ
1VV
3O-
9M8
AAOGT
AAYJJ
ABDPE
ABEFU
ACBNA
ACCUC
ACTDY
ADTOC
AFHKK
AI.
D0S
FA8
J5H
NHB
OHT
P-O
SKT
UAP
UBC
UBY
UHU
UMD
UNPAY
VH1
WHG
WOQ
XJT
YHZ
YQI
YQJ
YRY
YXB
YYQ
ZCG
ZGI
ZXP
ID FETCH-LOGICAL-a474t-a49d2e4e347054e81ea77ba26145ac9f75f06b12909d347c01084b9408b1527a3
IEDL.DBID UNPAY
ISSN 0098-7484
1538-3598
IngestDate Sun Oct 26 03:43:51 EDT 2025
Thu Aug 21 18:34:25 EDT 2025
Fri Sep 05 13:30:50 EDT 2025
Tue Oct 07 06:07:05 EDT 2025
Mon Jul 21 05:55:19 EDT 2025
Wed Oct 01 02:35:48 EDT 2025
Thu Apr 24 23:03:49 EDT 2025
Fri Jul 05 02:03:35 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a474t-a49d2e4e347054e81ea77ba26145ac9f75f06b12909d347c01084b9408b1527a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://jamanetwork.com/journals/jama/articlepdf/2665774/jama_ehteshami_bejnordi_2017_oi_170113.pdf
PMID 29234806
PQID 1989887940
PQPubID 42339
PageCount 12
ParticipantIDs unpaywall_primary_10_1001_jama_2017_14585
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5820737
proquest_miscellaneous_1976444862
proquest_journals_1989887940
pubmed_primary_29234806
crossref_primary_10_1001_jama_2017_14585
crossref_citationtrail_10_1001_jama_2017_14585
ama_primary_2665774
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-12
20171212
PublicationDateYYYYMMDD 2017-12-12
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-12
  day: 12
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Chicago
PublicationSubtitle The Journal of the American Medical Association
PublicationTitle JAMA : the journal of the American Medical Association
PublicationTitleAlternate JAMA
PublicationYear 2017
Publisher American Medical Association
Publisher_xml – name: American Medical Association
References 29234791 - JAMA. 2017 Dec 12;318(22):2184-2186
29542717 - Nature. 2018 Mar 15;555(7696):285
29234793 - JAMA. 2017 Dec 12;318(22):2250-2251
29392271 - JAMA Oncol. 2018 Mar 1;4(3):403-404
29710156 - JAMA. 2018 Apr 24;319(16):1725-1726
References_xml – reference: 29710156 - JAMA. 2018 Apr 24;319(16):1725-1726
– reference: 29234791 - JAMA. 2017 Dec 12;318(22):2184-2186
– reference: 29234793 - JAMA. 2017 Dec 12;318(22):2250-2251
– reference: 29542717 - Nature. 2018 Mar 15;555(7696):285
– reference: 29392271 - JAMA Oncol. 2018 Mar 1;4(3):403-404
SSID ssj0000137
Score 2.7174804
Snippet IMPORTANCE: Application of deep learning algorithms to whole-slide pathology images can potentially improve diagnostic accuracy and efficiency. OBJECTIVE:...
Application of deep learning algorithms to whole-slide pathology images can potentially improve diagnostic accuracy and efficiency. Assess the performance of...
IMPORTANCE Application of deep learning algorithms to whole-slide pathology images can potentially improve diagnostic accuracy and efficiency. OBJECTIVE Assess...
Application of deep learning algorithms to whole-slide pathology images can potentially improve diagnostic accuracy and efficiency.ImportanceApplication of...
This diagnostic accuracy study compares the ability of machine learning algorithms vs clinical pathologists to detect cancer metastases in whole-slide images...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
ama
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2199
SubjectTerms Algorithms
Breast cancer
Breast Neoplasms - pathology
Cancer
Competition
Computer simulation
Data processing
Deep learning
Diagnostic systems
Female
Humans
Image classification
Learning
Learning algorithms
Lymph nodes
Lymphatic Metastasis - diagnosis
Lymphatic Metastasis - pathology
Lymphatic system
Machine Learning
Medical diagnosis
Metastases
Metastasis
Original Investigation
Pathologists
Pathology
Pathology, Clinical
ROC Curve
Simulation
Workflow
Title Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer
URI http://dx.doi.org/10.1001/jama.2017.14585
https://www.ncbi.nlm.nih.gov/pubmed/29234806
https://www.proquest.com/docview/1989887940
https://www.proquest.com/docview/1976444862
https://pubmed.ncbi.nlm.nih.gov/PMC5820737
https://jamanetwork.com/journals/jama/articlepdf/2665774/jama_ehteshami_bejnordi_2017_oi_170113.pdf
UnpaywallVersion publishedVersion
Volume 318
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1538-3598
  dateEnd: 20250505
  omitProxy: true
  ssIdentifier: ssj0000137
  issn: 0098-7484
  databaseCode: KQ8
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB61qQQnHuVlVKpF4gAHp3G89q6PoaWqgEQgEVFOq1173RhSO0o3QuXMD2fGj6SlQogDlxw8s6vs7Hjnm-zkG4AXQaJFZKXxMy5SamEW-dLYoT80eWIy3PCwrnYfT-KTKX97Gp1uQdr9F4bYgMqmALo-p1uLXtSCg9aaiyw_GNKVgeD1c2Vnji5Izgtl7NcSs7ZCYWATqioU8Y0HmC9m-TbsxBEC9h7sTCcfRl-usmk2rKrSJz67jgBow00UCDxQImq3vGFj7SLYDVh6s7ry9qpc6Mvvej6_ErqO78LPbtFNxcq3_sqZfvrjNz7I_2yVe3Cnhb5s1MxzH7ZsuQu3xu3l_gNwR03ZH4rZaE0YyqqcHVm7YC0T7Bkbzc-qZeFm5xcMETcKXV1OVpLm-0v0TjapMsvG1mmEvjgPK0pWd-pkn3EYe011-I4dkr8vH8L0-M2nwxO_bQrhay64w88kG1puQy4QbVoZWC2E0ZgI8kinSS6ifBAb-nUtyVAnxXxTcpPwgTTUwVeHj6BXVqV9Aiy0BmN4GgVa5zirkcJmRhgzMEbGYRp4sEtmXDS0H6q1rQf9bvtV2vKoUzuPuWoYoDGfolG1pWuv8eDlekA31x9V9zp_Ut0eK6pqw1CAS_Dg-VqMpwBd7aBbVCvSEQhsOaanHjxu3G_zvRHDczmIPRDXHHOtQAzj1yVlMauZxiPEhyIUHrxau_DflvD0H3T3oOeWK_sMYZ0z-7D97qPcb1_OXyS_UPI
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVIITj_IyKmiROMDBaRyvvetjaKkqRCIORJTTatdeN4bUjtKNUDnzw5nxKy0VQhy45OCZXWVnxzvfZCffALwKEi0iK42fcZFSC7PIl8aO_bHJE5Phhod1tft0Fp_M-fvT6HQH0u6_MMQGVDYF0PU53Vr0ohYctNZcZfnBmK4MBK-fK7twdEFyXihjv5aYtRUKA5tQVaGIbzzAfDHLb8FuHCFgH8DufPZx8uUqm2bDqip94rPrCIC23ESBwAMlonbLWzbWLoLdgKU3qyvvbMqVvvyul8sroev4HvzsFt1UrHwbbpwZpj9-44P8z1a5D3db6MsmzTwPYMeWe3B72l7uPwR31JT9oZhNesJQVuXsyNoVa5lgz9hkeVatC7c4v2CIuFHo6nKykjQ_XKJ3slmVWTa1TiP0xXlYUbK6Uyf7jMPYW6rDd-yQ_H39CObH7z4dnvhtUwhfc8EdfibZ2HIbcoFo08rAaiGMxkSQRzpNchHlo9jQr2tJhjop5puSm4SPpKEOvjp8DIOyKu1TYKE1GMPTKNA6x1mNFDYzwpiRMTIO08CDPTLjqqH9UK1tPRh226_Slked2nksVcMAjfkUjaotXXuNB6_7Ad1cf1Td7_xJdXusqKoNQwEuwYOXvRhPAbraQbeoNqQjENhyTE89eNK43_Z7I4bnchR7IK45Zq9ADOPXJWWxqJnGI8SHIhQevOld-G9LePYPuvswcOuNfY6wzpkX7Wv5C0SwT_0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnostic+Assessment+of+Deep+Learning+Algorithms+for+Detection+of+Lymph+Node+Metastases+in+Women+With+Breast+Cancer&rft.jtitle=JAMA+%3A+the+journal+of+the+American+Medical+Association&rft.au=Ehteshami+Bejnordi%2C+Babak&rft.au=Veta%2C+Mitko&rft.au=Johannes+van+Diest%2C+Paul&rft.au=van+Ginneken%2C+Bram&rft.date=2017-12-12&rft.issn=1538-3598&rft.eissn=1538-3598&rft.volume=318&rft.issue=22&rft.spage=2199&rft_id=info:doi/10.1001%2Fjama.2017.14585&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-7484&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-7484&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-7484&client=summon