Transcriptional and translational dynamics underlying heat shock response in the thermophilic crenarchaeon Sulfolobus acidocaldarius

High-temperature stress is critical for all organisms and induces a profound cellular response. For Crenarchaeota, little information is available on how heat shock affects cellular processes and on how this response is regulated. We set out to study heat shock response in the thermoacidophilic mode...

Full description

Saved in:
Bibliographic Details
Published inmBio Vol. 14; no. 5; p. e0359322
Main Authors Baes, Rani, Grünberger, Felix, Pyr dit Ruys, Sébastien, Couturier, Mohea, De Keulenaer, Sarah, Skevin, Sonja, Van Nieuwerburgh, Filip, Vertommen, Didier, Grohmann, Dina, Ferreira-Cerca, Sébastien, Peeters, Eveline
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 31.10.2023
Subjects
Online AccessGet full text
ISSN2150-7511
2161-2129
2150-7511
DOI10.1128/mbio.03593-22

Cover

Abstract High-temperature stress is critical for all organisms and induces a profound cellular response. For Crenarchaeota, little information is available on how heat shock affects cellular processes and on how this response is regulated. We set out to study heat shock response in the thermoacidophilic model crenarchaeon Sulfolobus acidocaldarius, which thrives in volcanic hot springs and has an optimal growth temperature of 75°C. Pulse-labeling experiments demonstrated that a temperature shift to 86°C induces a drastic reduction of the transcriptional and translational activity, but that RNA and protein neosynthesis still occurs. By combining RNA sequencing and mass spectrometry, an integrated mapping of the transcriptome and proteome was performed. This revealed that heat shock causes an immediate change in the gene expression profile, with RNA levels of half of the genes being affected, followed by a more subtle reprogramming of the protein landscape. Functional enrichment analysis indicated that nearly all cellular processes are affected by heat shock. A limited correlation was observed in the differential expression on the RNA and protein level, suggesting a prevalence of post-transcriptional and post-translational regulation. Furthermore, promoter sequence analysis of heat shock regulon genes demonstrated the conservation of strong transcription initiation elements for highly induced genes, but an absence of a conserved protein-binding motif. It is, therefore, hypothesized that histone-lacking archaea such as Sulfolobales use an evolutionarily ancient regulatory mechanism that relies on temperature-responsive changes in DNA organization and compaction induced by the action of nucleoid-associated proteins, as well as on enhanced recruitment of initiation factors. Heat shock response is the ability to respond adequately to sudden temperature increases that could be harmful for cellular survival and fitness. It is crucial for microorganisms living in volcanic hot springs that are characterized by high temperatures and large temperature fluctuations. In this study, we investigated how S. acidocaldarius , which grows optimally at 75°C, responds to heat shock by altering its gene expression and protein production processes. We shed light on which cellular processes are affected by heat shock and propose a hypothesis on underlying regulatory mechanisms. This work is not only relevant for the organism’s lifestyle, but also with regard to its evolutionary status. Indeed, S. acidocaldarius belongs to the archaea, an ancient group of microbes that is more closely related to eukaryotes than to bacteria. Our study thus also contributes to a better understanding of the early evolution of heat shock response.
AbstractList ABSTRACT High-temperature stress is critical for all organisms and induces a profound cellular response. For Crenarchaeota, little information is available on how heat shock affects cellular processes and on how this response is regulated. We set out to study heat shock response in the thermoacidophilic model crenarchaeon Sulfolobus acidocaldarius, which thrives in volcanic hot springs and has an optimal growth temperature of 75°C. Pulse-labeling experiments demonstrated that a temperature shift to 86°C induces a drastic reduction of the transcriptional and translational activity, but that RNA and protein neosynthesis still occurs. By combining RNA sequencing and mass spectrometry, an integrated mapping of the transcriptome and proteome was performed. This revealed that heat shock causes an immediate change in the gene expression profile, with RNA levels of half of the genes being affected, followed by a more subtle reprogramming of the protein landscape. Functional enrichment analysis indicated that nearly all cellular processes are affected by heat shock. A limited correlation was observed in the differential expression on the RNA and protein level, suggesting a prevalence of post-transcriptional and post-translational regulation. Furthermore, promoter sequence analysis of heat shock regulon genes demonstrated the conservation of strong transcription initiation elements for highly induced genes, but an absence of a conserved protein-binding motif. It is, therefore, hypothesized that histone-lacking archaea such as Sulfolobales use an evolutionarily ancient regulatory mechanism that relies on temperature-responsive changes in DNA organization and compaction induced by the action of nucleoid-associated proteins, as well as on enhanced recruitment of initiation factors. IMPORTANCE Heat shock response is the ability to respond adequately to sudden temperature increases that could be harmful for cellular survival and fitness. It is crucial for microorganisms living in volcanic hot springs that are characterized by high temperatures and large temperature fluctuations. In this study, we investigated how S. acidocaldarius, which grows optimally at 75°C, responds to heat shock by altering its gene expression and protein production processes. We shed light on which cellular processes are affected by heat shock and propose a hypothesis on underlying regulatory mechanisms. This work is not only relevant for the organism’s lifestyle, but also with regard to its evolutionary status. Indeed, S. acidocaldarius belongs to the archaea, an ancient group of microbes that is more closely related to eukaryotes than to bacteria. Our study thus also contributes to a better understanding of the early evolution of heat shock response.
High-temperature stress is critical for all organisms and induces a profound cellular response. For Crenarchaeota, little information is available on how heat shock affects cellular processes and on how this response is regulated. We set out to study heat shock response in the thermoacidophilic model crenarchaeon Sulfolobus acidocaldarius, which thrives in volcanic hot springs and has an optimal growth temperature of 75°C. Pulse-labeling experiments demonstrated that a temperature shift to 86°C induces a drastic reduction of the transcriptional and translational activity, but that RNA and protein neosynthesis still occurs. By combining RNA sequencing and mass spectrometry, an integrated mapping of the transcriptome and proteome was performed. This revealed that heat shock causes an immediate change in the gene expression profile, with RNA levels of half of the genes being affected, followed by a more subtle reprogramming of the protein landscape. Functional enrichment analysis indicated that nearly all cellular processes are affected by heat shock. A limited correlation was observed in the differential expression on the RNA and protein level, suggesting a prevalence of post-transcriptional and post-translational regulation. Furthermore, promoter sequence analysis of heat shock regulon genes demonstrated the conservation of strong transcription initiation elements for highly induced genes, but an absence of a conserved protein-binding motif. It is, therefore, hypothesized that histone-lacking archaea such as Sulfolobales use an evolutionarily ancient regulatory mechanism that relies on temperature-responsive changes in DNA organization and compaction induced by the action of nucleoid-associated proteins, as well as on enhanced recruitment of initiation factors.
Heat shock response is the ability to respond adequately to sudden temperature increases that could be harmful for cellular survival and fitness. It is crucial for microorganisms living in volcanic hot springs that are characterized by high temperatures and large temperature fluctuations. In this study, we investigated how S. acidocaldarius, which grows optimally at 75°C, responds to heat shock by altering its gene expression and protein production processes. We shed light on which cellular processes are affected by heat shock and propose a hypothesis on underlying regulatory mechanisms. This work is not only relevant for the organism's lifestyle, but also with regard to its evolutionary status. Indeed, S. acidocaldarius belongs to the archaea, an ancient group of microbes that is more closely related to eukaryotes than to bacteria. Our study thus also contributes to a better understanding of the early evolution of heat shock response.IMPORTANCEHeat shock response is the ability to respond adequately to sudden temperature increases that could be harmful for cellular survival and fitness. It is crucial for microorganisms living in volcanic hot springs that are characterized by high temperatures and large temperature fluctuations. In this study, we investigated how S. acidocaldarius, which grows optimally at 75°C, responds to heat shock by altering its gene expression and protein production processes. We shed light on which cellular processes are affected by heat shock and propose a hypothesis on underlying regulatory mechanisms. This work is not only relevant for the organism's lifestyle, but also with regard to its evolutionary status. Indeed, S. acidocaldarius belongs to the archaea, an ancient group of microbes that is more closely related to eukaryotes than to bacteria. Our study thus also contributes to a better understanding of the early evolution of heat shock response.
Heat shock response is the ability to respond adequately to sudden temperature increases that could be harmful for cellular survival and fitness. It is crucial for microorganisms living in volcanic hot springs that are characterized by high temperatures and large temperature fluctuations. In this study, we investigated how , which grows optimally at 75°C, responds to heat shock by altering its gene expression and protein production processes. We shed light on which cellular processes are affected by heat shock and propose a hypothesis on underlying regulatory mechanisms. This work is not only relevant for the organism's lifestyle, but also with regard to its evolutionary status. Indeed, belongs to the archaea, an ancient group of microbes that is more closely related to eukaryotes than to bacteria. Our study thus also contributes to a better understanding of the early evolution of heat shock response.
High-temperature stress is critical for all organisms and induces a profound cellular response. For Crenarchaeota, little information is available on how heat shock affects cellular processes and on how this response is regulated. We set out to study heat shock response in the thermoacidophilic model crenarchaeon Sulfolobus acidocaldarius, which thrives in volcanic hot springs and has an optimal growth temperature of 75°C. Pulse-labeling experiments demonstrated that a temperature shift to 86°C induces a drastic reduction of the transcriptional and translational activity, but that RNA and protein neosynthesis still occurs. By combining RNA sequencing and mass spectrometry, an integrated mapping of the transcriptome and proteome was performed. This revealed that heat shock causes an immediate change in the gene expression profile, with RNA levels of half of the genes being affected, followed by a more subtle reprogramming of the protein landscape. Functional enrichment analysis indicated that nearly all cellular processes are affected by heat shock. A limited correlation was observed in the differential expression on the RNA and protein level, suggesting a prevalence of post-transcriptional and post-translational regulation. Furthermore, promoter sequence analysis of heat shock regulon genes demonstrated the conservation of strong transcription initiation elements for highly induced genes, but an absence of a conserved protein-binding motif. It is, therefore, hypothesized that histone-lacking archaea such as Sulfolobales use an evolutionarily ancient regulatory mechanism that relies on temperature-responsive changes in DNA organization and compaction induced by the action of nucleoid-associated proteins, as well as on enhanced recruitment of initiation factors. IMPORTANCE Heat shock response is the ability to respond adequately to sudden temperature increases that could be harmful for cellular survival and fitness. It is crucial for microorganisms living in volcanic hot springs that are characterized by high temperatures and large temperature fluctuations. In this study, we investigated how S. acidocaldarius, which grows optimally at 75°C, responds to heat shock by altering its gene expression and protein production processes. We shed light on which cellular processes are affected by heat shock and propose a hypothesis on underlying regulatory mechanisms. This work is not only relevant for the organism’s lifestyle, but also with regard to its evolutionary status. Indeed, S. acidocaldarius belongs to the archaea, an ancient group of microbes that is more closely related to eukaryotes than to bacteria. Our study thus also contributes to a better understanding of the early evolution of heat shock response.
High-temperature stress is critical for all organisms and induces a profound cellular response. For Crenarchaeota, little information is available on how heat shock affects cellular processes and on how this response is regulated. We set out to study heat shock response in the thermoacidophilic model crenarchaeon Sulfolobus acidocaldarius, which thrives in volcanic hot springs and has an optimal growth temperature of 75°C. Pulse-labeling experiments demonstrated that a temperature shift to 86°C induces a drastic reduction of the transcriptional and translational activity, but that RNA and protein neosynthesis still occurs. By combining RNA sequencing and mass spectrometry, an integrated mapping of the transcriptome and proteome was performed. This revealed that heat shock causes an immediate change in the gene expression profile, with RNA levels of half of the genes being affected, followed by a more subtle reprogramming of the protein landscape. Functional enrichment analysis indicated that nearly all cellular processes are affected by heat shock. A limited correlation was observed in the differential expression on the RNA and protein level, suggesting a prevalence of post-transcriptional and post-translational regulation. Furthermore, promoter sequence analysis of heat shock regulon genes demonstrated the conservation of strong transcription initiation elements for highly induced genes, but an absence of a conserved protein-binding motif. It is, therefore, hypothesized that histone-lacking archaea such as Sulfolobales use an evolutionarily ancient regulatory mechanism that relies on temperature-responsive changes in DNA organization and compaction induced by the action of nucleoid-associated proteins, as well as on enhanced recruitment of initiation factors. Heat shock response is the ability to respond adequately to sudden temperature increases that could be harmful for cellular survival and fitness. It is crucial for microorganisms living in volcanic hot springs that are characterized by high temperatures and large temperature fluctuations. In this study, we investigated how S. acidocaldarius , which grows optimally at 75°C, responds to heat shock by altering its gene expression and protein production processes. We shed light on which cellular processes are affected by heat shock and propose a hypothesis on underlying regulatory mechanisms. This work is not only relevant for the organism’s lifestyle, but also with regard to its evolutionary status. Indeed, S. acidocaldarius belongs to the archaea, an ancient group of microbes that is more closely related to eukaryotes than to bacteria. Our study thus also contributes to a better understanding of the early evolution of heat shock response.
Author Grohmann, Dina
Skevin, Sonja
Vertommen, Didier
Baes, Rani
Ferreira-Cerca, Sébastien
Couturier, Mohea
Peeters, Eveline
Pyr dit Ruys, Sébastien
Grünberger, Felix
De Keulenaer, Sarah
Van Nieuwerburgh, Filip
Author_xml – sequence: 1
  givenname: Rani
  surname: Baes
  fullname: Baes, Rani
  organization: Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel , Brussels, Belgium
– sequence: 2
  givenname: Felix
  surname: Grünberger
  fullname: Grünberger, Felix
  organization: Institute of Microbiology and Archaea Centre, Universität Regensburg , Regensburg, Germany
– sequence: 3
  givenname: Sébastien
  surname: Pyr dit Ruys
  fullname: Pyr dit Ruys, Sébastien
  organization: Institut de Duve, Université Catholique de Louvain , Brussels, Belgium
– sequence: 4
  givenname: Mohea
  surname: Couturier
  fullname: Couturier, Mohea
  organization: Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel , Brussels, Belgium
– sequence: 5
  givenname: Sarah
  surname: De Keulenaer
  fullname: De Keulenaer, Sarah
  organization: NXTGNT, Faculty of Pharmaceutical Sciences, Ghent University , Ghent, Belgium
– sequence: 6
  givenname: Sonja
  surname: Skevin
  fullname: Skevin, Sonja
  organization: NXTGNT, Faculty of Pharmaceutical Sciences, Ghent University , Ghent, Belgium
– sequence: 7
  givenname: Filip
  surname: Van Nieuwerburgh
  fullname: Van Nieuwerburgh, Filip
  organization: NXTGNT, Faculty of Pharmaceutical Sciences, Ghent University , Ghent, Belgium
– sequence: 8
  givenname: Didier
  surname: Vertommen
  fullname: Vertommen, Didier
  organization: Institut de Duve, Université Catholique de Louvain , Brussels, Belgium
– sequence: 9
  givenname: Dina
  surname: Grohmann
  fullname: Grohmann, Dina
  organization: Institute of Microbiology and Archaea Centre, Universität Regensburg , Regensburg, Germany
– sequence: 10
  givenname: Sébastien
  surname: Ferreira-Cerca
  fullname: Ferreira-Cerca, Sébastien
  organization: Cellular Biochemistry of Microorganisms, Biochemie III, Universität Regensburg , Regensburg, Germany, Laboratoire de Biologie Structurale de la Cellule (BIOC), UMR 7654 -CNRS, Ecole polytechnique, Institut Polytechnique de Paris , Palaiseau, France
– sequence: 11
  givenname: Eveline
  orcidid: 0000-0001-7423-8714
  surname: Peeters
  fullname: Peeters, Eveline
  organization: Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel , Brussels, Belgium
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37642423$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04207631$$DView record in HAL
BookMark eNp1ks1rFDEYhwep2Fp79Co5qjA1XzPJHEuxtrDgwXoObz62kzWTrMmMsHf_8M7srkWFBkLCjycPgd_7ujqJKbqqekvwJSFUfhq0T5eYNR2rKX1RnVHS4Fo0hJz8dT-tLkrZ4HkxRiTDr6pTJlpOOWVn1e_7DLGY7LejTxECgmjRuGQBjondRRi8KWiK1uWw8_EB9Q5GVPpkfqDsyjbF4pCPaOzdsvOQtr0P3iCTXYRsenApom9TWKeQ9FQQGG-TgWAh-6m8qV6uIRR3cTzPq-83n--vb-vV1y9311erGngrxppzZ6nhVreOCGtMqzVITIXRWghtOaPMUcC6kWZtOIN2Zq2g2pim4w1bs_Pq7uC1CTZqm_0AeacSeLUPUn5QkEdvglPMOKllSyTRjLdcd52cHZ0mLZeic2x2fTi4egj_qG6vVmrJMKdYtIz8IjP7_sBuc_o5uTKqwRfjQoDo0lQUlY3sOiwondGPBxTKQNUmTXmuoCiC1VK4WgpX-8LVHn539E56cPbpG3_qnYH6AJicSslu_YQ8J2T_8caP-zmYR8KHZ149AjiyytQ
CitedBy_id crossref_primary_10_3389_fmicb_2024_1475385
crossref_primary_10_1111_1462_2920_16705
crossref_primary_10_1016_j_jbc_2025_108295
Cites_doi 10.3389/fmicb.2020.01625
10.1016/j.molcel.2010.10.006
10.1016/j.biochi.2020.05.007
10.1038/s41564-022-01245-2
10.1006/jmbi.1995.0585
10.1128/JB.00080-06
10.3389/fmicb.2019.01214
10.1093/nar/gkt1169
10.1126/scisignal.aat6409
10.1042/ETLS20180014
10.2307/1936500
10.1002/jms.3553
10.7554/eLife.08378
10.1007/BF00408082
10.1074/mcp.TIR119.001646
10.1093/nar/gkv416
10.1038/nrmicro3467
10.3389/fmicb.2017.00286
10.1038/s41467-018-07379-4
10.3389/fmicb.2020.584152
10.1074/jbc.M405518200
10.1007/s00792-020-01184-y
10.1093/nar/gkw394
10.1016/j.gpb.2017.04.005
10.1074/jbc.M209250200
10.1038/nmeth.2089
10.1007/s00792-016-0807-0
10.1016/j.jtbi.2016.05.005
10.1128/JB.187.17.6046-6057.2005
10.1016/j.jmb.2011.03.030
10.1038/ncomms2330
10.1093/femsre/fuy016
10.1038/ncomms9163
10.1046/j.1365-2958.2003.03418.x
10.1261/rna.2679911
10.3389/fmicb.2018.03201
10.3389/fmicb.2021.661411
10.1016/j.jmb.2012.05.017
10.1016/j.cell.2019.08.036
10.1016/j.jmb.2020.166791
10.1016/j.csbj.2022.08.008
10.3389/fmicb.2021.661827
10.3389/fmicb.2020.594838
10.1093/femsre/fuaa063
10.1093/bioinformatics/btx469
10.3390/biom10040584
10.1046/j.1365-2958.1999.01524.x
10.1016/j.molcel.2011.05.030
10.3390/life5010818
10.1093/nar/gky335
10.1111/1462-2920.15617
10.1093/bioinformatics/btp616
10.1093/femsre/fuw020
10.1111/mmi.14424
10.1093/jb/mvp177
10.1111/mmi.13735
10.1016/j.bbamem.2018.09.005
10.1074/mcp.M116.058073
10.1186/gb-2010-11-2-r14
10.1016/j.jmb.2019.06.020
10.1101/gad.13.6.655
10.1042/ETLS20180024
10.1038/s41467-017-02081-3
10.2174/092986608786071094
10.1042/BST0370123
10.1111/mmi.13550
10.1074/jbc.M010611200
10.1038/nmicrobiol.2016.143
10.1128/JB.00924-09
10.1038/329348a0
10.1128/JB.180.11.2883-2888.1998
10.1093/nar/gkx1247
10.1111/febs.16226
10.1128/JB.01534-09
10.1093/nar/gkaa702
10.1007/s00792-008-0186-2
10.1038/s41586-020-2418-2
10.1128/jb.176.5.1251-1259.1994
10.1093/nar/gkab1038
10.1007/978-1-4612-6284-8
10.1016/j.jprot.2022.104681
10.1074/mcp.M113.027375
10.2741/albers
10.1016/j.str.2015.12.016
ContentType Journal Article
Copyright Copyright © 2023 Baes et al.
Attribution - NonCommercial
Copyright_xml – notice: Copyright © 2023 Baes et al.
– notice: Attribution - NonCommercial
DBID AAYXX
CITATION
NPM
7X8
1XC
VOOES
DOA
DOI 10.1128/mbio.03593-22
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals (Roanoke)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2150-7511
Editor Schmitz, Ruth Anne
Vogel, Joerg
Editor_xml – sequence: 1
  givenname: Joerg
  surname: Vogel
  fullname: Vogel, Joerg
– sequence: 2
  givenname: Ruth Anne
  surname: Schmitz
  fullname: Schmitz, Ruth Anne
ExternalDocumentID oai_doaj_org_article_3ce8b86181b3464b9989459b164879e3
oai_HAL_hal_04207631v1
03593-22
37642423
10_1128_mbio_03593_22
Genre Journal Article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft (DFG)
  grantid: FE1622/2-1, SFB960-AP1, SFB960-B13
– fundername: Deutsche Forschungsgemeinschaft (DFG)
  grantid: SFB/CRC960-AP7
– fundername: Fonds Wetenschappelijk Onderzoek (FWO)
  grantid: G021118N, G062820N
– fundername: UGent | Bijzonder Onderzoeksfonds UGent (BOF)
  grantid: iBOF/21/092
– fundername: Fonds Wetenschappelijk Onderzoek (FWO)
  grantid: 1134419N
GroupedDBID ---
0R~
53G
5VS
AAFWJ
AAGFI
AAUOK
AAYXX
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BTFSW
CITATION
DIK
E3Z
EBS
FRP
GROUPED_DOAJ
GX1
H13
HYE
HZ~
KQ8
M48
O5R
O5S
O9-
OK1
P2P
PGMZT
RHI
RNS
RPM
RSF
NPM
M~E
RHF
7X8
1XC
ADRAZ
C1A
EJD
VOOES
ID FETCH-LOGICAL-a467t-44ed2c4db6e17dcc6bba8027cbb77bd4323e2a0b58cfc43a6c4dd72bcc59453f3
IEDL.DBID AAUOK
ISSN 2150-7511
2161-2129
IngestDate Wed Aug 27 01:32:08 EDT 2025
Sat Sep 27 06:20:42 EDT 2025
Fri Jul 11 16:46:08 EDT 2025
Sun Aug 11 18:20:28 EDT 2024
Thu Apr 03 07:09:20 EDT 2025
Tue Jul 01 00:57:39 EDT 2025
Thu Apr 24 23:11:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords heat shock
Sulfolobus
integrated omics
gene regulation
archaea
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0
Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a467t-44ed2c4db6e17dcc6bba8027cbb77bd4323e2a0b58cfc43a6c4dd72bcc59453f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7423-8714
OpenAccessLink https://journals.asm.org/doi/10.1128/mbio.03593-22
PMID 37642423
PQID 2858990722
PQPubID 23479
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_3ce8b86181b3464b9989459b164879e3
hal_primary_oai_HAL_hal_04207631v1
proquest_miscellaneous_2858990722
asm2_journals_10_1128_mbio_03593_22
pubmed_primary_37642423
crossref_primary_10_1128_mbio_03593_22
crossref_citationtrail_10_1128_mbio_03593_22
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-Oct-31
PublicationDateYYYYMMDD 2023-10-31
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-Oct-31
  day: 31
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle mBio
PublicationTitleAbbrev mBio
PublicationTitleAlternate mBio
PublicationYear 2023
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_4_3_2
e_1_3_4_61_2
e_1_3_4_82_2
e_1_3_4_9_2
e_1_3_4_63_2
e_1_3_4_84_2
e_1_3_4_7_2
e_1_3_4_5_2
e_1_3_4_80_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_69_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_65_2
e_1_3_4_86_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_67_2
e_1_3_4_29_2
e_1_3_4_72_2
e_1_3_4_74_2
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_70_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_59_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_76_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_78_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_60_2
e_1_3_4_83_2
e_1_3_4_62_2
e_1_3_4_85_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_81_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_68_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_64_2
e_1_3_4_87_2
e_1_3_4_24_2
Kern M (e_1_3_4_40_2) 2022
e_1_3_4_47_2
e_1_3_4_66_2
e_1_3_4_28_2
e_1_3_4_71_2
e_1_3_4_73_2
e_1_3_4_52_2
e_1_3_4_50_2
e_1_3_4_79_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_58_2
e_1_3_4_54_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_75_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_77_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_56_2
e_1_3_4_18_2
e_1_3_4_39_2
Braun C (e_1_3_4_38_2) 2022
Garnier, F, Couturier, M, Débat, H, Nadal, M (B12) 2021; 12
Kagawa, HK, Yaoi, T, Brocchieri, L, McMillan, RA, Alton, T, Trent, JD (B17) 2003; 48
Schneider, CA, Rasband, WS, Eliceiri, KW (B38) 2012; 9
Grohmann, D, Nagy, J, Chakraborty, A, Klose, D, Fielden, D, Ebright, RH, Michaelis, J, Werner, F (B79) 2011; 43
Torrent, M, Chalancon, G, de Groot, NS, Wuster, A, Madan Babu, M (B81) 2018; 11
Brock, TD (B2) 1967; 48
Li, L, Banerjee, A, Bischof, LF, Maklad, HR, Hoffmann, L, Henche, A-L, Veliz, F, Bildl, W, Schulte, U, Orell, A, Essen, L-O, Peeters, E, Albers, S-V (B53) 2017; 105
Sas-Chen, A, Thomas, JM, Matzov, D, Taoka, M, Nance, KD, Nir, R, Bryson, KM, Shachar, R, Liman, GLS, Burkhart, BW, Gamage, ST, Nobe, Y, Briney, CA, Levy, MJ, Fuchs, RT, Robb, GB, Hartmann, J, Sharma, S, Lin, Q, Florens, L, Washburn, MP, Isobe, T, Santangelo, TJ, Shalev-Benami, M, Meier, JL, Schwartz, S (B70) 2020; 583
Rohlin, L, Trent, JD, Salmon, K, Kim, U, Gunsalus, RP, Liao, JC (B26) 2005; 187
Dar, D, Prasse, D, Schmitz, RA, Sorek, R (B64) 2016; 1
Gong, P, Lei, P, Wang, S, Zeng, A, Lou, H (B68) 2020; 10
Bizard, A, Garnier, F, Nadal, M (B45) 2011; 408
Zhang, C, Phillips, APR, Wipfler, RL, Olsen, GJ, Whitaker, RJ (B48) 2018; 9
Young, MD, Wakefield, MJ, Smyth, GK, Oshlack, A (B32) 2010; 11
Laurens, N, Driessen, RPC, Heller, I, Vorselen, D, Noom, MC, Hol, FJH, White, MF, Dame, RT, Wuite, GJL (B51) 2012; 3
Napoli, A, Kvaratskelia, M, White, MF, Rossi, M, Ciaramella, M (B52) 2001; 276
Podar, PT, Yang, Z, Björnsdóttir, SH, Podar, M (B4) 2020; 11
Weixlbaumer, A, Grünberger, F, Werner, F, Grohmann, D (B58) 2021; 12
López-García, P, Forterre, P (B10) 1999; 33
Yao, S, Li, S, Zhan, Y, Wan, C (B22) 2022; 266
Knüppel, R, Kuttenberger, C, Ferreira-Cerca, S (B36) 2017; 8
Srivastava, A, Gogoi, P, Deka, B, Goswami, S, Kanaujia, SP (B65) 2016; 402
Fouqueau, T, Blombach, F, Cackett, G, Carty, AE, Matelska, DM, Ofer, S, Pilotto, S, Phung, DK, Werner, F (B54) 2018; 2
Kagawa, HK, Osipiuk, J, Maltsev, N, Overbeek, R, Quaite-Randall, E, Joachimiak, A, Trent, JD (B41) 1995; 253
Brock, TD (B3) 1978
Roy, M, Bhakta, K, Bhowmick, A, Gupta, S, Ghosh, A, Ghosh, A (B15) 2022; 289
Colman, DR, Lindsay, MR, Harnish, A, Bilbrey, EM, Amenabar, MJ, Selensky, MJ, Fecteau, KM, Debes, RV, Stott, MB, Shock, EL, Boyd, ES (B5) 2021; 23
Lemmens, L, Baes, R, Peeters, E (B7) 2018; 2
Bischof, LF, Haurat, MF, Hoffmann, L, Albersmeier, A, Wolf, J, Neu, A, Pham, TK, Albaum, SP, Jakobi, T, Schouten, S, Neumann-Schaal, M, Wright, PC, Kalinowski, J, Siebers, B, Albers, S-V (B82) 2018; 9
Zhang, Y, Xiao, Z, Zou, Q, Fang, J, Wang, Q, Yang, X, Gao, N (B83) 2017; 15
Morita, MT, Tanaka, Y, Kodama, TS, Kyogoku, Y, Yanagi, H, Yura, T (B67) 1999; 13
Maezato, Y, Daugherty, A, Dana, K, Soo, E, Cooper, C, Tachdjian, S, Kelly, RM, Blum, P (B21) 2011; 17
Hocher, A, Borrel, G, Fadhlaoui, K, Brugère, JF, Gribaldo, S, Warnecke, T (B85) 2022; 7
Bailey, TL, Johnson, J, Grant, CE, Noble, WS (B35) 2015; 43
Noon, KR, Bruenger, E, McCloskey, JA (B69) 1998; 180
Zhu, Y, Orre, LM, Zhou Tran, Y, Mermelekas, G, Johansson, HJ, Malyutina, A, Anders, S, Lehtiö, J (B30) 2020; 19
Garnier, F, Nadal, M (B46) 2008; 12
Perez-Riverol, Y, Bai, J, Bandla, C, García-Seisdedos, D, Hewapathirana, S, Kamatchinathan, S, Kundu, DJ, Prakash, A, Frericks-Zipper, A, Eisenacher, M, Walzer, M, Wang, S, Brazma, A, Vizcaíno, JA (B86) 2022; 50
Tachdjian, S, Kelly, RM (B19) 2006; 188
Vierke, G, Engelmann, A, Hebbeln, C, Thomm, M (B23) 2003; 278
Clouet-d’Orval, B, Batista, M, Bouvier, M, Quentin, Y, Fichant, G, Marchfelder, A, Maier, L-K (B61) 2018; 42
Reimann, J, Esser, D, Orell, A, Amman, F, Pham, TK, Noirel, J, Lindås, A-C, Bernander, R, Wright, PC, Siebers, B, Albers, S-V (B72) 2013; 12
Iqbal, J, Qureshi, SA (B78) 2010; 192
Lewis, AM, Recalde, A, Bräsen, C, Counts, JA, Nussbaum, P, Bost, J, Schocke, L, Shen, L, Willard, DJ, Quax, TEF, Peeters, E, Siebers, B, Albers, S-V, Kelly, RM (B44) 2021; 45
Märtens, B, Manoharadas, S, Hasenöhrl, D, Zeichen, L, Bläsi, U (B60) 2014; 42
Hanazono, Y, Takeda, K, Yohda, M, Miki, K (B13) 2012; 422
Becskei, A, Rahaman, S (B77) 2022; 20
Fouqueau, T, Blombach, F, Hartman, R, Cheung, ACM, Young, MJ, Werner, F (B56) 2017; 8
Braun, C, Knüppel, R, Perez-Fernandez, J, Ferreira-Cerca, S, Entian, KD (B37) 2022
Blombach, F, Salvadori, E, Fouqueau, T, Yan, J, Reimann, J, Sheppard, C, Smollett, KL, Albers, SV, Kay, CWM, Thalassinos, K, Werner, F (B80) 2015; 4
Robinson, MD, McCarthy, DJ, Smyth, GK (B29) 2010; 26
Kanai, T, Takedomi, S, Fujiwara, S, Atomi, H, Imanaka, T (B24) 2010; 147
Huang, Q, Mayaka, JB, Zhong, Q, Zhang, C, Hou, G, Ni, J, Shen, Y (B75) 2019; 10
Makarova, KS, Wolf, YI, Koonin, EV (B31) 2015; 5
Brock, TD, Brock, KM, Belly, RT, Weiss, RL (B1) 1972; 84
Straus, DB, Walter, WA, Gross, CA (B66) 1987; 329
Keese, AM, Schut, GJ, Ouhammouch, M, Adams, MWW, Thomm, M (B25) 2010; 192
Laursen, SP, Bowerman, S, Luger, K (B49) 2021; 433
Maklad, HR, Gutierrez, GJ, Esser, D, Siebers, B, Peeters, E (B74) 2020; 175
Couturier, M, Gadelle, D, Forterre, P, Nadal, M, Garnier, F (B11) 2020; 113
Jensen, SM, Brandl, M, Treusch, AH, Ejsing, CS (B9) 2015; 50
Baes, R, Lemmens, L, Mignon, K, Carlier, M, Peeters, E (B28) 2020; 24
Vorontsov, EA, Rensen, E, Prangishvili, D, Krupovic, M, Chamot-Rooke, J (B76) 2016; 15
Suzuki, S, Kurosawa, N (B27) 2016; 20
Cho, HDD, Weiner, AM (B62) 2004; 279
Roy, M, Gupta, S, Patranabis, S, Ghosh, A (B14) 2018; 1860
Charbonnier, F, Forterre, P (B42) 1994; 176
Bucca, G, Pothi, R, Hesketh, A, Möller-Levet, C, Hodgson, DA, Laing, EE, Stewart, GR, Smith, CP (B84) 2018; 46
Schmitt, E, Coureux, P-D, Kazan, R, Bourgeois, G, Lazennec-Schurdevin, C, Mechulam, Y (B59) 2020; 11
Richter, K, Haslbeck, M, Buchner, J (B6) 2010; 40
Albers, SV, van de Vossenberg, JL, Driessen, AJ, Konings, WN (B8) 2000; 5
Cohen, O, Doron, S, Wurtzel, O, Dar, D, Edelheit, S, Karunker, I, Mick, E, Sorek, R (B33) 2016; 44
Cooper, CR, Daugherty, AJ, Tachdjian, S, Blum, PH, Kelly, RM (B20) 2009; 37
Anjum, RS, Bray, SM, Blackwood, JK, Kilkenny, ML, Coelho, MA, Foster, BM, Li, S, Howard, JA, Pellegrini, L, Albers, S-V, Deery, MJ, Robinson, NP (B40) 2015; 6
Chaston, JJ, Smits, C, Aragão, D, Wong, ASW, Ahsan, B, Sandin, S, Molugu, SK, Molugu, SK, Bernal, RA, Stock, D, Stewart, AG (B18) 2016; 24
Takemata, N, Samson, RY, Bell, SD (B50) 2019; 179
Peeters, E, Driessen, RPC, Werner, F, Dame, RT (B43) 2015; 13
Esser, D, Hoffmann, L, Pham, TK, Bräsen, C, Qiu, W, Wright, PC, Albers, S-V, Siebers, B (B71) 2016; 40
Wagih, O (B34) 2017; 33
Yue, L, Li, J, Zhang, B, Qi, L, Li, Z, Zhao, F, Li, L, Zheng, X, Dong, X (B57) 2020; 48
Haurat, MF, Figueiredo, AS, Hoffmann, L, Li, L, Herr, K, J Wilson, A, Beeby, M, Schaber, J, Albers, S-V (B73) 2017; 103
D’Amaro, A, Valenti, A, Napoli, A, Rossi, M, Ciaramella, M (B16) 2008; 15
Bizard, AH, Yang, X, Débat, H, Fogg, JM, Zechiedrich, L, Strick, TR, Garnier, F, Nadal, M (B47) 2018; 46
Schwarz, TS, Berkemer, SJ, Bernhart, SH, Weiß, M, Ferreira-Cerca, S, Stadler, PF, Marchfelder, A (B63) 2020; 11
Blombach, F, Matelska, D, Fouqueau, T, Cackett, G, Werner, F (B55) 2019; 431
Kern, M, Ferreira-Cerca, S, Entian, KD (B39) 2022
References_xml – ident: e_1_3_4_5_2
  doi: 10.3389/fmicb.2020.01625
– ident: e_1_3_4_7_2
  doi: 10.1016/j.molcel.2010.10.006
– ident: e_1_3_4_75_2
  doi: 10.1016/j.biochi.2020.05.007
– ident: e_1_3_4_86_2
  doi: 10.1038/s41564-022-01245-2
– ident: e_1_3_4_42_2
  doi: 10.1006/jmbi.1995.0585
– ident: e_1_3_4_20_2
  doi: 10.1128/JB.00080-06
– ident: e_1_3_4_76_2
  doi: 10.3389/fmicb.2019.01214
– ident: e_1_3_4_61_2
  doi: 10.1093/nar/gkt1169
– ident: e_1_3_4_82_2
  doi: 10.1126/scisignal.aat6409
– ident: e_1_3_4_55_2
  doi: 10.1042/ETLS20180014
– ident: e_1_3_4_3_2
  doi: 10.2307/1936500
– ident: e_1_3_4_10_2
  doi: 10.1002/jms.3553
– ident: e_1_3_4_81_2
  doi: 10.7554/eLife.08378
– ident: e_1_3_4_2_2
  doi: 10.1007/BF00408082
– ident: e_1_3_4_31_2
  doi: 10.1074/mcp.TIR119.001646
– ident: e_1_3_4_36_2
  doi: 10.1093/nar/gkv416
– ident: e_1_3_4_44_2
  doi: 10.1038/nrmicro3467
– ident: e_1_3_4_37_2
  doi: 10.3389/fmicb.2017.00286
– ident: e_1_3_4_49_2
  doi: 10.1038/s41467-018-07379-4
– ident: e_1_3_4_60_2
  doi: 10.3389/fmicb.2020.584152
– ident: e_1_3_4_63_2
  doi: 10.1074/jbc.M405518200
– ident: e_1_3_4_29_2
  doi: 10.1007/s00792-020-01184-y
– ident: e_1_3_4_34_2
  doi: 10.1093/nar/gkw394
– ident: e_1_3_4_84_2
  doi: 10.1016/j.gpb.2017.04.005
– ident: e_1_3_4_24_2
  doi: 10.1074/jbc.M209250200
– ident: e_1_3_4_39_2
  doi: 10.1038/nmeth.2089
– ident: e_1_3_4_28_2
  doi: 10.1007/s00792-016-0807-0
– ident: e_1_3_4_66_2
  doi: 10.1016/j.jtbi.2016.05.005
– ident: e_1_3_4_27_2
  doi: 10.1128/JB.187.17.6046-6057.2005
– ident: e_1_3_4_46_2
  doi: 10.1016/j.jmb.2011.03.030
– ident: e_1_3_4_52_2
  doi: 10.1038/ncomms2330
– ident: e_1_3_4_62_2
  doi: 10.1093/femsre/fuy016
– ident: e_1_3_4_41_2
  doi: 10.1038/ncomms9163
– ident: e_1_3_4_18_2
  doi: 10.1046/j.1365-2958.2003.03418.x
– ident: e_1_3_4_22_2
  doi: 10.1261/rna.2679911
– ident: e_1_3_4_83_2
  doi: 10.3389/fmicb.2018.03201
– ident: e_1_3_4_13_2
  doi: 10.3389/fmicb.2021.661411
– ident: e_1_3_4_14_2
  doi: 10.1016/j.jmb.2012.05.017
– ident: e_1_3_4_51_2
  doi: 10.1016/j.cell.2019.08.036
– ident: e_1_3_4_50_2
  doi: 10.1016/j.jmb.2020.166791
– ident: e_1_3_4_78_2
  doi: 10.1016/j.csbj.2022.08.008
– ident: e_1_3_4_59_2
  doi: 10.3389/fmicb.2021.661827
– start-page: 199
  volume-title: Methods in molecular biology
  year: 2022
  ident: e_1_3_4_38_2
– ident: e_1_3_4_64_2
  doi: 10.3389/fmicb.2020.594838
– ident: e_1_3_4_45_2
  doi: 10.1093/femsre/fuaa063
– ident: e_1_3_4_35_2
  doi: 10.1093/bioinformatics/btx469
– ident: e_1_3_4_69_2
  doi: 10.3390/biom10040584
– ident: e_1_3_4_11_2
  doi: 10.1046/j.1365-2958.1999.01524.x
– ident: e_1_3_4_80_2
  doi: 10.1016/j.molcel.2011.05.030
– ident: e_1_3_4_32_2
  doi: 10.3390/life5010818
– ident: e_1_3_4_85_2
  doi: 10.1093/nar/gky335
– ident: e_1_3_4_6_2
  doi: 10.1111/1462-2920.15617
– ident: e_1_3_4_30_2
  doi: 10.1093/bioinformatics/btp616
– ident: e_1_3_4_72_2
  doi: 10.1093/femsre/fuw020
– ident: e_1_3_4_12_2
  doi: 10.1111/mmi.14424
– ident: e_1_3_4_25_2
  doi: 10.1093/jb/mvp177
– ident: e_1_3_4_54_2
  doi: 10.1111/mmi.13735
– ident: e_1_3_4_15_2
  doi: 10.1016/j.bbamem.2018.09.005
– start-page: 229
  volume-title: Methods in molecular biology
  year: 2022
  ident: e_1_3_4_40_2
– ident: e_1_3_4_77_2
  doi: 10.1074/mcp.M116.058073
– ident: e_1_3_4_33_2
  doi: 10.1186/gb-2010-11-2-r14
– ident: e_1_3_4_56_2
  doi: 10.1016/j.jmb.2019.06.020
– ident: e_1_3_4_68_2
  doi: 10.1101/gad.13.6.655
– ident: e_1_3_4_8_2
  doi: 10.1042/ETLS20180024
– ident: e_1_3_4_57_2
  doi: 10.1038/s41467-017-02081-3
– ident: e_1_3_4_17_2
  doi: 10.2174/092986608786071094
– ident: e_1_3_4_21_2
  doi: 10.1042/BST0370123
– ident: e_1_3_4_74_2
  doi: 10.1111/mmi.13550
– ident: e_1_3_4_53_2
  doi: 10.1074/jbc.M010611200
– ident: e_1_3_4_65_2
  doi: 10.1038/nmicrobiol.2016.143
– ident: e_1_3_4_26_2
  doi: 10.1128/JB.00924-09
– ident: e_1_3_4_67_2
  doi: 10.1038/329348a0
– ident: e_1_3_4_70_2
  doi: 10.1128/JB.180.11.2883-2888.1998
– ident: e_1_3_4_48_2
  doi: 10.1093/nar/gkx1247
– ident: e_1_3_4_16_2
  doi: 10.1111/febs.16226
– ident: e_1_3_4_79_2
  doi: 10.1128/JB.01534-09
– ident: e_1_3_4_58_2
  doi: 10.1093/nar/gkaa702
– ident: e_1_3_4_47_2
  doi: 10.1007/s00792-008-0186-2
– ident: e_1_3_4_71_2
  doi: 10.1038/s41586-020-2418-2
– ident: e_1_3_4_43_2
  doi: 10.1128/jb.176.5.1251-1259.1994
– ident: e_1_3_4_87_2
  doi: 10.1093/nar/gkab1038
– ident: e_1_3_4_4_2
  doi: 10.1007/978-1-4612-6284-8
– ident: e_1_3_4_23_2
  doi: 10.1016/j.jprot.2022.104681
– ident: e_1_3_4_73_2
  doi: 10.1074/mcp.M113.027375
– ident: e_1_3_4_9_2
  doi: 10.2741/albers
– ident: e_1_3_4_19_2
  doi: 10.1016/j.str.2015.12.016
– volume: 12
  start-page: 661411
  year: 2021
  ident: B12
  article-title: Archaea: a gold mine for topoisomerase diversity
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2021.661411
– volume: 15
  start-page: 324
  year: 2017
  end-page: 330
  ident: B83
  article-title: Ribosome profiling reveals genome-wide cellular translational regulation upon heat stress in Escherichia coli
  publication-title: Genom Proteom Bioinform
  doi: 10.1016/j.gpb.2017.04.005
– start-page: 229
  year: 2022
  end-page: 246
  ident: B39
  article-title: Differential translation activity analysis using bioorthogonal noncanonical amino acid tagging (BONCAT) in archaea
  publication-title: Methods in molecular biology ;p In ;Ribosome B. Hessen, Humana Press
– volume: 7
  start-page: 1932
  year: 2022
  end-page: 1942
  ident: B85
  article-title: Growth temperature and chromatinization in archaea
  publication-title: Nat Microbiol
  doi: 10.1038/s41564-022-01245-2
– volume: 13
  start-page: 333
  year: 2015
  end-page: 341
  ident: B43
  article-title: The interplay between nucleoid organization and transcription in archaeal genomes
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro3467
– volume: 10
  start-page: 1214
  year: 2019
  ident: B75
  article-title: Phosphorylation of the archaeal holliday junction resolvase hjc inhibits its catalytic activity and facilitates DNA repair in Sulfolobus islandicus Rey15A
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2019.01214
– volume: 37
  start-page: 123
  year: 2009
  end-page: 126
  ident: B20
  article-title: Role of vapBC toxin–antitoxin loci in the thermal stress response of Sulfolobus solfataricus
  publication-title: Biochem Soc Trans
  doi: 10.1042/BST0370123
– volume: 1
  start-page: 16143
  year: 2016
  ident: B64
  article-title: Widespread formation of alternative 3’ UTR isoforms via transcription termination in archaea
  publication-title: Nat Microbiol
  doi: 10.1038/nmicrobiol.2016.143
– volume: 84
  start-page: 54
  year: 1972
  end-page: 68
  ident: B1
  article-title: Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature
  publication-title: Arch Mikrobiol
  doi: 10.1007/BF00408082
– volume: 24
  start-page: 681
  year: 2020
  end-page: 692
  ident: B28
  article-title: Defining heat shock response for the thermoacidophilic model crenarchaeon Sulfolobus acidocaldarius
  publication-title: Extremophiles
  doi: 10.1007/s00792-020-01184-y
– volume: 175
  start-page: 120
  year: 2020
  end-page: 124
  ident: B74
  article-title: Phosphorylation of the acyl-CoA binding pocket of the FadR transcription regulator in Sulfolobus acidocaldarius
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2020.05.007
– volume: 42
  start-page: 2505
  year: 2014
  end-page: 2511
  ident: B60
  article-title: Back to translation: removal of aIF2 from the 5′-end of mRNAs by translation recovery factor in the crenarchaeon Sulfolobus solfataricus
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1169
– volume: 402
  start-page: 54
  year: 2016
  end-page: 61
  ident: B65
  article-title: In silico analysis of 5′-Utrs highlights the prevalence of shine-dalgarno and leaderless-dependent mechanisms of translation initiation in bacteria and archaea, respectively
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2016.05.005
– volume: 46
  start-page: 5692
  year: 2018
  end-page: 5703
  ident: B84
  article-title: Translational control plays an important role in the adaptive heat-shock response of Streptomyces coelicolor
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky335
– volume: 8
  year: 2017
  ident: B56
  article-title: The transcript cleavage factor paralogue TFS4 is a potent RNA polymerase inhibitor
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-02081-3
– volume: 43
  start-page: 263
  year: 2011
  end-page: 274
  ident: B79
  article-title: The initiation factor TFE and the elongation factor Spt4/5 compete for the RNAP clamp during transcription initiation and elongation
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2011.05.030
– volume: 431
  start-page: 4184
  year: 2019
  end-page: 4201
  ident: B55
  article-title: Key concepts and challenges in archaeal transcription
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2019.06.020
– volume: 48
  start-page: 143
  year: 2003
  end-page: 156
  ident: B17
  article-title: The composition, structure and stability of a group II chaperonin are temperature regulated in a hyperthermophilic archaeon
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.2003.03418.x
– volume: 50
  start-page: 476
  year: 2015
  end-page: 487
  ident: B9
  article-title: Structural characterization of ether lipids from the archaeon Sulfolobus islandicus by high-resolution shotgun lipidomics
  publication-title: J Mass Spectrom
  doi: 10.1002/jms.3553
– volume: 23
  start-page: 4034
  year: 2021
  end-page: 4053
  ident: B5
  article-title: Seasonal hydrologic and geologic forcing drive hot spring geochemistry and microbial biodiversity
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.15617
– volume: 6
  start-page: 8163
  year: 2015
  ident: B40
  article-title: Involvement of a eukaryotic-like ubiquitin-related modifier in the proteasome pathway of the archaeon Sulfolobus acidocaldarius
  publication-title: Nat Commun
  doi: 10.1038/ncomms9163
– volume: 176
  start-page: 1251
  year: 1994
  end-page: 1259
  ident: B42
  article-title: Comparison of plasmid DNA topology among mesophilic and thermophilic eubacteria and archaebacteria
  publication-title: J Bacteriol
  doi: 10.1128/jb.176.5.1251-1259.1994
– volume: 408
  start-page: 839
  year: 2011
  end-page: 849
  ident: B45
  article-title: TopR2, the second reverse gyrase of Sulfolobus solfataricus, exhibits unusual properties
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2011.03.030
– volume: 9
  start-page: 1
  year: 2018
  end-page: 11
  ident: B48
  article-title: The essential genome of the crenarchaeal model Sulfolobus islandicus
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-07379-4
– volume: 26
  start-page: 139
  year: 2010
  end-page: 140
  ident: B29
  article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
– volume: 187
  start-page: 6046
  year: 2005
  end-page: 6057
  ident: B26
  article-title: Heat shock response of Archaeoglobus fulgidus
  publication-title: J Bacteriol
  doi: 10.1128/JB.187.17.6046-6057.2005
– volume: 11
  start-page: 584152
  year: 2020
  ident: B59
  article-title: Recent advances in archaeal translation initiation
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2020.584152
– volume: 33
  start-page: 766
  year: 1999
  end-page: 777
  ident: B10
  article-title: Control of DNA topology during thermal stress in hyperthermophilic archaea: DNA topoisomerase levels, activities and induced thermotolerance during heat and cold shock in Sulfolobus
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.1999.01524.x
– volume: 24
  start-page: 364
  year: 2016
  end-page: 374
  ident: B18
  article-title: Structural and functional insights into the evolution and stress adaptation of type II chaperonins
  publication-title: Structure
  doi: 10.1016/j.str.2015.12.016
– volume: 9
  start-page: 671
  year: 2012
  end-page: 675
  ident: B38
  article-title: NIH image to ImageJ: 25 years of image analysis
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2089
– volume: 3
  year: 2012
  ident: B51
  article-title: Alba shapes the archaeal genome using a delicate balance of bridging and stiffening the DNA
  publication-title: Nat Commun
  doi: 10.1038/ncomms2330
– volume: 11
  year: 2010
  ident: B32
  article-title: Gene ontology analysis for RNA-seq: accounting for selection bias
  publication-title: Genome Biol
  doi: 10.1186/gb-2010-11-2-r14
– volume: 45
  start-page: 1
  year: 2021
  end-page: 60
  ident: B44
  article-title: The biology of thermoacidophilic archaea from the order sulfolobales
  publication-title: FEMS Microbiol Rev
  doi: 10.1093/femsre/fuaa063
– volume: 2
  start-page: 517
  year: 2018
  end-page: 533
  ident: B54
  article-title: The cutting edge of archaeal transcription
  publication-title: Emerg Top Life Sci
  doi: 10.1042/ETLS20180014
– volume: 12
  start-page: 661827
  year: 2021
  ident: B58
  article-title: Coupling of transcription and translation in archaea: cues from the bacterial world
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2021.661827
– volume: 5
  start-page: 818
  year: 2015
  end-page: 840
  ident: B31
  article-title: Archaeal clusters of orthologous genes (arCOGs): an update and application for analysis of shared features between thermococcales, methanococcales, and methanobacteriales
  publication-title: Life
  doi: 10.3390/life5010818
– volume: 179
  start-page: 165
  year: 2019
  end-page: 179
  ident: B50
  article-title: Physical and functional compartmentalization of archaeal chromosomes
  publication-title: Cell
  doi: 10.1016/j.cell.2019.08.036
– volume: 289
  start-page: 1080
  year: 2022
  end-page: 1104
  ident: B15
  article-title: Archaeal Hsp14 drives substrate shuttling between small heat shock proteins and thermosome: insights into a novel substrate transfer pathway
  publication-title: FEBS J
  doi: 10.1111/febs.16226
– volume: 20
  start-page: 4325
  year: 2022
  end-page: 4336
  ident: B77
  article-title: The life and death of RNA across temperatures
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2022.08.008
– volume: 4
  year: 2015
  ident: B80
  article-title: Archaeal TFEα/Β is a hybrid of TFIIE and the RNA polymerase III subcomplex hrpc62/39
  publication-title: Elife
  doi: 10.7554/eLife.08378
– start-page: 199
  year: 2022
  end-page: 213
  ident: B37
  article-title: Non-radioactive in vivo labeling of RNA with 4-thio-Uracil
  publication-title: Methods in molecular biology ;p In ;Ribosome B. Springer
– volume: 192
  start-page: 1292
  year: 2010
  end-page: 1298
  ident: B25
  article-title: Genome-wide identification of targets for the archaeal heat shock regulator Phr by cell-free transcription of genomic DNA
  publication-title: J Bacteriol
  doi: 10.1128/JB.00924-09
– volume: 33
  start-page: 3645
  year: 2017
  end-page: 3647
  ident: B34
  article-title: ggseqlogo: a versatile R package for drawing sequence logos
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx469
– volume: 2
  start-page: 581
  year: 2018
  end-page: 593
  ident: B7
  article-title: Heat shock response in archaea
  publication-title: Emerg Top Life Sci
  doi: 10.1042/ETLS20180024
– volume: 279
  start-page: 40130
  year: 2004
  end-page: 40136
  ident: B62
  article-title: A single catalytically active subunit in the multimeric Sulfolobus shibatae CCA-adding enzyme can carry out all three steps of CCA addition
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M405518200
– volume: 13
  start-page: 655
  year: 1999
  end-page: 665
  ident: B67
  article-title: Translational induction of heat shock transcription factor σ32: evidence for a built-in RNA thermosensor
  publication-title: Genes Dev
  doi: 10.1101/gad.13.6.655
– volume: 147
  start-page: 361
  year: 2010
  end-page: 370
  ident: B24
  article-title: Identification of the Phr-dependent heat shock regulon in the hyperthermophilic archaeon, Thermococcus kodakaraensis
  publication-title: J Biochem
  doi: 10.1093/jb/mvp177
– volume: 103
  start-page: 181
  year: 2017
  end-page: 194
  ident: B73
  article-title: Arns, a kinase involved in starvation-induced archaellum expression
  publication-title: Mol Microbiol
  doi: 10.1111/mmi.13550
– volume: 9
  start-page: 3201
  year: 2018
  ident: B82
  article-title: Early response of Sulfolobus acidocaldarius to nutrient limitation
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2018.03201
– year: 1978
  ident: B3
  publication-title: Thermophilic microorganisms and life at high temperatures ;Springer ;New York, NY
  doi: 10.1007/978-1-4612-6284-8
– volume: 266
  start-page: 104681
  year: 2022
  ident: B22
  article-title: Proteome-wide analysis of stress response to temperature in Sulfolobus islandicus
  publication-title: J Proteomics
  doi: 10.1016/j.jprot.2022.104681
– volume: 276
  start-page: 10745
  year: 2001
  end-page: 10752
  ident: B52
  article-title: A novel member of the bacterial-archaeal regulator family is a nonspecific DNA-binding protein and induces positive supercoiling
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M010611200
– volume: 17
  start-page: 1381
  year: 2011
  end-page: 1392
  ident: B21
  article-title: VapC6, a ribonucleolytic toxin regulates thermophilicity in the crenarchaeote Sulfolobus solfataricus
  publication-title: RNA
  doi: 10.1261/rna.2679911
– volume: 12
  start-page: 3908
  year: 2013
  end-page: 3923
  ident: B72
  article-title: Archaeal signal transduction: impact of protein phosphatase deletions on cell size, motility, and energy metabolism in Sulfolobus acidocaldarius
  publication-title: Mol Cell Proteomics
  doi: 10.1074/mcp.M113.027375
– volume: 43
  start-page: W39
  year: 2015
  end-page: 49
  ident: B35
  article-title: The MEME suite
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv416
– volume: 422
  start-page: 100
  year: 2012
  end-page: 108
  ident: B13
  article-title: Structural studies on the oligomeric transition of a small heat shock protein, StHsp14.0
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2012.05.017
– volume: 278
  start-page: 18
  year: 2003
  end-page: 26
  ident: B23
  article-title: A novel archaeal transcriptional regulator of heat shock response
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M209250200
– volume: 44
  start-page: W46
  year: 2016
  end-page: 53
  ident: B33
  article-title: Comparative transcriptomics across the prokaryotic tree of life
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw394
– volume: 20
  start-page: 139
  year: 2016
  end-page: 148
  ident: B27
  article-title: Disruption of the gene encoding restriction endonuclease Sua I and development of a host-vector system for the thermoacidophilic archaeon Sulfolobus acidocaldarius
  publication-title: Extremophiles
  doi: 10.1007/s00792-016-0807-0
– volume: 42
  start-page: 579
  year: 2018
  end-page: 613
  ident: B61
  article-title: Insights into RNA-processing pathways and associated RNA-degrading enzymes in archaea
  publication-title: FEMS Microbiol Rev
  doi: 10.1093/femsre/fuy016
– volume: 1860
  start-page: 2549
  year: 2018
  end-page: 2565
  ident: B14
  article-title: The oligomeric plasticity of Hsp20 of Sulfolobus acidocaldarius protects environment-induced protein aggregation and membrane destabilization
  publication-title: Biochim Biophys Acta Biomembr
  doi: 10.1016/j.bbamem.2018.09.005
– volume: 10
  start-page: 1
  year: 2020
  end-page: 18
  ident: B68
  article-title: Post-translational modifications aid archaeal survival
  publication-title: Biomolecules
  doi: 10.3390/biom10040584
– volume: 11
  start-page: 594838
  year: 2020
  ident: B63
  article-title: Splicing endonuclease is an important player in rRNA and tRNA maturation in archaea
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2020.594838
– volume: 11
  start-page: 1625
  year: 2020
  ident: B4
  article-title: Comparative analysis of microbial diversity across temperature gradients in hot springs from yellowstone and Iceland
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2020.01625
– volume: 105
  start-page: 777
  year: 2017
  end-page: 793
  ident: B53
  article-title: Wing phosphorylation is a major functional determinant of the Lrs14-type biofilm and motility regulator AbfR1 in Sulfolobus acidocaldarius
  publication-title: Mol Microbiol
  doi: 10.1111/mmi.13735
– volume: 113
  start-page: 356
  year: 2020
  end-page: 368
  ident: B11
  article-title: The reverse gyrase TopR1 is responsible for the homeostatic control of DNA supercoiling in the hyperthermophilic archaeon Sulfolobus solfataricus
  publication-title: Mol Microbiol
  doi: 10.1111/mmi.14424
– volume: 253
  start-page: 712
  year: 1995
  end-page: 725
  ident: B41
  article-title: The 60 kDa heat shock proteins in the hyperthermophilic archaeon Sulfolobus shibatae
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.1995.0585
– volume: 50
  start-page: D543
  year: 2022
  end-page: D552
  ident: B86
  article-title: The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkab1038
– volume: 15
  start-page: 3388
  year: 2016
  end-page: 3404
  ident: B76
  article-title: Abundant lysine methylation and N-terminal acetylation in Sulfolobus islandicus revealed by bottom-up and top-down proteomics
  publication-title: Mol Cell Proteomics
  doi: 10.1074/mcp.M116.058073
– volume: 40
  start-page: 253
  year: 2010
  end-page: 266
  ident: B6
  article-title: The heat shock response: life on the verge of death
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2010.10.006
– volume: 12
  start-page: 799
  year: 2008
  end-page: 809
  ident: B46
  article-title: Transcriptional analysis of the two reverse gyrase Encoding genes of Sulfolobus solfataricus P2 in relation to the growth phases and temperature conditions
  publication-title: Extremophiles
  doi: 10.1007/s00792-008-0186-2
– volume: 188
  start-page: 4553
  year: 2006
  end-page: 4559
  ident: B19
  article-title: Dynamic metabolic adjustments and genome plasticity are implicated in the heat shock response of the extremely thermoacidophilic archaeon Sulfolobus solfataricus
  publication-title: J Bacteriol
  doi: 10.1128/JB.00080-06
– volume: 46
  start-page: 861
  year: 2018
  end-page: 872
  ident: B47
  article-title: Topa, the Sulfolobus solfataricus topoisomerase III, is a decatenase
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1247
– volume: 48
  start-page: 9589
  year: 2020
  end-page: 9605
  ident: B57
  article-title: The conserved ribonuclease aCPSF1 triggers genome-wide transcription termination of archaea via a 3’-end cleavage mode
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa702
– volume: 5
  start-page: D813
  year: 2000
  end-page: 20
  ident: B8
  article-title: Adaptations of the archaeal cell membrane to heat stress
  publication-title: Front Biosci
  doi: 10.2741/albers
– volume: 40
  start-page: 625
  year: 2016
  end-page: 647
  ident: B71
  article-title: Protein phosphorylation and its role in archaeal signal transductiona
  publication-title: FEMS Microbiol Rev
  doi: 10.1093/femsre/fuw020
– volume: 15
  start-page: 1055
  year: 2008
  end-page: 1062
  ident: B16
  article-title: The prefoldin of the crenarchaeon Sulfolobus solfataricus
  publication-title: Protein Pept Lett
  doi: 10.2174/092986608786071094
– volume: 583
  start-page: 638
  year: 2020
  end-page: 643
  ident: B70
  article-title: Dynamic RNA Acetylation revealed by quantitative cross-evolutionary mapping
  publication-title: Nature
  doi: 10.1038/s41586-020-2418-2
– volume: 180
  start-page: 2883
  year: 1998
  end-page: 2888
  ident: B69
  article-title: Posttranscriptional modifications in 16S and 23S rRNAs of the Archaeal Hyperthermophile Sulfolobus Solfataricus
  publication-title: Journal of bacteriology
  doi: 10.1128/JB.180.11.2883-2888.1998
– volume: 48
  start-page: 566
  year: 1967
  end-page: 571
  ident: B2
  article-title: Relationship between standing crop and primary productivity along a hot spring thermal gradient
  publication-title: Ecology
  doi: 10.2307/1936500
– volume: 433
  start-page: 166791
  year: 2021
  ident: B49
  article-title: Archaea: the final frontier of chromatin
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2020.166791
– volume: 8
  year: 2017
  ident: B36
  article-title: Toward time-resolved analysis of RNA metabolism in archaea using 4-thiouracil
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2017.00286
– volume: 19
  start-page: 1047
  year: 2020
  end-page: 1057
  ident: B30
  article-title: DEqMs: a method for accurate variance estimation in differential protein expression analysis
  publication-title: Mol Cell Proteomics
  doi: 10.1074/mcp.TIR119.001646
– volume: 329
  start-page: 348
  year: 1987
  end-page: 351
  ident: B66
  article-title: The heat shock response of E. coli is regulated by changes in the concentration of σ32
  publication-title: Nature
  doi: 10.1038/329348a0
– volume: 192
  start-page: 2887
  year: 2010
  end-page: 2891
  ident: B78
  article-title: Selective depletion of Sulfolobus solfataricus transcription factor E under heat shock conditions
  publication-title: J Bacteriol
  doi: 10.1128/JB.01534-09
– volume: 11
  start-page: 1
  year: 2018
  end-page: 10
  ident: B81
  article-title: Cells alter their tRNA abundance to selectively regulate protein synthesis during stress conditions
  publication-title: Sci Signal
  doi: 10.1126/scisignal.aat6409
SSID ssj0000331830
Score 2.4051301
Snippet High-temperature stress is critical for all organisms and induces a profound cellular response. For Crenarchaeota, little information is available on how heat...
Heat shock response is the ability to respond adequately to sudden temperature increases that could be harmful for cellular survival and fitness. It is crucial...
ABSTRACT High-temperature stress is critical for all organisms and induces a profound cellular response. For Crenarchaeota, little information is available on...
SourceID doaj
hal
proquest
asm2
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0359322
SubjectTerms archaea
Biochemistry, Molecular Biology
gene regulation
Genomics
Genomics and Proteomics
heat shock
integrated omics
Life Sciences
Microbiology and Parasitology
Research Article
Sulfolobus
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals (Roanoke)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZlodBLadPXpklQH_RUN15JluVjUhqW0vbSBnITGkkmC7t2WK8LvfeHZ0b2Lslh6aUHX8RYFtI8vpGlbxh7X89ErSunM2GKGhMU4zIDYLIYDehQRoxBtKH__YeeX6qvV8XVnVJfdCZsoAceJu5UenzLaAxEIJVWUBFjeFEBwnxTVjHxfOZVfieZSj5Ykq7mW1JNYU5XsGg_EV-dzKhQ7sR1K3EvFiXKfoww13Qgch_aTFHn4gl7PMJFfjYM8yl7EJsD9nAoIPnnGfubQs3W8FHQNYFvqG05bvLxMJSc7zjdFlsv6VYTJwfMu2t0hXw9nJGNfNFwxIL0rFftDW2zeI6IsklkSrFt-M9-WeNnoe-484tAMTBgot13z9nlxZdfn-fZWFchc-gWN5lSMQivAug4K4P3GsAZTE89QFlCUFLIKFwOhfG1V9JplA2lAO8LnHpZyxds0rRNfMW4FKCd1sEj7FBR6MrXoDRUDkLQpiim7B1NtB0No7Mp5xDG0nLYtBxWiCn7uF0H60dqcqqQsdwn_mEnfjNwcuwTPKdF3QkRlXZqQAWzo4LZfynYlL1FlbjXx_zsm6U2dHg5-ufZ79mUvdlqjEX7pJ8urolt31m0AUxp85JG83JQpV1f6NwV4dnD_zHO1-yRQAA2xNUjNtms-3iMgGkDJ8k2bgHy0BLz
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELbQIiQuiDflJfMQJ7K0tuM4B4QWxKpCwAUq7c3y2A5bKU2WpEHsnR_OTB5Fi6jEoRdrmlae8TffOPY3jD0vFqLQudOJMGmBBYpxiQEwSYwGdMgi5iDa0P_0WS9X6sNJevJHUmicwPafpR31k1o15eHP7-dvcMG_Hi7AmFcbWNeHJEUnE4FofLl_VUSn-Eam34OypOCdTyqbf38LAdm1G3EhOfUa_phyTumE5D762aeh4-vs2sgf-dHg8BvsUqxusitDR8nzW-xXn3smJEBDVwW-pbFy3PXjYehB33K6PtaUdM2JEyLz9hSxkTfDodnI1xVHckifZlOf0b6L50gxq15dKdYV_9KVBf4sdC13fh0oKQasvLv2Nlsdv__6bpmMjRYShzi5TZSKQXgVQMdFFrzXAM5gveoBsgyCkkJG4eaQGl94JZ1G25AJ8D7NVSoLeYcdVHUV7zEuBWindfDIQ1QUOvcFKA25gxC0SdMZe0YTbSdH274IEcaSO2zvDivEjL2c_GD9qFVOLTPKfeYvduZng0jHPsO35NSdEWlr9wN1882OS9VKj3FqNFIfkEoryEmjPs0BC0uT5VHO2FMMiQvPWB59tDSGCDhHwF78WMzYkyliLC5Yegvjqlh3rcVFgTXuPKN_c3cIpd2zEO0VEdz7_zVLD9hVgZRryKQP2cG26eIjpEhbeNwH_2_WrBBc
  priority: 102
  providerName: Scholars Portal
Title Transcriptional and translational dynamics underlying heat shock response in the thermophilic crenarchaeon Sulfolobus acidocaldarius
URI https://www.ncbi.nlm.nih.gov/pubmed/37642423
https://journals.asm.org/doi/10.1128/mbio.03593-22
https://www.proquest.com/docview/2858990722
https://hal.science/hal-04207631
https://doaj.org/article/3ce8b86181b3464b9989459b164879e3
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA_HHYIv4rd76hE_8MmebZKm6eMqnot6-qAL-xYyScot7HaP7a7gu3-4M_2CExZ8aB7CNC2ZycxvJskMY6-rTFS6dDoRJq_QQTEuMQAmidGADkVEG0QB_ctvejZXnxf54oiJ4S5MP4PNuWvW7Ub-uLKFebeG5eaccs7JRKDaPckR7qPDdTKdzr9_GSMrqSQ5TYeEmv--h7oXxxY37FCbrh-tyxUdhjyENFuLc3GX3emhIp92vL3HjmJ9n93qikf-fsD-tGZmWPRI6OrAd9S36gN8PHTl5htON8W2K7rRxEn58uYK1SDfdudjI1_WHHEgPdv15ppCLJ4jmqzbREpxU_Mf-1WFn4V9w51fBrJ_AZ3sffOQzS8-_vwwS_qaColDlbhLlIpBeBVAx6wI3msAZ9A19QBFAUFJIaNwKeTGV15Jp5E2FAK8z0uVy0o-Ysf1po5PGJcCtNM6eIQcKgpd-gqUhtJBCNrk-YS9oom2A0tt628IY4kdtmWHFWLC3g58sL5PS07VMVaHyN-M5NddPo5DhO-JqSMRpdFuO1CobL8qrfQokkYjygGptIKS0tHnJaAPaYoyygl7iSJxY4zZ9KulPlR2Kerm7Fc2YS8GibG4NmnDxdVxs28syj-6s2lBf_O4E6VxLFTsirDs6X_N0lN2m-rcd0bzGTvebffxOaKhHZz14n_WRhOw_bTIsL1U5i__0Asp
linkProvider American Society for Microbiology
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELemTQhe0Pgu48N8iCeypbbjOI8FMRXWjQdWaW-Wz3a0ojadmgaJd_5w7pK00pAq8ZAX6-JEvq_fne07xt6XQ1HqwulEmKzEAMW4xACYJEYDOuQRfRAl9M8v9Hiqvl1lV3tMb-7C_KS-vPP62NWLdh-fFJsS0X0_QnOygNnymOrOyUSg6T3IRJGifB-MRtPvZ9vsSipJVtNNUc1_30P7ix8Qt3xRW7IfPcw1HYjchTZbr3N6yO73cJGPOv4-YHuxesjudA0kfz9if1pXs1F8JHRV4Gsam_dJPh66lvM1p9tiqzndauJkgHl9jaaQr7ozspHPKo5YkJ7VYnlDaRbPEVFWbTGluKz4j2Ze4mehqbnzs0A-MGCg3dSP2fT0y-XncdL3VUgcmsV1olQMwqsAOg7z4L0GcAbDUw-Q5xCUFDIKl0JmfOmVdBppQy7A-6xQmSzlE7ZfLav4jHEpQDutg0fYoaLQhS9BaSgchKBNlg3YO1po2ytGbduYQxhL7LAtO6wQA_Zxwwfr-9Lk1CFjvov8w5b8pqvJsYvwEzF1S0SltNsBlCzba6aVHsXSaEQ6IJVWUFBJ-qwAjCNNXkQ5YG9RJG7NMR5NLI2hwUvRPg9_DQfszUZiLOonbbq4Ki6b2qIOYEib5vQ3TztR2s6Fxl0Rnn3-X6v0mt0dX55P7OTrxdkRu0d97zsn-oLtr1dNfInoaA2velX4C68JDLo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Li9swEBZLlpZeSt9Nn-qDnuqtI8myfEwfIe1ut4U2sDehkWQ2kDghTgq994d3xo_AFgI9-CLGstG8R9I3jL0uR6LUhdOJMFmJCYpxiQEwSYwGdMgj-iAq6H8919OZ-nKRXRwx3d-F6VawPnH1stnIJ81eh7LrR2jeLWG-OiHcOZkINL3HGe2UDdjxeDz7drqvrqSSZDXtQTX_fQ_tL84vrviiBrIfPcwlHYg8FG02Xmdyi93swkU-bvl7mx3F6g671jaQ_H2X_WlcTa_4SOiqwLc0tuiKfDy0LedrTrfFNgu61cTJAPP6Ek0h37RnZCOfVxxjQXo2y9WayiyeY0RZNWBKcVXxH7tFiZ-FXc2dnwfygQET7V19j80mn35-mCZdX4XEoVncJkrFILwKoOMoD95rAGcwPfUAeQ5BSSGjcClkxpdeSaeRNuQCvM8KlclS3meDalXFh4xLAdppHTyGHSoKXfgSlIbCQQjaZNmQvaKFtj1bbZNzCGOJHbZhhxViyN72fLC-gyanDhmLQ-Rv9uTrFpPjEOF7YuqeiKC0mwEULNtpppUexdJojHRAKq2gIEj6rADMI01eRDlkL1EkrswxHZ9ZGkODl6J9Hv0aDdmLXmIs6idturgqrna1RR3AlDbN6W8etKK0nwuNu6J49tF_rdJzdv37x4k9-3x--pjdoLb3rQ99wgbbzS4-xeBoC886TfgLoQcMXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcriptional+and+translational+dynamics+underlying+heat+shock+response+in+the+thermophilic+crenarchaeon+Sulfolobus+acidocaldarius&rft.jtitle=mBio&rft.au=Baes%2C+Rani&rft.au=Gr%C3%BCnberger%2C+Felix&rft.au=Pyr+dit+Ruys%2C+S%C3%A9bastien&rft.au=Couturier%2C+Mohea&rft.date=2023-10-31&rft.pub=American+Society+for+Microbiology&rft.eissn=2150-7511&rft.volume=14&rft.issue=5&rft_id=info:doi/10.1128%2Fmbio.03593-22&rft.externalDocID=03593-22
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2150-7511&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2150-7511&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2150-7511&client=summon