Transcriptional and translational dynamics underlying heat shock response in the thermophilic crenarchaeon Sulfolobus acidocaldarius
High-temperature stress is critical for all organisms and induces a profound cellular response. For Crenarchaeota, little information is available on how heat shock affects cellular processes and on how this response is regulated. We set out to study heat shock response in the thermoacidophilic mode...
Saved in:
Published in | mBio Vol. 14; no. 5; p. e0359322 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
31.10.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2150-7511 2161-2129 2150-7511 |
DOI | 10.1128/mbio.03593-22 |
Cover
Abstract | High-temperature stress is critical for all organisms and induces a profound cellular response. For Crenarchaeota, little information is available on how heat shock affects cellular processes and on how this response is regulated. We set out to study heat shock response in the thermoacidophilic model crenarchaeon
Sulfolobus acidocaldarius,
which thrives in volcanic hot springs and has an optimal growth temperature of 75°C. Pulse-labeling experiments demonstrated that a temperature shift to 86°C induces a drastic reduction of the transcriptional and translational activity, but that RNA and protein neosynthesis still occurs. By combining RNA sequencing and mass spectrometry, an integrated mapping of the transcriptome and proteome was performed. This revealed that heat shock causes an immediate change in the gene expression profile, with RNA levels of half of the genes being affected, followed by a more subtle reprogramming of the protein landscape. Functional enrichment analysis indicated that nearly all cellular processes are affected by heat shock. A limited correlation was observed in the differential expression on the RNA and protein level, suggesting a prevalence of post-transcriptional and post-translational regulation. Furthermore, promoter sequence analysis of heat shock regulon genes demonstrated the conservation of strong transcription initiation elements for highly induced genes, but an absence of a conserved protein-binding motif. It is, therefore, hypothesized that histone-lacking archaea such as Sulfolobales use an evolutionarily ancient regulatory mechanism that relies on temperature-responsive changes in DNA organization and compaction induced by the action of nucleoid-associated proteins, as well as on enhanced recruitment of initiation factors.
Heat shock response is the ability to respond adequately to sudden temperature increases that could be harmful for cellular survival and fitness. It is crucial for microorganisms living in volcanic hot springs that are characterized by high temperatures and large temperature fluctuations. In this study, we investigated how
S. acidocaldarius
, which grows optimally at 75°C, responds to heat shock by altering its gene expression and protein production processes. We shed light on which cellular processes are affected by heat shock and propose a hypothesis on underlying regulatory mechanisms. This work is not only relevant for the organism’s lifestyle, but also with regard to its evolutionary status. Indeed,
S. acidocaldarius
belongs to the archaea, an ancient group of microbes that is more closely related to eukaryotes than to bacteria. Our study thus also contributes to a better understanding of the early evolution of heat shock response. |
---|---|
AbstractList | ABSTRACT High-temperature stress is critical for all organisms and induces a profound cellular response. For Crenarchaeota, little information is available on how heat shock affects cellular processes and on how this response is regulated. We set out to study heat shock response in the thermoacidophilic model crenarchaeon Sulfolobus acidocaldarius, which thrives in volcanic hot springs and has an optimal growth temperature of 75°C. Pulse-labeling experiments demonstrated that a temperature shift to 86°C induces a drastic reduction of the transcriptional and translational activity, but that RNA and protein neosynthesis still occurs. By combining RNA sequencing and mass spectrometry, an integrated mapping of the transcriptome and proteome was performed. This revealed that heat shock causes an immediate change in the gene expression profile, with RNA levels of half of the genes being affected, followed by a more subtle reprogramming of the protein landscape. Functional enrichment analysis indicated that nearly all cellular processes are affected by heat shock. A limited correlation was observed in the differential expression on the RNA and protein level, suggesting a prevalence of post-transcriptional and post-translational regulation. Furthermore, promoter sequence analysis of heat shock regulon genes demonstrated the conservation of strong transcription initiation elements for highly induced genes, but an absence of a conserved protein-binding motif. It is, therefore, hypothesized that histone-lacking archaea such as Sulfolobales use an evolutionarily ancient regulatory mechanism that relies on temperature-responsive changes in DNA organization and compaction induced by the action of nucleoid-associated proteins, as well as on enhanced recruitment of initiation factors. IMPORTANCE Heat shock response is the ability to respond adequately to sudden temperature increases that could be harmful for cellular survival and fitness. It is crucial for microorganisms living in volcanic hot springs that are characterized by high temperatures and large temperature fluctuations. In this study, we investigated how S. acidocaldarius, which grows optimally at 75°C, responds to heat shock by altering its gene expression and protein production processes. We shed light on which cellular processes are affected by heat shock and propose a hypothesis on underlying regulatory mechanisms. This work is not only relevant for the organism’s lifestyle, but also with regard to its evolutionary status. Indeed, S. acidocaldarius belongs to the archaea, an ancient group of microbes that is more closely related to eukaryotes than to bacteria. Our study thus also contributes to a better understanding of the early evolution of heat shock response. High-temperature stress is critical for all organisms and induces a profound cellular response. For Crenarchaeota, little information is available on how heat shock affects cellular processes and on how this response is regulated. We set out to study heat shock response in the thermoacidophilic model crenarchaeon Sulfolobus acidocaldarius, which thrives in volcanic hot springs and has an optimal growth temperature of 75°C. Pulse-labeling experiments demonstrated that a temperature shift to 86°C induces a drastic reduction of the transcriptional and translational activity, but that RNA and protein neosynthesis still occurs. By combining RNA sequencing and mass spectrometry, an integrated mapping of the transcriptome and proteome was performed. This revealed that heat shock causes an immediate change in the gene expression profile, with RNA levels of half of the genes being affected, followed by a more subtle reprogramming of the protein landscape. Functional enrichment analysis indicated that nearly all cellular processes are affected by heat shock. A limited correlation was observed in the differential expression on the RNA and protein level, suggesting a prevalence of post-transcriptional and post-translational regulation. Furthermore, promoter sequence analysis of heat shock regulon genes demonstrated the conservation of strong transcription initiation elements for highly induced genes, but an absence of a conserved protein-binding motif. It is, therefore, hypothesized that histone-lacking archaea such as Sulfolobales use an evolutionarily ancient regulatory mechanism that relies on temperature-responsive changes in DNA organization and compaction induced by the action of nucleoid-associated proteins, as well as on enhanced recruitment of initiation factors. Heat shock response is the ability to respond adequately to sudden temperature increases that could be harmful for cellular survival and fitness. It is crucial for microorganisms living in volcanic hot springs that are characterized by high temperatures and large temperature fluctuations. In this study, we investigated how S. acidocaldarius, which grows optimally at 75°C, responds to heat shock by altering its gene expression and protein production processes. We shed light on which cellular processes are affected by heat shock and propose a hypothesis on underlying regulatory mechanisms. This work is not only relevant for the organism's lifestyle, but also with regard to its evolutionary status. Indeed, S. acidocaldarius belongs to the archaea, an ancient group of microbes that is more closely related to eukaryotes than to bacteria. Our study thus also contributes to a better understanding of the early evolution of heat shock response.IMPORTANCEHeat shock response is the ability to respond adequately to sudden temperature increases that could be harmful for cellular survival and fitness. It is crucial for microorganisms living in volcanic hot springs that are characterized by high temperatures and large temperature fluctuations. In this study, we investigated how S. acidocaldarius, which grows optimally at 75°C, responds to heat shock by altering its gene expression and protein production processes. We shed light on which cellular processes are affected by heat shock and propose a hypothesis on underlying regulatory mechanisms. This work is not only relevant for the organism's lifestyle, but also with regard to its evolutionary status. Indeed, S. acidocaldarius belongs to the archaea, an ancient group of microbes that is more closely related to eukaryotes than to bacteria. Our study thus also contributes to a better understanding of the early evolution of heat shock response. Heat shock response is the ability to respond adequately to sudden temperature increases that could be harmful for cellular survival and fitness. It is crucial for microorganisms living in volcanic hot springs that are characterized by high temperatures and large temperature fluctuations. In this study, we investigated how , which grows optimally at 75°C, responds to heat shock by altering its gene expression and protein production processes. We shed light on which cellular processes are affected by heat shock and propose a hypothesis on underlying regulatory mechanisms. This work is not only relevant for the organism's lifestyle, but also with regard to its evolutionary status. Indeed, belongs to the archaea, an ancient group of microbes that is more closely related to eukaryotes than to bacteria. Our study thus also contributes to a better understanding of the early evolution of heat shock response. High-temperature stress is critical for all organisms and induces a profound cellular response. For Crenarchaeota, little information is available on how heat shock affects cellular processes and on how this response is regulated. We set out to study heat shock response in the thermoacidophilic model crenarchaeon Sulfolobus acidocaldarius, which thrives in volcanic hot springs and has an optimal growth temperature of 75°C. Pulse-labeling experiments demonstrated that a temperature shift to 86°C induces a drastic reduction of the transcriptional and translational activity, but that RNA and protein neosynthesis still occurs. By combining RNA sequencing and mass spectrometry, an integrated mapping of the transcriptome and proteome was performed. This revealed that heat shock causes an immediate change in the gene expression profile, with RNA levels of half of the genes being affected, followed by a more subtle reprogramming of the protein landscape. Functional enrichment analysis indicated that nearly all cellular processes are affected by heat shock. A limited correlation was observed in the differential expression on the RNA and protein level, suggesting a prevalence of post-transcriptional and post-translational regulation. Furthermore, promoter sequence analysis of heat shock regulon genes demonstrated the conservation of strong transcription initiation elements for highly induced genes, but an absence of a conserved protein-binding motif. It is, therefore, hypothesized that histone-lacking archaea such as Sulfolobales use an evolutionarily ancient regulatory mechanism that relies on temperature-responsive changes in DNA organization and compaction induced by the action of nucleoid-associated proteins, as well as on enhanced recruitment of initiation factors. IMPORTANCE Heat shock response is the ability to respond adequately to sudden temperature increases that could be harmful for cellular survival and fitness. It is crucial for microorganisms living in volcanic hot springs that are characterized by high temperatures and large temperature fluctuations. In this study, we investigated how S. acidocaldarius, which grows optimally at 75°C, responds to heat shock by altering its gene expression and protein production processes. We shed light on which cellular processes are affected by heat shock and propose a hypothesis on underlying regulatory mechanisms. This work is not only relevant for the organism’s lifestyle, but also with regard to its evolutionary status. Indeed, S. acidocaldarius belongs to the archaea, an ancient group of microbes that is more closely related to eukaryotes than to bacteria. Our study thus also contributes to a better understanding of the early evolution of heat shock response. High-temperature stress is critical for all organisms and induces a profound cellular response. For Crenarchaeota, little information is available on how heat shock affects cellular processes and on how this response is regulated. We set out to study heat shock response in the thermoacidophilic model crenarchaeon Sulfolobus acidocaldarius, which thrives in volcanic hot springs and has an optimal growth temperature of 75°C. Pulse-labeling experiments demonstrated that a temperature shift to 86°C induces a drastic reduction of the transcriptional and translational activity, but that RNA and protein neosynthesis still occurs. By combining RNA sequencing and mass spectrometry, an integrated mapping of the transcriptome and proteome was performed. This revealed that heat shock causes an immediate change in the gene expression profile, with RNA levels of half of the genes being affected, followed by a more subtle reprogramming of the protein landscape. Functional enrichment analysis indicated that nearly all cellular processes are affected by heat shock. A limited correlation was observed in the differential expression on the RNA and protein level, suggesting a prevalence of post-transcriptional and post-translational regulation. Furthermore, promoter sequence analysis of heat shock regulon genes demonstrated the conservation of strong transcription initiation elements for highly induced genes, but an absence of a conserved protein-binding motif. It is, therefore, hypothesized that histone-lacking archaea such as Sulfolobales use an evolutionarily ancient regulatory mechanism that relies on temperature-responsive changes in DNA organization and compaction induced by the action of nucleoid-associated proteins, as well as on enhanced recruitment of initiation factors. Heat shock response is the ability to respond adequately to sudden temperature increases that could be harmful for cellular survival and fitness. It is crucial for microorganisms living in volcanic hot springs that are characterized by high temperatures and large temperature fluctuations. In this study, we investigated how S. acidocaldarius , which grows optimally at 75°C, responds to heat shock by altering its gene expression and protein production processes. We shed light on which cellular processes are affected by heat shock and propose a hypothesis on underlying regulatory mechanisms. This work is not only relevant for the organism’s lifestyle, but also with regard to its evolutionary status. Indeed, S. acidocaldarius belongs to the archaea, an ancient group of microbes that is more closely related to eukaryotes than to bacteria. Our study thus also contributes to a better understanding of the early evolution of heat shock response. |
Author | Grohmann, Dina Skevin, Sonja Vertommen, Didier Baes, Rani Ferreira-Cerca, Sébastien Couturier, Mohea Peeters, Eveline Pyr dit Ruys, Sébastien Grünberger, Felix De Keulenaer, Sarah Van Nieuwerburgh, Filip |
Author_xml | – sequence: 1 givenname: Rani surname: Baes fullname: Baes, Rani organization: Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel , Brussels, Belgium – sequence: 2 givenname: Felix surname: Grünberger fullname: Grünberger, Felix organization: Institute of Microbiology and Archaea Centre, Universität Regensburg , Regensburg, Germany – sequence: 3 givenname: Sébastien surname: Pyr dit Ruys fullname: Pyr dit Ruys, Sébastien organization: Institut de Duve, Université Catholique de Louvain , Brussels, Belgium – sequence: 4 givenname: Mohea surname: Couturier fullname: Couturier, Mohea organization: Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel , Brussels, Belgium – sequence: 5 givenname: Sarah surname: De Keulenaer fullname: De Keulenaer, Sarah organization: NXTGNT, Faculty of Pharmaceutical Sciences, Ghent University , Ghent, Belgium – sequence: 6 givenname: Sonja surname: Skevin fullname: Skevin, Sonja organization: NXTGNT, Faculty of Pharmaceutical Sciences, Ghent University , Ghent, Belgium – sequence: 7 givenname: Filip surname: Van Nieuwerburgh fullname: Van Nieuwerburgh, Filip organization: NXTGNT, Faculty of Pharmaceutical Sciences, Ghent University , Ghent, Belgium – sequence: 8 givenname: Didier surname: Vertommen fullname: Vertommen, Didier organization: Institut de Duve, Université Catholique de Louvain , Brussels, Belgium – sequence: 9 givenname: Dina surname: Grohmann fullname: Grohmann, Dina organization: Institute of Microbiology and Archaea Centre, Universität Regensburg , Regensburg, Germany – sequence: 10 givenname: Sébastien surname: Ferreira-Cerca fullname: Ferreira-Cerca, Sébastien organization: Cellular Biochemistry of Microorganisms, Biochemie III, Universität Regensburg , Regensburg, Germany, Laboratoire de Biologie Structurale de la Cellule (BIOC), UMR 7654 -CNRS, Ecole polytechnique, Institut Polytechnique de Paris , Palaiseau, France – sequence: 11 givenname: Eveline orcidid: 0000-0001-7423-8714 surname: Peeters fullname: Peeters, Eveline organization: Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel , Brussels, Belgium |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37642423$$D View this record in MEDLINE/PubMed https://hal.science/hal-04207631$$DView record in HAL |
BookMark | eNp1ks1rFDEYhwep2Fp79Co5qjA1XzPJHEuxtrDgwXoObz62kzWTrMmMsHf_8M7srkWFBkLCjycPgd_7ujqJKbqqekvwJSFUfhq0T5eYNR2rKX1RnVHS4Fo0hJz8dT-tLkrZ4HkxRiTDr6pTJlpOOWVn1e_7DLGY7LejTxECgmjRuGQBjondRRi8KWiK1uWw8_EB9Q5GVPpkfqDsyjbF4pCPaOzdsvOQtr0P3iCTXYRsenApom9TWKeQ9FQQGG-TgWAh-6m8qV6uIRR3cTzPq-83n--vb-vV1y9311erGngrxppzZ6nhVreOCGtMqzVITIXRWghtOaPMUcC6kWZtOIN2Zq2g2pim4w1bs_Pq7uC1CTZqm_0AeacSeLUPUn5QkEdvglPMOKllSyTRjLdcd52cHZ0mLZeic2x2fTi4egj_qG6vVmrJMKdYtIz8IjP7_sBuc_o5uTKqwRfjQoDo0lQUlY3sOiwondGPBxTKQNUmTXmuoCiC1VK4WgpX-8LVHn539E56cPbpG3_qnYH6AJicSslu_YQ8J2T_8caP-zmYR8KHZ149AjiyytQ |
CitedBy_id | crossref_primary_10_3389_fmicb_2024_1475385 crossref_primary_10_1111_1462_2920_16705 crossref_primary_10_1016_j_jbc_2025_108295 |
Cites_doi | 10.3389/fmicb.2020.01625 10.1016/j.molcel.2010.10.006 10.1016/j.biochi.2020.05.007 10.1038/s41564-022-01245-2 10.1006/jmbi.1995.0585 10.1128/JB.00080-06 10.3389/fmicb.2019.01214 10.1093/nar/gkt1169 10.1126/scisignal.aat6409 10.1042/ETLS20180014 10.2307/1936500 10.1002/jms.3553 10.7554/eLife.08378 10.1007/BF00408082 10.1074/mcp.TIR119.001646 10.1093/nar/gkv416 10.1038/nrmicro3467 10.3389/fmicb.2017.00286 10.1038/s41467-018-07379-4 10.3389/fmicb.2020.584152 10.1074/jbc.M405518200 10.1007/s00792-020-01184-y 10.1093/nar/gkw394 10.1016/j.gpb.2017.04.005 10.1074/jbc.M209250200 10.1038/nmeth.2089 10.1007/s00792-016-0807-0 10.1016/j.jtbi.2016.05.005 10.1128/JB.187.17.6046-6057.2005 10.1016/j.jmb.2011.03.030 10.1038/ncomms2330 10.1093/femsre/fuy016 10.1038/ncomms9163 10.1046/j.1365-2958.2003.03418.x 10.1261/rna.2679911 10.3389/fmicb.2018.03201 10.3389/fmicb.2021.661411 10.1016/j.jmb.2012.05.017 10.1016/j.cell.2019.08.036 10.1016/j.jmb.2020.166791 10.1016/j.csbj.2022.08.008 10.3389/fmicb.2021.661827 10.3389/fmicb.2020.594838 10.1093/femsre/fuaa063 10.1093/bioinformatics/btx469 10.3390/biom10040584 10.1046/j.1365-2958.1999.01524.x 10.1016/j.molcel.2011.05.030 10.3390/life5010818 10.1093/nar/gky335 10.1111/1462-2920.15617 10.1093/bioinformatics/btp616 10.1093/femsre/fuw020 10.1111/mmi.14424 10.1093/jb/mvp177 10.1111/mmi.13735 10.1016/j.bbamem.2018.09.005 10.1074/mcp.M116.058073 10.1186/gb-2010-11-2-r14 10.1016/j.jmb.2019.06.020 10.1101/gad.13.6.655 10.1042/ETLS20180024 10.1038/s41467-017-02081-3 10.2174/092986608786071094 10.1042/BST0370123 10.1111/mmi.13550 10.1074/jbc.M010611200 10.1038/nmicrobiol.2016.143 10.1128/JB.00924-09 10.1038/329348a0 10.1128/JB.180.11.2883-2888.1998 10.1093/nar/gkx1247 10.1111/febs.16226 10.1128/JB.01534-09 10.1093/nar/gkaa702 10.1007/s00792-008-0186-2 10.1038/s41586-020-2418-2 10.1128/jb.176.5.1251-1259.1994 10.1093/nar/gkab1038 10.1007/978-1-4612-6284-8 10.1016/j.jprot.2022.104681 10.1074/mcp.M113.027375 10.2741/albers 10.1016/j.str.2015.12.016 |
ContentType | Journal Article |
Copyright | Copyright © 2023 Baes et al. Attribution - NonCommercial |
Copyright_xml | – notice: Copyright © 2023 Baes et al. – notice: Attribution - NonCommercial |
DBID | AAYXX CITATION NPM 7X8 1XC VOOES DOA |
DOI | 10.1128/mbio.03593-22 |
DatabaseName | CrossRef PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Directory of Open Access Journals (Roanoke) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2150-7511 |
Editor | Schmitz, Ruth Anne Vogel, Joerg |
Editor_xml | – sequence: 1 givenname: Joerg surname: Vogel fullname: Vogel, Joerg – sequence: 2 givenname: Ruth Anne surname: Schmitz fullname: Schmitz, Ruth Anne |
ExternalDocumentID | oai_doaj_org_article_3ce8b86181b3464b9989459b164879e3 oai_HAL_hal_04207631v1 03593-22 37642423 10_1128_mbio_03593_22 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft (DFG) grantid: FE1622/2-1, SFB960-AP1, SFB960-B13 – fundername: Deutsche Forschungsgemeinschaft (DFG) grantid: SFB/CRC960-AP7 – fundername: Fonds Wetenschappelijk Onderzoek (FWO) grantid: G021118N, G062820N – fundername: UGent | Bijzonder Onderzoeksfonds UGent (BOF) grantid: iBOF/21/092 – fundername: Fonds Wetenschappelijk Onderzoek (FWO) grantid: 1134419N |
GroupedDBID | --- 0R~ 53G 5VS AAFWJ AAGFI AAUOK AAYXX ADBBV AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BTFSW CITATION DIK E3Z EBS FRP GROUPED_DOAJ GX1 H13 HYE HZ~ KQ8 M48 O5R O5S O9- OK1 P2P PGMZT RHI RNS RPM RSF NPM M~E RHF 7X8 1XC ADRAZ C1A EJD VOOES |
ID | FETCH-LOGICAL-a467t-44ed2c4db6e17dcc6bba8027cbb77bd4323e2a0b58cfc43a6c4dd72bcc59453f3 |
IEDL.DBID | AAUOK |
ISSN | 2150-7511 2161-2129 |
IngestDate | Wed Aug 27 01:32:08 EDT 2025 Sat Sep 27 06:20:42 EDT 2025 Fri Jul 11 16:46:08 EDT 2025 Sun Aug 11 18:20:28 EDT 2024 Thu Apr 03 07:09:20 EDT 2025 Tue Jul 01 00:57:39 EDT 2025 Thu Apr 24 23:11:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | heat shock Sulfolobus integrated omics gene regulation archaea |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0 Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a467t-44ed2c4db6e17dcc6bba8027cbb77bd4323e2a0b58cfc43a6c4dd72bcc59453f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7423-8714 |
OpenAccessLink | https://journals.asm.org/doi/10.1128/mbio.03593-22 |
PMID | 37642423 |
PQID | 2858990722 |
PQPubID | 23479 |
PageCount | 23 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3ce8b86181b3464b9989459b164879e3 hal_primary_oai_HAL_hal_04207631v1 proquest_miscellaneous_2858990722 asm2_journals_10_1128_mbio_03593_22 pubmed_primary_37642423 crossref_primary_10_1128_mbio_03593_22 crossref_citationtrail_10_1128_mbio_03593_22 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-Oct-31 |
PublicationDateYYYYMMDD | 2023-10-31 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-Oct-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | mBio |
PublicationTitleAbbrev | mBio |
PublicationTitleAlternate | mBio |
PublicationYear | 2023 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_4_3_2 e_1_3_4_61_2 e_1_3_4_82_2 e_1_3_4_9_2 e_1_3_4_63_2 e_1_3_4_84_2 e_1_3_4_7_2 e_1_3_4_5_2 e_1_3_4_80_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_69_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_65_2 e_1_3_4_86_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_67_2 e_1_3_4_29_2 e_1_3_4_72_2 e_1_3_4_74_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_70_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_76_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_78_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_60_2 e_1_3_4_83_2 e_1_3_4_62_2 e_1_3_4_85_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_81_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_68_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_64_2 e_1_3_4_87_2 e_1_3_4_24_2 Kern M (e_1_3_4_40_2) 2022 e_1_3_4_47_2 e_1_3_4_66_2 e_1_3_4_28_2 e_1_3_4_71_2 e_1_3_4_73_2 e_1_3_4_52_2 e_1_3_4_50_2 e_1_3_4_79_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_58_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_75_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_77_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_56_2 e_1_3_4_18_2 e_1_3_4_39_2 Braun C (e_1_3_4_38_2) 2022 Garnier, F, Couturier, M, Débat, H, Nadal, M (B12) 2021; 12 Kagawa, HK, Yaoi, T, Brocchieri, L, McMillan, RA, Alton, T, Trent, JD (B17) 2003; 48 Schneider, CA, Rasband, WS, Eliceiri, KW (B38) 2012; 9 Grohmann, D, Nagy, J, Chakraborty, A, Klose, D, Fielden, D, Ebright, RH, Michaelis, J, Werner, F (B79) 2011; 43 Torrent, M, Chalancon, G, de Groot, NS, Wuster, A, Madan Babu, M (B81) 2018; 11 Brock, TD (B2) 1967; 48 Li, L, Banerjee, A, Bischof, LF, Maklad, HR, Hoffmann, L, Henche, A-L, Veliz, F, Bildl, W, Schulte, U, Orell, A, Essen, L-O, Peeters, E, Albers, S-V (B53) 2017; 105 Sas-Chen, A, Thomas, JM, Matzov, D, Taoka, M, Nance, KD, Nir, R, Bryson, KM, Shachar, R, Liman, GLS, Burkhart, BW, Gamage, ST, Nobe, Y, Briney, CA, Levy, MJ, Fuchs, RT, Robb, GB, Hartmann, J, Sharma, S, Lin, Q, Florens, L, Washburn, MP, Isobe, T, Santangelo, TJ, Shalev-Benami, M, Meier, JL, Schwartz, S (B70) 2020; 583 Rohlin, L, Trent, JD, Salmon, K, Kim, U, Gunsalus, RP, Liao, JC (B26) 2005; 187 Dar, D, Prasse, D, Schmitz, RA, Sorek, R (B64) 2016; 1 Gong, P, Lei, P, Wang, S, Zeng, A, Lou, H (B68) 2020; 10 Bizard, A, Garnier, F, Nadal, M (B45) 2011; 408 Zhang, C, Phillips, APR, Wipfler, RL, Olsen, GJ, Whitaker, RJ (B48) 2018; 9 Young, MD, Wakefield, MJ, Smyth, GK, Oshlack, A (B32) 2010; 11 Laurens, N, Driessen, RPC, Heller, I, Vorselen, D, Noom, MC, Hol, FJH, White, MF, Dame, RT, Wuite, GJL (B51) 2012; 3 Napoli, A, Kvaratskelia, M, White, MF, Rossi, M, Ciaramella, M (B52) 2001; 276 Podar, PT, Yang, Z, Björnsdóttir, SH, Podar, M (B4) 2020; 11 Weixlbaumer, A, Grünberger, F, Werner, F, Grohmann, D (B58) 2021; 12 López-García, P, Forterre, P (B10) 1999; 33 Yao, S, Li, S, Zhan, Y, Wan, C (B22) 2022; 266 Knüppel, R, Kuttenberger, C, Ferreira-Cerca, S (B36) 2017; 8 Srivastava, A, Gogoi, P, Deka, B, Goswami, S, Kanaujia, SP (B65) 2016; 402 Fouqueau, T, Blombach, F, Cackett, G, Carty, AE, Matelska, DM, Ofer, S, Pilotto, S, Phung, DK, Werner, F (B54) 2018; 2 Kagawa, HK, Osipiuk, J, Maltsev, N, Overbeek, R, Quaite-Randall, E, Joachimiak, A, Trent, JD (B41) 1995; 253 Brock, TD (B3) 1978 Roy, M, Bhakta, K, Bhowmick, A, Gupta, S, Ghosh, A, Ghosh, A (B15) 2022; 289 Colman, DR, Lindsay, MR, Harnish, A, Bilbrey, EM, Amenabar, MJ, Selensky, MJ, Fecteau, KM, Debes, RV, Stott, MB, Shock, EL, Boyd, ES (B5) 2021; 23 Lemmens, L, Baes, R, Peeters, E (B7) 2018; 2 Bischof, LF, Haurat, MF, Hoffmann, L, Albersmeier, A, Wolf, J, Neu, A, Pham, TK, Albaum, SP, Jakobi, T, Schouten, S, Neumann-Schaal, M, Wright, PC, Kalinowski, J, Siebers, B, Albers, S-V (B82) 2018; 9 Zhang, Y, Xiao, Z, Zou, Q, Fang, J, Wang, Q, Yang, X, Gao, N (B83) 2017; 15 Morita, MT, Tanaka, Y, Kodama, TS, Kyogoku, Y, Yanagi, H, Yura, T (B67) 1999; 13 Maezato, Y, Daugherty, A, Dana, K, Soo, E, Cooper, C, Tachdjian, S, Kelly, RM, Blum, P (B21) 2011; 17 Hocher, A, Borrel, G, Fadhlaoui, K, Brugère, JF, Gribaldo, S, Warnecke, T (B85) 2022; 7 Bailey, TL, Johnson, J, Grant, CE, Noble, WS (B35) 2015; 43 Noon, KR, Bruenger, E, McCloskey, JA (B69) 1998; 180 Zhu, Y, Orre, LM, Zhou Tran, Y, Mermelekas, G, Johansson, HJ, Malyutina, A, Anders, S, Lehtiö, J (B30) 2020; 19 Garnier, F, Nadal, M (B46) 2008; 12 Perez-Riverol, Y, Bai, J, Bandla, C, García-Seisdedos, D, Hewapathirana, S, Kamatchinathan, S, Kundu, DJ, Prakash, A, Frericks-Zipper, A, Eisenacher, M, Walzer, M, Wang, S, Brazma, A, Vizcaíno, JA (B86) 2022; 50 Tachdjian, S, Kelly, RM (B19) 2006; 188 Vierke, G, Engelmann, A, Hebbeln, C, Thomm, M (B23) 2003; 278 Clouet-d’Orval, B, Batista, M, Bouvier, M, Quentin, Y, Fichant, G, Marchfelder, A, Maier, L-K (B61) 2018; 42 Reimann, J, Esser, D, Orell, A, Amman, F, Pham, TK, Noirel, J, Lindås, A-C, Bernander, R, Wright, PC, Siebers, B, Albers, S-V (B72) 2013; 12 Iqbal, J, Qureshi, SA (B78) 2010; 192 Lewis, AM, Recalde, A, Bräsen, C, Counts, JA, Nussbaum, P, Bost, J, Schocke, L, Shen, L, Willard, DJ, Quax, TEF, Peeters, E, Siebers, B, Albers, S-V, Kelly, RM (B44) 2021; 45 Märtens, B, Manoharadas, S, Hasenöhrl, D, Zeichen, L, Bläsi, U (B60) 2014; 42 Hanazono, Y, Takeda, K, Yohda, M, Miki, K (B13) 2012; 422 Becskei, A, Rahaman, S (B77) 2022; 20 Fouqueau, T, Blombach, F, Hartman, R, Cheung, ACM, Young, MJ, Werner, F (B56) 2017; 8 Braun, C, Knüppel, R, Perez-Fernandez, J, Ferreira-Cerca, S, Entian, KD (B37) 2022 Blombach, F, Salvadori, E, Fouqueau, T, Yan, J, Reimann, J, Sheppard, C, Smollett, KL, Albers, SV, Kay, CWM, Thalassinos, K, Werner, F (B80) 2015; 4 Robinson, MD, McCarthy, DJ, Smyth, GK (B29) 2010; 26 Kanai, T, Takedomi, S, Fujiwara, S, Atomi, H, Imanaka, T (B24) 2010; 147 Huang, Q, Mayaka, JB, Zhong, Q, Zhang, C, Hou, G, Ni, J, Shen, Y (B75) 2019; 10 Makarova, KS, Wolf, YI, Koonin, EV (B31) 2015; 5 Brock, TD, Brock, KM, Belly, RT, Weiss, RL (B1) 1972; 84 Straus, DB, Walter, WA, Gross, CA (B66) 1987; 329 Keese, AM, Schut, GJ, Ouhammouch, M, Adams, MWW, Thomm, M (B25) 2010; 192 Laursen, SP, Bowerman, S, Luger, K (B49) 2021; 433 Maklad, HR, Gutierrez, GJ, Esser, D, Siebers, B, Peeters, E (B74) 2020; 175 Couturier, M, Gadelle, D, Forterre, P, Nadal, M, Garnier, F (B11) 2020; 113 Jensen, SM, Brandl, M, Treusch, AH, Ejsing, CS (B9) 2015; 50 Baes, R, Lemmens, L, Mignon, K, Carlier, M, Peeters, E (B28) 2020; 24 Vorontsov, EA, Rensen, E, Prangishvili, D, Krupovic, M, Chamot-Rooke, J (B76) 2016; 15 Suzuki, S, Kurosawa, N (B27) 2016; 20 Cho, HDD, Weiner, AM (B62) 2004; 279 Roy, M, Gupta, S, Patranabis, S, Ghosh, A (B14) 2018; 1860 Charbonnier, F, Forterre, P (B42) 1994; 176 Bucca, G, Pothi, R, Hesketh, A, Möller-Levet, C, Hodgson, DA, Laing, EE, Stewart, GR, Smith, CP (B84) 2018; 46 Schmitt, E, Coureux, P-D, Kazan, R, Bourgeois, G, Lazennec-Schurdevin, C, Mechulam, Y (B59) 2020; 11 Richter, K, Haslbeck, M, Buchner, J (B6) 2010; 40 Albers, SV, van de Vossenberg, JL, Driessen, AJ, Konings, WN (B8) 2000; 5 Cohen, O, Doron, S, Wurtzel, O, Dar, D, Edelheit, S, Karunker, I, Mick, E, Sorek, R (B33) 2016; 44 Cooper, CR, Daugherty, AJ, Tachdjian, S, Blum, PH, Kelly, RM (B20) 2009; 37 Anjum, RS, Bray, SM, Blackwood, JK, Kilkenny, ML, Coelho, MA, Foster, BM, Li, S, Howard, JA, Pellegrini, L, Albers, S-V, Deery, MJ, Robinson, NP (B40) 2015; 6 Chaston, JJ, Smits, C, Aragão, D, Wong, ASW, Ahsan, B, Sandin, S, Molugu, SK, Molugu, SK, Bernal, RA, Stock, D, Stewart, AG (B18) 2016; 24 Takemata, N, Samson, RY, Bell, SD (B50) 2019; 179 Peeters, E, Driessen, RPC, Werner, F, Dame, RT (B43) 2015; 13 Esser, D, Hoffmann, L, Pham, TK, Bräsen, C, Qiu, W, Wright, PC, Albers, S-V, Siebers, B (B71) 2016; 40 Wagih, O (B34) 2017; 33 Yue, L, Li, J, Zhang, B, Qi, L, Li, Z, Zhao, F, Li, L, Zheng, X, Dong, X (B57) 2020; 48 Haurat, MF, Figueiredo, AS, Hoffmann, L, Li, L, Herr, K, J Wilson, A, Beeby, M, Schaber, J, Albers, S-V (B73) 2017; 103 D’Amaro, A, Valenti, A, Napoli, A, Rossi, M, Ciaramella, M (B16) 2008; 15 Bizard, AH, Yang, X, Débat, H, Fogg, JM, Zechiedrich, L, Strick, TR, Garnier, F, Nadal, M (B47) 2018; 46 Schwarz, TS, Berkemer, SJ, Bernhart, SH, Weiß, M, Ferreira-Cerca, S, Stadler, PF, Marchfelder, A (B63) 2020; 11 Blombach, F, Matelska, D, Fouqueau, T, Cackett, G, Werner, F (B55) 2019; 431 Kern, M, Ferreira-Cerca, S, Entian, KD (B39) 2022 |
References_xml | – ident: e_1_3_4_5_2 doi: 10.3389/fmicb.2020.01625 – ident: e_1_3_4_7_2 doi: 10.1016/j.molcel.2010.10.006 – ident: e_1_3_4_75_2 doi: 10.1016/j.biochi.2020.05.007 – ident: e_1_3_4_86_2 doi: 10.1038/s41564-022-01245-2 – ident: e_1_3_4_42_2 doi: 10.1006/jmbi.1995.0585 – ident: e_1_3_4_20_2 doi: 10.1128/JB.00080-06 – ident: e_1_3_4_76_2 doi: 10.3389/fmicb.2019.01214 – ident: e_1_3_4_61_2 doi: 10.1093/nar/gkt1169 – ident: e_1_3_4_82_2 doi: 10.1126/scisignal.aat6409 – ident: e_1_3_4_55_2 doi: 10.1042/ETLS20180014 – ident: e_1_3_4_3_2 doi: 10.2307/1936500 – ident: e_1_3_4_10_2 doi: 10.1002/jms.3553 – ident: e_1_3_4_81_2 doi: 10.7554/eLife.08378 – ident: e_1_3_4_2_2 doi: 10.1007/BF00408082 – ident: e_1_3_4_31_2 doi: 10.1074/mcp.TIR119.001646 – ident: e_1_3_4_36_2 doi: 10.1093/nar/gkv416 – ident: e_1_3_4_44_2 doi: 10.1038/nrmicro3467 – ident: e_1_3_4_37_2 doi: 10.3389/fmicb.2017.00286 – ident: e_1_3_4_49_2 doi: 10.1038/s41467-018-07379-4 – ident: e_1_3_4_60_2 doi: 10.3389/fmicb.2020.584152 – ident: e_1_3_4_63_2 doi: 10.1074/jbc.M405518200 – ident: e_1_3_4_29_2 doi: 10.1007/s00792-020-01184-y – ident: e_1_3_4_34_2 doi: 10.1093/nar/gkw394 – ident: e_1_3_4_84_2 doi: 10.1016/j.gpb.2017.04.005 – ident: e_1_3_4_24_2 doi: 10.1074/jbc.M209250200 – ident: e_1_3_4_39_2 doi: 10.1038/nmeth.2089 – ident: e_1_3_4_28_2 doi: 10.1007/s00792-016-0807-0 – ident: e_1_3_4_66_2 doi: 10.1016/j.jtbi.2016.05.005 – ident: e_1_3_4_27_2 doi: 10.1128/JB.187.17.6046-6057.2005 – ident: e_1_3_4_46_2 doi: 10.1016/j.jmb.2011.03.030 – ident: e_1_3_4_52_2 doi: 10.1038/ncomms2330 – ident: e_1_3_4_62_2 doi: 10.1093/femsre/fuy016 – ident: e_1_3_4_41_2 doi: 10.1038/ncomms9163 – ident: e_1_3_4_18_2 doi: 10.1046/j.1365-2958.2003.03418.x – ident: e_1_3_4_22_2 doi: 10.1261/rna.2679911 – ident: e_1_3_4_83_2 doi: 10.3389/fmicb.2018.03201 – ident: e_1_3_4_13_2 doi: 10.3389/fmicb.2021.661411 – ident: e_1_3_4_14_2 doi: 10.1016/j.jmb.2012.05.017 – ident: e_1_3_4_51_2 doi: 10.1016/j.cell.2019.08.036 – ident: e_1_3_4_50_2 doi: 10.1016/j.jmb.2020.166791 – ident: e_1_3_4_78_2 doi: 10.1016/j.csbj.2022.08.008 – ident: e_1_3_4_59_2 doi: 10.3389/fmicb.2021.661827 – start-page: 199 volume-title: Methods in molecular biology year: 2022 ident: e_1_3_4_38_2 – ident: e_1_3_4_64_2 doi: 10.3389/fmicb.2020.594838 – ident: e_1_3_4_45_2 doi: 10.1093/femsre/fuaa063 – ident: e_1_3_4_35_2 doi: 10.1093/bioinformatics/btx469 – ident: e_1_3_4_69_2 doi: 10.3390/biom10040584 – ident: e_1_3_4_11_2 doi: 10.1046/j.1365-2958.1999.01524.x – ident: e_1_3_4_80_2 doi: 10.1016/j.molcel.2011.05.030 – ident: e_1_3_4_32_2 doi: 10.3390/life5010818 – ident: e_1_3_4_85_2 doi: 10.1093/nar/gky335 – ident: e_1_3_4_6_2 doi: 10.1111/1462-2920.15617 – ident: e_1_3_4_30_2 doi: 10.1093/bioinformatics/btp616 – ident: e_1_3_4_72_2 doi: 10.1093/femsre/fuw020 – ident: e_1_3_4_12_2 doi: 10.1111/mmi.14424 – ident: e_1_3_4_25_2 doi: 10.1093/jb/mvp177 – ident: e_1_3_4_54_2 doi: 10.1111/mmi.13735 – ident: e_1_3_4_15_2 doi: 10.1016/j.bbamem.2018.09.005 – start-page: 229 volume-title: Methods in molecular biology year: 2022 ident: e_1_3_4_40_2 – ident: e_1_3_4_77_2 doi: 10.1074/mcp.M116.058073 – ident: e_1_3_4_33_2 doi: 10.1186/gb-2010-11-2-r14 – ident: e_1_3_4_56_2 doi: 10.1016/j.jmb.2019.06.020 – ident: e_1_3_4_68_2 doi: 10.1101/gad.13.6.655 – ident: e_1_3_4_8_2 doi: 10.1042/ETLS20180024 – ident: e_1_3_4_57_2 doi: 10.1038/s41467-017-02081-3 – ident: e_1_3_4_17_2 doi: 10.2174/092986608786071094 – ident: e_1_3_4_21_2 doi: 10.1042/BST0370123 – ident: e_1_3_4_74_2 doi: 10.1111/mmi.13550 – ident: e_1_3_4_53_2 doi: 10.1074/jbc.M010611200 – ident: e_1_3_4_65_2 doi: 10.1038/nmicrobiol.2016.143 – ident: e_1_3_4_26_2 doi: 10.1128/JB.00924-09 – ident: e_1_3_4_67_2 doi: 10.1038/329348a0 – ident: e_1_3_4_70_2 doi: 10.1128/JB.180.11.2883-2888.1998 – ident: e_1_3_4_48_2 doi: 10.1093/nar/gkx1247 – ident: e_1_3_4_16_2 doi: 10.1111/febs.16226 – ident: e_1_3_4_79_2 doi: 10.1128/JB.01534-09 – ident: e_1_3_4_58_2 doi: 10.1093/nar/gkaa702 – ident: e_1_3_4_47_2 doi: 10.1007/s00792-008-0186-2 – ident: e_1_3_4_71_2 doi: 10.1038/s41586-020-2418-2 – ident: e_1_3_4_43_2 doi: 10.1128/jb.176.5.1251-1259.1994 – ident: e_1_3_4_87_2 doi: 10.1093/nar/gkab1038 – ident: e_1_3_4_4_2 doi: 10.1007/978-1-4612-6284-8 – ident: e_1_3_4_23_2 doi: 10.1016/j.jprot.2022.104681 – ident: e_1_3_4_73_2 doi: 10.1074/mcp.M113.027375 – ident: e_1_3_4_9_2 doi: 10.2741/albers – ident: e_1_3_4_19_2 doi: 10.1016/j.str.2015.12.016 – volume: 12 start-page: 661411 year: 2021 ident: B12 article-title: Archaea: a gold mine for topoisomerase diversity publication-title: Front Microbiol doi: 10.3389/fmicb.2021.661411 – volume: 15 start-page: 324 year: 2017 end-page: 330 ident: B83 article-title: Ribosome profiling reveals genome-wide cellular translational regulation upon heat stress in Escherichia coli publication-title: Genom Proteom Bioinform doi: 10.1016/j.gpb.2017.04.005 – start-page: 229 year: 2022 end-page: 246 ident: B39 article-title: Differential translation activity analysis using bioorthogonal noncanonical amino acid tagging (BONCAT) in archaea publication-title: Methods in molecular biology ;p In ;Ribosome B. Hessen, Humana Press – volume: 7 start-page: 1932 year: 2022 end-page: 1942 ident: B85 article-title: Growth temperature and chromatinization in archaea publication-title: Nat Microbiol doi: 10.1038/s41564-022-01245-2 – volume: 13 start-page: 333 year: 2015 end-page: 341 ident: B43 article-title: The interplay between nucleoid organization and transcription in archaeal genomes publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro3467 – volume: 10 start-page: 1214 year: 2019 ident: B75 article-title: Phosphorylation of the archaeal holliday junction resolvase hjc inhibits its catalytic activity and facilitates DNA repair in Sulfolobus islandicus Rey15A publication-title: Front Microbiol doi: 10.3389/fmicb.2019.01214 – volume: 37 start-page: 123 year: 2009 end-page: 126 ident: B20 article-title: Role of vapBC toxin–antitoxin loci in the thermal stress response of Sulfolobus solfataricus publication-title: Biochem Soc Trans doi: 10.1042/BST0370123 – volume: 1 start-page: 16143 year: 2016 ident: B64 article-title: Widespread formation of alternative 3’ UTR isoforms via transcription termination in archaea publication-title: Nat Microbiol doi: 10.1038/nmicrobiol.2016.143 – volume: 84 start-page: 54 year: 1972 end-page: 68 ident: B1 article-title: Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature publication-title: Arch Mikrobiol doi: 10.1007/BF00408082 – volume: 24 start-page: 681 year: 2020 end-page: 692 ident: B28 article-title: Defining heat shock response for the thermoacidophilic model crenarchaeon Sulfolobus acidocaldarius publication-title: Extremophiles doi: 10.1007/s00792-020-01184-y – volume: 175 start-page: 120 year: 2020 end-page: 124 ident: B74 article-title: Phosphorylation of the acyl-CoA binding pocket of the FadR transcription regulator in Sulfolobus acidocaldarius publication-title: Biochimie doi: 10.1016/j.biochi.2020.05.007 – volume: 42 start-page: 2505 year: 2014 end-page: 2511 ident: B60 article-title: Back to translation: removal of aIF2 from the 5′-end of mRNAs by translation recovery factor in the crenarchaeon Sulfolobus solfataricus publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1169 – volume: 402 start-page: 54 year: 2016 end-page: 61 ident: B65 article-title: In silico analysis of 5′-Utrs highlights the prevalence of shine-dalgarno and leaderless-dependent mechanisms of translation initiation in bacteria and archaea, respectively publication-title: J Theor Biol doi: 10.1016/j.jtbi.2016.05.005 – volume: 46 start-page: 5692 year: 2018 end-page: 5703 ident: B84 article-title: Translational control plays an important role in the adaptive heat-shock response of Streptomyces coelicolor publication-title: Nucleic Acids Res doi: 10.1093/nar/gky335 – volume: 8 year: 2017 ident: B56 article-title: The transcript cleavage factor paralogue TFS4 is a potent RNA polymerase inhibitor publication-title: Nat Commun doi: 10.1038/s41467-017-02081-3 – volume: 43 start-page: 263 year: 2011 end-page: 274 ident: B79 article-title: The initiation factor TFE and the elongation factor Spt4/5 compete for the RNAP clamp during transcription initiation and elongation publication-title: Mol Cell doi: 10.1016/j.molcel.2011.05.030 – volume: 431 start-page: 4184 year: 2019 end-page: 4201 ident: B55 article-title: Key concepts and challenges in archaeal transcription publication-title: J Mol Biol doi: 10.1016/j.jmb.2019.06.020 – volume: 48 start-page: 143 year: 2003 end-page: 156 ident: B17 article-title: The composition, structure and stability of a group II chaperonin are temperature regulated in a hyperthermophilic archaeon publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.2003.03418.x – volume: 50 start-page: 476 year: 2015 end-page: 487 ident: B9 article-title: Structural characterization of ether lipids from the archaeon Sulfolobus islandicus by high-resolution shotgun lipidomics publication-title: J Mass Spectrom doi: 10.1002/jms.3553 – volume: 23 start-page: 4034 year: 2021 end-page: 4053 ident: B5 article-title: Seasonal hydrologic and geologic forcing drive hot spring geochemistry and microbial biodiversity publication-title: Environ Microbiol doi: 10.1111/1462-2920.15617 – volume: 6 start-page: 8163 year: 2015 ident: B40 article-title: Involvement of a eukaryotic-like ubiquitin-related modifier in the proteasome pathway of the archaeon Sulfolobus acidocaldarius publication-title: Nat Commun doi: 10.1038/ncomms9163 – volume: 176 start-page: 1251 year: 1994 end-page: 1259 ident: B42 article-title: Comparison of plasmid DNA topology among mesophilic and thermophilic eubacteria and archaebacteria publication-title: J Bacteriol doi: 10.1128/jb.176.5.1251-1259.1994 – volume: 408 start-page: 839 year: 2011 end-page: 849 ident: B45 article-title: TopR2, the second reverse gyrase of Sulfolobus solfataricus, exhibits unusual properties publication-title: J Mol Biol doi: 10.1016/j.jmb.2011.03.030 – volume: 9 start-page: 1 year: 2018 end-page: 11 ident: B48 article-title: The essential genome of the crenarchaeal model Sulfolobus islandicus publication-title: Nat Commun doi: 10.1038/s41467-018-07379-4 – volume: 26 start-page: 139 year: 2010 end-page: 140 ident: B29 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – volume: 187 start-page: 6046 year: 2005 end-page: 6057 ident: B26 article-title: Heat shock response of Archaeoglobus fulgidus publication-title: J Bacteriol doi: 10.1128/JB.187.17.6046-6057.2005 – volume: 11 start-page: 584152 year: 2020 ident: B59 article-title: Recent advances in archaeal translation initiation publication-title: Front Microbiol doi: 10.3389/fmicb.2020.584152 – volume: 33 start-page: 766 year: 1999 end-page: 777 ident: B10 article-title: Control of DNA topology during thermal stress in hyperthermophilic archaea: DNA topoisomerase levels, activities and induced thermotolerance during heat and cold shock in Sulfolobus publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.1999.01524.x – volume: 24 start-page: 364 year: 2016 end-page: 374 ident: B18 article-title: Structural and functional insights into the evolution and stress adaptation of type II chaperonins publication-title: Structure doi: 10.1016/j.str.2015.12.016 – volume: 9 start-page: 671 year: 2012 end-page: 675 ident: B38 article-title: NIH image to ImageJ: 25 years of image analysis publication-title: Nat Methods doi: 10.1038/nmeth.2089 – volume: 3 year: 2012 ident: B51 article-title: Alba shapes the archaeal genome using a delicate balance of bridging and stiffening the DNA publication-title: Nat Commun doi: 10.1038/ncomms2330 – volume: 11 year: 2010 ident: B32 article-title: Gene ontology analysis for RNA-seq: accounting for selection bias publication-title: Genome Biol doi: 10.1186/gb-2010-11-2-r14 – volume: 45 start-page: 1 year: 2021 end-page: 60 ident: B44 article-title: The biology of thermoacidophilic archaea from the order sulfolobales publication-title: FEMS Microbiol Rev doi: 10.1093/femsre/fuaa063 – volume: 2 start-page: 517 year: 2018 end-page: 533 ident: B54 article-title: The cutting edge of archaeal transcription publication-title: Emerg Top Life Sci doi: 10.1042/ETLS20180014 – volume: 12 start-page: 661827 year: 2021 ident: B58 article-title: Coupling of transcription and translation in archaea: cues from the bacterial world publication-title: Front Microbiol doi: 10.3389/fmicb.2021.661827 – volume: 5 start-page: 818 year: 2015 end-page: 840 ident: B31 article-title: Archaeal clusters of orthologous genes (arCOGs): an update and application for analysis of shared features between thermococcales, methanococcales, and methanobacteriales publication-title: Life doi: 10.3390/life5010818 – volume: 179 start-page: 165 year: 2019 end-page: 179 ident: B50 article-title: Physical and functional compartmentalization of archaeal chromosomes publication-title: Cell doi: 10.1016/j.cell.2019.08.036 – volume: 289 start-page: 1080 year: 2022 end-page: 1104 ident: B15 article-title: Archaeal Hsp14 drives substrate shuttling between small heat shock proteins and thermosome: insights into a novel substrate transfer pathway publication-title: FEBS J doi: 10.1111/febs.16226 – volume: 20 start-page: 4325 year: 2022 end-page: 4336 ident: B77 article-title: The life and death of RNA across temperatures publication-title: Comput Struct Biotechnol J doi: 10.1016/j.csbj.2022.08.008 – volume: 4 year: 2015 ident: B80 article-title: Archaeal TFEα/Β is a hybrid of TFIIE and the RNA polymerase III subcomplex hrpc62/39 publication-title: Elife doi: 10.7554/eLife.08378 – start-page: 199 year: 2022 end-page: 213 ident: B37 article-title: Non-radioactive in vivo labeling of RNA with 4-thio-Uracil publication-title: Methods in molecular biology ;p In ;Ribosome B. Springer – volume: 192 start-page: 1292 year: 2010 end-page: 1298 ident: B25 article-title: Genome-wide identification of targets for the archaeal heat shock regulator Phr by cell-free transcription of genomic DNA publication-title: J Bacteriol doi: 10.1128/JB.00924-09 – volume: 33 start-page: 3645 year: 2017 end-page: 3647 ident: B34 article-title: ggseqlogo: a versatile R package for drawing sequence logos publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx469 – volume: 2 start-page: 581 year: 2018 end-page: 593 ident: B7 article-title: Heat shock response in archaea publication-title: Emerg Top Life Sci doi: 10.1042/ETLS20180024 – volume: 279 start-page: 40130 year: 2004 end-page: 40136 ident: B62 article-title: A single catalytically active subunit in the multimeric Sulfolobus shibatae CCA-adding enzyme can carry out all three steps of CCA addition publication-title: J Biol Chem doi: 10.1074/jbc.M405518200 – volume: 13 start-page: 655 year: 1999 end-page: 665 ident: B67 article-title: Translational induction of heat shock transcription factor σ32: evidence for a built-in RNA thermosensor publication-title: Genes Dev doi: 10.1101/gad.13.6.655 – volume: 147 start-page: 361 year: 2010 end-page: 370 ident: B24 article-title: Identification of the Phr-dependent heat shock regulon in the hyperthermophilic archaeon, Thermococcus kodakaraensis publication-title: J Biochem doi: 10.1093/jb/mvp177 – volume: 103 start-page: 181 year: 2017 end-page: 194 ident: B73 article-title: Arns, a kinase involved in starvation-induced archaellum expression publication-title: Mol Microbiol doi: 10.1111/mmi.13550 – volume: 9 start-page: 3201 year: 2018 ident: B82 article-title: Early response of Sulfolobus acidocaldarius to nutrient limitation publication-title: Front Microbiol doi: 10.3389/fmicb.2018.03201 – year: 1978 ident: B3 publication-title: Thermophilic microorganisms and life at high temperatures ;Springer ;New York, NY doi: 10.1007/978-1-4612-6284-8 – volume: 266 start-page: 104681 year: 2022 ident: B22 article-title: Proteome-wide analysis of stress response to temperature in Sulfolobus islandicus publication-title: J Proteomics doi: 10.1016/j.jprot.2022.104681 – volume: 276 start-page: 10745 year: 2001 end-page: 10752 ident: B52 article-title: A novel member of the bacterial-archaeal regulator family is a nonspecific DNA-binding protein and induces positive supercoiling publication-title: J Biol Chem doi: 10.1074/jbc.M010611200 – volume: 17 start-page: 1381 year: 2011 end-page: 1392 ident: B21 article-title: VapC6, a ribonucleolytic toxin regulates thermophilicity in the crenarchaeote Sulfolobus solfataricus publication-title: RNA doi: 10.1261/rna.2679911 – volume: 12 start-page: 3908 year: 2013 end-page: 3923 ident: B72 article-title: Archaeal signal transduction: impact of protein phosphatase deletions on cell size, motility, and energy metabolism in Sulfolobus acidocaldarius publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M113.027375 – volume: 43 start-page: W39 year: 2015 end-page: 49 ident: B35 article-title: The MEME suite publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv416 – volume: 422 start-page: 100 year: 2012 end-page: 108 ident: B13 article-title: Structural studies on the oligomeric transition of a small heat shock protein, StHsp14.0 publication-title: J Mol Biol doi: 10.1016/j.jmb.2012.05.017 – volume: 278 start-page: 18 year: 2003 end-page: 26 ident: B23 article-title: A novel archaeal transcriptional regulator of heat shock response publication-title: J Biol Chem doi: 10.1074/jbc.M209250200 – volume: 44 start-page: W46 year: 2016 end-page: 53 ident: B33 article-title: Comparative transcriptomics across the prokaryotic tree of life publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw394 – volume: 20 start-page: 139 year: 2016 end-page: 148 ident: B27 article-title: Disruption of the gene encoding restriction endonuclease Sua I and development of a host-vector system for the thermoacidophilic archaeon Sulfolobus acidocaldarius publication-title: Extremophiles doi: 10.1007/s00792-016-0807-0 – volume: 42 start-page: 579 year: 2018 end-page: 613 ident: B61 article-title: Insights into RNA-processing pathways and associated RNA-degrading enzymes in archaea publication-title: FEMS Microbiol Rev doi: 10.1093/femsre/fuy016 – volume: 1860 start-page: 2549 year: 2018 end-page: 2565 ident: B14 article-title: The oligomeric plasticity of Hsp20 of Sulfolobus acidocaldarius protects environment-induced protein aggregation and membrane destabilization publication-title: Biochim Biophys Acta Biomembr doi: 10.1016/j.bbamem.2018.09.005 – volume: 10 start-page: 1 year: 2020 end-page: 18 ident: B68 article-title: Post-translational modifications aid archaeal survival publication-title: Biomolecules doi: 10.3390/biom10040584 – volume: 11 start-page: 594838 year: 2020 ident: B63 article-title: Splicing endonuclease is an important player in rRNA and tRNA maturation in archaea publication-title: Front Microbiol doi: 10.3389/fmicb.2020.594838 – volume: 11 start-page: 1625 year: 2020 ident: B4 article-title: Comparative analysis of microbial diversity across temperature gradients in hot springs from yellowstone and Iceland publication-title: Front Microbiol doi: 10.3389/fmicb.2020.01625 – volume: 105 start-page: 777 year: 2017 end-page: 793 ident: B53 article-title: Wing phosphorylation is a major functional determinant of the Lrs14-type biofilm and motility regulator AbfR1 in Sulfolobus acidocaldarius publication-title: Mol Microbiol doi: 10.1111/mmi.13735 – volume: 113 start-page: 356 year: 2020 end-page: 368 ident: B11 article-title: The reverse gyrase TopR1 is responsible for the homeostatic control of DNA supercoiling in the hyperthermophilic archaeon Sulfolobus solfataricus publication-title: Mol Microbiol doi: 10.1111/mmi.14424 – volume: 253 start-page: 712 year: 1995 end-page: 725 ident: B41 article-title: The 60 kDa heat shock proteins in the hyperthermophilic archaeon Sulfolobus shibatae publication-title: J Mol Biol doi: 10.1006/jmbi.1995.0585 – volume: 50 start-page: D543 year: 2022 end-page: D552 ident: B86 article-title: The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences publication-title: Nucleic Acids Res doi: 10.1093/nar/gkab1038 – volume: 15 start-page: 3388 year: 2016 end-page: 3404 ident: B76 article-title: Abundant lysine methylation and N-terminal acetylation in Sulfolobus islandicus revealed by bottom-up and top-down proteomics publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M116.058073 – volume: 40 start-page: 253 year: 2010 end-page: 266 ident: B6 article-title: The heat shock response: life on the verge of death publication-title: Mol Cell doi: 10.1016/j.molcel.2010.10.006 – volume: 12 start-page: 799 year: 2008 end-page: 809 ident: B46 article-title: Transcriptional analysis of the two reverse gyrase Encoding genes of Sulfolobus solfataricus P2 in relation to the growth phases and temperature conditions publication-title: Extremophiles doi: 10.1007/s00792-008-0186-2 – volume: 188 start-page: 4553 year: 2006 end-page: 4559 ident: B19 article-title: Dynamic metabolic adjustments and genome plasticity are implicated in the heat shock response of the extremely thermoacidophilic archaeon Sulfolobus solfataricus publication-title: J Bacteriol doi: 10.1128/JB.00080-06 – volume: 46 start-page: 861 year: 2018 end-page: 872 ident: B47 article-title: Topa, the Sulfolobus solfataricus topoisomerase III, is a decatenase publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1247 – volume: 48 start-page: 9589 year: 2020 end-page: 9605 ident: B57 article-title: The conserved ribonuclease aCPSF1 triggers genome-wide transcription termination of archaea via a 3’-end cleavage mode publication-title: Nucleic Acids Res doi: 10.1093/nar/gkaa702 – volume: 5 start-page: D813 year: 2000 end-page: 20 ident: B8 article-title: Adaptations of the archaeal cell membrane to heat stress publication-title: Front Biosci doi: 10.2741/albers – volume: 40 start-page: 625 year: 2016 end-page: 647 ident: B71 article-title: Protein phosphorylation and its role in archaeal signal transductiona publication-title: FEMS Microbiol Rev doi: 10.1093/femsre/fuw020 – volume: 15 start-page: 1055 year: 2008 end-page: 1062 ident: B16 article-title: The prefoldin of the crenarchaeon Sulfolobus solfataricus publication-title: Protein Pept Lett doi: 10.2174/092986608786071094 – volume: 583 start-page: 638 year: 2020 end-page: 643 ident: B70 article-title: Dynamic RNA Acetylation revealed by quantitative cross-evolutionary mapping publication-title: Nature doi: 10.1038/s41586-020-2418-2 – volume: 180 start-page: 2883 year: 1998 end-page: 2888 ident: B69 article-title: Posttranscriptional modifications in 16S and 23S rRNAs of the Archaeal Hyperthermophile Sulfolobus Solfataricus publication-title: Journal of bacteriology doi: 10.1128/JB.180.11.2883-2888.1998 – volume: 48 start-page: 566 year: 1967 end-page: 571 ident: B2 article-title: Relationship between standing crop and primary productivity along a hot spring thermal gradient publication-title: Ecology doi: 10.2307/1936500 – volume: 433 start-page: 166791 year: 2021 ident: B49 article-title: Archaea: the final frontier of chromatin publication-title: J Mol Biol doi: 10.1016/j.jmb.2020.166791 – volume: 8 year: 2017 ident: B36 article-title: Toward time-resolved analysis of RNA metabolism in archaea using 4-thiouracil publication-title: Front Microbiol doi: 10.3389/fmicb.2017.00286 – volume: 19 start-page: 1047 year: 2020 end-page: 1057 ident: B30 article-title: DEqMs: a method for accurate variance estimation in differential protein expression analysis publication-title: Mol Cell Proteomics doi: 10.1074/mcp.TIR119.001646 – volume: 329 start-page: 348 year: 1987 end-page: 351 ident: B66 article-title: The heat shock response of E. coli is regulated by changes in the concentration of σ32 publication-title: Nature doi: 10.1038/329348a0 – volume: 192 start-page: 2887 year: 2010 end-page: 2891 ident: B78 article-title: Selective depletion of Sulfolobus solfataricus transcription factor E under heat shock conditions publication-title: J Bacteriol doi: 10.1128/JB.01534-09 – volume: 11 start-page: 1 year: 2018 end-page: 10 ident: B81 article-title: Cells alter their tRNA abundance to selectively regulate protein synthesis during stress conditions publication-title: Sci Signal doi: 10.1126/scisignal.aat6409 |
SSID | ssj0000331830 |
Score | 2.4051301 |
Snippet | High-temperature stress is critical for all organisms and induces a profound cellular response. For Crenarchaeota, little information is available on how heat... Heat shock response is the ability to respond adequately to sudden temperature increases that could be harmful for cellular survival and fitness. It is crucial... ABSTRACT High-temperature stress is critical for all organisms and induces a profound cellular response. For Crenarchaeota, little information is available on... |
SourceID | doaj hal proquest asm2 pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0359322 |
SubjectTerms | archaea Biochemistry, Molecular Biology gene regulation Genomics Genomics and Proteomics heat shock integrated omics Life Sciences Microbiology and Parasitology Research Article Sulfolobus |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals (Roanoke) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZlodBLadPXpklQH_RUN15JluVjUhqW0vbSBnITGkkmC7t2WK8LvfeHZ0b2Lslh6aUHX8RYFtI8vpGlbxh7X89ErSunM2GKGhMU4zIDYLIYDehQRoxBtKH__YeeX6qvV8XVnVJfdCZsoAceJu5UenzLaAxEIJVWUBFjeFEBwnxTVjHxfOZVfieZSj5Ykq7mW1JNYU5XsGg_EV-dzKhQ7sR1K3EvFiXKfoww13Qgch_aTFHn4gl7PMJFfjYM8yl7EJsD9nAoIPnnGfubQs3W8FHQNYFvqG05bvLxMJSc7zjdFlsv6VYTJwfMu2t0hXw9nJGNfNFwxIL0rFftDW2zeI6IsklkSrFt-M9-WeNnoe-484tAMTBgot13z9nlxZdfn-fZWFchc-gWN5lSMQivAug4K4P3GsAZTE89QFlCUFLIKFwOhfG1V9JplA2lAO8LnHpZyxds0rRNfMW4FKCd1sEj7FBR6MrXoDRUDkLQpiim7B1NtB0No7Mp5xDG0nLYtBxWiCn7uF0H60dqcqqQsdwn_mEnfjNwcuwTPKdF3QkRlXZqQAWzo4LZfynYlL1FlbjXx_zsm6U2dHg5-ufZ79mUvdlqjEX7pJ8urolt31m0AUxp85JG83JQpV1f6NwV4dnD_zHO1-yRQAA2xNUjNtms-3iMgGkDJ8k2bgHy0BLz priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELbQIiQuiDflJfMQJ7K0tuM4B4QWxKpCwAUq7c3y2A5bKU2WpEHsnR_OTB5Fi6jEoRdrmlae8TffOPY3jD0vFqLQudOJMGmBBYpxiQEwSYwGdMgi5iDa0P_0WS9X6sNJevJHUmicwPafpR31k1o15eHP7-dvcMG_Hi7AmFcbWNeHJEUnE4FofLl_VUSn-Eam34OypOCdTyqbf38LAdm1G3EhOfUa_phyTumE5D762aeh4-vs2sgf-dHg8BvsUqxusitDR8nzW-xXn3smJEBDVwW-pbFy3PXjYehB33K6PtaUdM2JEyLz9hSxkTfDodnI1xVHckifZlOf0b6L50gxq15dKdYV_9KVBf4sdC13fh0oKQasvLv2Nlsdv__6bpmMjRYShzi5TZSKQXgVQMdFFrzXAM5gveoBsgyCkkJG4eaQGl94JZ1G25AJ8D7NVSoLeYcdVHUV7zEuBWindfDIQ1QUOvcFKA25gxC0SdMZe0YTbSdH274IEcaSO2zvDivEjL2c_GD9qFVOLTPKfeYvduZng0jHPsO35NSdEWlr9wN1882OS9VKj3FqNFIfkEoryEmjPs0BC0uT5VHO2FMMiQvPWB59tDSGCDhHwF78WMzYkyliLC5Yegvjqlh3rcVFgTXuPKN_c3cIpd2zEO0VEdz7_zVLD9hVgZRryKQP2cG26eIjpEhbeNwH_2_WrBBc priority: 102 providerName: Scholars Portal |
Title | Transcriptional and translational dynamics underlying heat shock response in the thermophilic crenarchaeon Sulfolobus acidocaldarius |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37642423 https://journals.asm.org/doi/10.1128/mbio.03593-22 https://www.proquest.com/docview/2858990722 https://hal.science/hal-04207631 https://doaj.org/article/3ce8b86181b3464b9989459b164879e3 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA_HHYIv4rd76hE_8MmebZKm6eMqnot6-qAL-xYyScot7HaP7a7gu3-4M_2CExZ8aB7CNC2ZycxvJskMY6-rTFS6dDoRJq_QQTEuMQAmidGADkVEG0QB_ctvejZXnxf54oiJ4S5MP4PNuWvW7Ub-uLKFebeG5eaccs7JRKDaPckR7qPDdTKdzr9_GSMrqSQ5TYeEmv--h7oXxxY37FCbrh-tyxUdhjyENFuLc3GX3emhIp92vL3HjmJ9n93qikf-fsD-tGZmWPRI6OrAd9S36gN8PHTl5htON8W2K7rRxEn58uYK1SDfdudjI1_WHHEgPdv15ppCLJ4jmqzbREpxU_Mf-1WFn4V9w51fBrJ_AZ3sffOQzS8-_vwwS_qaColDlbhLlIpBeBVAx6wI3msAZ9A19QBFAUFJIaNwKeTGV15Jp5E2FAK8z0uVy0o-Ysf1po5PGJcCtNM6eIQcKgpd-gqUhtJBCNrk-YS9oom2A0tt628IY4kdtmWHFWLC3g58sL5PS07VMVaHyN-M5NddPo5DhO-JqSMRpdFuO1CobL8qrfQokkYjygGptIKS0tHnJaAPaYoyygl7iSJxY4zZ9KulPlR2Kerm7Fc2YS8GibG4NmnDxdVxs28syj-6s2lBf_O4E6VxLFTsirDs6X_N0lN2m-rcd0bzGTvebffxOaKhHZz14n_WRhOw_bTIsL1U5i__0Asp |
linkProvider | American Society for Microbiology |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELemTQhe0Pgu48N8iCeypbbjOI8FMRXWjQdWaW-Wz3a0ojadmgaJd_5w7pK00pAq8ZAX6-JEvq_fne07xt6XQ1HqwulEmKzEAMW4xACYJEYDOuQRfRAl9M8v9Hiqvl1lV3tMb-7C_KS-vPP62NWLdh-fFJsS0X0_QnOygNnymOrOyUSg6T3IRJGifB-MRtPvZ9vsSipJVtNNUc1_30P7ix8Qt3xRW7IfPcw1HYjchTZbr3N6yO73cJGPOv4-YHuxesjudA0kfz9if1pXs1F8JHRV4Gsam_dJPh66lvM1p9tiqzndauJkgHl9jaaQr7ozspHPKo5YkJ7VYnlDaRbPEVFWbTGluKz4j2Ze4mehqbnzs0A-MGCg3dSP2fT0y-XncdL3VUgcmsV1olQMwqsAOg7z4L0GcAbDUw-Q5xCUFDIKl0JmfOmVdBppQy7A-6xQmSzlE7ZfLav4jHEpQDutg0fYoaLQhS9BaSgchKBNlg3YO1po2ytGbduYQxhL7LAtO6wQA_Zxwwfr-9Lk1CFjvov8w5b8pqvJsYvwEzF1S0SltNsBlCzba6aVHsXSaEQ6IJVWUFBJ-qwAjCNNXkQ5YG9RJG7NMR5NLI2hwUvRPg9_DQfszUZiLOonbbq4Ki6b2qIOYEib5vQ3TztR2s6Fxl0Rnn3-X6v0mt0dX55P7OTrxdkRu0d97zsn-oLtr1dNfInoaA2velX4C68JDLo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Li9swEBZLlpZeSt9Nn-qDnuqtI8myfEwfIe1ut4U2sDehkWQ2kDghTgq994d3xo_AFgI9-CLGstG8R9I3jL0uR6LUhdOJMFmJCYpxiQEwSYwGdMgj-iAq6H8919OZ-nKRXRwx3d-F6VawPnH1stnIJ81eh7LrR2jeLWG-OiHcOZkINL3HGe2UDdjxeDz7drqvrqSSZDXtQTX_fQ_tL84vrviiBrIfPcwlHYg8FG02Xmdyi93swkU-bvl7mx3F6g671jaQ_H2X_WlcTa_4SOiqwLc0tuiKfDy0LedrTrfFNgu61cTJAPP6Ek0h37RnZCOfVxxjQXo2y9WayiyeY0RZNWBKcVXxH7tFiZ-FXc2dnwfygQET7V19j80mn35-mCZdX4XEoVncJkrFILwKoOMoD95rAGcwPfUAeQ5BSSGjcClkxpdeSaeRNuQCvM8KlclS3meDalXFh4xLAdppHTyGHSoKXfgSlIbCQQjaZNmQvaKFtj1bbZNzCGOJHbZhhxViyN72fLC-gyanDhmLQ-Rv9uTrFpPjEOF7YuqeiKC0mwEULNtpppUexdJojHRAKq2gIEj6rADMI01eRDlkL1EkrswxHZ9ZGkODl6J9Hv0aDdmLXmIs6idturgqrna1RR3AlDbN6W8etKK0nwuNu6J49tF_rdJzdv37x4k9-3x--pjdoLb3rQ99wgbbzS4-xeBoC886TfgLoQcMXw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcriptional+and+translational+dynamics+underlying+heat+shock+response+in+the+thermophilic+crenarchaeon+Sulfolobus+acidocaldarius&rft.jtitle=mBio&rft.au=Baes%2C+Rani&rft.au=Gr%C3%BCnberger%2C+Felix&rft.au=Pyr+dit+Ruys%2C+S%C3%A9bastien&rft.au=Couturier%2C+Mohea&rft.date=2023-10-31&rft.pub=American+Society+for+Microbiology&rft.eissn=2150-7511&rft.volume=14&rft.issue=5&rft_id=info:doi/10.1128%2Fmbio.03593-22&rft.externalDocID=03593-22 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2150-7511&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2150-7511&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2150-7511&client=summon |