Open-Source Chromatographic Data Analysis for Reaction Optimization and Screening
Automation and digitalization solutions in the field of small molecule synthesis face new challenges for chemical reaction analysis, especially in the field of high-performance liquid chromatography (HPLC). Chromatographic data remains locked in vendors’ hardware and software components, limiting th...
Saved in:
| Published in | ACS central science Vol. 9; no. 2; pp. 307 - 317 |
|---|---|
| Main Authors | , , , , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
American Chemical Society
22.02.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2374-7943 2374-7951 2374-7951 |
| DOI | 10.1021/acscentsci.2c01042 |
Cover
| Abstract | Automation and digitalization solutions in the field of small molecule synthesis face new challenges for chemical reaction analysis, especially in the field of high-performance liquid chromatography (HPLC). Chromatographic data remains locked in vendors’ hardware and software components, limiting their potential in automated workflows and data science applications. In this work, we present an open-source Python project called MOCCA for the analysis of HPLC–DAD (photodiode array detector) raw data. MOCCA provides a comprehensive set of data analysis features, including an automated peak deconvolution routine of known signals, even if overlapped with signals of unexpected impurities or side products. We highlight the broad applicability of MOCCA in four studies: (i) a simulation study to validate MOCCA’s data analysis features; (ii) a reaction kinetics study on a Knoevenagel condensation reaction demonstrating MOCCA’s peak deconvolution feature; (iii) a closed-loop optimization study for the alkylation of 2-pyridone without human control during data analysis; (iv) a well plate screening of categorical reaction parameters for a novel palladium-catalyzed cyanation of aryl halides employing O-protected cyanohydrins. By publishing MOCCA as a Python package with this work, we envision an open-source community project for chromatographic data analysis with the potential of further advancing its scope and capabilities. |
|---|---|
| AbstractList | Automation and digitalization solutions in the field of small molecule synthesis face new challenges for chemical reaction analysis, especially in the field of high-performance liquid chromatography (HPLC). Chromatographic data remains locked in vendors' hardware and software components, limiting their potential in automated workflows and data science applications. In this work, we present an open-source Python project called MOCCA for the analysis of HPLC-DAD (photodiode array detector) raw data. MOCCA provides a comprehensive set of data analysis features, including an automated peak deconvolution routine of known signals, even if overlapped with signals of unexpected impurities or side products. We highlight the broad applicability of MOCCA in four studies: (i) a simulation study to validate MOCCA's data analysis features; (ii) a reaction kinetics study on a Knoevenagel condensation reaction demonstrating MOCCA's peak deconvolution feature; (iii) a closed-loop optimization study for the alkylation of 2-pyridone without human control during data analysis; (iv) a well plate screening of categorical reaction parameters for a novel palladium-catalyzed cyanation of aryl halides employing O-protected cyanohydrins. By publishing MOCCA as a Python package with this work, we envision an open-source community project for chromatographic data analysis with the potential of further advancing its scope and capabilities.Automation and digitalization solutions in the field of small molecule synthesis face new challenges for chemical reaction analysis, especially in the field of high-performance liquid chromatography (HPLC). Chromatographic data remains locked in vendors' hardware and software components, limiting their potential in automated workflows and data science applications. In this work, we present an open-source Python project called MOCCA for the analysis of HPLC-DAD (photodiode array detector) raw data. MOCCA provides a comprehensive set of data analysis features, including an automated peak deconvolution routine of known signals, even if overlapped with signals of unexpected impurities or side products. We highlight the broad applicability of MOCCA in four studies: (i) a simulation study to validate MOCCA's data analysis features; (ii) a reaction kinetics study on a Knoevenagel condensation reaction demonstrating MOCCA's peak deconvolution feature; (iii) a closed-loop optimization study for the alkylation of 2-pyridone without human control during data analysis; (iv) a well plate screening of categorical reaction parameters for a novel palladium-catalyzed cyanation of aryl halides employing O-protected cyanohydrins. By publishing MOCCA as a Python package with this work, we envision an open-source community project for chromatographic data analysis with the potential of further advancing its scope and capabilities. Automation and digitalization solutions in the field of small molecule synthesis face new challenges for chemical reaction analysis, especially in the field of high-performance liquid chromatography (HPLC). Chromatographic data remains locked in vendors’ hardware and software components, limiting their potential in automated workflows and data science applications. In this work, we present an open-source Python project called MOCCA for the analysis of HPLC–DAD (photodiode array detector) raw data. MOCCA provides a comprehensive set of data analysis features, including an automated peak deconvolution routine of known signals, even if overlapped with signals of unexpected impurities or side products. We highlight the broad applicability of MOCCA in four studies: (i) a simulation study to validate MOCCA’s data analysis features; (ii) a reaction kinetics study on a Knoevenagel condensation reaction demonstrating MOCCA’s peak deconvolution feature; (iii) a closed-loop optimization study for the alkylation of 2-pyridone without human control during data analysis; (iv) a well plate screening of categorical reaction parameters for a novel palladium-catalyzed cyanation of aryl halides employing O-protected cyanohydrins. By publishing MOCCA as a Python package with this work, we envision an open-source community project for chromatographic data analysis with the potential of further advancing its scope and capabilities. Automation and digitalization solutions in the field of small molecule synthesis face new challenges for chemical reaction analysis, especially in the field of high-performance liquid chromatography (HPLC). Chromatographic data remains locked in vendors’ hardware and software components, limiting their potential in automated workflows and data science applications. In this work, we present an open-source Python project called MOCCA for the analysis of HPLC–DAD (photodiode array detector) raw data. MOCCA provides a comprehensive set of data analysis features, including an automated peak deconvolution routine of known signals, even if overlapped with signals of unexpected impurities or side products. We highlight the broad applicability of MOCCA in four studies: (i) a simulation study to validate MOCCA’s data analysis features; (ii) a reaction kinetics study on a Knoevenagel condensation reaction demonstrating MOCCA’s peak deconvolution feature; (iii) a closed-loop optimization study for the alkylation of 2-pyridone without human control during data analysis; (iv) a well plate screening of categorical reaction parameters for a novel palladium-catalyzed cyanation of aryl halides employing O-protected cyanohydrins. By publishing MOCCA as a Python package with this work, we envision an open-source community project for chromatographic data analysis with the potential of further advancing its scope and capabilities. MOCCA is an open-source Python project for HPLC−DAD raw data analysis in reaction optimization and screening enabling data-based decisions in automated synthetic chemistry. Automation and digitalization solutions in the field of small molecule synthesis face new challenges for chemical reaction analysis, especially in the field of high-performance liquid chromatography (HPLC). Chromatographic data remains locked in vendors' hardware and software components, limiting their potential in automated workflows and data science applications. In this work, we present an open-source Python project called MOCCA for the analysis of HPLC-DAD (photodiode array detector) raw data. MOCCA provides a comprehensive set of data analysis features, including an automated peak deconvolution routine of known signals, even if overlapped with signals of unexpected impurities or side products. We highlight the broad applicability of MOCCA in four studies: (i) a simulation study to validate MOCCA's data analysis features; (ii) a reaction kinetics study on a Knoevenagel condensation reaction demonstrating MOCCA's peak deconvolution feature; (iii) a closed-loop optimization study for the alkylation of 2-pyridone without human control during data analysis; (iv) a well plate screening of categorical reaction parameters for a novel palladium-catalyzed cyanation of aryl halides employing -protected cyanohydrins. By publishing MOCCA as a Python package with this work, we envision an open-source community project for chromatographic data analysis with the potential of further advancing its scope and capabilities. |
| Author | McDonald, Matthew A. Leweke, Samuel Lübbesmeyer, Maximilian Nicholls, Rachel Guimond, Nicolas Volpin, Giulio Haas, Christian P. Kayser, Henning Jensen, Klavs F. Koscher, Brent A. Hillenbrand, Julius Jin, Edward H. Greeves, Emily Niedenführ, Sebastian Barber, David M. Di Rocco, Laura |
| AuthorAffiliation | Bayer AG, Pharmaceuticals Division Bayer AG, Enabling Functions Division Research and Development, Small Molecules Technologies Chemical & Pharmaceutical Development Department of Chemical Engineering Research and Development, Computational Life Science Research and Development, Weed Control Chemistry Applied Mathematics Bayer AG, Crop Science Division |
| AuthorAffiliation_xml | – name: Research and Development, Weed Control Chemistry – name: Department of Chemical Engineering – name: Research and Development, Computational Life Science – name: Bayer AG, Crop Science Division – name: Applied Mathematics – name: Research and Development, Small Molecules Technologies – name: Bayer AG, Pharmaceuticals Division – name: Bayer AG, Enabling Functions Division – name: Chemical & Pharmaceutical Development |
| Author_xml | – sequence: 1 givenname: Christian P. orcidid: 0000-0002-9457-8019 surname: Haas fullname: Haas, Christian P. organization: Bayer AG, Crop Science Division – sequence: 2 givenname: Maximilian surname: Lübbesmeyer fullname: Lübbesmeyer, Maximilian organization: Bayer AG, Crop Science Division – sequence: 3 givenname: Edward H. orcidid: 0000-0001-6011-5211 surname: Jin fullname: Jin, Edward H. organization: Department of Chemical Engineering – sequence: 4 givenname: Matthew A. orcidid: 0000-0002-9444-3253 surname: McDonald fullname: McDonald, Matthew A. organization: Department of Chemical Engineering – sequence: 5 givenname: Brent A. orcidid: 0000-0001-8233-0852 surname: Koscher fullname: Koscher, Brent A. organization: Department of Chemical Engineering – sequence: 6 givenname: Nicolas orcidid: 0000-0001-5258-2557 surname: Guimond fullname: Guimond, Nicolas organization: Bayer AG, Crop Science Division – sequence: 7 givenname: Laura surname: Di Rocco fullname: Di Rocco, Laura organization: Bayer AG, Pharmaceuticals Division – sequence: 8 givenname: Henning surname: Kayser fullname: Kayser, Henning organization: Bayer AG, Crop Science Division – sequence: 9 givenname: Samuel orcidid: 0000-0001-9471-4511 surname: Leweke fullname: Leweke, Samuel organization: Bayer AG, Enabling Functions Division – sequence: 10 givenname: Sebastian surname: Niedenführ fullname: Niedenführ, Sebastian organization: Bayer AG, Crop Science Division – sequence: 11 givenname: Rachel surname: Nicholls fullname: Nicholls, Rachel organization: Bayer AG, Crop Science Division – sequence: 12 givenname: Emily surname: Greeves fullname: Greeves, Emily organization: Bayer AG, Crop Science Division – sequence: 13 givenname: David M. orcidid: 0000-0001-9906-1695 surname: Barber fullname: Barber, David M. organization: Bayer AG, Crop Science Division – sequence: 14 givenname: Julius orcidid: 0000-0002-2646-1302 surname: Hillenbrand fullname: Hillenbrand, Julius email: julius.hillenbrand@bayer.com organization: Bayer AG, Pharmaceuticals Division – sequence: 15 givenname: Giulio surname: Volpin fullname: Volpin, Giulio email: giulio.volpin@bayer.com organization: Bayer AG, Crop Science Division – sequence: 16 givenname: Klavs F. orcidid: 0000-0001-7192-580X surname: Jensen fullname: Jensen, Klavs F. email: kfjensen@mit.edu organization: Department of Chemical Engineering |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36844498$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU9v1DAQxSNUREvpF-CAInHhksV_Y_uCVC0UkCqtoHC2Jo6z6yqxg52Alk9ft7t0oYeKk2299xvPvHleHPngbVG8xGiBEcFvwSRj_ZSMWxCDMGLkSXFCqGCVUBwf3d8ZPS7OUrpGCGFW15yIZ8UxrSVjTMmT4stqtL66CnM0tlxuYhhgCusI48aZ8j1MUJ576LfJpbILsfxqwUwu-HI1Tm5wv-HuAb4tr0y01ju_flE87aBP9mx_nhbfLz58W36qLlcfPy_PLytgtZqqjrctbyRXFhTmvBFc1MxgJUxNOyuoaKCjHbSslVxA26pOMm4NaVlDGyYJPS3oru7sR9j-gr7XY3QDxK3GSN9mpA8Z6X1GmXq3o8a5GWx7K0c4kAGc_lfxbqPX4adWOVUiZS7wZl8ghh-zTZMeXP6l78HbMCdNhERM1oygbH39wHqdc85xZpfClGGFFc2uV393dN_Knx1lA9kZTAwpRdv935zyAWTcdLetPJXrH0cXOzRrh44fAW4AqHfNeQ |
| CitedBy_id | crossref_primary_10_1039_D4DD00347K crossref_primary_10_1039_D3DD00167A crossref_primary_10_1039_D3RE00696D crossref_primary_10_1016_j_slast_2023_07_002 crossref_primary_10_1515_ci_2023_0317 crossref_primary_10_1021_acs_chemrev_4c00055 crossref_primary_10_1039_D4DD00214H crossref_primary_10_1039_D3SC02082G crossref_primary_10_1016_j_matt_2024_06_003 crossref_primary_10_1021_acs_oprd_4c00160 crossref_primary_10_1016_j_drudis_2024_103988 crossref_primary_10_3762_bjoc_21_3 crossref_primary_10_1002_ps_7749 crossref_primary_10_1002_eem2_12744 crossref_primary_10_1016_j_chroma_2024_464830 crossref_primary_10_1039_D4SC01881H |
| Cites_doi | 10.1038/sdata.2016.18 10.1126/science.aat0805 10.1246/bcsj.48.3298 10.1002/anie.201710482 10.1016/j.chroma.2016.09.037 10.1016/j.trechm.2020.12.006 10.1002/ejic.200300162 10.1039/C5CC03651H 10.1039/D0RA05960A 10.1002/anie.201909987 10.1007/s11306-014-0683-5 10.1039/C8RE00032H 10.1038/s41586-021-03213-y 10.1021/ja078298h 10.1038/s44160-021-00010-3 10.1039/C6RE00059B 10.1039/B400562G 10.1002/anie.202000329 10.1021/ja2042035 10.1002/anie.201707517 10.1080/00397919408011310 10.1016/S0022-328X(03)00503-5 10.1002/anie.200250778 10.1021/jacs.1c09820 10.1021/ac702064p 10.1002/open.201900124 10.1016/j.tetasy.2010.05.029 10.1039/C7GC02006F 10.1038/s41557-019-0226-9 10.1039/D0SC04074F 10.1039/C7CC03584E 10.1039/D1SC04588A 10.1002/anie.201909989 10.1186/1752-153X-2-5 10.1039/D1SC01545A 10.1021/acs.accounts.0c00736 10.1021/acs.jmedchem.9b02120 10.1080/17460441.2019.1546690 10.1038/s42004-021-00550-x 10.1016/j.trechm.2021.02.005 10.1002/cmtd.202200009 10.1016/j.jcat.2009.02.011 10.1021/jo0481250 10.1021/ol1028892 10.1002/anie.201705148 10.1016/j.aca.2022.339605 10.1002/anie.201410884 10.1039/C7RE00042A 10.1039/C6RE00153J 10.1016/j.trac.2017.07.021 10.1021/ja066931d 10.1371/journal.pone.0200280 10.1016/j.cej.2019.123340 10.1021/ol048643x 10.1021/acs.oprd.6b00229 10.1039/c1cs15004a 10.1246/bcsj.49.3177 10.1038/s41573-019-0050-3 10.1021/cr100346g 10.1021/acscentsci.1c00535 10.1021/acs.analchem.0c04151 10.1371/journal.pone.0229862 10.1016/j.compchemeng.2018.02.025 10.1088/2632-2153/aba947 10.1002/anie.201304188 10.1126/science.aax1566 10.1016/j.drudis.2009.03.005 10.1126/science.1259203 10.1021/ol5032359 10.1016/j.trechm.2019.07.004 10.1021/jacs.1c12005 10.1016/j.chroma.2021.461922 10.1038/nchem.2498 10.1016/j.chroma.2019.01.012 10.1021/acs.accounts.1c00232 10.1021/acs.analchem.7b04944 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors. Published by American Chemical Society 2023 The Authors. Published by American Chemical Society. 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 The Authors. Published by American Chemical Society 2023 The Authors |
| Copyright_xml | – notice: 2023 The Authors. Published by American Chemical Society – notice: 2023 The Authors. Published by American Chemical Society. – notice: 2023. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 The Authors. Published by American Chemical Society 2023 The Authors |
| DBID | N~. AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FG 8FH 8FK ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO GNUQQ HCIFZ KB. L6V LK8 M2P M7P M7S PATMY PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY Q9U 7X8 5PM ADTOC UNPAY |
| DOI | 10.1021/acscentsci.2c01042 |
| DatabaseName | American Chemical Society (ACS) Open Access CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection Proquest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Materials Science Database ProQuest Engineering Collection ProQuest Biological Science Collection Science Database Biological Science Database (ProQuest) Engineering Database Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed |
| Database_xml | – sequence: 1 dbid: N~. name: American Chemical Society (ACS) Open Access url: https://pubs.acs.org sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 2374-7951 |
| EndPage | 317 |
| ExternalDocumentID | 10.1021/acscentsci.2c01042 PMC9951288 36844498 10_1021_acscentsci_2c01042 b587232477 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: ; grantid: NA – fundername: ; grantid: HR00111920025 |
| GroupedDBID | 5VS ABFRP ABUCX ACS ADBBV ADHLV AFEFF ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV DIK EBS FRP GROUPED_DOAJ HYE KQ8 M48 N~. OK1 RPM VF5 XKZ 53G 88I AAFWJ AAYXX ABBLG ABJCF ABUWG ADUCK AEUYN AFKRA AFPKN ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU CITATION DWQXO GNUQQ HCIFZ KB. M2P M7P M7S PATMY PDBOC PHGZM PHGZT PIMPY PQGLB PTHSS PUEGO PYCSY NPM 3V. 7XB 8FE 8FG 8FH 8FK D1I L6V LK8 PKEHL PQEST PQQKQ PQUKI Q9U 7X8 5PM 4.4 ADRAZ ADTOC EJD LG6 ROL UNPAY |
| ID | FETCH-LOGICAL-a469t-f5dd5b859ea9155b75764c197c63fe737baf3fad4d857add9f845ec2d4b3b4823 |
| IEDL.DBID | N~. |
| ISSN | 2374-7943 2374-7951 |
| IngestDate | Sun Oct 26 02:41:51 EDT 2025 Tue Sep 30 17:17:14 EDT 2025 Thu Sep 04 17:54:58 EDT 2025 Fri Sep 12 04:42:05 EDT 2025 Wed Feb 19 02:24:28 EST 2025 Thu Apr 24 23:10:29 EDT 2025 Wed Oct 01 04:59:04 EDT 2025 Fri Feb 24 03:10:42 EST 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 2023 The Authors. Published by American Chemical Society. Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a469t-f5dd5b859ea9155b75764c197c63fe737baf3fad4d857add9f845ec2d4b3b4823 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2646-1302 0000-0001-9471-4511 0000-0001-7192-580X 0000-0001-8233-0852 0000-0002-9457-8019 0000-0001-9906-1695 0000-0002-9444-3253 0000-0001-6011-5211 0000-0001-5258-2557 |
| OpenAccessLink | http://dx.doi.org/10.1021/acscentsci.2c01042 |
| PMID | 36844498 |
| PQID | 2913419193 |
| PQPubID | 6524070 |
| PageCount | 11 |
| ParticipantIDs | unpaywall_primary_10_1021_acscentsci_2c01042 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9951288 proquest_miscellaneous_2780486420 proquest_journals_2913419193 pubmed_primary_36844498 crossref_primary_10_1021_acscentsci_2c01042 crossref_citationtrail_10_1021_acscentsci_2c01042 acs_journals_10_1021_acscentsci_2c01042 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-22 |
| PublicationDateYYYYMMDD | 2023-02-22 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Washington |
| PublicationTitle | ACS central science |
| PublicationTitleAlternate | ACS Cent. Sci |
| PublicationYear | 2023 |
| Publisher | American Chemical Society |
| Publisher_xml | – name: American Chemical Society |
| References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref81/cit81 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref2/cit2 ref77/cit77 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 ref17/cit17 ref82/cit82 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref75/cit75 ref67/cit67 Jones P.-J. (ref42/cit42) 2015; 33 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref78/cit78 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref83/cit83 ref65/cit65 ref79/cit79 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref76/cit76 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref80/cit80 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref1/cit1 ref44/cit44 ref70/cit70 Gressling T. (ref34/cit34) 2021 ref7/cit7 |
| References_xml | – ident: ref43/cit43 doi: 10.1038/sdata.2016.18 – ident: ref22/cit22 doi: 10.1126/science.aat0805 – ident: ref64/cit64 doi: 10.1246/bcsj.48.3298 – ident: ref11/cit11 doi: 10.1002/anie.201710482 – ident: ref32/cit32 doi: 10.1016/j.chroma.2016.09.037 – ident: ref14/cit14 doi: 10.1016/j.trechm.2020.12.006 – ident: ref61/cit61 doi: 10.1002/ejic.200300162 – ident: ref56/cit56 doi: 10.1039/C5CC03651H – ident: ref63/cit63 doi: 10.1039/D0RA05960A – ident: ref7/cit7 doi: 10.1002/anie.201909987 – ident: ref40/cit40 doi: 10.1007/s11306-014-0683-5 – volume: 33 start-page: 270 year: 2015 ident: ref42/cit42 publication-title: LCGC North Am. – ident: ref60/cit60 doi: 10.1039/C8RE00032H – ident: ref55/cit55 doi: 10.1038/s41586-021-03213-y – ident: ref66/cit66 doi: 10.1021/ja078298h – ident: ref17/cit17 doi: 10.1038/s44160-021-00010-3 – ident: ref50/cit50 doi: 10.1039/C6RE00059B – ident: ref70/cit70 doi: 10.1039/B400562G – ident: ref52/cit52 doi: 10.1002/anie.202000329 – ident: ref68/cit68 doi: 10.1021/ja2042035 – ident: ref74/cit74 doi: 10.1002/anie.201707517 – ident: ref69/cit69 doi: 10.1080/00397919408011310 – ident: ref71/cit71 doi: 10.1016/S0022-328X(03)00503-5 – ident: ref72/cit72 doi: 10.1002/anie.200250778 – ident: ref21/cit21 doi: 10.1021/jacs.1c09820 – ident: ref31/cit31 doi: 10.1021/ac702064p – ident: ref49/cit49 doi: 10.1002/open.201900124 – ident: ref82/cit82 doi: 10.1016/j.tetasy.2010.05.029 – ident: ref4/cit4 doi: 10.1039/C7GC02006F – ident: ref5/cit5 doi: 10.1038/s41557-019-0226-9 – ident: ref20/cit20 doi: 10.1039/D0SC04074F – ident: ref58/cit58 doi: 10.1039/C7CC03584E – ident: ref81/cit81 – ident: ref27/cit27 – ident: ref16/cit16 doi: 10.1039/D1SC04588A – ident: ref8/cit8 doi: 10.1002/anie.201909989 – ident: ref33/cit33 doi: 10.1186/1752-153X-2-5 – ident: ref23/cit23 doi: 10.1039/D1SC01545A – ident: ref19/cit19 doi: 10.1021/acs.accounts.0c00736 – volume-title: Data Science in Chemistry year: 2021 ident: ref34/cit34 – ident: ref15/cit15 doi: 10.1021/acs.jmedchem.9b02120 – ident: ref54/cit54 doi: 10.1080/17460441.2019.1546690 – ident: ref9/cit9 doi: 10.1038/s42004-021-00550-x – ident: ref38/cit38 – ident: ref53/cit53 doi: 10.1016/j.trechm.2021.02.005 – ident: ref41/cit41 doi: 10.1002/cmtd.202200009 – ident: ref46/cit46 doi: 10.1016/j.jcat.2009.02.011 – ident: ref76/cit76 doi: 10.1021/jo0481250 – ident: ref26/cit26 – ident: ref80/cit80 doi: 10.1021/ol1028892 – ident: ref59/cit59 doi: 10.1002/anie.201705148 – ident: ref30/cit30 doi: 10.1016/j.aca.2022.339605 – ident: ref2/cit2 doi: 10.1002/anie.201410884 – ident: ref47/cit47 doi: 10.1039/C7RE00042A – ident: ref57/cit57 doi: 10.1039/C6RE00153J – ident: ref45/cit45 doi: 10.1016/j.trac.2017.07.021 – ident: ref65/cit65 doi: 10.1021/ja066931d – ident: ref37/cit37 doi: 10.1371/journal.pone.0200280 – ident: ref84/cit84 – ident: ref51/cit51 doi: 10.1016/j.cej.2019.123340 – ident: ref75/cit75 doi: 10.1021/ol048643x – ident: ref73/cit73 doi: 10.1021/acs.oprd.6b00229 – ident: ref62/cit62 doi: 10.1039/c1cs15004a – ident: ref67/cit67 doi: 10.1246/bcsj.49.3177 – ident: ref13/cit13 doi: 10.1038/s41573-019-0050-3 – ident: ref39/cit39 – ident: ref77/cit77 doi: 10.1021/cr100346g – ident: ref12/cit12 doi: 10.1021/acscentsci.1c00535 – ident: ref25/cit25 doi: 10.1021/acs.analchem.0c04151 – ident: ref35/cit35 doi: 10.1371/journal.pone.0229862 – ident: ref44/cit44 doi: 10.1016/j.compchemeng.2018.02.025 – ident: ref36/cit36 doi: 10.1088/2632-2153/aba947 – ident: ref78/cit78 doi: 10.1002/anie.201304188 – ident: ref10/cit10 doi: 10.1126/science.aax1566 – ident: ref85/cit85 – ident: ref1/cit1 doi: 10.1016/j.drudis.2009.03.005 – ident: ref83/cit83 doi: 10.1126/science.1259203 – ident: ref79/cit79 doi: 10.1021/ol5032359 – ident: ref18/cit18 doi: 10.1016/j.trechm.2019.07.004 – ident: ref24/cit24 doi: 10.1021/jacs.1c12005 – ident: ref29/cit29 doi: 10.1016/j.chroma.2021.461922 – ident: ref3/cit3 doi: 10.1038/nchem.2498 – ident: ref48/cit48 doi: 10.1016/j.chroma.2019.01.012 – ident: ref6/cit6 doi: 10.1021/acs.accounts.1c00232 – ident: ref28/cit28 doi: 10.1021/acs.analchem.7b04944 |
| SSID | ssj0001466527 |
| Score | 2.3273013 |
| Snippet | Automation and digitalization solutions in the field of small molecule synthesis face new challenges for chemical reaction analysis, especially in the field of... Automation and digitalization solutions in the field of small molecule synthesis face new challenges for chemical reaction analysis, especially in the field of... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref acs |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 307 |
| SubjectTerms | Algorithms Alkylation Automation Chemical reactions Chemical synthesis Chemistry Chromatography Closed loops Condensates Data analysis Data science Datasets Decision making Deconvolution Digital technology Digitization Halides High-performance liquid chromatography Impurities Laboratories Liquid chromatography Open source software Optimization Palladium Photodiodes Reaction kinetics Screening Software |
| SummonAdditionalLinks | – databaseName: Proquest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7aFcEC2vlBa5EhIHMN3YTmIfqgr6UNXDAi2Veov8ilhpyW7prhD_nnHiZFlVWqEcbSvJzHge9sw3AG957grpVUZTm3IaIN2odkJTo3ObVcorXjVZvqP84kZc3ma3GzDqamFCWmWnExtF7aY2nJEfMtVAj6G_cTy7o6FrVLhd7Vpo6NhawR01EGOPYJMFZKwBbH4-G329Wp66iDxv-7gyHhIRleCxkgZt3aG2LYKSHX9kNgQqLNgse79qsx44og_zKbcW9Uz_-a0nk3-M1flTeBK9TPKpFYtt2PD1DmyddM3dnsG3kEhCr5uTexIActFxbcGrx5ac6rkmHVoJQa-WXPm2_oF8QQ3zM5ZuEl07cm1D4g7av-dwc372_eSCxu4KVGNIPKdV5lxmZKa8DhjxpsDIQ9hUFTbnlS94YXTFK2Sck1mBWlBVUmTeMicMN0Iy_gIG9bT2r4AMbaWG3nkhnBFeS3wEtyZ1AslqdZrAO6RiGXfHfdlcfLO0XNK7jPROIO0oXdoIUh56ZUzWrnnfr5m1EB1rZ-91DFx-0FK4Ejjoh5El4fZE1366wDkBqkliuDZM4GXL7_51PJdCCCUTKFYkoZ8QQLxXR-rxjwbMW6GLyySu_NDLzH_8xe76v3gNjxk6Y03pPduDwfzXwu-j8zQ3b-KO-Av4kByx priority: 102 providerName: ProQuest – databaseName: Scholars Portal - Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dSxwxEB8OfThfpNqqW62kUOhDXb1NsrvJQyly7XEUVKwe-Lbka_HgXL_uUP_7TvbrPBSRfUyyHzPZzG-Smd8AfGOJTYWTcRiZiIWe0i1UlqtQq8TEuXSS5WWU73EyHPG_F_FFB5pyR7UA71917Xw9qdHdZP_x9ukX_vA_K-KB6ECZivjIjPep8f4FLsnLaKmkL-VwVMP9cs-FJ0lVxZUyH4YoOavzaF6_jbdY5n7RYr2AoS-jKbuz4kY9PajJ5JmpGnyA1RpjksNqUqxBxxXr0O03pd0-wqkPIwnPyn174ulxEbZW1NVjQ36rqSINVwlBTEv-uSr7gZzg-nJVJ24SVVhyZnzYDlq_TzAa_DnvD8O6tkKo0CGehnlsbaxFLJ3yDPE6Rb-Dm0imJmG5S1mqVc5yVJsVcYproMwFj52hlmumuaBsA5aK68JtAemZXPacdZxbzZ0SeHFmdGQ5itWoKIDvKMWsUW1WHnvTKJvLO6vlHUDUSDozNUW5r5QxeXPMj3bMTUXQ8WbvnUaB8xeismS1QygbwNe2GVXiz05U4a5n2McTNQl01noBbFb6bh_HEsE5lyKAdGEmtB08hfdiSzG-LKm8JQJcKnDkXjtn3vEVn98t0W1YoYjKyhx8ugNL07uZ-4Ioaqp3y1_jPzuxHv0 priority: 102 providerName: Scholars Portal – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6h7aFceD8CBRkJiQNk2cR2Yh-rQlVxKI-y0nKK_FRXLOmKzQrBr2fseFOWogpQLlH8iD0ee8b2zDcAT2lla-EkzwtT0DxAuuXKMpVrVRnupZPURyvf4-poyt7M-CwdXQRfGGzECmtaxUv8MKuX1ieEgeIlfo8IR2Y-Lk3YSODau1NxVMJHsDM9frf_KYaSCxaGvb1ceudFcpf5cyVBMJnVtmC6oG1eNJrcXbdL9f2bWix-kUiH12E29CUaonwerzs9Nj9-g3n8j87egGtJSyX7PVvdhCuuvQW7B5vgcLfhfTBEyU_iyT8JALuo-Pbg13NDXqlOkQ3aCUGtmHxwvf8EeYsr1Jfk-klUa8mJCYY_KD_vwPTw9ceDozxFZ8gVbqm73HNruRZcOhUw5nWNOxdmClmbinpX01orTz0OvBW8xlVUesG4M6VlmmomSnoXRu1Z6-4DmRgvJ846xqxmTgl8GDW6sAwpYVSRwTOkRpNm16qJF-dl0ZyTqEkkyqDYDGJjEsh5iLWxuLTM86HMsof4uDT33oY3zhtUyoiLh8pwBk-GZByScPuiWne2xjwB6kngdm-Swb2elYbf0UowxqTIoN5isiFDAAHfTmnnpxEMXCJ3lwJLvhjY8S968eDfsj-EqyUqd9GVv9yDUfd17R6hMtbpx2ni_QSiVzYP priority: 102 providerName: Unpaywall |
| Title | Open-Source Chromatographic Data Analysis for Reaction Optimization and Screening |
| URI | http://dx.doi.org/10.1021/acscentsci.2c01042 https://www.ncbi.nlm.nih.gov/pubmed/36844498 https://www.proquest.com/docview/2913419193 https://www.proquest.com/docview/2780486420 https://pubmed.ncbi.nlm.nih.gov/PMC9951288 https://pubs.acs.org/doi/pdf/10.1021/acscentsci.2c01042 |
| UnpaywallVersion | publishedVersion |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society (ACS) Open Access customDbUrl: eissn: 2374-7951 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001466527 issn: 2374-7943 databaseCode: N~. dateStart: 20150325 isFulltext: true titleUrlDefault: https://pubs.acs.org providerName: American Chemical Society – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 2374-7951 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001466527 issn: 2374-7943 databaseCode: ACS dateStart: 20150325 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2374-7951 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001466527 issn: 2374-7943 databaseCode: KQ8 dateStart: 20150101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2374-7951 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001466527 issn: 2374-7943 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2374-7951 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001466527 issn: 2374-7943 databaseCode: DIK dateStart: 20150101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2374-7951 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001466527 issn: 2374-7943 databaseCode: RPM dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2374-7951 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001466527 issn: 2374-7943 databaseCode: BENPR dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal - Open Access customDbUrl: eissn: 2374-7951 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0001466527 issn: 2374-7943 databaseCode: M48 dateStart: 20150301 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED8xeGAv0wb7CGOVJ03iYYQ1thPbj11HQZNWPrpK7CnyV7RKXUDQatoLfzvnJE1XsSEUyS-283F38d3Zd78D-MAyJ6RXaZzYhMUB0i3WjuvY6MymhfKKFVWU7zA7HvOvF-nFGuz_5wSfJp-0rWGN7OSA2uA94IK7QTMhggwPbw-WOyo8y-oarZSFIEPFWZMl8-_bBH1kb1b10T0j836s5Oa8vNJ_fuvp9C9FNHgOzxoLkvRqlr-ANV9uwWZ_UbhtG85CkEg8qnblSQC_RaO0BqaeWPJFzzRZIJEQtFjJua9zG8gJrh6_mrRMoktHRjYE5aBuewnjweH3_nHcVE6INbq7s7hInUuNTJXXAf_dCPQquE2UsBkrvGDC6IIVyBQnU4ErnCokT72ljhtmuKTsFayXl6V_A6RrC9X1znPuDPda4sWZNYnjSFarkwj2kIp5I_k3eXWoTZN8Se-8oXcEyYLSuW0AyEMdjOmDcz62c65q-I0HR-8uGLh8IaoqzDo0VCN433YjS8LJiC795RzHBBgmia5YN4LXNb_bx7FMcs6VjECsSEI7IAB0r_aUk58VULdC85VKnLnfyswjvmLn0RR9C08p2lxVhj3dhfXZ9dy_QxtpZjrwRA6OsO31Rx3Y-Hw4PD3vVPsN2H7jslP9OtgzHp72ftwBTH4YjA |
| linkProvider | American Chemical Society |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V7WG5ICivQAEjgThA6MZ2EvtQVdCHtrQs0IfUW-rYjlhpyS7srqr-uf62jhMny6rSikuVY2wlHj_mG8_MNwBvWWJSYWUcRjpioaN0C5XhKsxVouNCWsmKKsq3n_TO-Nfz-HwFrptcGBdW2ZyJ1UFtRtrdkW9SWVGPId7YHv8JXdUo511tSmgoX1rBbFUUYz6x49BeXaIJN9k62MX5fkfp_t7pTi_0VQZChabhNCxiY-JcxNIqx5Wep4jAuY5kqhNW2JSluSpYgQMwIk7xNJCF4LHV1PCc5Vw44gNUAWuccYnG39qXvf6P4_ktD0-Sum4sZS7wUXLmM3dQt24qXTM26cEnqp1hRJ2O1JNFHXkL-N6O3-zMyrG6ulTD4T_Kcf8B3Peolnyul-FDWLHlOnR2mmJyj-CnC1wJTypPAXGEvAiUa7LsgSa7aqpIw45CEEWTY1vnW5DveKL99qmiRJWGnGgXKIT69jGc3Ymcn8BqOSrtMyBdXciuNZZzk3OrBD6c6TwyHMWqVRTAe5Ri5nfjJKsc7TTK5vLOvLwDiBpJZ9qTorvaHMOlfT60fcY1JcjS1hvNBM5_aL6YA3jTvsYpcd4aVdrRDNs4aiiB5mE3gKf1fLefY4ngnEsRQLqwEtoGjjR88U05-FWRh0uE1FRgz4_tmvmPUTxfPorX0OmdfjvKjg76hy_gHkUgWKX90w1Ynf6d2ZcI3Kb5K787CFzc9Ya8AcxFWt8 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbQkBgv4w6BAUZC4gFSGl8S-xF1VOOicSmT-hb5KqqVrKKpEPx6jh03pQxNE8pbYjv28bH9Hfuczwg9paWthJM8L0xB80DplivLVK5VabiXTlIfvXyPysNj9nbKp2nrIsTCQCWWUNIyHuKHUb2wPjEMFC_hfWQ4MrMBMcGQgLn3Mi9hrAdMNJpsNldYWXbXtRIa_A0loylg5t_FhKXJLLeXpjN486zb5O6qWaifP9R8_seaNL6Gpn1roivKyWDV6oH59RfR43809zraSzgVv-oU6wa65JqbaHe0vh7uFvoUXFHySdz7x4FiF6BvR389M_hAtQqv-U4w4GL82XURFPgDzFHfUvAnVo3FExNcf2AFvY2Ox6-_jA7zdD9DrsCobnPPreVacOlUYJnXFdguzBSyMiX1rqKVVp566HoreAXzqPSCcWeIZZpqJgi9g3aa08bdQ3hovBw66xizmjkl4GHU6MIykIRRRYaegTTqNL6WdTw6J0W9EVGdRJShYt2JtUk05-G2jfm5eZ73eRYdyce5qffXurGpEJGRGQ_gcIae9J-hS8L5i2rc6QrSBLInAQbfMEN3O1Xqf0dLwRiTIkPVlpL1CQIN-PaXZvY10oFLAMlEQM4XvTpeoBX3LyzRx-jKx4Nx_f7N0bsH6CoBkBdD-sk-2mm_r9xDAGWtfhQH4G85wjZt |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6h7aFceD8CBRkJiQNk2cR2Yh-rQlVxKI-y0nKK_FRXLOmKzQrBr2fseFOWogpQLlH8iD0ee8b2zDcAT2lla-EkzwtT0DxAuuXKMpVrVRnupZPURyvf4-poyt7M-CwdXQRfGGzECmtaxUv8MKuX1ieEgeIlfo8IR2Y-Lk3YSODau1NxVMJHsDM9frf_KYaSCxaGvb1ceudFcpf5cyVBMJnVtmC6oG1eNJrcXbdL9f2bWix-kUiH12E29CUaonwerzs9Nj9-g3n8j87egGtJSyX7PVvdhCuuvQW7B5vgcLfhfTBEyU_iyT8JALuo-Pbg13NDXqlOkQ3aCUGtmHxwvf8EeYsr1Jfk-klUa8mJCYY_KD_vwPTw9ceDozxFZ8gVbqm73HNruRZcOhUw5nWNOxdmClmbinpX01orTz0OvBW8xlVUesG4M6VlmmomSnoXRu1Z6-4DmRgvJ846xqxmTgl8GDW6sAwpYVSRwTOkRpNm16qJF-dl0ZyTqEkkyqDYDGJjEsh5iLWxuLTM86HMsof4uDT33oY3zhtUyoiLh8pwBk-GZByScPuiWne2xjwB6kngdm-Swb2elYbf0UowxqTIoN5isiFDAAHfTmnnpxEMXCJ3lwJLvhjY8S968eDfsj-EqyUqd9GVv9yDUfd17R6hMtbpx2ni_QSiVzYP |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Open-Source+Chromatographic+Data+Analysis+for+Reaction+Optimization+and+Screening&rft.jtitle=ACS+central+science&rft.au=Haas%2C+Christian+P.&rft.au=Lu%CC%88bbesmeyer%2C+Maximilian&rft.au=Jin%2C+Edward+H.&rft.au=McDonald%2C+Matthew+A.&rft.date=2023-02-22&rft.pub=American+Chemical+Society&rft.issn=2374-7943&rft.eissn=2374-7951&rft.volume=9&rft.issue=2&rft.spage=307&rft.epage=317&rft_id=info:doi/10.1021%2Facscentsci.2c01042&rft.externalDocID=b587232477 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2374-7943&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2374-7943&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2374-7943&client=summon |