Liquid Chromatography–Mass Spectrometry Calibration Transfer and Metabolomics Data Fusion
Metabolic profiling is routinely performed on multiple analytical platforms to increase the coverage of detected metabolites, and it is often necessary to distribute biological and clinical samples from a study between instruments of the same type to share the workload between different laboratories...
Saved in:
Published in | Analytical chemistry (Washington) Vol. 84; no. 22; pp. 9848 - 9857 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
20.11.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 0003-2700 1520-6882 1520-6882 |
DOI | 10.1021/ac302227c |
Cover
Abstract | Metabolic profiling is routinely performed on multiple analytical platforms to increase the coverage of detected metabolites, and it is often necessary to distribute biological and clinical samples from a study between instruments of the same type to share the workload between different laboratories. The ability to combine metabolomics data arising from different sources is therefore of great interest, particularly for large-scale or long-term studies, where samples must be analyzed in separate blocks. This is not a trivial task, however, due to differing data structures, temporal variability, and instrumental drift. In this study, we employed blood serum and plasma samples collected from 29 subjects diagnosed with small cell lung cancer and analyzed each sample on two liquid chromatography–mass spectrometry (LC-MS) platforms. We describe a method for mapping retention times and matching metabolite features between platforms and approaches for fusing data acquired from both instruments. Calibration transfer models were developed and shown to be successful at mapping the response of one LC-MS instrument to another (Procrustes dissimilarity = 0.04; Mantel correlation = 0.95), allowing us to merge the data from different samples analyzed on different instruments. Data fusion was assessed in a clinical context by comparing the correlation of each metabolite with subject survival time in both the original and fused data sets: a simple autoscaling procedure (Pearson’s R = 0.99) was found to improve upon a calibration transfer method based on partial least-squares regression (R = 0.94). |
---|---|
AbstractList | Metabolic profiling is routinely performed on multiple analytical platforms to increase the coverage of detected metabolites, and it is often necessary to distribute biological and clinical samples from a study between instruments of the same type to share the workload between different laboratories. The ability to combine metabolomics data arising from different sources is therefore of great interest, particularly for large-scale or long-term studies, where samples must be analyzed in separate blocks. This is not a trivial task, however, due to differing data structures, temporal variability, and instrumental drift. In this study, we employed blood serum and plasma samples collected from 29 subjects diagnosed with small cell lung cancer and analyzed each sample on two liquid chromatography-mass spectrometry (LC-MS) platforms. We describe a method for mapping retention times and matching metabolite features between platforms and approaches for fusing data acquired from both instruments. Calibration transfer models were developed and shown to be successful at mapping the response of one LC-MS instrument to another (Procrustes dissimilarity = 0.04; Mantel correlation = 0.95), allowing us to merge the data from different samples analyzed on different instruments. Data fusion was assessed in a clinical context by comparing the correlation of each metabolite with subject survival time in both the original and fused data sets: a simple autoscaling procedure (Pearson's R = 0.99) was found to improve upon a calibration transfer method based on partial least-squares regression (R = 0.94). Metabolic profiling is routinely performed on multiple analytical platforms to increase the coverage of detected metabolites, and it is often necessary to distribute biological and clinical samples from a study between instruments of the same type to share the workload between different laboratories. The ability to combine metabolomics data arising from different sources is therefore of great interest, particularly for large-scale or long-term studies, where samples must be analyzed in separate blocks. This is not a trivial task, however, due to differing data structures, temporal variability, and instrumental drift. In this study, we employed blood serum and plasma samples collected from 29 subjects diagnosed with small cell lung cancer and analyzed each sample on two liquid chromatography-mass spectrometry (LC-MS) platforms. We describe a method for mapping retention times and matching metabolite features between platforms and approaches for fusing data acquired from both instruments. Calibration transfer models were developed and shown to be successful at mapping the response of one LC-MS instrument to another (Procrustes dissimilarity = 0.04; Mantel correlation = 0.95), allowing us to merge the data from different samples analyzed on different instruments. Data fusion was assessed in a clinical context by comparing the correlation of each metabolite with subject survival time in both the original and fused data sets: a simple autoscaling procedure (Pearson's R = 0.99) was found to improve upon a calibration transfer method based on partial least-squares regression (R = 0.94).Metabolic profiling is routinely performed on multiple analytical platforms to increase the coverage of detected metabolites, and it is often necessary to distribute biological and clinical samples from a study between instruments of the same type to share the workload between different laboratories. The ability to combine metabolomics data arising from different sources is therefore of great interest, particularly for large-scale or long-term studies, where samples must be analyzed in separate blocks. This is not a trivial task, however, due to differing data structures, temporal variability, and instrumental drift. In this study, we employed blood serum and plasma samples collected from 29 subjects diagnosed with small cell lung cancer and analyzed each sample on two liquid chromatography-mass spectrometry (LC-MS) platforms. We describe a method for mapping retention times and matching metabolite features between platforms and approaches for fusing data acquired from both instruments. Calibration transfer models were developed and shown to be successful at mapping the response of one LC-MS instrument to another (Procrustes dissimilarity = 0.04; Mantel correlation = 0.95), allowing us to merge the data from different samples analyzed on different instruments. Data fusion was assessed in a clinical context by comparing the correlation of each metabolite with subject survival time in both the original and fused data sets: a simple autoscaling procedure (Pearson's R = 0.99) was found to improve upon a calibration transfer method based on partial least-squares regression (R = 0.94). Metabolic profiling is routinely performed on multiple analytical platforms to increase the coverage of detected metabolites, and it is often necessary to distribute biological and clinical samples from a study between instruments of the same type to share the workload between different laboratories. The ability to combine metabolomics data arising from different sources is therefore of great interest, particularly for large-scale or long-term studies, where samples must be analyzed in separate blocks. This is not a trivial task, however, due to differing data structures, temporal variability, and instrumental drift. In this study, we employed blood serum and plasma samples collected from 29 subjects diagnosed with small cell lung cancer and analyzed each sample on two liquid chromatography-mass spectrometry (LC-MS) platforms. We describe a method for mapping retention times and matching metabolite features between platforms and approaches for fusing data acquired from both instruments. Calibration transfer models were developed and shown to be successful at mapping the response of one LC-MS instrument to another (Procrustes dissimilarity = 0.04; Mantel correlation = 0.95), allowing us to merge the data from different samples analyzed on different instruments. Data fusion was assessed in a clinical context by comparing the correlation of each metabolite with subject survival time in both the original and fused data sets: a simple autoscaling procedure (Pearson's R = 0.99) was found to improve upon a calibration transfer method based on partial least-squares regression (R = 0.94). [PUBLICATION ABSTRACT] |
Author | Vaughan, Andrew A Dive, Caroline Allwood, J. William Wedge, David C Blackhall, Fiona H Dunn, Warwick B Whetton, Anthony D Goodacre, Royston |
AuthorAffiliation | School of Cancer and Enabling Sciences Wellcome Trust Sanger Institute University of Manchester Cancer Genome Project Centre for Advanced Discovery and Experimental Therapeutics (CADET) Clinical and Experimental Pharmacology Group School of Chemistry Manchester Centre for Integrative Systems Biology |
AuthorAffiliation_xml | – name: University of Manchester – name: Centre for Advanced Discovery and Experimental Therapeutics (CADET) – name: Wellcome Trust Sanger Institute – name: Manchester Centre for Integrative Systems Biology – name: Cancer Genome Project – name: School of Cancer and Enabling Sciences – name: School of Chemistry – name: Clinical and Experimental Pharmacology Group |
Author_xml | – sequence: 1 givenname: Andrew A surname: Vaughan fullname: Vaughan, Andrew A email: andrew.vaughan-2@manchester.ac.uk – sequence: 2 givenname: Warwick B surname: Dunn fullname: Dunn, Warwick B – sequence: 3 givenname: J. William surname: Allwood fullname: Allwood, J. William – sequence: 4 givenname: David C surname: Wedge fullname: Wedge, David C – sequence: 5 givenname: Fiona H surname: Blackhall fullname: Blackhall, Fiona H – sequence: 6 givenname: Anthony D surname: Whetton fullname: Whetton, Anthony D – sequence: 7 givenname: Caroline surname: Dive fullname: Dive, Caroline – sequence: 8 givenname: Royston surname: Goodacre fullname: Goodacre, Royston |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26645578$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23072438$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0cFu1DAQBmALFdFt4cALoEgICQ6h43FsZ49ooYC0FQfKiUM0cRzqKom3tnPYG-_QN-yT4KVLQQWJkw_-xvL_zxE7mPxkGXvK4TUH5CdkBCCiNg_YgkuEUtU1HrAFAIgSNcAhO4rxEoBz4OoRO0QBGitRL9jXtbuaXVesLoIfKflvgTYX25vv12cUY_F5Y03KFzaFbbGiwbWBkvNTcR5oir0NBU1dcWYTtX7wozOxeEuJitM5ZvWYPexpiPbJ_jxmX07fna8-lOtP7z-u3qxLqjSmUiMZ02kFYNVScmU0Yt13LWleVULWqDvATgph0OagQoBcglRdp2QrDQpxzF7evrsJ_mq2MTWji8YOA03Wz7HBXQ8VCCn_SznXSwkKVJXp83v00s9hykF2ql5WuXmV1bO9mtvRds0muJHCtvnVcAYv9oCioaHPxRkXfzulKin1zr26dSb4GIPt7wiHZrfl5m7L2Z7cs8aln4tJgdzwz4n9L8jEP3L85X4ADveypw |
CODEN | ANCHAM |
CitedBy_id | crossref_primary_10_1007_s11306_022_01956_x crossref_primary_10_1016_j_chroma_2015_06_049 crossref_primary_10_1586_14737159_2013_835570 crossref_primary_10_7554_eLife_91597_3 crossref_primary_10_1021_ac400515s crossref_primary_10_1039_C5AN00206K crossref_primary_10_3390_molecules29245934 crossref_primary_10_1007_s11306_021_01848_6 crossref_primary_10_1021_acs_analchem_6b01481 crossref_primary_10_1002_rcm_7475 crossref_primary_10_7554_eLife_91597 crossref_primary_10_1002_mas_21401 crossref_primary_10_1016_j_aca_2015_02_012 crossref_primary_10_1021_acs_analchem_1c00765 crossref_primary_10_1021_acs_analchem_5b02049 crossref_primary_10_1016_j_chroma_2015_04_029 crossref_primary_10_1042_BCJ20210534 crossref_primary_10_1016_j_drudis_2013_07_014 crossref_primary_10_1016_j_aca_2015_03_006 crossref_primary_10_1016_j_aca_2017_03_049 crossref_primary_10_1586_14789450_2013_828947 crossref_primary_10_1038_s41596_019_0150_x crossref_primary_10_1016_j_aca_2017_07_044 crossref_primary_10_1021_ac500878x crossref_primary_10_1038_nrgastro_2015_114 crossref_primary_10_1007_s00216_013_6954_6 crossref_primary_10_1021_ac404191a crossref_primary_10_1039_D0AN00254B crossref_primary_10_1016_j_trac_2019_115665 |
Cites_doi | 10.1038/nprot.2011.335 10.1109/5.554205 10.1093/ije/dym284 10.1007/s11306-007-0081-3 10.1016/j.chemolab.2010.07.006 10.1021/ac051080y 10.1021/ac950671t 10.1021/ac200108a 10.4161/cc.8.23.10238 10.1093/bioinformatics/btg385 10.1021/ac00023a016 10.1021/ac2012224 10.1016/j.chemolab.2011.09.014 10.1016/S0169-7439(02)00111-9 10.1016/j.aca.2011.03.025 10.1021/ac1016612 10.1021/ac8019366 10.1021/pr900499r 10.1021/ac062153w 10.1021/ac051495j 10.1007/BF02291478 10.1016/S0140-6736(66)91111-1 10.1021/ac2021823 10.1016/S0169-7439(00)00113-1 10.1002/mas.20252 10.1016/j.trac.2008.01.008 10.1080/00401706.1969.10490666 10.1016/0003-2670(93)80430-S 10.1016/S0003-2670(97)00062-7 10.1016/j.jchromb.2008.04.031 10.1016/j.trac.2008.01.007 10.1016/j.jchromb.2008.03.021 10.1016/S0169-7439(02)00085-0 10.1016/S0300-595X(83)80043-7 10.1093/bioinformatics/btr079 10.1021/ac902346a 10.1007/s00216-012-5773-5 10.1016/j.chemolab.2010.04.012 10.1093/bioinformatics/btn083 10.1136/jcp.14.3.271 10.1006/jaer.1999.0428 10.1021/pr049769r 10.1186/1471-2105-12-254 10.1016/j.aca.2008.01.071 10.1039/b901179j 10.1016/j.chemolab.2004.01.007 10.1186/1471-2105-12-467 10.1021/ac051437y |
ContentType | Journal Article |
Copyright | Copyright © 2012 American
Chemical Society 2014 INIST-CNRS Copyright American Chemical Society Nov 20, 2012 |
Copyright_xml | – notice: Copyright © 2012 American Chemical Society – notice: 2014 INIST-CNRS – notice: Copyright American Chemical Society Nov 20, 2012 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
DOI | 10.1021/ac302227c |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Toxicology Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts AIDS and Cancer Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Toxicology Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-6882 |
EndPage | 9857 |
ExternalDocumentID | 2821240741 23072438 26645578 10_1021_ac302227c h98380043 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: Cancer Research UK – fundername: Biotechnology and Biological Sciences Research Council grantid: BBC0082191 |
GroupedDBID | - .K2 02 1AW 23M 4.4 53G 53T 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABOCM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACNCT ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 D0L DZ EBS ED ED~ EJD F20 F5P GNL IH9 IHE JG JG~ K2 LG6 P2P PQEST PQQKQ ROL RXW TAE TAF TN5 UHB UI2 UKR VF5 VG9 VQA W1F WH7 X X6Y XFK YZZ --- -DZ -~X .DC 6J9 AAHBH AAYXX ABBLG ABHFT ABHMW ABJNI ABLBI ABQRX ACBEA ACGFO ACKOT ADHLV AGXLV AHGAQ CITATION CUPRZ GGK KZ1 LMP XSW ZCA ~02 .GJ .HR 186 1WB 2KS 3EH 3O- 6TJ AAUTI ABDPE ACKIV ACPVT ACQAM ACRPL ADNMO AETEA AEYZD AFFDN AFFNX AIDAL ANPPW ANTXH IQODW MVM NHB OHT OMK RNS UBC UBX VOH XOL YQI YQJ YR5 YXE YYP ZCG ZE2 ZGI CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TM 7U5 7U7 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 KR7 L7M L~C L~D P64 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a472t-72accd7600e69516c7228fdba714435827d02d533c2ec3033059056dd65b5c233 |
IEDL.DBID | ACS |
ISSN | 0003-2700 1520-6882 |
IngestDate | Fri Jul 11 06:34:10 EDT 2025 Fri Jul 11 00:08:30 EDT 2025 Mon Jun 30 08:40:39 EDT 2025 Thu Apr 03 06:57:08 EDT 2025 Wed Apr 02 07:23:37 EDT 2025 Thu Apr 24 23:01:55 EDT 2025 Tue Jul 01 02:48:44 EDT 2025 Thu Aug 27 13:42:25 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | Metabolomics Lung disease Metabolite Coupled method Sample Lung Instrumentation Data processing Liquid chromatography Calibration Laboratory Malignant tumor Retention time Survival Blood plasma Biological compound PLS regression Transfer Serum Large scale Mass spectrometry Chemometrics Cancer |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a472t-72accd7600e69516c7228fdba714435827d02d533c2ec3033059056dd65b5c233 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 23072438 |
PQID | 1178940216 |
PQPubID | 45400 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2000340355 proquest_miscellaneous_1179506064 proquest_journals_1178940216 pubmed_primary_23072438 pascalfrancis_primary_26645578 crossref_primary_10_1021_ac302227c crossref_citationtrail_10_1021_ac302227c acs_journals_10_1021_ac302227c |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-11-20 |
PublicationDateYYYYMMDD | 2012-11-20 |
PublicationDate_xml | – month: 11 year: 2012 text: 2012-11-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Washington |
PublicationTitle | Analytical chemistry (Washington) |
PublicationTitleAlternate | Anal. Chem |
PublicationYear | 2012 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Steinmetz V. (ref14/cit14) 1999; 74 Draisma H. H. M. (ref19/cit19) 2010; 82 Pavlides S. (ref45/cit45) 2009; 8 Watson D. (ref43/cit43) 1961; 14 Fiehn O. (ref8/cit8) 2008; 27 Seasholtz M. B. (ref50/cit50) 1993; 277 Hall D. L. (ref13/cit13) 1997; 85 Creek D. J. (ref12/cit12) 2011; 83 Goodacre R. (ref29/cit29) 1996; 68 Taminau J. (ref49/cit49) 2009; 10 Van Mechelen I. (ref21/cit21) 2010; 104 Gao X. (ref6/cit6) 2012; 402 Hoskuldsson A. (ref41/cit41) 2001; 55 Dunn W. B. (ref35/cit35) 2008; 871 Goodacre R. (ref39/cit39) 2007; 3 Bijlsma S. (ref10/cit10) 2006; 78 Wedge D. C. (ref33/cit33) 2011; 83 Miles J. M. (ref44/cit44) 1983; 12 Brown M. (ref37/cit37) 2009; 134 Zelena E. (ref11/cit11) 2009; 81 Doeswijk T. G. (ref16/cit16) 2011; 705 Theodoridis G. (ref4/cit4) 2008; 27 Wagner S. (ref18/cit18) 2007; 79 Rudy J. (ref48/cit48) 2011; 12 Pereira C. F. (ref28/cit28) 2008; 611 Gower J. C. (ref31/cit31) 1975; 40 Dunn W. B. (ref3/cit3) 2011; 6 van der Kloet F. M. (ref26/cit26) 2009; 8 Andrade J. M. (ref38/cit38) 2004; 72 Feudale R. N. (ref24/cit24) 2002; 64 Goodacre R. (ref30/cit30) 1997; 348 Bennette N. B. (ref1/cit1) 2011; 83 Richards S. E. (ref22/cit22) 2010; 104 Kennard R. W. (ref40/cit40) 1969; 11 Cubbon S. (ref7/cit7) 2010; 29 Barton R. H. (ref9/cit9) 2008; 37 Smilde A. K. (ref17/cit17) 2005; 77 Wilson I. D. (ref5/cit5) 2005; 4 Wang Y. (ref25/cit25) 1991; 63 Benito M. (ref47/cit47) 2004; 20 Shabalin A. A. (ref46/cit46) 2008; 24 Mantel N. (ref32/cit32) 1967; 27 Blanchet L. (ref20/cit20) 2011; 12 Smith C. A. (ref34/cit34) 2006; 78 Roussel S. (ref15/cit15) 2003; 65 Gika H. G. (ref23/cit23) 2010; 82 Brown M. (ref36/cit36) 2011; 27 Berlyne G. M. (ref42/cit42) 1966; 1 Abdelkader M. F. (ref27/cit27) 2012; 110 Lu W. (ref2/cit2) 2008; 871 |
References_xml | – volume: 6 start-page: 1060 year: 2011 ident: ref3/cit3 publication-title: Nat. Protoc. doi: 10.1038/nprot.2011.335 – volume: 85 start-page: 6 year: 1997 ident: ref13/cit13 publication-title: Proc. IEEE doi: 10.1109/5.554205 – volume: 37 start-page: 31 year: 2008 ident: ref9/cit9 publication-title: Int. J. Epidemiol. doi: 10.1093/ije/dym284 – volume: 3 start-page: 231 year: 2007 ident: ref39/cit39 publication-title: Metabolomics doi: 10.1007/s11306-007-0081-3 – volume: 104 start-page: 121 year: 2010 ident: ref22/cit22 publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2010.07.006 – volume: 27 start-page: 209 year: 1967 ident: ref32/cit32 publication-title: Cancer Res. – volume: 77 start-page: 6729 year: 2005 ident: ref17/cit17 publication-title: Anal. Chem. doi: 10.1021/ac051080y – volume: 68 start-page: 271 year: 1996 ident: ref29/cit29 publication-title: Anal. Chem. doi: 10.1021/ac950671t – volume: 83 start-page: 3808 year: 2011 ident: ref1/cit1 publication-title: Anal. Chem. doi: 10.1021/ac200108a – volume: 8 start-page: 3984 year: 2009 ident: ref45/cit45 publication-title: Cell Cycle doi: 10.4161/cc.8.23.10238 – volume: 20 start-page: 105 year: 2004 ident: ref47/cit47 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg385 – volume: 63 start-page: 2750 year: 1991 ident: ref25/cit25 publication-title: Anal. Chem. doi: 10.1021/ac00023a016 – volume: 83 start-page: 6689 year: 2011 ident: ref33/cit33 publication-title: Anal. Chem. doi: 10.1021/ac2012224 – volume: 110 start-page: 64 year: 2012 ident: ref27/cit27 publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2011.09.014 – volume: 65 start-page: 209 year: 2003 ident: ref15/cit15 publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(02)00111-9 – volume: 705 start-page: 41 year: 2011 ident: ref16/cit16 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2011.03.025 – volume: 82 start-page: 8226 year: 2010 ident: ref23/cit23 publication-title: Anal. Chem. doi: 10.1021/ac1016612 – volume: 81 start-page: 1357 year: 2009 ident: ref11/cit11 publication-title: Anal. Chem. doi: 10.1021/ac8019366 – volume: 8 start-page: 5132 year: 2009 ident: ref26/cit26 publication-title: J. Proteome Res. doi: 10.1021/pr900499r – volume: 79 start-page: 2918 year: 2007 ident: ref18/cit18 publication-title: Anal. Chem. doi: 10.1021/ac062153w – volume: 78 start-page: 567 year: 2006 ident: ref10/cit10 publication-title: Anal. Chem. doi: 10.1021/ac051495j – volume: 40 start-page: 33 year: 1975 ident: ref31/cit31 publication-title: Psychometrika doi: 10.1007/BF02291478 – volume: 1 start-page: 1212 year: 1966 ident: ref42/cit42 publication-title: Lancet doi: 10.1016/S0140-6736(66)91111-1 – volume: 83 start-page: 8703 year: 2011 ident: ref12/cit12 publication-title: Anal. Chem. doi: 10.1021/ac2021823 – volume: 55 start-page: 23 year: 2001 ident: ref41/cit41 publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(00)00113-1 – volume: 29 start-page: 671 year: 2010 ident: ref7/cit7 publication-title: Mass Spectrom. Rev. doi: 10.1002/mas.20252 – volume: 27 start-page: 251 year: 2008 ident: ref4/cit4 publication-title: Trends Anal. Chem. doi: 10.1016/j.trac.2008.01.008 – volume: 10 start-page: 4 year: 2009 ident: ref49/cit49 publication-title: Aust. J. Intell. Inform. Process. Syst. – volume: 11 start-page: 137 year: 1969 ident: ref40/cit40 publication-title: Technometrics doi: 10.1080/00401706.1969.10490666 – volume: 277 start-page: 165 year: 1993 ident: ref50/cit50 publication-title: Anal. Chim. Acta doi: 10.1016/0003-2670(93)80430-S – volume: 348 start-page: 511 year: 1997 ident: ref30/cit30 publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(97)00062-7 – volume: 871 start-page: 236 year: 2008 ident: ref2/cit2 publication-title: J. Chromatogr., B doi: 10.1016/j.jchromb.2008.04.031 – volume: 27 start-page: 261 year: 2008 ident: ref8/cit8 publication-title: Trends Anal. Chem. doi: 10.1016/j.trac.2008.01.007 – volume: 871 start-page: 288 year: 2008 ident: ref35/cit35 publication-title: J. Chromatogr., B doi: 10.1016/j.jchromb.2008.03.021 – volume: 64 start-page: 181 year: 2002 ident: ref24/cit24 publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(02)00085-0 – volume: 12 start-page: 303 year: 1983 ident: ref44/cit44 publication-title: Clin. Endocrinol. Metab. doi: 10.1016/S0300-595X(83)80043-7 – volume: 27 start-page: 1108 year: 2011 ident: ref36/cit36 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr079 – volume: 82 start-page: 1039 year: 2010 ident: ref19/cit19 publication-title: Anal. Chem. doi: 10.1021/ac902346a – volume: 402 start-page: 2923 year: 2012 ident: ref6/cit6 publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-012-5773-5 – volume: 104 start-page: 83 year: 2010 ident: ref21/cit21 publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2010.04.012 – volume: 24 start-page: 1154 year: 2008 ident: ref46/cit46 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn083 – volume: 14 start-page: 271 year: 1961 ident: ref43/cit43 publication-title: J. Clin. Pathol. doi: 10.1136/jcp.14.3.271 – volume: 74 start-page: 21 year: 1999 ident: ref14/cit14 publication-title: J. Agric. Eng. Res. doi: 10.1006/jaer.1999.0428 – volume: 4 start-page: 591 year: 2005 ident: ref5/cit5 publication-title: J. Proteome Res. doi: 10.1021/pr049769r – volume: 12 start-page: 254 year: 2011 ident: ref20/cit20 publication-title: BMC Bioinf. doi: 10.1186/1471-2105-12-254 – volume: 611 start-page: 41 year: 2008 ident: ref28/cit28 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2008.01.071 – volume: 134 start-page: 1322 year: 2009 ident: ref37/cit37 publication-title: Analyst doi: 10.1039/b901179j – volume: 72 start-page: 123 year: 2004 ident: ref38/cit38 publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2004.01.007 – volume: 12 start-page: 467 year: 2011 ident: ref48/cit48 publication-title: BMC Bioinf. doi: 10.1186/1471-2105-12-467 – volume: 78 start-page: 779 year: 2006 ident: ref34/cit34 publication-title: Anal. Chem. doi: 10.1021/ac051437y |
SSID | ssj0011016 |
Score | 2.2295403 |
Snippet | Metabolic profiling is routinely performed on multiple analytical platforms to increase the coverage of detected metabolites, and it is often necessary to... |
SourceID | proquest pubmed pascalfrancis crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9848 |
SubjectTerms | Analytical chemistry blood serum Calibration Chemistry Chromatographic methods and physical methods associated with chromatography Chromatography Chromatography, Liquid - methods Correlation analysis data collection Exact sciences and technology General, instrumentation Humans least squares Liquid chromatography Lung cancer lung neoplasms Lung Neoplasms - metabolism Mass spectrometry Mass Spectrometry - methods Metabolites metabolomics Metabolomics - methods Other chromatographic methods Plasma Small Cell Lung Carcinoma - metabolism Spectrometric and optical methods Statistics as Topic - methods temporal variation |
Title | Liquid Chromatography–Mass Spectrometry Calibration Transfer and Metabolomics Data Fusion |
URI | http://dx.doi.org/10.1021/ac302227c https://www.ncbi.nlm.nih.gov/pubmed/23072438 https://www.proquest.com/docview/1178940216 https://www.proquest.com/docview/1179506064 https://www.proquest.com/docview/2000340355 |
Volume | 84 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1520-6882 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011016 issn: 0003-2700 databaseCode: ACS dateStart: 19470121 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6VcgCEeJRHF8rKPA5cUhLbsbPHasuqQiwXqFSJw8oZO1JFlZZucuHU_8A_7C_pTF5sRRfOGUu2Z-z5xpP5BuBdoTQBXZNEwcYh0pmWkUswjjQaj9ahKQK_Q86_mIND_ekoPdqAt2sy-DL54FA1BZt4C25LkyUcYe1Nvw6pAg4_-7Z4nEXt6YNWh7LrweU113P_zC1pF4q2fcV6fNn4mdlD2O-rddrfS37s1lW-i7_-Jm_81xIewYMOZ4q91jAew0Yot-DOtG_vtgX3VpgIn8D3z8c_62MvmCuXMGzHY3158XtO4Fpwk_qKeQ1opOBqrry1G9F4uiKcC1d6MQ8VWdQJlzkvxb6rnJjV_Bb3FA5nH79ND6Ku70LktJVVZKVD9JyxC4YAmEErZVb43FmKvriy1vpYesKJKAOtTCkuYE2N9ybNU5RKPYPN8rQM2yB0JnWOgVBoUAR9sjwkIZ6gLWycY5ymIxiTYhbduVkumpS4TBbDjo3gfa-zBXas5dw84-Qm0TeD6FlL1XGT0Pia4gdJAio6petrBDu9JaxMK7HZhCLtxIzg9fCZFMbZFVeG07qRmTBbo9HrZWTDBxQrXvjz1sr-TIBuW6lV9uJ_W_IS7hJqk1wQKeMd2KzO6_CKkFGVj5uTcQX5ZAWd |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOZSq4lEoLJTFIA5cUhLHsbNHtLBaYLcXWqkSh8ixHalqlT6SXHriP_AP-SXMOI9uUSs4ZxKNx2PPZ0_mG4B3RSwQ6MoocCp0gUgFD3RkwkAYaY3SRhaO7iGXe3J-IL4eJocdTQ7VwqASFX6p8kn8K3aB6IM2sa_bNHfhnmdAIRg0_T5kDOgU2nfHo2RqzyK0-ipFIFNdi0CbZ7pCYxRtF4vbYaYPN7OHbd8ir6j_y-R4t6nzXXP5F4fj_43kETzoUCf72LrJY7jjyi1Yn_bN3rZgY4WX8An8WBydN0eWEXMuItqO1fr3z19LhNqMWtbXxHKAbzKq7cpbL2I-7hXugunSsqWr0b9OqOi5Yp90rdmsoZu5p3Aw-7w_nQddF4ZAC8XrQHFtjKX8nZMIx6RRnKeFzbXCsxjV2Sobcouo0XCHI4tjKmdNpLUyyRPD43gb1srT0j0HJlIucuMQk7oYgVCau8iFE6MKFeYmTJIRjNFgWbeKqswnyHmUDRYbwft-6jLTcZhTK42Tm0TfDqJnLXHHTULja_M_SCJsEQluZiPY6R1iRa1IpRM8d0dyBG-GxzhhlGvRpTttvMyEuBuluF2Ge3agMKaBP2ud7UoB3Hu5iNMX_zLJa1if7y8X2eLL3reXcB_xHKdSSR7uwFp90bhXiJnqfOwXyx_h6w4I |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BkaAI8Wh5LJTFIA69pCSOY2ePaMuqQLcgQaVKPUSO7UhVq3Rpkgsn_gP_sL-kM86DLWoF50yisT32fOPJfAPwtogFAl0ZBU6FLhCp4IGOTBgII61R2sjC0T3kfE_u7ItPB8lBFyhSLQwqUeGXKp_Ep129sEXHMBC90yb2tZvmJtxKiPqNoND025A1oEi075BHCdWeSWj5VfJCprrkhe4tdIUTUrSdLK6Hmt7lzB7Al0FZ_6fJ8VZT51vm5188jv8_modwv0Of7H1rLo_ghivX4M60b_q2BneX-AnX4XD36EdzZBkx6CKy7ditz3_9niPkZtS6via2A3yTUY1X3loT8_6vcGdMl5bNXY12dkLFzxXb1rVms4Zu6B7D_uzD9-lO0HVjCLRQvA4U18ZYyuM5ibBMGsV5WthcK4zJqN5W2ZBbRI-GOxxZHFNZayKtlUmeGB7HT2ClPC3dM2Ai5SI3DrGpixEQpbmLXDgxqlBhbsIkGcEYJy3rdlOV-UQ5j7Jhxkaw2S9fZjouc2qpcXKV6JtBdNESeFwlNL5kA4MkwheR4KE2go3eKJbUilQ6wfg7kiN4PTzGBaOciy7daeNlJsThKMX1MtyzBIUxDfxpa3B_FMAzmIs4ff6vKXkFt79uz7Ldj3ufX8AqwjpOFZM83ICV-qxxLxE61fnY75cLlX0Qgg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liquid+chromatography-mass+spectrometry+calibration+transfer+and+metabolomics+data+fusion&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Vaughan%2C+Andrew+A&rft.au=Dunn%2C+Warwick+B&rft.au=Allwood%2C+J+William&rft.au=Wedge%2C+David+C&rft.date=2012-11-20&rft.eissn=1520-6882&rft.volume=84&rft.issue=22&rft.spage=9848&rft_id=info:doi/10.1021%2Fac302227c&rft_id=info%3Apmid%2F23072438&rft.externalDocID=23072438 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon |