Visible Reflectance Hyperspectral Imaging: Characterization of a Noninvasive, in Vivo System for Determining Tissue Perfusion
We characterize a visible reflectance hyperspectral imaging system for noninvasive, in vivo, quantitative analysis of human tissue in a clinical environment. The subject area is illuminated with a quartz−tungsten−halogen light source, and the reflected light is spectrally discriminated by a liquid c...
Saved in:
Published in | Analytical chemistry (Washington) Vol. 74; no. 9; pp. 2021 - 2028 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
01.05.2002
|
Subjects | |
Online Access | Get full text |
ISSN | 0003-2700 1520-6882 |
DOI | 10.1021/ac011275f |
Cover
Abstract | We characterize a visible reflectance hyperspectral imaging system for noninvasive, in vivo, quantitative analysis of human tissue in a clinical environment. The subject area is illuminated with a quartz−tungsten−halogen light source, and the reflected light is spectrally discriminated by a liquid crystal tunable filter (LCTF) and imaged onto a silicon charge-coupled device detector. The LCTF is continuously tunable within its useful visible spectral range (525−725 nm) with an average spectral full width at half-height bandwidth of 0.38 nm and an average transmittance of 10.0%. A standard resolution target placed 5.5 ft from the system results in a field of view with a 17-cm diameter and an optimal spatial resolution of 0.45 mm. The measured reflectance spectra are quantified in terms of apparent absorbance and formatted as a hyperspectral image cube. As a clinical example, we examine a model of vascular dysfunction involving both ischemia and reactive hyperemia during tissue reperfusion. In this model, spectral images, based upon oxyhemoglobin and deoxyhemoblobin signals in the 525−645-nm region, are deconvoluted using a multivariate least-squares regression analysis to visualize the spatial distribution of the percentages of oxyhemoglobin and deoxyhemoglobin in specific skin tissue areas. |
---|---|
AbstractList | Zuzak et al characterize a visible hyperspectral imaging system for noninvasive, in vivo, quantitative analysis of human tissue in a clinical environment. The subject area is illuminated with a quartz-tungsten-halogen light source, and the reflected light is spectrally discriminated by a liquid crystal tunable filter and imaged onto a silicon charge-coupled device detector. We characterize a visible reflectance hyperspectral imaging system for noninvasive, in vivo, quantitative analysis of human tissue in a clinical environment. The subject area is illuminated with a quartz-tungsten-halogen light source, and the reflected light is spectrally discriminated by a liquid crystal tunable filter (LCTF) and imaged onto a silicon charge-coupled device detector. The LCTF is continuously tunable within its useful visible spectral range (525-725 nm) with an average spectral full width at half-height bandwidth of 0.38 nm and an average transmittance of 10.0%. A standard resolution target placed 5.5 ft from the system results in a field of view with a 17-cm diameter and an optimal spatial resolution of 0.45 mm. The measured reflectance spectra are quantified in terms of apparent absorbance and formatted as a hyperspectral image cube. As a clinical example, we examine a model of vascular dysfunction involving both ischemia and reactive hyperemia during tissue reperfusion. In this model, spectral images, based upon oxyhemoglobin and deoxyhemoblobin signals in the 525-645-nm region, are deconvoluted using a multivariate least-squares regression analysis to visualize the spatial distribution of the percentages of oxyhemoglobin and deoxyhemoglobin in specific skin tissue areas. We characterize a visible reflectance hyperspectral imaging system for noninvasive, in vivo, quantitative analysis of human tissue in a clinical environment. The subject area is illuminated with a quartz−tungsten−halogen light source, and the reflected light is spectrally discriminated by a liquid crystal tunable filter (LCTF) and imaged onto a silicon charge-coupled device detector. The LCTF is continuously tunable within its useful visible spectral range (525−725 nm) with an average spectral full width at half-height bandwidth of 0.38 nm and an average transmittance of 10.0%. A standard resolution target placed 5.5 ft from the system results in a field of view with a 17-cm diameter and an optimal spatial resolution of 0.45 mm. The measured reflectance spectra are quantified in terms of apparent absorbance and formatted as a hyperspectral image cube. As a clinical example, we examine a model of vascular dysfunction involving both ischemia and reactive hyperemia during tissue reperfusion. In this model, spectral images, based upon oxyhemoglobin and deoxyhemoblobin signals in the 525−645-nm region, are deconvoluted using a multivariate least-squares regression analysis to visualize the spatial distribution of the percentages of oxyhemoglobin and deoxyhemoglobin in specific skin tissue areas. We characterize a visible reflectance hyperspectral imaging system for noninvasive, in vivo, quantitative analysis of human tissue in a clinical environment. The subject area is illuminated with a quartz-tungsten-halogen light source, and the reflected light is spectrally discriminated by a liquid crystal tunable filter (LCTF) and imaged onto a silicon charge-coupled device detector. The LCTF is continuously tunable within its useful visible spectral range (525-725 nm) with an average spectral full width at half-height bandwidth of 0.38 nm and an average transmittance of 10.0%. A standard resolution target placed 5.5 ft from the system results in a field of view with a 17-cm diameter and an optimal spatial resolution of 0.45 mm. The measured reflectance spectra are quantified in terms of apparent absorbance and formatted as a hyperspectral image cube. As a clinical example, we examine a model of vascular dysfunction involving both ischemia and reactive hyperemia during tissue reperfusion. In this model, spectral images, based upon oxyhemoglobin and deoxyhemoblobin signals in the 525-645-nm region, are deconvoluted using a multivariate least-squares regression analysis to visualize the spatial distribution of the percentages of oxyhemoglobin and deoxyhemoglobin in specific skin tissue areas.We characterize a visible reflectance hyperspectral imaging system for noninvasive, in vivo, quantitative analysis of human tissue in a clinical environment. The subject area is illuminated with a quartz-tungsten-halogen light source, and the reflected light is spectrally discriminated by a liquid crystal tunable filter (LCTF) and imaged onto a silicon charge-coupled device detector. The LCTF is continuously tunable within its useful visible spectral range (525-725 nm) with an average spectral full width at half-height bandwidth of 0.38 nm and an average transmittance of 10.0%. A standard resolution target placed 5.5 ft from the system results in a field of view with a 17-cm diameter and an optimal spatial resolution of 0.45 mm. The measured reflectance spectra are quantified in terms of apparent absorbance and formatted as a hyperspectral image cube. As a clinical example, we examine a model of vascular dysfunction involving both ischemia and reactive hyperemia during tissue reperfusion. In this model, spectral images, based upon oxyhemoglobin and deoxyhemoblobin signals in the 525-645-nm region, are deconvoluted using a multivariate least-squares regression analysis to visualize the spatial distribution of the percentages of oxyhemoglobin and deoxyhemoglobin in specific skin tissue areas. |
Author | Lewis, E. Neil Levin, Ira W Zuzak, Karel J Schaeberle, Michael D |
Author_xml | – sequence: 1 givenname: Karel J surname: Zuzak fullname: Zuzak, Karel J – sequence: 2 givenname: Michael D surname: Schaeberle fullname: Schaeberle, Michael D – sequence: 3 givenname: E. Neil surname: Lewis fullname: Lewis, E. Neil – sequence: 4 givenname: Ira W surname: Levin fullname: Levin, Ira W |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13658037$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/12033302$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0ctuEzEUBmALFdG0sOAFkIVEJSSG-jKemXQHKbSVKqhoyNY64zkOLnMJ9kzUsOqW1-RJMCQkUmFlWfrOL_s_B2Sv7Vok5ClnrzkT_BgM41zkyj4gI64ES7KiEHtkxBiTicgZ2ycHIdywqBjPHpF9LpiUkokRuZu54Moa6Se0NZoeWoP0fLVAHxbx6qGmFw3MXTs_-Xn3g06-gAfTo3ffoXddSztLgX7oWtcuIbglvqKupTO37Oj1KvTYUNt5eopxonERzenUhTAgvUJvhxATHpOHFuqATzbnIfn8_t10cp5cfjy7mLy5TCDNRZ9UoMaVUAWKShZpmo4zCanhJQIvjZSZTa1CXlUAXJlYhqpKlaGtKpsWBa-UPCRH69yF774NGHrduGCwrqHFbgg657lULOcRPr8Hb7rBt_FtWvC8UFk2ZhE926ChbLDSC-8a8Cv9t9gIXmwABAO19bFYF3ZOZqpgMo_ueO2M70LwaLVx_Z9qY_eu1pzp3yvW2xXHiZf3Jrah_7HJ2rq4i9stBP9VZ7nMlZ5eXWvx9jSdjadcn-1eDSbsvv1v7i96ysJM |
CODEN | ANCHAM |
CitedBy_id | crossref_primary_10_1088_0967_3334_37_11_2064 crossref_primary_10_1364_BOE_5_002247 crossref_primary_10_1364_BOE_3_001433 crossref_primary_10_1097_01_ta_0000217357_10617_3d crossref_primary_10_1515_bmt_2017_0155 crossref_primary_10_1109_TAFFC_2014_2362513 crossref_primary_10_1002_jbio_201000117 crossref_primary_10_1117_1_JMI_7_6_065001 crossref_primary_10_1002_cem_957 crossref_primary_10_1038_s41598_023_29903_3 crossref_primary_10_1364_OE_25_003481 crossref_primary_10_1117_1_OE_51_11_111711 crossref_primary_10_1016_j_urology_2011_06_029 crossref_primary_10_1097_SAP_0b013e31828b02fb crossref_primary_10_1117_1_JBO_20_12_121309 crossref_primary_10_1016_j_pdpdt_2024_104003 crossref_primary_10_1021_ac201467v crossref_primary_10_1179_1743131X15Y_0000000007 crossref_primary_10_1016_j_csbr_2025_100032 crossref_primary_10_1515_bmt_2017_0145 crossref_primary_10_1089_152091503322527067 crossref_primary_10_1255_jnirs_1007 crossref_primary_10_1038_eye_2010_222 crossref_primary_10_12968_jowc_2018_27_1_38 crossref_primary_10_1007_s11694_008_9046_0 crossref_primary_10_1366_12_06618 crossref_primary_10_3233_CH_199215 crossref_primary_10_1364_AO_49_001707 crossref_primary_10_1111_aor_12862 crossref_primary_10_1080_02713680601139192 crossref_primary_10_1002_jbio_202300375 crossref_primary_10_1366_000370206778062093 crossref_primary_10_1016_j_chemolab_2009_11_012 crossref_primary_10_1038_nmat2010 crossref_primary_10_1111_dme_13313 crossref_primary_10_1155_2019_1965789 crossref_primary_10_1515_bmt_2017_0216 crossref_primary_10_3390_app10031053 crossref_primary_10_1016_j_mri_2003_08_024 crossref_primary_10_3390_jcm11030758 crossref_primary_10_1364_BOE_536843 crossref_primary_10_1155_2013_978289 crossref_primary_10_1364_AO_48_006670 crossref_primary_10_1109_TBME_2010_2041663 crossref_primary_10_1117_1_2798704 crossref_primary_10_1364_BOE_6_004179 crossref_primary_10_1366_000370207781540204 crossref_primary_10_3390_app12083745 crossref_primary_10_1016_j_ahjo_2024_100400 crossref_primary_10_3390_jpm11060531 crossref_primary_10_1007_s00340_013_5506_2 crossref_primary_10_1007_s10916_016_0679_y crossref_primary_10_1093_rheumatology_keaa067 crossref_primary_10_1117_1_3614566 crossref_primary_10_1111_aor_12377 crossref_primary_10_1364_AO_54_000D91 crossref_primary_10_1002_cem_880 crossref_primary_10_1109_ACCESS_2023_3305256 crossref_primary_10_1016_j_mvr_2017_10_005 crossref_primary_10_1117_1_JBO_20_12_126011 crossref_primary_10_1016_j_wndm_2015_11_003 crossref_primary_10_1109_MGRS_2023_3315520 crossref_primary_10_1364_BOE_4_000938 crossref_primary_10_2337_dc08_2246 crossref_primary_10_1038_s41467_019_09484_4 crossref_primary_10_1117_1_JBO_23_9_096002 crossref_primary_10_1109_JSTQE_2011_2164239 crossref_primary_10_1111_iwj_13474 crossref_primary_10_1016_j_neucom_2018_10_011 crossref_primary_10_1016_j_jaad_2017_01_035 crossref_primary_10_1039_D0AN01328E crossref_primary_10_1177_193229681000400508 crossref_primary_10_1364_BOE_6_003420 crossref_primary_10_1002_lsm_21158 crossref_primary_10_1016_j_biosystemseng_2006_11_012 crossref_primary_10_1016_j_ucl_2005_12_014 crossref_primary_10_1117_1_JBO_25_11_112907 crossref_primary_10_1038_s41598_021_90163_0 crossref_primary_10_1109_ACCESS_2020_3000066 crossref_primary_10_1097_OPX_0000000000001853 crossref_primary_10_1016_j_compeleceng_2022_108332 crossref_primary_10_1021_ac070367n crossref_primary_10_1364_OE_25_020216 crossref_primary_10_1179_174313110X12771950995716 crossref_primary_10_1093_jbcr_irab003 crossref_primary_10_1152_ajpheart_00243_2003 crossref_primary_10_1016_j_optlastec_2012_02_034 crossref_primary_10_1002_lsm_21105 crossref_primary_10_1038_srep04924 crossref_primary_10_1364_BOE_7_000481 crossref_primary_10_1108_EC_03_2019_0127 crossref_primary_10_1364_BOE_435118 crossref_primary_10_1002_jbio_201000069 crossref_primary_10_1002_jbio_201100031 crossref_primary_10_1021_ac061125a crossref_primary_10_2116_analsci_30_143 crossref_primary_10_1002_jbio_201600227 crossref_primary_10_1016_j_optcom_2016_03_030 crossref_primary_10_1089_end_2009_0184 crossref_primary_10_1364_OE_23_015160 crossref_primary_10_1186_1475_925X_13_113 crossref_primary_10_1364_OE_18_014330 crossref_primary_10_1016_j_media_2020_101699 crossref_primary_10_1088_0957_0233_27_9_095102 crossref_primary_10_1115_1_4040470 crossref_primary_10_1117_1_2003369 crossref_primary_10_1016_j_jneumeth_2019_108466 crossref_primary_10_1007_s11548_024_03085_3 crossref_primary_10_1366_000370209790108897 crossref_primary_10_1109_JSEN_2024_3405414 crossref_primary_10_1117_1_JBO_21_10_106006 crossref_primary_10_1117_1_3535592 crossref_primary_10_1364_AO_43_003066 crossref_primary_10_1109_ACCESS_2021_3082918 crossref_primary_10_1016_j_ab_2010_07_010 crossref_primary_10_1186_s12951_015_0097_1 crossref_primary_10_1109_ACCESS_2018_2812999 crossref_primary_10_4155_fsoa_2017_0129 |
Cites_doi | 10.1111/j.1751-1097.1991.tb08470.x 10.1097/00043426-198507030-00007 10.1111/j.1751-1097.1990.tb01969.x 10.1007/BF02442476 10.1007/BF02363167 10.1364/JOSA.48.000142 10.1152/jappl.1996.80.1.116 10.1152/jappl.1956.9.2.257 10.1016/S0021-9258(18)70815-6 10.1063/1.1769941 10.1073/pnas.94.26.14826 10.1007/978-1-4615-5859-0 10.1126/science.272.5261.551 10.1364/OL.14.001249 10.1007/BF02474218 10.1054/bjps.1997.0088 10.1002/(SICI)1097-4555(199702)28:2/3<119::AID-JRS73>3.0.CO;2-3 10.1088/0031-9155/35/9/009 |
ContentType | Journal Article |
Copyright | Copyright © 2002 American Chemical Society 2002 INIST-CNRS Copyright American Chemical Society May 1, 2002 |
Copyright_xml | – notice: Copyright © 2002 American Chemical Society – notice: 2002 INIST-CNRS – notice: Copyright American Chemical Society May 1, 2002 |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1021/ac011275f |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-6882 |
EndPage | 2028 |
ExternalDocumentID | 119589832 12033302 13658037 10_1021_ac011275f ark_67375_TPS_2BD4V9T1_G a158142248 |
Genre | Journal Article Feature |
GroupedDBID | - .K2 02 186 1AW 23M 3EH 3O- 4.4 53G 53T 55A 5GY 5RE 5VS 7~N 85S AABXI AAUTI ABDEX ABFLS ABMVS ABOCM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACKIV ACNCT ACPRK ACPVT ACS AEESW AENEX AETEA AFEFF AFFDN AFFNX AFMIJ AFRAH AIDAL ALMA_UNASSIGNED_HOLDINGS ANTXH AQSVZ BAANH BKOMP CS3 D0L DZ EBS ED ED~ EJD F20 F5P GJ GNL IH9 IHE JG JG~ K2 LG6 NHB OHM OHT P2P PQEST PQQKQ ROL RXW TAE TAF TN5 UHB UI2 UKR UNC UQL VF5 VG9 VOH VQA W1F WH7 X X6Y XFK YZZ ZCG ZGI --- -DZ -~X .DC .GJ 6J9 6TJ AAHBH ABHFT ABHMW ABJNI ABQRX ACBEA ACGFO ACKOT ADHLV AGXLV AHGAQ BSCLL CUPRZ GGK KZ1 XOL XSW YYP ZCA ~02 AAYXX ABBLG ABLBI ACRPL ADNMO ADXHL AEYZD AGQPQ ANPPW CITATION YR5 .HR 1WB 2KS ABDPE ACQAM IQODW LMP MVM OMK RNS UBC UBX YQI YQJ YXE ZE2 CGR CUY CVF ECM EIF NPM VXZ YIN 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-a472t-da59d258e2d38444963a4c1bea1bc336f4f5e1ddaa15c1125db56efddf4881d53 |
IEDL.DBID | ACS |
ISSN | 0003-2700 |
IngestDate | Fri Jul 11 08:40:45 EDT 2025 Mon Jun 30 10:40:45 EDT 2025 Wed Feb 19 02:36:43 EST 2025 Mon Jul 21 09:16:28 EDT 2025 Tue Jul 01 00:48:06 EDT 2025 Thu Apr 24 22:59:54 EDT 2025 Wed Oct 30 09:35:38 EDT 2024 Thu Aug 27 13:42:43 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Hyperspectral imaging sensor Tissue Investigation method Imagery Perfusion |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a472t-da59d258e2d38444963a4c1bea1bc336f4f5e1ddaa15c1125db56efddf4881d53 |
Notes | istex:55E9240FAAB49E2CF9A97577EC3EEEB6F1FB008D ark:/67375/TPS-2BD4V9T1-G SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 12033302 |
PQID | 217856690 |
PQPubID | 45400 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_71735071 proquest_journals_217856690 pubmed_primary_12033302 pascalfrancis_primary_13658037 crossref_citationtrail_10_1021_ac011275f crossref_primary_10_1021_ac011275f istex_primary_ark_67375_TPS_2BD4V9T1_G acs_journals_10_1021_ac011275f |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ANTXH ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2002-05-01 |
PublicationDateYYYYMMDD | 2002-05-01 |
PublicationDate_xml | – month: 05 year: 2002 text: 2002-05-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Washington |
PublicationTitle | Analytical chemistry (Washington) |
PublicationTitleAlternate | Anal. Chem |
PublicationYear | 2002 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Millikan G. A. (ac011275fb00008/ac011275fb00008_1) 1942; 13 Hajizadeh-Saffar M. (ac011275fb00003/ac011275fb00003_1) 1990; 35 Turner J. F. (ac011275fb00020/ac011275fb00020_1) 1997 Monolakis D. (ac011275fb00030/ac011275fb00030_1) 2001; 39 Kline N. J. (ac011275fb00023/ac011275fb00023_1) 1996; 28 ac011275fb00024/ac011275fb00024_1 Miller P. (ac011275fb00018/ac011275fb00018_1) 1991; 28 Springsteen A. (ac011275fb00026/ac011275fb00026_1) 2000; 15 Stranc M. F. (ac011275fb00012/ac011275fb00012_1) 1998; 51 Malonek D. (ac011275fb00007/ac011275fb00007_1) 1997; 94 Koetüm G. (ac011275fb00025/ac011275fb00025_1) 1969 Hardy J. D. (ac011275fb00021/ac011275fb00021_1) 1956; 9 Wood E. H. (ac011275fb00009/ac011275fb00009_1) 1949; 34 Takatani S. (ac011275fb00002/ac011275fb00002_1) 1980; 8 Marchesini R. (ac011275fb00004/ac011275fb00004_1) 1991; 53 Malonek D. (ac011275fb00005/ac011275fb00005_1) 1996; 272 Sowa M. G. (ac011275fb00014/ac011275fb00014_1) 2001; 27 Morris H. R. (ac011275fb00019/ac011275fb00019_1) 1994; 48 Knoefel W. T. (ac011275fb00006/ac011275fb00006_1) 1996; 80 Beebe K. R. (ac011275fb00027/ac011275fb00027_1) 1987; 57 Masterson H. J. (ac011275fb00017/ac011275fb00017_1) 1989; 14 Rodgers G. P. (ac011275fb00028/ac011275fb00028_1) 1985; 7 Gordy E. (ac011275fb00010/ac011275fb00010_1) 1957; 227 Yoshiya I. (ac011275fb00011/ac011275fb00011_1) 1980; 18 Evans J. W. (ac011275fb00015/ac011275fb00015_1) 1949; 39 ac011275fb00022/ac011275fb00022_1 Cohen A. (ac011275fb00001/ac011275fb00001_1) 1972; 10 Evans J. W. (ac011275fb00016/ac011275fb00016_1) 1958; 48 Rosen C. F. (ac011275fb00029/ac011275fb00029_1) 1990; 51 Sowa M. G. (ac011275fb00013/ac011275fb00013_1) 1999; 86 |
References_xml | – volume: 53 start-page: 84 year: 1991 ident: ac011275fb00004/ac011275fb00004_1 publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.1991.tb08470.x – volume: 7 start-page: 253 year: 1985 ident: ac011275fb00028/ac011275fb00028_1 publication-title: Am. J. Pediat. Hematol. doi: 10.1097/00043426-198507030-00007 – start-page: 59 volume-title: Principles, Methods, Application year: 1969 ident: ac011275fb00025/ac011275fb00025_1 – volume: 51 start-page: 588 year: 1990 ident: ac011275fb00029/ac011275fb00029_1 publication-title: Photochem. Photobiol. doi: 10.1111/j.1751-1097.1990.tb01969.x – volume: 18 start-page: 32 year: 1980 ident: ac011275fb00011/ac011275fb00011_1 publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02442476 – volume: 8 start-page: 15 year: 1980 ident: ac011275fb00002/ac011275fb00002_1 publication-title: Ann. Biomed. Eng. doi: 10.1007/BF02363167 – volume: 48 start-page: 145 year: 1958 ident: ac011275fb00016/ac011275fb00016_1 publication-title: J. Opt. Soc. Am. doi: 10.1364/JOSA.48.000142 – volume: 80 start-page: 123 year: 1996 ident: ac011275fb00006/ac011275fb00006_1 publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1996.80.1.116 – volume: 9 start-page: 264 year: 1956 ident: ac011275fb00021/ac011275fb00021_1 publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1956.9.2.257 – volume: 227 start-page: 299 year: 1957 ident: ac011275fb00010/ac011275fb00010_1 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)70815-6 – volume: 13 start-page: 444 year: 1942 ident: ac011275fb00008/ac011275fb00008_1 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1769941 – volume: 94 start-page: 14831 year: 1997 ident: ac011275fb00007/ac011275fb00007_1 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.94.26.14826 – ident: ac011275fb00022/ac011275fb00022_1 doi: 10.1007/978-1-4615-5859-0 – volume: 86 start-page: 69 year: 1999 ident: ac011275fb00013/ac011275fb00013_1 publication-title: J. Surg. Res. – volume: 15 start-page: 27 issue: 5 year: 2000 ident: ac011275fb00026/ac011275fb00026_1 publication-title: Spectroscopy – volume: 34 start-page: 401 year: 1949 ident: ac011275fb00009/ac011275fb00009_1 publication-title: J. Lab. Clin. Med. – ident: ac011275fb00024/ac011275fb00024_1 – volume: 272 start-page: 554 year: 1996 ident: ac011275fb00005/ac011275fb00005_1 publication-title: Science doi: 10.1126/science.272.5261.551 – volume: 14 start-page: 1251 year: 1989 ident: ac011275fb00017/ac011275fb00017_1 publication-title: Opt. Lett. doi: 10.1364/OL.14.001249 – volume: 48 start-page: 866 year: 1994 ident: ac011275fb00019/ac011275fb00019_1 publication-title: J. Appl. Spectrosc. – volume: 39 start-page: 1409 year: 2001 ident: ac011275fb00030/ac011275fb00030_1 publication-title: IEEE T. Geosci. Remote. – volume: 27 start-page: 249 year: 2001 ident: ac011275fb00014/ac011275fb00014_1 publication-title: Burns – volume: 10 start-page: 390 year: 1972 ident: ac011275fb00001/ac011275fb00001_1 publication-title: Med. Biol. Eng. doi: 10.1007/BF02474218 – volume: 51 start-page: 217 year: 1998 ident: ac011275fb00012/ac011275fb00012_1 publication-title: Br. J. Plast. Surg. doi: 10.1054/bjps.1997.0088 – volume: 57 start-page: 1017A year: 1987 ident: ac011275fb00027/ac011275fb00027_1 publication-title: Anal. Chem. – volume: 28 start-page: 149 year: 1991 ident: ac011275fb00018/ac011275fb00018_1 publication-title: J. Metrologia – volume: 28 start-page: 119 year: 1996 ident: ac011275fb00023/ac011275fb00023_1 publication-title: J. Raman Spectrosc. doi: 10.1002/(SICI)1097-4555(199702)28:2/3<119::AID-JRS73>3.0.CO;2-3 – volume: 35 start-page: 1315 year: 1990 ident: ac011275fb00003/ac011275fb00003_1 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/35/9/009 – volume: 39 start-page: 241 year: 1949 ident: ac011275fb00015/ac011275fb00015_1 publication-title: J. Opt. Soc. Am. – volume-title: Proc SPIE−Int. Soc. Opt. Eng. year: 1997 ident: ac011275fb00020/ac011275fb00020_1 |
SSID | ssj0011016 |
Score | 2.1616082 |
Snippet | We characterize a visible reflectance hyperspectral imaging system for noninvasive, in vivo, quantitative analysis of human tissue in a clinical environment.... Zuzak et al characterize a visible hyperspectral imaging system for noninvasive, in vivo, quantitative analysis of human tissue in a clinical environment. The... |
SourceID | proquest pubmed pascalfrancis crossref istex acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2021 |
SubjectTerms | Biological and medical sciences Blood Gas Monitoring, Transcutaneous - instrumentation Blood Gas Monitoring, Transcutaneous - methods Cell physiology Chemistry Diagnostic Equipment Erythrocytes - chemistry Fundamental and applied biological sciences. Psychology Hand - blood supply Hemerythrin - analogs & derivatives Hemerythrin - analysis Humans Hyperemia - blood Hyperemia - diagnosis Image Processing, Computer-Assisted Ischemia - blood Ischemia - diagnosis Light sources Medical research Miscellaneous Models, Cardiovascular Molecular and cellular biology Oxyhemoglobins - analysis Reperfusion Spectrum Analysis Tungsten |
Title | Visible Reflectance Hyperspectral Imaging: Characterization of a Noninvasive, in Vivo System for Determining Tissue Perfusion |
URI | http://dx.doi.org/10.1021/ac011275f https://api.istex.fr/ark:/67375/TPS-2BD4V9T1-G/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/12033302 https://www.proquest.com/docview/217856690 https://www.proquest.com/docview/71735071 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9RADLZKewAOBcorLZQRIMSBlJ1XNuEGu5SFQ1XR7aq3aDIPadWSRfuoqp565W_yS_BkkmwrWjjHsSZjO7bHns8Ar51NjVJpghLATMd7iFipQsUZ05LatLAioH3uJYND8e1IHq3Aqxsq-Iy-VxpVkHWluwVrLEH_4uOf3kFbKvDpZzMWz1dRG_igy69616NnV1zPmt_FM98KqWa4Gy6Msbg5zqz8ze496De3dkKbyfHOYl7s6PO_QRz_9Sn3Yb2ON8nHoCAPYMWWG3C714x524C7lxAJH8LFaIw2cmLJd-v8gb7XCTLAXDVcyZwiq68_qsFGH35f_CK9Fu453OYkE0cU2fNHvKfKN8a_I-OSjManExKg0QnGyKRft-AgFzKsBE_27dQt_MHdIzjc_TzsDeJ6SEOsRJfNY6NkZphMLTM8FUKgQSuhaWEVLTTniRNOWmpQIajU-PXSFDKxzhiHvw5qJH8Mq-WktE-BZJjqpCYVkgkrEquzQgvM75IE0yxusyyCbZRiXhvZLK_q54zm7bZG8LYRcK5riHM_aePkOtKXLenPgOtxHdGbSktaCjU99o1wXZkP9w9y9qkvRtmQ5l9wZVfUaMmSY4TX4d0Ithq9Wq4fs8EUo-msE8GL9ilK35dsVGkni1nueyR8xB7Bk6CMS86swznvsM3_bcoW3Kkm2FRNms9gdT5d2OcYSM2L7cqQ_gCwVxcY |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5Beyg98CiUmkK7QghxICXeh2NzKyklhRJV1I16s9b7kKIWB8VJhTj1yt_klzC7fqRFRXD2erSenfHO7Mx-H8ALa2ItZRzhCmCm43aIjpS57CRUidDEueEV2ucwGpzwj6fitIbJcXdhcBIlSip9EX-BLhC-kQotkfaEvQ3LIuKRo2nY7R-3FQOXhTbseK6Y2qAIXX3V7UCqvLYDLTtlfncdkbJEpdiKzeLv4abfdvbvVfxFfsK-2-RsZz7Ld9SPP7Ac_--L7sPdOvoku5W5PIBbpliDlX5D-rYGq1fwCR_C5WiMHnNuyBdj3fG-sxAywMy1uqA5RVEHXz3N0dtflz9JvwV_ru52koklkgzdge-FdG3yr8m4IKPxxYRUQOkEI2ayVzfkoBSSejMgR2Zq5-4Y7xGc7L9P-4NOTdnQkbxHZx0tRaKpiA3VLOaco3tLrsLcyDBXjEWWW2FCjeYRCoVfL3QuImO1tvgjCbVg67BUTAqzASTBxCfWMReUGx4ZleSKY7YXRZh0MZMkAWyhVrPa5crMV9NpmLVqDeBVs86ZqgHPHe_G-U1Dn7dDv1UoHzcNeumNpR0hp2euLa4nsvToOKPv9vgoScPsA87smjUtRDKM97qsF8BmY16L-WNuGGNsnXQD2G6f4uq7Ao4szGReZq5jwsXvATyubHIhmXYZY1365F9K2YaVQfr5MDs8GH7ahDue28a3bz6Fpdl0bp5hiDXLt7xv_QZLBR96 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5BK_E48CgvU2hXCCEOdcm-HJtbSQgpoBDRNOrNWu9DilqcKk4qxKlX_ia_hFnbcVpUBGevR-vZb7wzO7PfALx0NjZKxRGuAEY6focIlcpUmDAtqY0zKyq2z0HUPxQfj-RRHSj6uzA4iQIlFWUS31v1qXE1wwB9ozSikbWluw7r6IhQ36phr3PQZA18JLrskOcTqksmoYuv-l1IF5d2oXWv0O--KlIVqBhXdbT4u8tZbj29u_ClmXRZcXK8u5hnu_rHH3yO__9V9-BO7YWSvQo29-GazTfgZmfZ_G0Dbl_gKXwA5-MJWs6JJV-t88f8HimkjxFsdVFzhqL2v5Xtjt7-Ov9JOg0JdHXHk0wdUWTgD37PlC-X3yGTnIwnZ1NSEaYT9JxJty7MQSlkVMKBDO3MLfxx3kM47L0fdfph3bohVKLN5qFRMjFMxpYZHgsh0MyV0DSzimaa88gJJy01CBMqNX69NJmMrDPG4Q-FGskfwVo-ze0TIAkGQLGJhWTCisjqJNMCo74owuCL2yQJYAs1m9amV6RlVp3RtFFrAK-Xa53qmvjc9984uWroi2boacX2cdWgVyVgmhFqduzL49oyHQ0PUvauK8bJiKYfcGaXELUSydHva_F2AJtLiK3mjzFijD520gpgu3mKq-8TOSq300WR-soJ78cH8LjC5Uoya3HOW-zpv5SyDTeG3V76eX_waRNulS1uyirOZ7A2ny3sc_S05tlWaV6_AXE0IfQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visible+Reflectance+Hyperspectral+Imaging%3A%E2%80%89+Characterization+of+a+Noninvasive%2C+in+Vivo+System+for+Determining+Tissue+Perfusion&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=ZUZAK%2C+Karel+J.&rft.au=SCHAEBERLE%2C+Michael+D.&rft.au=LEWIS%2C+E.+Neil&rft.au=LEVIN%2C+Ira+W.&rft.date=2002-05-01&rft.pub=American+Chemical+Society&rft.issn=0003-2700&rft.eissn=1520-6882&rft.volume=74&rft.issue=9&rft.spage=2021&rft.epage=2028&rft_id=info:doi/10.1021%2Fac011275f&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_TPS_2BD4V9T1_G |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon |