Liquid Chromatography–Mass Spectrometry Calibration Transfer and Metabolomics Data Fusion

Metabolic profiling is routinely performed on multiple analytical platforms to increase the coverage of detected metabolites, and it is often necessary to distribute biological and clinical samples from a study between instruments of the same type to share the workload between different laboratories...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 84; no. 22; pp. 9848 - 9857
Main Authors Vaughan, Andrew A, Dunn, Warwick B, Allwood, J. William, Wedge, David C, Blackhall, Fiona H, Whetton, Anthony D, Dive, Caroline, Goodacre, Royston
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 20.11.2012
Subjects
Online AccessGet full text
ISSN0003-2700
1520-6882
1520-6882
DOI10.1021/ac302227c

Cover

Abstract Metabolic profiling is routinely performed on multiple analytical platforms to increase the coverage of detected metabolites, and it is often necessary to distribute biological and clinical samples from a study between instruments of the same type to share the workload between different laboratories. The ability to combine metabolomics data arising from different sources is therefore of great interest, particularly for large-scale or long-term studies, where samples must be analyzed in separate blocks. This is not a trivial task, however, due to differing data structures, temporal variability, and instrumental drift. In this study, we employed blood serum and plasma samples collected from 29 subjects diagnosed with small cell lung cancer and analyzed each sample on two liquid chromatography–mass spectrometry (LC-MS) platforms. We describe a method for mapping retention times and matching metabolite features between platforms and approaches for fusing data acquired from both instruments. Calibration transfer models were developed and shown to be successful at mapping the response of one LC-MS instrument to another (Procrustes dissimilarity = 0.04; Mantel correlation = 0.95), allowing us to merge the data from different samples analyzed on different instruments. Data fusion was assessed in a clinical context by comparing the correlation of each metabolite with subject survival time in both the original and fused data sets: a simple autoscaling procedure (Pearson’s R = 0.99) was found to improve upon a calibration transfer method based on partial least-squares regression (R = 0.94).
AbstractList Metabolic profiling is routinely performed on multiple analytical platforms to increase the coverage of detected metabolites, and it is often necessary to distribute biological and clinical samples from a study between instruments of the same type to share the workload between different laboratories. The ability to combine metabolomics data arising from different sources is therefore of great interest, particularly for large-scale or long-term studies, where samples must be analyzed in separate blocks. This is not a trivial task, however, due to differing data structures, temporal variability, and instrumental drift. In this study, we employed blood serum and plasma samples collected from 29 subjects diagnosed with small cell lung cancer and analyzed each sample on two liquid chromatography-mass spectrometry (LC-MS) platforms. We describe a method for mapping retention times and matching metabolite features between platforms and approaches for fusing data acquired from both instruments. Calibration transfer models were developed and shown to be successful at mapping the response of one LC-MS instrument to another (Procrustes dissimilarity = 0.04; Mantel correlation = 0.95), allowing us to merge the data from different samples analyzed on different instruments. Data fusion was assessed in a clinical context by comparing the correlation of each metabolite with subject survival time in both the original and fused data sets: a simple autoscaling procedure (Pearson's R = 0.99) was found to improve upon a calibration transfer method based on partial least-squares regression (R = 0.94).
Metabolic profiling is routinely performed on multiple analytical platforms to increase the coverage of detected metabolites, and it is often necessary to distribute biological and clinical samples from a study between instruments of the same type to share the workload between different laboratories. The ability to combine metabolomics data arising from different sources is therefore of great interest, particularly for large-scale or long-term studies, where samples must be analyzed in separate blocks. This is not a trivial task, however, due to differing data structures, temporal variability, and instrumental drift. In this study, we employed blood serum and plasma samples collected from 29 subjects diagnosed with small cell lung cancer and analyzed each sample on two liquid chromatography-mass spectrometry (LC-MS) platforms. We describe a method for mapping retention times and matching metabolite features between platforms and approaches for fusing data acquired from both instruments. Calibration transfer models were developed and shown to be successful at mapping the response of one LC-MS instrument to another (Procrustes dissimilarity = 0.04; Mantel correlation = 0.95), allowing us to merge the data from different samples analyzed on different instruments. Data fusion was assessed in a clinical context by comparing the correlation of each metabolite with subject survival time in both the original and fused data sets: a simple autoscaling procedure (Pearson's R = 0.99) was found to improve upon a calibration transfer method based on partial least-squares regression (R = 0.94).Metabolic profiling is routinely performed on multiple analytical platforms to increase the coverage of detected metabolites, and it is often necessary to distribute biological and clinical samples from a study between instruments of the same type to share the workload between different laboratories. The ability to combine metabolomics data arising from different sources is therefore of great interest, particularly for large-scale or long-term studies, where samples must be analyzed in separate blocks. This is not a trivial task, however, due to differing data structures, temporal variability, and instrumental drift. In this study, we employed blood serum and plasma samples collected from 29 subjects diagnosed with small cell lung cancer and analyzed each sample on two liquid chromatography-mass spectrometry (LC-MS) platforms. We describe a method for mapping retention times and matching metabolite features between platforms and approaches for fusing data acquired from both instruments. Calibration transfer models were developed and shown to be successful at mapping the response of one LC-MS instrument to another (Procrustes dissimilarity = 0.04; Mantel correlation = 0.95), allowing us to merge the data from different samples analyzed on different instruments. Data fusion was assessed in a clinical context by comparing the correlation of each metabolite with subject survival time in both the original and fused data sets: a simple autoscaling procedure (Pearson's R = 0.99) was found to improve upon a calibration transfer method based on partial least-squares regression (R = 0.94).
Metabolic profiling is routinely performed on multiple analytical platforms to increase the coverage of detected metabolites, and it is often necessary to distribute biological and clinical samples from a study between instruments of the same type to share the workload between different laboratories. The ability to combine metabolomics data arising from different sources is therefore of great interest, particularly for large-scale or long-term studies, where samples must be analyzed in separate blocks. This is not a trivial task, however, due to differing data structures, temporal variability, and instrumental drift. In this study, we employed blood serum and plasma samples collected from 29 subjects diagnosed with small cell lung cancer and analyzed each sample on two liquid chromatography-mass spectrometry (LC-MS) platforms. We describe a method for mapping retention times and matching metabolite features between platforms and approaches for fusing data acquired from both instruments. Calibration transfer models were developed and shown to be successful at mapping the response of one LC-MS instrument to another (Procrustes dissimilarity = 0.04; Mantel correlation = 0.95), allowing us to merge the data from different samples analyzed on different instruments. Data fusion was assessed in a clinical context by comparing the correlation of each metabolite with subject survival time in both the original and fused data sets: a simple autoscaling procedure (Pearson's R = 0.99) was found to improve upon a calibration transfer method based on partial least-squares regression (R = 0.94). [PUBLICATION ABSTRACT]
Author Vaughan, Andrew A
Dive, Caroline
Allwood, J. William
Wedge, David C
Blackhall, Fiona H
Dunn, Warwick B
Whetton, Anthony D
Goodacre, Royston
AuthorAffiliation School of Cancer and Enabling Sciences
Wellcome Trust Sanger Institute
University of Manchester
Cancer Genome Project
Centre for Advanced Discovery and Experimental Therapeutics (CADET)
Clinical and Experimental Pharmacology Group
School of Chemistry
Manchester Centre for Integrative Systems Biology
AuthorAffiliation_xml – name: University of Manchester
– name: Centre for Advanced Discovery and Experimental Therapeutics (CADET)
– name: Wellcome Trust Sanger Institute
– name: Manchester Centre for Integrative Systems Biology
– name: Cancer Genome Project
– name: School of Cancer and Enabling Sciences
– name: School of Chemistry
– name: Clinical and Experimental Pharmacology Group
Author_xml – sequence: 1
  givenname: Andrew A
  surname: Vaughan
  fullname: Vaughan, Andrew A
  email: andrew.vaughan-2@manchester.ac.uk
– sequence: 2
  givenname: Warwick B
  surname: Dunn
  fullname: Dunn, Warwick B
– sequence: 3
  givenname: J. William
  surname: Allwood
  fullname: Allwood, J. William
– sequence: 4
  givenname: David C
  surname: Wedge
  fullname: Wedge, David C
– sequence: 5
  givenname: Fiona H
  surname: Blackhall
  fullname: Blackhall, Fiona H
– sequence: 6
  givenname: Anthony D
  surname: Whetton
  fullname: Whetton, Anthony D
– sequence: 7
  givenname: Caroline
  surname: Dive
  fullname: Dive, Caroline
– sequence: 8
  givenname: Royston
  surname: Goodacre
  fullname: Goodacre, Royston
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26645578$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23072438$$D View this record in MEDLINE/PubMed
BookMark eNqF0cFu1DAQBmALFdFt4cALoEgICQ6h43FsZ49ooYC0FQfKiUM0cRzqKom3tnPYG-_QN-yT4KVLQQWJkw_-xvL_zxE7mPxkGXvK4TUH5CdkBCCiNg_YgkuEUtU1HrAFAIgSNcAhO4rxEoBz4OoRO0QBGitRL9jXtbuaXVesLoIfKflvgTYX25vv12cUY_F5Y03KFzaFbbGiwbWBkvNTcR5oir0NBU1dcWYTtX7wozOxeEuJitM5ZvWYPexpiPbJ_jxmX07fna8-lOtP7z-u3qxLqjSmUiMZ02kFYNVScmU0Yt13LWleVULWqDvATgph0OagQoBcglRdp2QrDQpxzF7evrsJ_mq2MTWji8YOA03Wz7HBXQ8VCCn_SznXSwkKVJXp83v00s9hykF2ql5WuXmV1bO9mtvRds0muJHCtvnVcAYv9oCioaHPxRkXfzulKin1zr26dSb4GIPt7wiHZrfl5m7L2Z7cs8aln4tJgdzwz4n9L8jEP3L85X4ADveypw
CODEN ANCHAM
CitedBy_id crossref_primary_10_1007_s11306_022_01956_x
crossref_primary_10_1016_j_chroma_2015_06_049
crossref_primary_10_1586_14737159_2013_835570
crossref_primary_10_7554_eLife_91597_3
crossref_primary_10_1021_ac400515s
crossref_primary_10_1039_C5AN00206K
crossref_primary_10_3390_molecules29245934
crossref_primary_10_1007_s11306_021_01848_6
crossref_primary_10_1021_acs_analchem_6b01481
crossref_primary_10_1002_rcm_7475
crossref_primary_10_7554_eLife_91597
crossref_primary_10_1002_mas_21401
crossref_primary_10_1016_j_aca_2015_02_012
crossref_primary_10_1021_acs_analchem_1c00765
crossref_primary_10_1021_acs_analchem_5b02049
crossref_primary_10_1016_j_chroma_2015_04_029
crossref_primary_10_1042_BCJ20210534
crossref_primary_10_1016_j_drudis_2013_07_014
crossref_primary_10_1016_j_aca_2015_03_006
crossref_primary_10_1016_j_aca_2017_03_049
crossref_primary_10_1586_14789450_2013_828947
crossref_primary_10_1038_s41596_019_0150_x
crossref_primary_10_1016_j_aca_2017_07_044
crossref_primary_10_1021_ac500878x
crossref_primary_10_1038_nrgastro_2015_114
crossref_primary_10_1007_s00216_013_6954_6
crossref_primary_10_1021_ac404191a
crossref_primary_10_1039_D0AN00254B
crossref_primary_10_1016_j_trac_2019_115665
Cites_doi 10.1038/nprot.2011.335
10.1109/5.554205
10.1093/ije/dym284
10.1007/s11306-007-0081-3
10.1016/j.chemolab.2010.07.006
10.1021/ac051080y
10.1021/ac950671t
10.1021/ac200108a
10.4161/cc.8.23.10238
10.1093/bioinformatics/btg385
10.1021/ac00023a016
10.1021/ac2012224
10.1016/j.chemolab.2011.09.014
10.1016/S0169-7439(02)00111-9
10.1016/j.aca.2011.03.025
10.1021/ac1016612
10.1021/ac8019366
10.1021/pr900499r
10.1021/ac062153w
10.1021/ac051495j
10.1007/BF02291478
10.1016/S0140-6736(66)91111-1
10.1021/ac2021823
10.1016/S0169-7439(00)00113-1
10.1002/mas.20252
10.1016/j.trac.2008.01.008
10.1080/00401706.1969.10490666
10.1016/0003-2670(93)80430-S
10.1016/S0003-2670(97)00062-7
10.1016/j.jchromb.2008.04.031
10.1016/j.trac.2008.01.007
10.1016/j.jchromb.2008.03.021
10.1016/S0169-7439(02)00085-0
10.1016/S0300-595X(83)80043-7
10.1093/bioinformatics/btr079
10.1021/ac902346a
10.1007/s00216-012-5773-5
10.1016/j.chemolab.2010.04.012
10.1093/bioinformatics/btn083
10.1136/jcp.14.3.271
10.1006/jaer.1999.0428
10.1021/pr049769r
10.1186/1471-2105-12-254
10.1016/j.aca.2008.01.071
10.1039/b901179j
10.1016/j.chemolab.2004.01.007
10.1186/1471-2105-12-467
10.1021/ac051437y
ContentType Journal Article
Copyright Copyright © 2012 American Chemical Society
2014 INIST-CNRS
Copyright American Chemical Society Nov 20, 2012
Copyright_xml – notice: Copyright © 2012 American Chemical Society
– notice: 2014 INIST-CNRS
– notice: Copyright American Chemical Society Nov 20, 2012
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
DOI 10.1021/ac302227c
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

AGRICOLA
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-6882
EndPage 9857
ExternalDocumentID 2821240741
23072438
26645578
10_1021_ac302227c
h98380043
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: Cancer Research UK
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BBC0082191
GroupedDBID -
.K2
02
1AW
23M
4.4
53G
53T
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABOCM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACNCT
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
D0L
DZ
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
P2P
PQEST
PQQKQ
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
VF5
VG9
VQA
W1F
WH7
X
X6Y
XFK
YZZ
---
-DZ
-~X
.DC
6J9
AAHBH
AAYXX
ABBLG
ABHFT
ABHMW
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ACKOT
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
KZ1
LMP
XSW
ZCA
~02
.GJ
.HR
186
1WB
2KS
3EH
3O-
6TJ
AAUTI
ABDPE
ACKIV
ACPVT
ACQAM
ACRPL
ADNMO
AETEA
AEYZD
AFFDN
AFFNX
AIDAL
ANPPW
ANTXH
IQODW
MVM
NHB
OHT
OMK
RNS
UBC
UBX
VOH
XOL
YQI
YQJ
YR5
YXE
YYP
ZCG
ZE2
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
ID FETCH-LOGICAL-a472t-72accd7600e69516c7228fdba714435827d02d533c2ec3033059056dd65b5c233
IEDL.DBID ACS
ISSN 0003-2700
1520-6882
IngestDate Fri Jul 11 06:34:10 EDT 2025
Fri Jul 11 00:08:30 EDT 2025
Mon Jun 30 08:40:39 EDT 2025
Thu Apr 03 06:57:08 EDT 2025
Wed Apr 02 07:23:37 EDT 2025
Thu Apr 24 23:01:55 EDT 2025
Tue Jul 01 02:48:44 EDT 2025
Thu Aug 27 13:42:25 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords Metabolomics
Lung disease
Metabolite
Coupled method
Sample
Lung
Instrumentation
Data processing
Liquid chromatography
Calibration
Laboratory
Malignant tumor
Retention time
Survival
Blood plasma
Biological compound
PLS regression
Transfer
Serum
Large scale
Mass spectrometry
Chemometrics
Cancer
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a472t-72accd7600e69516c7228fdba714435827d02d533c2ec3033059056dd65b5c233
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 23072438
PQID 1178940216
PQPubID 45400
PageCount 10
ParticipantIDs proquest_miscellaneous_2000340355
proquest_miscellaneous_1179506064
proquest_journals_1178940216
pubmed_primary_23072438
pascalfrancis_primary_26645578
crossref_primary_10_1021_ac302227c
crossref_citationtrail_10_1021_ac302227c
acs_journals_10_1021_ac302227c
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-11-20
PublicationDateYYYYMMDD 2012-11-20
PublicationDate_xml – month: 11
  year: 2012
  text: 2012-11-20
  day: 20
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Washington
PublicationTitle Analytical chemistry (Washington)
PublicationTitleAlternate Anal. Chem
PublicationYear 2012
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Steinmetz V. (ref14/cit14) 1999; 74
Draisma H. H. M. (ref19/cit19) 2010; 82
Pavlides S. (ref45/cit45) 2009; 8
Watson D. (ref43/cit43) 1961; 14
Fiehn O. (ref8/cit8) 2008; 27
Seasholtz M. B. (ref50/cit50) 1993; 277
Hall D. L. (ref13/cit13) 1997; 85
Creek D. J. (ref12/cit12) 2011; 83
Goodacre R. (ref29/cit29) 1996; 68
Taminau J. (ref49/cit49) 2009; 10
Van Mechelen I. (ref21/cit21) 2010; 104
Gao X. (ref6/cit6) 2012; 402
Hoskuldsson A. (ref41/cit41) 2001; 55
Dunn W. B. (ref35/cit35) 2008; 871
Goodacre R. (ref39/cit39) 2007; 3
Bijlsma S. (ref10/cit10) 2006; 78
Wedge D. C. (ref33/cit33) 2011; 83
Miles J. M. (ref44/cit44) 1983; 12
Brown M. (ref37/cit37) 2009; 134
Zelena E. (ref11/cit11) 2009; 81
Doeswijk T. G. (ref16/cit16) 2011; 705
Theodoridis G. (ref4/cit4) 2008; 27
Wagner S. (ref18/cit18) 2007; 79
Rudy J. (ref48/cit48) 2011; 12
Pereira C. F. (ref28/cit28) 2008; 611
Gower J. C. (ref31/cit31) 1975; 40
Dunn W. B. (ref3/cit3) 2011; 6
van der Kloet F. M. (ref26/cit26) 2009; 8
Andrade J. M. (ref38/cit38) 2004; 72
Feudale R. N. (ref24/cit24) 2002; 64
Goodacre R. (ref30/cit30) 1997; 348
Bennette N. B. (ref1/cit1) 2011; 83
Richards S. E. (ref22/cit22) 2010; 104
Kennard R. W. (ref40/cit40) 1969; 11
Cubbon S. (ref7/cit7) 2010; 29
Barton R. H. (ref9/cit9) 2008; 37
Smilde A. K. (ref17/cit17) 2005; 77
Wilson I. D. (ref5/cit5) 2005; 4
Wang Y. (ref25/cit25) 1991; 63
Benito M. (ref47/cit47) 2004; 20
Shabalin A. A. (ref46/cit46) 2008; 24
Mantel N. (ref32/cit32) 1967; 27
Blanchet L. (ref20/cit20) 2011; 12
Smith C. A. (ref34/cit34) 2006; 78
Roussel S. (ref15/cit15) 2003; 65
Gika H. G. (ref23/cit23) 2010; 82
Brown M. (ref36/cit36) 2011; 27
Berlyne G. M. (ref42/cit42) 1966; 1
Abdelkader M. F. (ref27/cit27) 2012; 110
Lu W. (ref2/cit2) 2008; 871
References_xml – volume: 6
  start-page: 1060
  year: 2011
  ident: ref3/cit3
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2011.335
– volume: 85
  start-page: 6
  year: 1997
  ident: ref13/cit13
  publication-title: Proc. IEEE
  doi: 10.1109/5.554205
– volume: 37
  start-page: 31
  year: 2008
  ident: ref9/cit9
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dym284
– volume: 3
  start-page: 231
  year: 2007
  ident: ref39/cit39
  publication-title: Metabolomics
  doi: 10.1007/s11306-007-0081-3
– volume: 104
  start-page: 121
  year: 2010
  ident: ref22/cit22
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2010.07.006
– volume: 27
  start-page: 209
  year: 1967
  ident: ref32/cit32
  publication-title: Cancer Res.
– volume: 77
  start-page: 6729
  year: 2005
  ident: ref17/cit17
  publication-title: Anal. Chem.
  doi: 10.1021/ac051080y
– volume: 68
  start-page: 271
  year: 1996
  ident: ref29/cit29
  publication-title: Anal. Chem.
  doi: 10.1021/ac950671t
– volume: 83
  start-page: 3808
  year: 2011
  ident: ref1/cit1
  publication-title: Anal. Chem.
  doi: 10.1021/ac200108a
– volume: 8
  start-page: 3984
  year: 2009
  ident: ref45/cit45
  publication-title: Cell Cycle
  doi: 10.4161/cc.8.23.10238
– volume: 20
  start-page: 105
  year: 2004
  ident: ref47/cit47
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg385
– volume: 63
  start-page: 2750
  year: 1991
  ident: ref25/cit25
  publication-title: Anal. Chem.
  doi: 10.1021/ac00023a016
– volume: 83
  start-page: 6689
  year: 2011
  ident: ref33/cit33
  publication-title: Anal. Chem.
  doi: 10.1021/ac2012224
– volume: 110
  start-page: 64
  year: 2012
  ident: ref27/cit27
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2011.09.014
– volume: 65
  start-page: 209
  year: 2003
  ident: ref15/cit15
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(02)00111-9
– volume: 705
  start-page: 41
  year: 2011
  ident: ref16/cit16
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2011.03.025
– volume: 82
  start-page: 8226
  year: 2010
  ident: ref23/cit23
  publication-title: Anal. Chem.
  doi: 10.1021/ac1016612
– volume: 81
  start-page: 1357
  year: 2009
  ident: ref11/cit11
  publication-title: Anal. Chem.
  doi: 10.1021/ac8019366
– volume: 8
  start-page: 5132
  year: 2009
  ident: ref26/cit26
  publication-title: J. Proteome Res.
  doi: 10.1021/pr900499r
– volume: 79
  start-page: 2918
  year: 2007
  ident: ref18/cit18
  publication-title: Anal. Chem.
  doi: 10.1021/ac062153w
– volume: 78
  start-page: 567
  year: 2006
  ident: ref10/cit10
  publication-title: Anal. Chem.
  doi: 10.1021/ac051495j
– volume: 40
  start-page: 33
  year: 1975
  ident: ref31/cit31
  publication-title: Psychometrika
  doi: 10.1007/BF02291478
– volume: 1
  start-page: 1212
  year: 1966
  ident: ref42/cit42
  publication-title: Lancet
  doi: 10.1016/S0140-6736(66)91111-1
– volume: 83
  start-page: 8703
  year: 2011
  ident: ref12/cit12
  publication-title: Anal. Chem.
  doi: 10.1021/ac2021823
– volume: 55
  start-page: 23
  year: 2001
  ident: ref41/cit41
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(00)00113-1
– volume: 29
  start-page: 671
  year: 2010
  ident: ref7/cit7
  publication-title: Mass Spectrom. Rev.
  doi: 10.1002/mas.20252
– volume: 27
  start-page: 251
  year: 2008
  ident: ref4/cit4
  publication-title: Trends Anal. Chem.
  doi: 10.1016/j.trac.2008.01.008
– volume: 10
  start-page: 4
  year: 2009
  ident: ref49/cit49
  publication-title: Aust. J. Intell. Inform. Process. Syst.
– volume: 11
  start-page: 137
  year: 1969
  ident: ref40/cit40
  publication-title: Technometrics
  doi: 10.1080/00401706.1969.10490666
– volume: 277
  start-page: 165
  year: 1993
  ident: ref50/cit50
  publication-title: Anal. Chim. Acta
  doi: 10.1016/0003-2670(93)80430-S
– volume: 348
  start-page: 511
  year: 1997
  ident: ref30/cit30
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(97)00062-7
– volume: 871
  start-page: 236
  year: 2008
  ident: ref2/cit2
  publication-title: J. Chromatogr., B
  doi: 10.1016/j.jchromb.2008.04.031
– volume: 27
  start-page: 261
  year: 2008
  ident: ref8/cit8
  publication-title: Trends Anal. Chem.
  doi: 10.1016/j.trac.2008.01.007
– volume: 871
  start-page: 288
  year: 2008
  ident: ref35/cit35
  publication-title: J. Chromatogr., B
  doi: 10.1016/j.jchromb.2008.03.021
– volume: 64
  start-page: 181
  year: 2002
  ident: ref24/cit24
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(02)00085-0
– volume: 12
  start-page: 303
  year: 1983
  ident: ref44/cit44
  publication-title: Clin. Endocrinol. Metab.
  doi: 10.1016/S0300-595X(83)80043-7
– volume: 27
  start-page: 1108
  year: 2011
  ident: ref36/cit36
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr079
– volume: 82
  start-page: 1039
  year: 2010
  ident: ref19/cit19
  publication-title: Anal. Chem.
  doi: 10.1021/ac902346a
– volume: 402
  start-page: 2923
  year: 2012
  ident: ref6/cit6
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-012-5773-5
– volume: 104
  start-page: 83
  year: 2010
  ident: ref21/cit21
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2010.04.012
– volume: 24
  start-page: 1154
  year: 2008
  ident: ref46/cit46
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn083
– volume: 14
  start-page: 271
  year: 1961
  ident: ref43/cit43
  publication-title: J. Clin. Pathol.
  doi: 10.1136/jcp.14.3.271
– volume: 74
  start-page: 21
  year: 1999
  ident: ref14/cit14
  publication-title: J. Agric. Eng. Res.
  doi: 10.1006/jaer.1999.0428
– volume: 4
  start-page: 591
  year: 2005
  ident: ref5/cit5
  publication-title: J. Proteome Res.
  doi: 10.1021/pr049769r
– volume: 12
  start-page: 254
  year: 2011
  ident: ref20/cit20
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-12-254
– volume: 611
  start-page: 41
  year: 2008
  ident: ref28/cit28
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2008.01.071
– volume: 134
  start-page: 1322
  year: 2009
  ident: ref37/cit37
  publication-title: Analyst
  doi: 10.1039/b901179j
– volume: 72
  start-page: 123
  year: 2004
  ident: ref38/cit38
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2004.01.007
– volume: 12
  start-page: 467
  year: 2011
  ident: ref48/cit48
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-12-467
– volume: 78
  start-page: 779
  year: 2006
  ident: ref34/cit34
  publication-title: Anal. Chem.
  doi: 10.1021/ac051437y
SSID ssj0011016
Score 2.2295403
Snippet Metabolic profiling is routinely performed on multiple analytical platforms to increase the coverage of detected metabolites, and it is often necessary to...
SourceID proquest
pubmed
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9848
SubjectTerms Analytical chemistry
blood serum
Calibration
Chemistry
Chromatographic methods and physical methods associated with chromatography
Chromatography
Chromatography, Liquid - methods
Correlation analysis
data collection
Exact sciences and technology
General, instrumentation
Humans
least squares
Liquid chromatography
Lung cancer
lung neoplasms
Lung Neoplasms - metabolism
Mass spectrometry
Mass Spectrometry - methods
Metabolites
metabolomics
Metabolomics - methods
Other chromatographic methods
Plasma
Small Cell Lung Carcinoma - metabolism
Spectrometric and optical methods
Statistics as Topic - methods
temporal variation
Title Liquid Chromatography–Mass Spectrometry Calibration Transfer and Metabolomics Data Fusion
URI http://dx.doi.org/10.1021/ac302227c
https://www.ncbi.nlm.nih.gov/pubmed/23072438
https://www.proquest.com/docview/1178940216
https://www.proquest.com/docview/1179506064
https://www.proquest.com/docview/2000340355
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1520-6882
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011016
  issn: 0003-2700
  databaseCode: ACS
  dateStart: 19470121
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB6VcgCEeJRHF8rKPA5cUhLbsbPHasuqQiwXqFSJw8oZO1JFlZZucuHU_8A_7C_pTF5sRRfOGUu2Z-z5xpP5BuBdoTQBXZNEwcYh0pmWkUswjjQaj9ahKQK_Q86_mIND_ekoPdqAt2sy-DL54FA1BZt4C25LkyUcYe1Nvw6pAg4_-7Z4nEXt6YNWh7LrweU113P_zC1pF4q2fcV6fNn4mdlD2O-rddrfS37s1lW-i7_-Jm_81xIewYMOZ4q91jAew0Yot-DOtG_vtgX3VpgIn8D3z8c_62MvmCuXMGzHY3158XtO4Fpwk_qKeQ1opOBqrry1G9F4uiKcC1d6MQ8VWdQJlzkvxb6rnJjV_Bb3FA5nH79ND6Ku70LktJVVZKVD9JyxC4YAmEErZVb43FmKvriy1vpYesKJKAOtTCkuYE2N9ybNU5RKPYPN8rQM2yB0JnWOgVBoUAR9sjwkIZ6gLWycY5ymIxiTYhbduVkumpS4TBbDjo3gfa-zBXas5dw84-Qm0TeD6FlL1XGT0Pia4gdJAio6petrBDu9JaxMK7HZhCLtxIzg9fCZFMbZFVeG07qRmTBbo9HrZWTDBxQrXvjz1sr-TIBuW6lV9uJ_W_IS7hJqk1wQKeMd2KzO6_CKkFGVj5uTcQX5ZAWd
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOZSq4lEoLJTFIA5cUhLHsbNHtLBaYLcXWqkSh8ixHalqlT6SXHriP_AP-SXMOI9uUSs4ZxKNx2PPZ0_mG4B3RSwQ6MoocCp0gUgFD3RkwkAYaY3SRhaO7iGXe3J-IL4eJocdTQ7VwqASFX6p8kn8K3aB6IM2sa_bNHfhnmdAIRg0_T5kDOgU2nfHo2RqzyK0-ipFIFNdi0CbZ7pCYxRtF4vbYaYPN7OHbd8ir6j_y-R4t6nzXXP5F4fj_43kETzoUCf72LrJY7jjyi1Yn_bN3rZgY4WX8An8WBydN0eWEXMuItqO1fr3z19LhNqMWtbXxHKAbzKq7cpbL2I-7hXugunSsqWr0b9OqOi5Yp90rdmsoZu5p3Aw-7w_nQddF4ZAC8XrQHFtjKX8nZMIx6RRnKeFzbXCsxjV2Sobcouo0XCHI4tjKmdNpLUyyRPD43gb1srT0j0HJlIucuMQk7oYgVCau8iFE6MKFeYmTJIRjNFgWbeKqswnyHmUDRYbwft-6jLTcZhTK42Tm0TfDqJnLXHHTULja_M_SCJsEQluZiPY6R1iRa1IpRM8d0dyBG-GxzhhlGvRpTttvMyEuBuluF2Ge3agMKaBP2ud7UoB3Hu5iNMX_zLJa1if7y8X2eLL3reXcB_xHKdSSR7uwFp90bhXiJnqfOwXyx_h6w4I
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BkaAI8Wh5LJTFIA69pCSOY2ePaMuqQLcgQaVKPUSO7UhVq3Rpkgsn_gP_sL-kM86DLWoF50yisT32fOPJfAPwtogFAl0ZBU6FLhCp4IGOTBgII61R2sjC0T3kfE_u7ItPB8lBFyhSLQwqUeGXKp_Ep129sEXHMBC90yb2tZvmJtxKiPqNoND025A1oEi075BHCdWeSWj5VfJCprrkhe4tdIUTUrSdLK6Hmt7lzB7Al0FZ_6fJ8VZT51vm5188jv8_modwv0Of7H1rLo_ghivX4M60b_q2BneX-AnX4XD36EdzZBkx6CKy7ditz3_9niPkZtS6via2A3yTUY1X3loT8_6vcGdMl5bNXY12dkLFzxXb1rVms4Zu6B7D_uzD9-lO0HVjCLRQvA4U18ZYyuM5ibBMGsV5WthcK4zJqN5W2ZBbRI-GOxxZHFNZayKtlUmeGB7HT2ClPC3dM2Ai5SI3DrGpixEQpbmLXDgxqlBhbsIkGcEYJy3rdlOV-UQ5j7Jhxkaw2S9fZjouc2qpcXKV6JtBdNESeFwlNL5kA4MkwheR4KE2go3eKJbUilQ6wfg7kiN4PTzGBaOciy7daeNlJsThKMX1MtyzBIUxDfxpa3B_FMAzmIs4ff6vKXkFt79uz7Ldj3ufX8AqwjpOFZM83ICV-qxxLxE61fnY75cLlX0Qgg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liquid+chromatography-mass+spectrometry+calibration+transfer+and+metabolomics+data+fusion&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Vaughan%2C+Andrew+A&rft.au=Dunn%2C+Warwick+B&rft.au=Allwood%2C+J+William&rft.au=Wedge%2C+David+C&rft.date=2012-11-20&rft.eissn=1520-6882&rft.volume=84&rft.issue=22&rft.spage=9848&rft_id=info:doi/10.1021%2Fac302227c&rft_id=info%3Apmid%2F23072438&rft.externalDocID=23072438
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon