A New Method for Removal of Hydrogen Peroxide Interference in the Analysis of Chemical Oxygen Demand
Many advanced oxidation processes involve addition of hydrogen peroxide (H2O2) with the aim of generating hydroxyl radicals to oxidize organic contaminants in water. However, chemical oxygen demand, a common measure of gross residual organic contamination, is subject to interference from residual H2...
Saved in:
Published in | Environmental science & technology Vol. 46; no. 4; pp. 2291 - 2298 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Chemical Society
21.02.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 0013-936X 1520-5851 1520-5851 |
DOI | 10.1021/es204250k |
Cover
Abstract | Many advanced oxidation processes involve addition of hydrogen peroxide (H2O2) with the aim of generating hydroxyl radicals to oxidize organic contaminants in water. However, chemical oxygen demand, a common measure of gross residual organic contamination, is subject to interference from residual H2O2 in the treated water. A new method, involving catalytic decomposition of H2O2 with addition of heat and sodium carbonate (Na2CO3), is proposed in this work to address this problem. The method is demonstrated experimentally, and modeled kinetically. Results for 5 mM H2O2 in deionized (DI) water included reduction to below the COD detection limit after 60 min heating (90◦C) with addition of 20 g/L Na2CO3 concentrated solution, whereas 900 min were required in treated municipal wastewater. An approximate second order rate constant of 11.331 M–1·min–1 at Na2CO3 dosage of 20 g/L was found for the tested wastewater. However, kinetic modeling indicated a two-step reaction mechanism, with formation of peroxocarbonate (CO4 2‑) and ultimate decomposition to H2O and O2 in pure H2O2 solution. A similar mechanism is apparent in wastewater at high catalyst concentrations, whereas at low Na2CO3 addition rates, the catalytic effects of other constituents appear important. |
---|---|
AbstractList | Many advanced oxidation processes involve addition of hydrogen peroxide (H2O2) with the aim of generating hydroxyl radicals to oxidize organic contaminants in water. However, chemical oxygen demand, a common measure of gross residual organic contamination, is subject to interference from residual H2O2 in the treated water. A new method, involving catalytic decomposition of H2O2 with addition of heat and sodium carbonate (Na2CO3), is proposed in this work to address this problem. The method is demonstrated experimentally, and modeled kinetically. Results for 5 mM H2O2 in deionized (DI) water included reduction to below the COD detection limit after 60 min heating (90◦C) with addition of 20 g/L Na2CO3 concentrated solution, whereas 900 min were required in treated municipal wastewater. An approximate second order rate constant of 11.331 M–1·min–1 at Na2CO3 dosage of 20 g/L was found for the tested wastewater. However, kinetic modeling indicated a two-step reaction mechanism, with formation of peroxocarbonate (CO4 2‑) and ultimate decomposition to H2O and O2 in pure H2O2 solution. A similar mechanism is apparent in wastewater at high catalyst concentrations, whereas at low Na2CO3 addition rates, the catalytic effects of other constituents appear important. Many advanced oxidation processes involve addition of hydrogen peroxide (H(2)O(2)) with the aim of generating hydroxyl radicals to oxidize organic contaminants in water. However, chemical oxygen demand, a common measure of gross residual organic contamination, is subject to interference from residual H(2)O(2) in the treated water. A new method, involving catalytic decomposition of H(2)O(2) with addition of heat and sodium carbonate (Na(2)CO(3)), is proposed in this work to address this problem. The method is demonstrated experimentally, and modeled kinetically. Results for 5 mM H(2)O(2) in deionized (DI) water included reduction to below the COD detection limit after 60 min heating (90(◦)C) with addition of 20 g/L Na(2)CO(3) concentrated solution, whereas 900 min were required in treated municipal wastewater. An approximate second order rate constant of 11.331 M(-1)·min(-1) at Na(2)CO(3) dosage of 20 g/L was found for the tested wastewater. However, kinetic modeling indicated a two-step reaction mechanism, with formation of peroxocarbonate (CO(4)(2-)) and ultimate decomposition to H(2)O and O(2) in pure H(2)O(2) solution. A similar mechanism is apparent in wastewater at high catalyst concentrations, whereas at low Na(2)CO(3) addition rates, the catalytic effects of other constituents appear important.Many advanced oxidation processes involve addition of hydrogen peroxide (H(2)O(2)) with the aim of generating hydroxyl radicals to oxidize organic contaminants in water. However, chemical oxygen demand, a common measure of gross residual organic contamination, is subject to interference from residual H(2)O(2) in the treated water. A new method, involving catalytic decomposition of H(2)O(2) with addition of heat and sodium carbonate (Na(2)CO(3)), is proposed in this work to address this problem. The method is demonstrated experimentally, and modeled kinetically. Results for 5 mM H(2)O(2) in deionized (DI) water included reduction to below the COD detection limit after 60 min heating (90(◦)C) with addition of 20 g/L Na(2)CO(3) concentrated solution, whereas 900 min were required in treated municipal wastewater. An approximate second order rate constant of 11.331 M(-1)·min(-1) at Na(2)CO(3) dosage of 20 g/L was found for the tested wastewater. However, kinetic modeling indicated a two-step reaction mechanism, with formation of peroxocarbonate (CO(4)(2-)) and ultimate decomposition to H(2)O and O(2) in pure H(2)O(2) solution. A similar mechanism is apparent in wastewater at high catalyst concentrations, whereas at low Na(2)CO(3) addition rates, the catalytic effects of other constituents appear important. Many advanced oxidation processes involve addition of hydrogen peroxide (H(2)O(2)) with the aim of generating hydroxyl radicals to oxidize organic contaminants in water. However, chemical oxygen demand, a common measure of gross residual organic contamination, is subject to interference from residual H(2)O(2) in the treated water. A new method, involving catalytic decomposition of H(2)O(2) with addition of heat and sodium carbonate (Na(2)CO(3)), is proposed in this work to address this problem. The method is demonstrated experimentally, and modeled kinetically. Results for 5 mM H(2)O(2) in deionized (DI) water included reduction to below the COD detection limit after 60 min heating (90(◦)C) with addition of 20 g/L Na(2)CO(3) concentrated solution, whereas 900 min were required in treated municipal wastewater. An approximate second order rate constant of 11.331 M(-1)·min(-1) at Na(2)CO(3) dosage of 20 g/L was found for the tested wastewater. However, kinetic modeling indicated a two-step reaction mechanism, with formation of peroxocarbonate (CO(4)(2-)) and ultimate decomposition to H(2)O and O(2) in pure H(2)O(2) solution. A similar mechanism is apparent in wastewater at high catalyst concentrations, whereas at low Na(2)CO(3) addition rates, the catalytic effects of other constituents appear important. Many advanced oxidation processes involve addition of hydrogen peroxide (H₂O₂) with the aim of generating hydroxyl radicals to oxidize organic contaminants in water. However, chemical oxygen demand, a common measure of gross residual organic contamination, is subject to interference from residual H₂O₂ in the treated water. A new method, involving catalytic decomposition of H₂O₂ with addition of heat and sodium carbonate (Na₂CO₃), is proposed in this work to address this problem. The method is demonstrated experimentally, and modeled kinetically. Results for 5 mM H₂O₂ in deionized (DI) water included reduction to below the COD detection limit after 60 min heating (90◦C) with addition of 20 g/L Na₂CO₃ concentrated solution, whereas 900 min were required in treated municipal wastewater. An approximate second order rate constant of 11.331 M–¹·min–¹ at Na₂CO₃ dosage of 20 g/L was found for the tested wastewater. However, kinetic modeling indicated a two-step reaction mechanism, with formation of peroxocarbonate (CO₄²⁻) and ultimate decomposition to H₂O and O₂ in pure H₂O₂ solution. A similar mechanism is apparent in wastewater at high catalyst concentrations, whereas at low Na₂CO₃ addition rates, the catalytic effects of other constituents appear important. Many advanced oxidation processes involve addition of hydrogen peroxide (...) with the aim of generating hydroxyl radicals to oxidize organic contaminants in water. However, chemical oxygen demand, a common measure of gross residual organic contamination, is subject to interference from residual ... in the treated water. A new method, involving catalytic decomposition of ... with addition of heat and sodium carbonate (Na2CO3), is proposed in this work to address this problem. The method is demonstrated experimentally, and modeled kinetically. Results for 5 mM ... in deionized (DI) water included reduction to below the COD detection limit after 60 min heating (90...C) with addition of 20 g/L ... concentrated solution, whereas 900 min were required in treated municipal wastewater. An approximate second order rate constant of 11.331 M...-min... at ... dosage of 20 g/L was found for the tested wastewater. However, kinetic modeling indicated a two-step reaction mechanism, with formation of peroxocarbonate (...) and ultimate decomposition to H2O and O2 in pure ... solution. A similar mechanism is apparent in wastewater at high catalyst concentrations, whereas at low ... addition rates, the catalytic effects of other constituents appear important. (ProQuest: ... denotes formulae/symbols omitted.) |
Author | Wu, Tingting Englehardt, James D |
AuthorAffiliation | Department of Civil, Architectural and Environmental Engineering University of Miami |
AuthorAffiliation_xml | – name: University of Miami – name: Department of Civil, Architectural and Environmental Engineering |
Author_xml | – sequence: 1 givenname: Tingting surname: Wu fullname: Wu, Tingting email: tingtingwu@miami.edu – sequence: 2 givenname: James D surname: Englehardt fullname: Englehardt, James D |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25630679$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22288523$$D View this record in MEDLINE/PubMed |
BookMark | eNp90U1v1DAQBmALFdFt4cAfQBYSAg5Lx3acOMfV8tFKhSLUA7do1hmzLond2lno_nsSuqVSQZx8ed4Zz8wB2wsxEGNPBbwRIMURZQmF1PD9AZsJLWGujRZ7bAYg1LxW5dd9dpDzBQBIBeYR25dSGqOlmrF2wT_RT_6RhnVsuYuJf6E-_sCOR8ePt22K3yjwz5TitW-Jn4SBkqNEwRL3gQ9r4ouA3Tb7PCWWa-q9HdNn19sp-JZ6DO1j9tBhl-nJ7j1k5-_fnS-P56dnH06Wi9M5FhUMc2GoRYWlFqaC1rVFpUooCCusSSM4UdI4ppO2EqWqK4umXBlbOKw01PVKHbKXN2UvU7zaUB6a3mdLXYeB4iY3tVTCGAMwylf_lXJalVSmqkf6_B69iJs0jjzV01VZFLUY0bMd2qx6apvL5HtM2-Z2zyN4sQOYx_W4hMH6fOd0qaD83e3oxtkUc07kGusHHHwMQ0LfNQKa6eLNn4uPidf3ErdF_2V3v0Cb78b42_0CY_e0JA |
CODEN | ESTHAG |
CitedBy_id | crossref_primary_10_1016_j_cscee_2022_100208 crossref_primary_10_1007_s12010_022_04277_w crossref_primary_10_1080_00032719_2016_1161048 crossref_primary_10_5004_dwt_2020_25934 crossref_primary_10_1016_j_electacta_2019_07_057 crossref_primary_10_1016_j_cej_2014_08_016 crossref_primary_10_1016_j_envpol_2024_123688 crossref_primary_10_1016_j_envres_2024_119883 crossref_primary_10_1155_2023_3848456 crossref_primary_10_2166_wst_2016_538 crossref_primary_10_1007_s11356_021_16390_0 crossref_primary_10_1016_j_jenvman_2018_01_022 crossref_primary_10_1016_j_jenvrad_2020_106528 crossref_primary_10_1038_s41598_017_01429_5 crossref_primary_10_1007_s40710_014_0016_8 crossref_primary_10_1016_j_chemosphere_2018_06_007 crossref_primary_10_1016_j_jhazmat_2017_01_041 crossref_primary_10_1016_j_biosx_2024_100460 crossref_primary_10_1016_j_seppur_2022_122525 crossref_primary_10_1016_j_scitotenv_2019_136030 crossref_primary_10_1039_C8RA08085B crossref_primary_10_1039_C7RA04312K crossref_primary_10_1007_s10098_018_1590_7 crossref_primary_10_1016_j_eti_2017_06_003 crossref_primary_10_1016_j_watres_2020_116451 crossref_primary_10_1016_j_chemosphere_2017_05_037 crossref_primary_10_1061__ASCE_EE_1943_7870_0001923 crossref_primary_10_1016_j_ces_2025_121257 crossref_primary_10_1016_j_cattod_2019_01_068 crossref_primary_10_1016_j_jwpe_2024_105731 crossref_primary_10_1016_j_cej_2016_02_042 crossref_primary_10_1002_jctb_5170 crossref_primary_10_1039_C6CC02453J crossref_primary_10_1039_C5GC01233C crossref_primary_10_1080_09593330_2018_1449899 crossref_primary_10_1016_j_apcatb_2015_06_001 crossref_primary_10_1007_s13201_017_0559_8 crossref_primary_10_1016_j_jenvman_2019_109704 crossref_primary_10_1016_j_cej_2022_138107 crossref_primary_10_1007_s11356_023_27831_3 crossref_primary_10_3390_environments6010005 crossref_primary_10_1080_01496395_2019_1662808 crossref_primary_10_1515_gps_2024_0006 crossref_primary_10_2139_ssrn_4182540 crossref_primary_10_1016_j_watres_2016_09_005 crossref_primary_10_1021_acsami_9b21480 crossref_primary_10_1016_j_jhazmat_2021_127151 crossref_primary_10_14233_ajchem_2021_22958 crossref_primary_10_1016_j_chemosphere_2018_11_055 crossref_primary_10_1016_j_biortech_2016_12_010 crossref_primary_10_1016_j_cej_2018_03_058 crossref_primary_10_1088_1555_6611_acde71 crossref_primary_10_1016_j_chemosphere_2021_131999 crossref_primary_10_1039_D1EW00523E crossref_primary_10_1007_s10853_018_2094_x crossref_primary_10_1002_jctb_6431 crossref_primary_10_1016_j_jpowsour_2015_05_020 crossref_primary_10_1016_j_apsusc_2019_01_201 crossref_primary_10_1186_s10086_025_02183_3 crossref_primary_10_1016_j_jenvman_2018_10_005 crossref_primary_10_1016_j_ceja_2020_100032 crossref_primary_10_1039_D0TA11686F crossref_primary_10_3390_w14223592 crossref_primary_10_1016_j_jhazmat_2014_10_022 crossref_primary_10_1039_C5RA20066K crossref_primary_10_3390_ma14206175 crossref_primary_10_1016_j_talanta_2014_11_055 crossref_primary_10_1016_j_cej_2021_129477 crossref_primary_10_1016_j_teac_2017_05_002 crossref_primary_10_1007_s10311_018_00832_2 crossref_primary_10_3390_toxics11040366 crossref_primary_10_1016_j_jclepro_2015_03_015 crossref_primary_10_1016_j_chemosphere_2020_127968 crossref_primary_10_3390_molecules27196308 crossref_primary_10_1016_j_radphyschem_2017_09_023 crossref_primary_10_1080_09593330_2014_880517 crossref_primary_10_1088_2053_1591_ac9819 crossref_primary_10_1016_j_apcato_2024_207015 crossref_primary_10_1016_j_cej_2017_09_121 crossref_primary_10_1016_j_rser_2016_04_017 crossref_primary_10_1016_j_cej_2022_140845 crossref_primary_10_1007_s11270_021_05434_3 crossref_primary_10_1149_2_113406jes crossref_primary_10_1016_j_jece_2021_106968 crossref_primary_10_2139_ssrn_3366896 crossref_primary_10_1016_j_chemosphere_2023_138666 crossref_primary_10_1080_10408347_2017_1370670 crossref_primary_10_1080_19443994_2016_1172030 |
Cites_doi | 10.1016/S0043-1354(01)00087-2 10.1016/0043-1354(92)90118-N 10.1021/es1018288 10.1016/j.jhazmat.2006.06.023 10.1139/s03-058 10.1007/BF03326225 10.1016/S0043-1354(98)00315-7 10.1021/es9800784 10.1016/S0045-6535(01)00203-X 10.1080/01919512.1997.10382876 10.1016/S0043-1354(99)00396-6 10.1039/c39860000020 10.1016/S0043-1354(97)00077-8 10.1016/S0013-4686(98)00371-5 10.2166/wst.1995.0217 10.1002/(SICI)1521-3773(19980605)37:10<1387::AID-ANIE1387>3.0.CO;2-3 10.1021/es900825f 10.1021/ja9927467 10.1016/j.watres.2006.07.034 10.1016/j.jhazmat.2007.06.111 10.1002/1097-4660(200101)76:1<53::AID-JCTB346>3.0.CO;2-T 10.1016/j.chemosphere.2010.11.066 10.2166/wst.1997.0535 10.1016/S0043-1354(98)00403-5 |
ContentType | Journal Article |
Copyright | Copyright © 2012 American Chemical
Society 2014 INIST-CNRS Copyright American Chemical Society Feb 21, 2012 |
Copyright_xml | – notice: Copyright © 2012 American Chemical Society – notice: 2014 INIST-CNRS – notice: Copyright American Chemical Society Feb 21, 2012 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7S9 L.6 7X8 |
DOI | 10.1021/es204250k |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA Biotechnology Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences Applied Sciences |
EISSN | 1520-5851 |
EndPage | 2298 |
ExternalDocumentID | 2600133611 22288523 25630679 10_1021_es204250k b475335126 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Feature |
GroupedDBID | - .K2 1AW 3R3 4.4 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 6TJ AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADMHC ADUKH AGXLV AHGAQ CITATION CUPRZ GGK MS~ MW2 XSW ZCA .HR 08R 186 1WB 42X 8WZ A6W AAYOK ABDTD ABFRP ABHMW ABTAH ACKIV AETEA AFDAS ANTXH IHE IQODW K78 MVM NHB OHT RNS TAE UBX UBY UQL VJK VOH YV5 ZCG ZY4 ~A~ CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-a470t-18eda3a651870dfd473604ea7a9e5a0f16e042f2c716397ca86b8c4fa75099b3 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Fri Jul 11 05:38:51 EDT 2025 Fri Jul 11 12:15:19 EDT 2025 Mon Jun 30 02:34:17 EDT 2025 Thu Apr 03 07:05:04 EDT 2025 Fri Nov 25 01:07:30 EST 2022 Thu Apr 24 22:57:43 EDT 2025 Tue Jul 01 02:10:41 EDT 2025 Thu Aug 27 13:42:35 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Advanced oxidation processes Water treatment Catalytic reaction Chemical analysis Hydrogen peroxide Pollutant behavior Interference Chemical degradation Chemical oxygen demand Water quality Physicochemical purification Oxidation Measurement method Waste water purification |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a470t-18eda3a651870dfd473604ea7a9e5a0f16e042f2c716397ca86b8c4fa75099b3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 22288523 |
PQID | 925764491 |
PQPubID | 45412 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_923188800 proquest_miscellaneous_2000223879 proquest_journals_925764491 pubmed_primary_22288523 pascalfrancis_primary_25630679 crossref_citationtrail_10_1021_es204250k crossref_primary_10_1021_es204250k acs_journals_10_1021_es204250k |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-02-21 |
PublicationDateYYYYMMDD | 2012-02-21 |
PublicationDate_xml | – month: 02 year: 2012 text: 2012-02-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2012 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Xu A. (ref34/cit34) 2011; 82 Catalkaya E. C. (ref13/cit13) 2007; 139 Gulyas H. (ref4/cit4) 1995; 32 Goi A. (ref14/cit14) 2002; 46 Richardson D. E. (ref29/cit29) 2000; 122 Talinli I. (ref25/cit25) 1992; 26 Kosaka K. (ref19/cit19) 1998; 32 ref32/cit32 Stasinakis A. S. (ref20/cit20) 2008; 10 ref23/cit23 Flanagan J. (ref28/cit28) 1986; 1 Vogelpohl A. (ref1/cit1) 2004; 10 Beltrán F. J. (ref9/cit9) 1997; 31 Saritha P. (ref10/cit10) 2007; 149 Modrzejewska B. (ref2/cit2) 2007; 41 Lee E (ref12/cit12) 2011; 8 Philip Jones D. (ref26/cit26) 1980; 12 Kang Y. W. (ref18/cit18) 1999; 33 Adam A. (ref27/cit27) 1998; 37 Alverez-Gallegos A. (ref16/cit16) 1999; 44 Arslan I. (ref11/cit11) 2001; 76 Kosaka K. (ref5/cit5) 2001; 35 Nöthe T. (ref3/cit3) 2009; 43 Wang F. (ref21/cit21) 2003; 2 Suess H. U. (ref31/cit31) 2009 ref22/cit22 Pocostales J. P. (ref6/cit6) 2010; 44 ref33/cit33 ref30/cit30 Oeller H. J. (ref8/cit8) 1997; 35 ref24/cit24 Brillas E. (ref17/cit17) 2000; 34 Beltrán F. J. (ref7/cit7) 1997; 19 Lin S. H. (ref15/cit15) 1999; 33 |
References_xml | – volume: 35 start-page: 3587 issue: 15 year: 2001 ident: ref5/cit5 publication-title: Water Res. doi: 10.1016/S0043-1354(01)00087-2 – volume: 26 start-page: 107 issue: 1 year: 1992 ident: ref25/cit25 publication-title: Water Res. doi: 10.1016/0043-1354(92)90118-N – volume: 44 start-page: 8248 year: 2010 ident: ref6/cit6 publication-title: Environ. Sci. Technol. doi: 10.1021/es1018288 – volume: 139 start-page: 244 year: 2007 ident: ref13/cit13 publication-title: J. Harzard. Mater. doi: 10.1016/j.jhazmat.2006.06.023 – volume: 2 start-page: 413 year: 2003 ident: ref21/cit21 publication-title: J. Environ. Eng. Sci. doi: 10.1139/s03-058 – volume: 8 start-page: 381 issue: 2 year: 2011 ident: ref12/cit12 publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/BF03326225 – year: 2009 ident: ref31/cit31 publication-title: Technical Articles, Technical Association of the Pulp and Paper Industry of Southern Africa/TAPPSA – ident: ref32/cit32 – volume: 12 start-page: 2526 year: 1980 ident: ref26/cit26 publication-title: J. Chem. Soc., Dalton Trans. – ident: ref24/cit24 – volume: 10 start-page: 33 issue: 1 year: 2004 ident: ref1/cit1 publication-title: J. Ind. Eng. Chem. – ident: ref33/cit33 – volume: 33 start-page: 1247 issue: 5 year: 1999 ident: ref18/cit18 publication-title: Water Res. doi: 10.1016/S0043-1354(98)00315-7 – ident: ref22/cit22 – volume: 32 start-page: 3821 year: 1998 ident: ref19/cit19 publication-title: Environ. Sci. Technol. doi: 10.1021/es9800784 – volume: 46 start-page: 913 year: 2002 ident: ref14/cit14 publication-title: Chemosphere doi: 10.1016/S0045-6535(01)00203-X – volume: 19 start-page: 495 year: 1997 ident: ref7/cit7 publication-title: Ozone Sci. Eng. doi: 10.1080/01919512.1997.10382876 – volume: 34 start-page: 2253 issue: 8 year: 2000 ident: ref17/cit17 publication-title: Water Res. doi: 10.1016/S0043-1354(99)00396-6 – volume: 1 start-page: 20 year: 1986 ident: ref28/cit28 publication-title: J. Chem. Soc., Chem. Commun. doi: 10.1039/c39860000020 – ident: ref23/cit23 – volume: 31 start-page: 2405 issue: 10 year: 1997 ident: ref9/cit9 publication-title: Water Res. doi: 10.1016/S0043-1354(97)00077-8 – volume: 44 start-page: 2483 year: 1999 ident: ref16/cit16 publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(98)00371-5 – volume: 32 start-page: 127 issue: 7 year: 1995 ident: ref4/cit4 publication-title: Water Sci. Technol. doi: 10.2166/wst.1995.0217 – volume: 37 start-page: 1387 issue: 10 year: 1998 ident: ref27/cit27 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/(SICI)1521-3773(19980605)37:10<1387::AID-ANIE1387>3.0.CO;2-3 – volume: 43 start-page: 5990 year: 2009 ident: ref3/cit3 publication-title: Environ. Sci. Technol. doi: 10.1021/es900825f – volume: 122 start-page: 1729 year: 2000 ident: ref29/cit29 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9927467 – volume: 41 start-page: 260 year: 2007 ident: ref2/cit2 publication-title: Water Res. doi: 10.1016/j.watres.2006.07.034 – volume: 149 start-page: 609 year: 2007 ident: ref10/cit10 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.06.111 – volume: 76 start-page: 53 issue: 1 year: 2001 ident: ref11/cit11 publication-title: J. Chem. Tech. Biotech. doi: 10.1002/1097-4660(200101)76:1<53::AID-JCTB346>3.0.CO;2-T – volume: 82 start-page: 1190 year: 2011 ident: ref34/cit34 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2010.11.066 – volume: 35 start-page: 269 issue: 2 year: 1997 ident: ref8/cit8 publication-title: Water Sci. Technol. doi: 10.2166/wst.1997.0535 – volume: 10 start-page: 376 issue: 3 year: 2008 ident: ref20/cit20 publication-title: Global NEST J. – volume: 33 start-page: 1735 issue: 7 year: 1999 ident: ref15/cit15 publication-title: Water Res. doi: 10.1016/S0043-1354(98)00403-5 – ident: ref30/cit30 |
SSID | ssj0002308 |
Score | 2.3813138 |
Snippet | Many advanced oxidation processes involve addition of hydrogen peroxide (H2O2) with the aim of generating hydroxyl radicals to oxidize organic contaminants in... Many advanced oxidation processes involve addition of hydrogen peroxide (H(2)O(2)) with the aim of generating hydroxyl radicals to oxidize organic contaminants... Many advanced oxidation processes involve addition of hydrogen peroxide (...) with the aim of generating hydroxyl radicals to oxidize organic contaminants in... Many advanced oxidation processes involve addition of hydrogen peroxide (H₂O₂) with the aim of generating hydroxyl radicals to oxidize organic contaminants in... |
SourceID | proquest pubmed pascalfrancis crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2291 |
SubjectTerms | Applied sciences Biological Oxygen Demand Analysis Carbonates - chemistry catalysts Chemical oxygen demand Decomposition detection limit Drinking water and swimming-pool water. Desalination Exact sciences and technology General purification processes heat Hydrogen peroxide Hydrogen Peroxide - analysis Hydrogen Peroxide - chemistry hydroxyl radicals municipal wastewater Organic contaminants Oxidation oxygen Pollution sodium carbonate superoxide anion Waste Disposal, Fluid Wastewaters Water Pollutants, Chemical - analysis Water Pollutants, Chemical - chemistry water pollution Water Purification Water treatment and pollution |
Title | A New Method for Removal of Hydrogen Peroxide Interference in the Analysis of Chemical Oxygen Demand |
URI | http://dx.doi.org/10.1021/es204250k https://www.ncbi.nlm.nih.gov/pubmed/22288523 https://www.proquest.com/docview/925764491 https://www.proquest.com/docview/2000223879 https://www.proquest.com/docview/923188800 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals (2020 Collection) customDbUrl: eissn: 1520-5851 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002308 issn: 0013-936X databaseCode: ACS dateStart: 19670101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB5ReqGq2kKhpLQrt_TAJTR-rOMcVzy0QqKtCkh7Wzl-SIiSILIrQX99x3ktqGx7zjhx7G_sb-LMNwBftGNIIryOBU9sLESQvNUiiXPhhXXUMa5DcvLpNzm-ECeT4WQFdpec4DP61VUsACu5egbPmVQ0RFijg7N-uUUOrboyBRmXk04-6GHTsPWY6tHW8_JGVzgKvilfsZxf1vvM8Ws47LJ1mt9Lrvbns3zf_P5bvPFfr_AGXrU8k4waYKzDiis24MUD9cEN2DpaJLmhaevl1VuwI4JrHzmti0sTZLXkp7suEZKk9GR8b29LRB354bCLl9aR-qNimzZILguClJJ0WiehRadJQL7f3YeGh-5aF3YTzo-Pzg_GcVuNIdYiTWYxVc5qruWQootbb0XKZSKcTnXmhjrxVDp8Sc8MRmBIcoxWMldGeB04SZbzLVgtysJtA0mN4SLJNcNYRphUZlYYmTJvMHyx1PgIBjhb09aZqml9Ts7otB_GCPa6iZyaVso8VNT49ZTp5970ptHveMpo8AgNvSUL6mkyzSLY6eCx6FYWYjUhMhrBp_4qOmc4cdGFK-dVqPGJHImrcAeyxCYwbIWraBLBuwZ4i8czptSQ8ff_G5AdWEMix-pUe_oBVme3c_cRydIsH9TO8gdzTQyu |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BOQBCPAptQ2ExiAOXlPixTnKsSqsFugXBIu0tcvyQqtKkanYlyq9n7Dy2Ra3gnLEzmczY38SZbwDeKssQRDgVC56YWAhPeatEEpfCCWOpZVz54uTpkZz8EJ_m43lHk-NrYVCJBmdqwiH-il2AvrcN8_6VnNyGO4EBxcOgve_DqotQOuu7FeRcznsWoctD_Q6kmys70IMz1aAxXNvF4maYGbabg0dt36KgaPjL5GRnuSh39O-_OBz_70kew8MOdZLd1k2ewC1brcP9S1yE67Cxvyp5Q9Eu5punYHYJroRkGlpNE8S45Js9rdFBSe3I5MKc1-iD5KtFTY-NJeETY1dESI4rggCT9MwnfkTPUEC-_LrwAz_YU1WZZzA72J_tTeKuN0OsRJosYppZo7iSY4oBb5wRKZeJsCpVuR2rxFFp8SEd05iPIeTRKpNlpoVTHqHkJd-Ataqu7BaQVGsuklIxzGyETmVuhJYpcxqTGUO1i2CEViy60GqKcGrOaDGYMYJ3_fssdEds7vtr_LxO9M0getayeVwnNLriFIMk81xqMs0j2O69ZKVW7jM3IXIawevhKoaqP39Rla2Xje_4iYiJZ34GcoOMx9sZrqlJBJut_61uz1iWjRl__i-DvIK7k9n0sDj8ePR5G-4hxGOhCJ--gLXF-dK-RBi1KEchfv4AHdwVGQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BkRAI8SgUQmExiAOXlNhxnORYtV0tjz4ERdpb5PghVaXJqtmVKL-emWySbVErOGfsTJyZ8TeZ-BuA99oJBBFehzKObCglUd5qGYWl9NI67kSs6XDy_oGa_JCfp8m0SxTpLAwq0eBMTVvEJ6-eWd8xDPCPrhFkY9HpbbiTEPUbQaGd70PkRTid9R0L8lhNeyahy0NpFzLNlV3owUw3uCB-2cniZqjZbjnjR3A4KNv-aXK6tZiXW-b3XzyO__80j-Fhhz7Z9tJcnsAtV63D_UuchOuwsbc6-oaine83T8FuM4yIbL9tOc0Q67Jv7qxGQ2W1Z5MLe16jLbIjh9qeWMfaT43dYUJ2UjEEmqxnQKERPVMBO_x1QQN33Zmu7DM4Hu8d70zCrkdDqGUazUOeOatjrRKOjm-9lWmsIul0qnOX6Mhz5fAhvTCYlyH0MTpTZWak14RU8jLegLWqrtwLYKkxsYxKLTDDkSZVuZVGpcIbTGosNz6AEa5k0blYU7TVc8GLYRkD-NC_08J0BOfUZ-PndaLvBtHZktXjOqHRFcMYJAVxqqk0D2Czt5SVWjllcFLmPIC3w1V0WarD6MrVi4Y6fyJyijOagd0gQ7g7w9gaBfB8aYOr2wuRZYmIX_5rQd7A3aPdcfH108GXTbgnMJxTGUzwV7A2P1-414im5uWodaE_AxgXlQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+method+for+removal+of+hydrogen+peroxide+interference+in+the+analysis+of+chemical+oxygen+demand&rft.jtitle=Environmental+science+%26+technology&rft.au=Wu%2C+Tingting&rft.au=Englehardt%2C+James+D&rft.date=2012-02-21&rft.issn=1520-5851&rft.eissn=1520-5851&rft.volume=46&rft.issue=4&rft.spage=2291&rft_id=info:doi/10.1021%2Fes204250k&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |