A New Method for Removal of Hydrogen Peroxide Interference in the Analysis of Chemical Oxygen Demand

Many advanced oxidation processes involve addition of hydrogen peroxide (H2O2) with the aim of generating hydroxyl radicals to oxidize organic contaminants in water. However, chemical oxygen demand, a common measure of gross residual organic contamination, is subject to interference from residual H2...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 46; no. 4; pp. 2291 - 2298
Main Authors Wu, Tingting, Englehardt, James D
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 21.02.2012
Subjects
Online AccessGet full text
ISSN0013-936X
1520-5851
1520-5851
DOI10.1021/es204250k

Cover

Abstract Many advanced oxidation processes involve addition of hydrogen peroxide (H2O2) with the aim of generating hydroxyl radicals to oxidize organic contaminants in water. However, chemical oxygen demand, a common measure of gross residual organic contamination, is subject to interference from residual H2O2 in the treated water. A new method, involving catalytic decomposition of H2O2 with addition of heat and sodium carbonate (Na2CO3), is proposed in this work to address this problem. The method is demonstrated experimentally, and modeled kinetically. Results for 5 mM H2O2 in deionized (DI) water included reduction to below the COD detection limit after 60 min heating (90◦C) with addition of 20 g/L Na2CO3 concentrated solution, whereas 900 min were required in treated municipal wastewater. An approximate second order rate constant of 11.331 M–1·min–1 at Na2CO3 dosage of 20 g/L was found for the tested wastewater. However, kinetic modeling indicated a two-step reaction mechanism, with formation of peroxocarbonate (CO4 2‑) and ultimate decomposition to H2O and O2 in pure H2O2 solution. A similar mechanism is apparent in wastewater at high catalyst concentrations, whereas at low Na2CO3 addition rates, the catalytic effects of other constituents appear important.
AbstractList Many advanced oxidation processes involve addition of hydrogen peroxide (H2O2) with the aim of generating hydroxyl radicals to oxidize organic contaminants in water. However, chemical oxygen demand, a common measure of gross residual organic contamination, is subject to interference from residual H2O2 in the treated water. A new method, involving catalytic decomposition of H2O2 with addition of heat and sodium carbonate (Na2CO3), is proposed in this work to address this problem. The method is demonstrated experimentally, and modeled kinetically. Results for 5 mM H2O2 in deionized (DI) water included reduction to below the COD detection limit after 60 min heating (90◦C) with addition of 20 g/L Na2CO3 concentrated solution, whereas 900 min were required in treated municipal wastewater. An approximate second order rate constant of 11.331 M–1·min–1 at Na2CO3 dosage of 20 g/L was found for the tested wastewater. However, kinetic modeling indicated a two-step reaction mechanism, with formation of peroxocarbonate (CO4 2‑) and ultimate decomposition to H2O and O2 in pure H2O2 solution. A similar mechanism is apparent in wastewater at high catalyst concentrations, whereas at low Na2CO3 addition rates, the catalytic effects of other constituents appear important.
Many advanced oxidation processes involve addition of hydrogen peroxide (H(2)O(2)) with the aim of generating hydroxyl radicals to oxidize organic contaminants in water. However, chemical oxygen demand, a common measure of gross residual organic contamination, is subject to interference from residual H(2)O(2) in the treated water. A new method, involving catalytic decomposition of H(2)O(2) with addition of heat and sodium carbonate (Na(2)CO(3)), is proposed in this work to address this problem. The method is demonstrated experimentally, and modeled kinetically. Results for 5 mM H(2)O(2) in deionized (DI) water included reduction to below the COD detection limit after 60 min heating (90(◦)C) with addition of 20 g/L Na(2)CO(3) concentrated solution, whereas 900 min were required in treated municipal wastewater. An approximate second order rate constant of 11.331 M(-1)·min(-1) at Na(2)CO(3) dosage of 20 g/L was found for the tested wastewater. However, kinetic modeling indicated a two-step reaction mechanism, with formation of peroxocarbonate (CO(4)(2-)) and ultimate decomposition to H(2)O and O(2) in pure H(2)O(2) solution. A similar mechanism is apparent in wastewater at high catalyst concentrations, whereas at low Na(2)CO(3) addition rates, the catalytic effects of other constituents appear important.Many advanced oxidation processes involve addition of hydrogen peroxide (H(2)O(2)) with the aim of generating hydroxyl radicals to oxidize organic contaminants in water. However, chemical oxygen demand, a common measure of gross residual organic contamination, is subject to interference from residual H(2)O(2) in the treated water. A new method, involving catalytic decomposition of H(2)O(2) with addition of heat and sodium carbonate (Na(2)CO(3)), is proposed in this work to address this problem. The method is demonstrated experimentally, and modeled kinetically. Results for 5 mM H(2)O(2) in deionized (DI) water included reduction to below the COD detection limit after 60 min heating (90(◦)C) with addition of 20 g/L Na(2)CO(3) concentrated solution, whereas 900 min were required in treated municipal wastewater. An approximate second order rate constant of 11.331 M(-1)·min(-1) at Na(2)CO(3) dosage of 20 g/L was found for the tested wastewater. However, kinetic modeling indicated a two-step reaction mechanism, with formation of peroxocarbonate (CO(4)(2-)) and ultimate decomposition to H(2)O and O(2) in pure H(2)O(2) solution. A similar mechanism is apparent in wastewater at high catalyst concentrations, whereas at low Na(2)CO(3) addition rates, the catalytic effects of other constituents appear important.
Many advanced oxidation processes involve addition of hydrogen peroxide (H(2)O(2)) with the aim of generating hydroxyl radicals to oxidize organic contaminants in water. However, chemical oxygen demand, a common measure of gross residual organic contamination, is subject to interference from residual H(2)O(2) in the treated water. A new method, involving catalytic decomposition of H(2)O(2) with addition of heat and sodium carbonate (Na(2)CO(3)), is proposed in this work to address this problem. The method is demonstrated experimentally, and modeled kinetically. Results for 5 mM H(2)O(2) in deionized (DI) water included reduction to below the COD detection limit after 60 min heating (90(◦)C) with addition of 20 g/L Na(2)CO(3) concentrated solution, whereas 900 min were required in treated municipal wastewater. An approximate second order rate constant of 11.331 M(-1)·min(-1) at Na(2)CO(3) dosage of 20 g/L was found for the tested wastewater. However, kinetic modeling indicated a two-step reaction mechanism, with formation of peroxocarbonate (CO(4)(2-)) and ultimate decomposition to H(2)O and O(2) in pure H(2)O(2) solution. A similar mechanism is apparent in wastewater at high catalyst concentrations, whereas at low Na(2)CO(3) addition rates, the catalytic effects of other constituents appear important.
Many advanced oxidation processes involve addition of hydrogen peroxide (H₂O₂) with the aim of generating hydroxyl radicals to oxidize organic contaminants in water. However, chemical oxygen demand, a common measure of gross residual organic contamination, is subject to interference from residual H₂O₂ in the treated water. A new method, involving catalytic decomposition of H₂O₂ with addition of heat and sodium carbonate (Na₂CO₃), is proposed in this work to address this problem. The method is demonstrated experimentally, and modeled kinetically. Results for 5 mM H₂O₂ in deionized (DI) water included reduction to below the COD detection limit after 60 min heating (90◦C) with addition of 20 g/L Na₂CO₃ concentrated solution, whereas 900 min were required in treated municipal wastewater. An approximate second order rate constant of 11.331 M–¹·min–¹ at Na₂CO₃ dosage of 20 g/L was found for the tested wastewater. However, kinetic modeling indicated a two-step reaction mechanism, with formation of peroxocarbonate (CO₄²⁻) and ultimate decomposition to H₂O and O₂ in pure H₂O₂ solution. A similar mechanism is apparent in wastewater at high catalyst concentrations, whereas at low Na₂CO₃ addition rates, the catalytic effects of other constituents appear important.
Many advanced oxidation processes involve addition of hydrogen peroxide (...) with the aim of generating hydroxyl radicals to oxidize organic contaminants in water. However, chemical oxygen demand, a common measure of gross residual organic contamination, is subject to interference from residual ... in the treated water. A new method, involving catalytic decomposition of ... with addition of heat and sodium carbonate (Na2CO3), is proposed in this work to address this problem. The method is demonstrated experimentally, and modeled kinetically. Results for 5 mM ... in deionized (DI) water included reduction to below the COD detection limit after 60 min heating (90...C) with addition of 20 g/L ... concentrated solution, whereas 900 min were required in treated municipal wastewater. An approximate second order rate constant of 11.331 M...-min... at ... dosage of 20 g/L was found for the tested wastewater. However, kinetic modeling indicated a two-step reaction mechanism, with formation of peroxocarbonate (...) and ultimate decomposition to H2O and O2 in pure ... solution. A similar mechanism is apparent in wastewater at high catalyst concentrations, whereas at low ... addition rates, the catalytic effects of other constituents appear important. (ProQuest: ... denotes formulae/symbols omitted.)
Author Wu, Tingting
Englehardt, James D
AuthorAffiliation Department of Civil, Architectural and Environmental Engineering
University of Miami
AuthorAffiliation_xml – name: University of Miami
– name: Department of Civil, Architectural and Environmental Engineering
Author_xml – sequence: 1
  givenname: Tingting
  surname: Wu
  fullname: Wu, Tingting
  email: tingtingwu@miami.edu
– sequence: 2
  givenname: James D
  surname: Englehardt
  fullname: Englehardt, James D
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25630679$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22288523$$D View this record in MEDLINE/PubMed
BookMark eNp90U1v1DAQBmALFdFt4cAfQBYSAg5Lx3acOMfV8tFKhSLUA7do1hmzLond2lno_nsSuqVSQZx8ed4Zz8wB2wsxEGNPBbwRIMURZQmF1PD9AZsJLWGujRZ7bAYg1LxW5dd9dpDzBQBIBeYR25dSGqOlmrF2wT_RT_6RhnVsuYuJf6E-_sCOR8ePt22K3yjwz5TitW-Jn4SBkqNEwRL3gQ9r4ouA3Tb7PCWWa-q9HdNn19sp-JZ6DO1j9tBhl-nJ7j1k5-_fnS-P56dnH06Wi9M5FhUMc2GoRYWlFqaC1rVFpUooCCusSSM4UdI4ppO2EqWqK4umXBlbOKw01PVKHbKXN2UvU7zaUB6a3mdLXYeB4iY3tVTCGAMwylf_lXJalVSmqkf6_B69iJs0jjzV01VZFLUY0bMd2qx6apvL5HtM2-Z2zyN4sQOYx_W4hMH6fOd0qaD83e3oxtkUc07kGusHHHwMQ0LfNQKa6eLNn4uPidf3ErdF_2V3v0Cb78b42_0CY_e0JA
CODEN ESTHAG
CitedBy_id crossref_primary_10_1016_j_cscee_2022_100208
crossref_primary_10_1007_s12010_022_04277_w
crossref_primary_10_1080_00032719_2016_1161048
crossref_primary_10_5004_dwt_2020_25934
crossref_primary_10_1016_j_electacta_2019_07_057
crossref_primary_10_1016_j_cej_2014_08_016
crossref_primary_10_1016_j_envpol_2024_123688
crossref_primary_10_1016_j_envres_2024_119883
crossref_primary_10_1155_2023_3848456
crossref_primary_10_2166_wst_2016_538
crossref_primary_10_1007_s11356_021_16390_0
crossref_primary_10_1016_j_jenvman_2018_01_022
crossref_primary_10_1016_j_jenvrad_2020_106528
crossref_primary_10_1038_s41598_017_01429_5
crossref_primary_10_1007_s40710_014_0016_8
crossref_primary_10_1016_j_chemosphere_2018_06_007
crossref_primary_10_1016_j_jhazmat_2017_01_041
crossref_primary_10_1016_j_biosx_2024_100460
crossref_primary_10_1016_j_seppur_2022_122525
crossref_primary_10_1016_j_scitotenv_2019_136030
crossref_primary_10_1039_C8RA08085B
crossref_primary_10_1039_C7RA04312K
crossref_primary_10_1007_s10098_018_1590_7
crossref_primary_10_1016_j_eti_2017_06_003
crossref_primary_10_1016_j_watres_2020_116451
crossref_primary_10_1016_j_chemosphere_2017_05_037
crossref_primary_10_1061__ASCE_EE_1943_7870_0001923
crossref_primary_10_1016_j_ces_2025_121257
crossref_primary_10_1016_j_cattod_2019_01_068
crossref_primary_10_1016_j_jwpe_2024_105731
crossref_primary_10_1016_j_cej_2016_02_042
crossref_primary_10_1002_jctb_5170
crossref_primary_10_1039_C6CC02453J
crossref_primary_10_1039_C5GC01233C
crossref_primary_10_1080_09593330_2018_1449899
crossref_primary_10_1016_j_apcatb_2015_06_001
crossref_primary_10_1007_s13201_017_0559_8
crossref_primary_10_1016_j_jenvman_2019_109704
crossref_primary_10_1016_j_cej_2022_138107
crossref_primary_10_1007_s11356_023_27831_3
crossref_primary_10_3390_environments6010005
crossref_primary_10_1080_01496395_2019_1662808
crossref_primary_10_1515_gps_2024_0006
crossref_primary_10_2139_ssrn_4182540
crossref_primary_10_1016_j_watres_2016_09_005
crossref_primary_10_1021_acsami_9b21480
crossref_primary_10_1016_j_jhazmat_2021_127151
crossref_primary_10_14233_ajchem_2021_22958
crossref_primary_10_1016_j_chemosphere_2018_11_055
crossref_primary_10_1016_j_biortech_2016_12_010
crossref_primary_10_1016_j_cej_2018_03_058
crossref_primary_10_1088_1555_6611_acde71
crossref_primary_10_1016_j_chemosphere_2021_131999
crossref_primary_10_1039_D1EW00523E
crossref_primary_10_1007_s10853_018_2094_x
crossref_primary_10_1002_jctb_6431
crossref_primary_10_1016_j_jpowsour_2015_05_020
crossref_primary_10_1016_j_apsusc_2019_01_201
crossref_primary_10_1186_s10086_025_02183_3
crossref_primary_10_1016_j_jenvman_2018_10_005
crossref_primary_10_1016_j_ceja_2020_100032
crossref_primary_10_1039_D0TA11686F
crossref_primary_10_3390_w14223592
crossref_primary_10_1016_j_jhazmat_2014_10_022
crossref_primary_10_1039_C5RA20066K
crossref_primary_10_3390_ma14206175
crossref_primary_10_1016_j_talanta_2014_11_055
crossref_primary_10_1016_j_cej_2021_129477
crossref_primary_10_1016_j_teac_2017_05_002
crossref_primary_10_1007_s10311_018_00832_2
crossref_primary_10_3390_toxics11040366
crossref_primary_10_1016_j_jclepro_2015_03_015
crossref_primary_10_1016_j_chemosphere_2020_127968
crossref_primary_10_3390_molecules27196308
crossref_primary_10_1016_j_radphyschem_2017_09_023
crossref_primary_10_1080_09593330_2014_880517
crossref_primary_10_1088_2053_1591_ac9819
crossref_primary_10_1016_j_apcato_2024_207015
crossref_primary_10_1016_j_cej_2017_09_121
crossref_primary_10_1016_j_rser_2016_04_017
crossref_primary_10_1016_j_cej_2022_140845
crossref_primary_10_1007_s11270_021_05434_3
crossref_primary_10_1149_2_113406jes
crossref_primary_10_1016_j_jece_2021_106968
crossref_primary_10_2139_ssrn_3366896
crossref_primary_10_1016_j_chemosphere_2023_138666
crossref_primary_10_1080_10408347_2017_1370670
crossref_primary_10_1080_19443994_2016_1172030
Cites_doi 10.1016/S0043-1354(01)00087-2
10.1016/0043-1354(92)90118-N
10.1021/es1018288
10.1016/j.jhazmat.2006.06.023
10.1139/s03-058
10.1007/BF03326225
10.1016/S0043-1354(98)00315-7
10.1021/es9800784
10.1016/S0045-6535(01)00203-X
10.1080/01919512.1997.10382876
10.1016/S0043-1354(99)00396-6
10.1039/c39860000020
10.1016/S0043-1354(97)00077-8
10.1016/S0013-4686(98)00371-5
10.2166/wst.1995.0217
10.1002/(SICI)1521-3773(19980605)37:10<1387::AID-ANIE1387>3.0.CO;2-3
10.1021/es900825f
10.1021/ja9927467
10.1016/j.watres.2006.07.034
10.1016/j.jhazmat.2007.06.111
10.1002/1097-4660(200101)76:1<53::AID-JCTB346>3.0.CO;2-T
10.1016/j.chemosphere.2010.11.066
10.2166/wst.1997.0535
10.1016/S0043-1354(98)00403-5
ContentType Journal Article
Copyright Copyright © 2012 American Chemical Society
2014 INIST-CNRS
Copyright American Chemical Society Feb 21, 2012
Copyright_xml – notice: Copyright © 2012 American Chemical Society
– notice: 2014 INIST-CNRS
– notice: Copyright American Chemical Society Feb 21, 2012
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7S9
L.6
7X8
DOI 10.1021/es204250k
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
AGRICOLA
Biotechnology Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Applied Sciences
EISSN 1520-5851
EndPage 2298
ExternalDocumentID 2600133611
22288523
25630679
10_1021_es204250k
b475335126
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Feature
GroupedDBID -
.K2
1AW
3R3
4.4
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
6TJ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
ADMHC
ADUKH
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
MS~
MW2
XSW
ZCA
.HR
08R
186
1WB
42X
8WZ
A6W
AAYOK
ABDTD
ABFRP
ABHMW
ABTAH
ACKIV
AETEA
AFDAS
ANTXH
IHE
IQODW
K78
MVM
NHB
OHT
RNS
TAE
UBX
UBY
UQL
VJK
VOH
YV5
ZCG
ZY4
~A~
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7S9
L.6
7X8
ID FETCH-LOGICAL-a470t-18eda3a651870dfd473604ea7a9e5a0f16e042f2c716397ca86b8c4fa75099b3
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Fri Jul 11 05:38:51 EDT 2025
Fri Jul 11 12:15:19 EDT 2025
Mon Jun 30 02:34:17 EDT 2025
Thu Apr 03 07:05:04 EDT 2025
Fri Nov 25 01:07:30 EST 2022
Thu Apr 24 22:57:43 EDT 2025
Tue Jul 01 02:10:41 EDT 2025
Thu Aug 27 13:42:35 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Advanced oxidation processes
Water treatment
Catalytic reaction
Chemical analysis
Hydrogen peroxide
Pollutant behavior
Interference
Chemical degradation
Chemical oxygen demand
Water quality
Physicochemical purification
Oxidation
Measurement method
Waste water purification
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a470t-18eda3a651870dfd473604ea7a9e5a0f16e042f2c716397ca86b8c4fa75099b3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 22288523
PQID 925764491
PQPubID 45412
PageCount 8
ParticipantIDs proquest_miscellaneous_923188800
proquest_miscellaneous_2000223879
proquest_journals_925764491
pubmed_primary_22288523
pascalfrancis_primary_25630679
crossref_citationtrail_10_1021_es204250k
crossref_primary_10_1021_es204250k
acs_journals_10_1021_es204250k
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-02-21
PublicationDateYYYYMMDD 2012-02-21
PublicationDate_xml – month: 02
  year: 2012
  text: 2012-02-21
  day: 21
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2012
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Xu A. (ref34/cit34) 2011; 82
Catalkaya E. C. (ref13/cit13) 2007; 139
Gulyas H. (ref4/cit4) 1995; 32
Goi A. (ref14/cit14) 2002; 46
Richardson D. E. (ref29/cit29) 2000; 122
Talinli I. (ref25/cit25) 1992; 26
Kosaka K. (ref19/cit19) 1998; 32
ref32/cit32
Stasinakis A. S. (ref20/cit20) 2008; 10
ref23/cit23
Flanagan J. (ref28/cit28) 1986; 1
Vogelpohl A. (ref1/cit1) 2004; 10
Beltrán F. J. (ref9/cit9) 1997; 31
Saritha P. (ref10/cit10) 2007; 149
Modrzejewska B. (ref2/cit2) 2007; 41
Lee E (ref12/cit12) 2011; 8
Philip Jones D. (ref26/cit26) 1980; 12
Kang Y. W. (ref18/cit18) 1999; 33
Adam A. (ref27/cit27) 1998; 37
Alverez-Gallegos A. (ref16/cit16) 1999; 44
Arslan I. (ref11/cit11) 2001; 76
Kosaka K. (ref5/cit5) 2001; 35
Nöthe T. (ref3/cit3) 2009; 43
Wang F. (ref21/cit21) 2003; 2
Suess H. U. (ref31/cit31) 2009
ref22/cit22
Pocostales J. P. (ref6/cit6) 2010; 44
ref33/cit33
ref30/cit30
Oeller H. J. (ref8/cit8) 1997; 35
ref24/cit24
Brillas E. (ref17/cit17) 2000; 34
Beltrán F. J. (ref7/cit7) 1997; 19
Lin S. H. (ref15/cit15) 1999; 33
References_xml – volume: 35
  start-page: 3587
  issue: 15
  year: 2001
  ident: ref5/cit5
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(01)00087-2
– volume: 26
  start-page: 107
  issue: 1
  year: 1992
  ident: ref25/cit25
  publication-title: Water Res.
  doi: 10.1016/0043-1354(92)90118-N
– volume: 44
  start-page: 8248
  year: 2010
  ident: ref6/cit6
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es1018288
– volume: 139
  start-page: 244
  year: 2007
  ident: ref13/cit13
  publication-title: J. Harzard. Mater.
  doi: 10.1016/j.jhazmat.2006.06.023
– volume: 2
  start-page: 413
  year: 2003
  ident: ref21/cit21
  publication-title: J. Environ. Eng. Sci.
  doi: 10.1139/s03-058
– volume: 8
  start-page: 381
  issue: 2
  year: 2011
  ident: ref12/cit12
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/BF03326225
– year: 2009
  ident: ref31/cit31
  publication-title: Technical Articles, Technical Association of the Pulp and Paper Industry of Southern Africa/TAPPSA
– ident: ref32/cit32
– volume: 12
  start-page: 2526
  year: 1980
  ident: ref26/cit26
  publication-title: J. Chem. Soc., Dalton Trans.
– ident: ref24/cit24
– volume: 10
  start-page: 33
  issue: 1
  year: 2004
  ident: ref1/cit1
  publication-title: J. Ind. Eng. Chem.
– ident: ref33/cit33
– volume: 33
  start-page: 1247
  issue: 5
  year: 1999
  ident: ref18/cit18
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(98)00315-7
– ident: ref22/cit22
– volume: 32
  start-page: 3821
  year: 1998
  ident: ref19/cit19
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9800784
– volume: 46
  start-page: 913
  year: 2002
  ident: ref14/cit14
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(01)00203-X
– volume: 19
  start-page: 495
  year: 1997
  ident: ref7/cit7
  publication-title: Ozone Sci. Eng.
  doi: 10.1080/01919512.1997.10382876
– volume: 34
  start-page: 2253
  issue: 8
  year: 2000
  ident: ref17/cit17
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(99)00396-6
– volume: 1
  start-page: 20
  year: 1986
  ident: ref28/cit28
  publication-title: J. Chem. Soc., Chem. Commun.
  doi: 10.1039/c39860000020
– ident: ref23/cit23
– volume: 31
  start-page: 2405
  issue: 10
  year: 1997
  ident: ref9/cit9
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(97)00077-8
– volume: 44
  start-page: 2483
  year: 1999
  ident: ref16/cit16
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(98)00371-5
– volume: 32
  start-page: 127
  issue: 7
  year: 1995
  ident: ref4/cit4
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.1995.0217
– volume: 37
  start-page: 1387
  issue: 10
  year: 1998
  ident: ref27/cit27
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/(SICI)1521-3773(19980605)37:10<1387::AID-ANIE1387>3.0.CO;2-3
– volume: 43
  start-page: 5990
  year: 2009
  ident: ref3/cit3
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es900825f
– volume: 122
  start-page: 1729
  year: 2000
  ident: ref29/cit29
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9927467
– volume: 41
  start-page: 260
  year: 2007
  ident: ref2/cit2
  publication-title: Water Res.
  doi: 10.1016/j.watres.2006.07.034
– volume: 149
  start-page: 609
  year: 2007
  ident: ref10/cit10
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2007.06.111
– volume: 76
  start-page: 53
  issue: 1
  year: 2001
  ident: ref11/cit11
  publication-title: J. Chem. Tech. Biotech.
  doi: 10.1002/1097-4660(200101)76:1<53::AID-JCTB346>3.0.CO;2-T
– volume: 82
  start-page: 1190
  year: 2011
  ident: ref34/cit34
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2010.11.066
– volume: 35
  start-page: 269
  issue: 2
  year: 1997
  ident: ref8/cit8
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.1997.0535
– volume: 10
  start-page: 376
  issue: 3
  year: 2008
  ident: ref20/cit20
  publication-title: Global NEST J.
– volume: 33
  start-page: 1735
  issue: 7
  year: 1999
  ident: ref15/cit15
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(98)00403-5
– ident: ref30/cit30
SSID ssj0002308
Score 2.3813138
Snippet Many advanced oxidation processes involve addition of hydrogen peroxide (H2O2) with the aim of generating hydroxyl radicals to oxidize organic contaminants in...
Many advanced oxidation processes involve addition of hydrogen peroxide (H(2)O(2)) with the aim of generating hydroxyl radicals to oxidize organic contaminants...
Many advanced oxidation processes involve addition of hydrogen peroxide (...) with the aim of generating hydroxyl radicals to oxidize organic contaminants in...
Many advanced oxidation processes involve addition of hydrogen peroxide (H₂O₂) with the aim of generating hydroxyl radicals to oxidize organic contaminants in...
SourceID proquest
pubmed
pascalfrancis
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2291
SubjectTerms Applied sciences
Biological Oxygen Demand Analysis
Carbonates - chemistry
catalysts
Chemical oxygen demand
Decomposition
detection limit
Drinking water and swimming-pool water. Desalination
Exact sciences and technology
General purification processes
heat
Hydrogen peroxide
Hydrogen Peroxide - analysis
Hydrogen Peroxide - chemistry
hydroxyl radicals
municipal wastewater
Organic contaminants
Oxidation
oxygen
Pollution
sodium carbonate
superoxide anion
Waste Disposal, Fluid
Wastewaters
Water Pollutants, Chemical - analysis
Water Pollutants, Chemical - chemistry
water pollution
Water Purification
Water treatment and pollution
Title A New Method for Removal of Hydrogen Peroxide Interference in the Analysis of Chemical Oxygen Demand
URI http://dx.doi.org/10.1021/es204250k
https://www.ncbi.nlm.nih.gov/pubmed/22288523
https://www.proquest.com/docview/925764491
https://www.proquest.com/docview/2000223879
https://www.proquest.com/docview/923188800
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals (2020 Collection)
  customDbUrl:
  eissn: 1520-5851
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002308
  issn: 0013-936X
  databaseCode: ACS
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB5ReqGq2kKhpLQrt_TAJTR-rOMcVzy0QqKtCkh7Wzl-SIiSILIrQX99x3ktqGx7zjhx7G_sb-LMNwBftGNIIryOBU9sLESQvNUiiXPhhXXUMa5DcvLpNzm-ECeT4WQFdpec4DP61VUsACu5egbPmVQ0RFijg7N-uUUOrboyBRmXk04-6GHTsPWY6tHW8_JGVzgKvilfsZxf1vvM8Ws47LJ1mt9Lrvbns3zf_P5bvPFfr_AGXrU8k4waYKzDiis24MUD9cEN2DpaJLmhaevl1VuwI4JrHzmti0sTZLXkp7suEZKk9GR8b29LRB354bCLl9aR-qNimzZILguClJJ0WiehRadJQL7f3YeGh-5aF3YTzo-Pzg_GcVuNIdYiTWYxVc5qruWQootbb0XKZSKcTnXmhjrxVDp8Sc8MRmBIcoxWMldGeB04SZbzLVgtysJtA0mN4SLJNcNYRphUZlYYmTJvMHyx1PgIBjhb09aZqml9Ts7otB_GCPa6iZyaVso8VNT49ZTp5970ptHveMpo8AgNvSUL6mkyzSLY6eCx6FYWYjUhMhrBp_4qOmc4cdGFK-dVqPGJHImrcAeyxCYwbIWraBLBuwZ4i8czptSQ8ff_G5AdWEMix-pUe_oBVme3c_cRydIsH9TO8gdzTQyu
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOQBCPAptQ2ExiAOXlPixTnKsSqsFugXBIu0tcvyQqtKkanYlyq9n7Dy2Ra3gnLEzmczY38SZbwDeKssQRDgVC56YWAhPeatEEpfCCWOpZVz54uTpkZz8EJ_m43lHk-NrYVCJBmdqwiH-il2AvrcN8_6VnNyGO4EBxcOgve_DqotQOuu7FeRcznsWoctD_Q6kmys70IMz1aAxXNvF4maYGbabg0dt36KgaPjL5GRnuSh39O-_OBz_70kew8MOdZLd1k2ewC1brcP9S1yE67Cxvyp5Q9Eu5punYHYJroRkGlpNE8S45Js9rdFBSe3I5MKc1-iD5KtFTY-NJeETY1dESI4rggCT9MwnfkTPUEC-_LrwAz_YU1WZZzA72J_tTeKuN0OsRJosYppZo7iSY4oBb5wRKZeJsCpVuR2rxFFp8SEd05iPIeTRKpNlpoVTHqHkJd-Ataqu7BaQVGsuklIxzGyETmVuhJYpcxqTGUO1i2CEViy60GqKcGrOaDGYMYJ3_fssdEds7vtr_LxO9M0getayeVwnNLriFIMk81xqMs0j2O69ZKVW7jM3IXIawevhKoaqP39Rla2Xje_4iYiJZ34GcoOMx9sZrqlJBJut_61uz1iWjRl__i-DvIK7k9n0sDj8ePR5G-4hxGOhCJ--gLXF-dK-RBi1KEchfv4AHdwVGQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BkRAI8SgUQmExiAOXlNhxnORYtV0tjz4ERdpb5PghVaXJqtmVKL-emWySbVErOGfsTJyZ8TeZ-BuA99oJBBFehzKObCglUd5qGYWl9NI67kSs6XDy_oGa_JCfp8m0SxTpLAwq0eBMTVvEJ6-eWd8xDPCPrhFkY9HpbbiTEPUbQaGd70PkRTid9R0L8lhNeyahy0NpFzLNlV3owUw3uCB-2cniZqjZbjnjR3A4KNv-aXK6tZiXW-b3XzyO__80j-Fhhz7Z9tJcnsAtV63D_UuchOuwsbc6-oaine83T8FuM4yIbL9tOc0Q67Jv7qxGQ2W1Z5MLe16jLbIjh9qeWMfaT43dYUJ2UjEEmqxnQKERPVMBO_x1QQN33Zmu7DM4Hu8d70zCrkdDqGUazUOeOatjrRKOjm-9lWmsIul0qnOX6Mhz5fAhvTCYlyH0MTpTZWak14RU8jLegLWqrtwLYKkxsYxKLTDDkSZVuZVGpcIbTGosNz6AEa5k0blYU7TVc8GLYRkD-NC_08J0BOfUZ-PndaLvBtHZktXjOqHRFcMYJAVxqqk0D2Czt5SVWjllcFLmPIC3w1V0WarD6MrVi4Y6fyJyijOagd0gQ7g7w9gaBfB8aYOr2wuRZYmIX_5rQd7A3aPdcfH108GXTbgnMJxTGUzwV7A2P1-414im5uWodaE_AxgXlQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+method+for+removal+of+hydrogen+peroxide+interference+in+the+analysis+of+chemical+oxygen+demand&rft.jtitle=Environmental+science+%26+technology&rft.au=Wu%2C+Tingting&rft.au=Englehardt%2C+James+D&rft.date=2012-02-21&rft.issn=1520-5851&rft.eissn=1520-5851&rft.volume=46&rft.issue=4&rft.spage=2291&rft_id=info:doi/10.1021%2Fes204250k&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon