An Improved Copula‐Based Framework for Efficient Global Sensitivity Analysis

Global sensitivity analysis (GSA) enhances our understanding of computational models and simplifies model parameter estimation. VarIance‐based Sensitivity analysis using COpUlaS (VISCOUS) is a variance‐based GSA framework. The advantage of VISCOUS is that it can use existing model input‐output data...

Full description

Saved in:
Bibliographic Details
Published inWater resources research Vol. 60; no. 1
Main Authors Liu, Hongli, Clark, Martyn P., Gharari, Shervan, Sheikholeslami, Razi, Freer, Jim, Knoben, Wouter J. M., Marsh, Christopher B., Papalexiou, Simon Michael
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 01.01.2024
Wiley
Subjects
Online AccessGet full text
ISSN0043-1397
1944-7973
1944-7973
DOI10.1029/2022WR033808

Cover

Abstract Global sensitivity analysis (GSA) enhances our understanding of computational models and simplifies model parameter estimation. VarIance‐based Sensitivity analysis using COpUlaS (VISCOUS) is a variance‐based GSA framework. The advantage of VISCOUS is that it can use existing model input‐output data (e.g., water model parameters‐responses) to estimate the first‐ and total‐order Sobol’ sensitivity indices. This study improves VISCOUS by refining its handling of marginal densities of the Gaussian mixture copula model (GMCM). We then evaluate VISCOUS using three types of generic functions relevant to water system models. We observe that its performance depends on function dimension, input‐output data size, and non‐identifiability. Function dimension refers to the number of uncertain input factors analyzed in GSA, and non‐identifiability refers to the inability to estimate GMCM parameters. VISCOUS proves powerful in estimating first‐order sensitivity with a small amount of input‐output data (e.g., 200 in this study), regardless of function dimension. It always ranks input factors correctly in both first‐ and total‐order terms. For estimating total‐order sensitivity, it is recommended to use VISCOUS when the function dimension is not very high (e.g., less than 20) due to the challenge of producing sufficient input‐output data for accurate GMCM inferences (e.g., more than 10,000 data). In cases where all input factors are equally important (a rarity in practice), VISCOUS faces non‐identifiability issues that impact its performance. We provide a didactic example and an open‐source Python code, pyVISCOUS, for broader user adoption. Plain Language Summary Global sensitivity analysis is a method used to better understand and estimate parameters in computational models. VarIance‐based Sensitivity analysis using COpUlaS (VISCOUS) is a framework for this purpose. It estimates the sensitivity of model outcomes to different uncertain model input factors by using the existing input and output data (e.g., water model parameters and responses). This study improved VISCOUS and tested it with various functions. We found that its performance depends on the number of input factors, the amount of input and output data available, and our ability to determine VISCOUS's parameters. VISCOUS is good at estimating the importance of individual input factors, even with limited data (e.g., 200) and numerous input factors. It always correctly ranks input factor importance, whether individually or collectively. When estimating the importance of input factors together, VISCOUS is recommended when the number of input factors is not very high (e.g., <20), as it is challenging to generate enough input and output data for estimating VISCOUS's parameters. When all input factors hold equal importance (though rare in practice), VISCOUS's performance is impacted due to the difficulty of estimating VISCOUS's parameters. To help people use VISCOUS, we provide an example and an open‐source Python code, pyVISCOUS. Key Points We improve the VarIance‐based Sensitivity analysis using COpUlaS (VISCOUS) global sensitivity analysis framework in its handling of marginal densities of the Gaussian mixture copula model We evaluate VISCOUS and demonstrate how its performance is affected by function dimension, input‐output size, and non‐identifiability We provide a didactic example and an open‐source Python code called pyVISCOUS to make VISCOUS easier to understand and apply
AbstractList Global sensitivity analysis (GSA) enhances our understanding of computational models and simplifies model parameter estimation. VarIance‐based Sensitivity analysis using COpUlaS (VISCOUS) is a variance‐based GSA framework. The advantage of VISCOUS is that it can use existing model input‐output data (e.g., water model parameters‐responses) to estimate the first‐ and total‐order Sobol’ sensitivity indices. This study improves VISCOUS by refining its handling of marginal densities of the Gaussian mixture copula model (GMCM). We then evaluate VISCOUS using three types of generic functions relevant to water system models. We observe that its performance depends on function dimension, input‐output data size, and non‐identifiability. Function dimension refers to the number of uncertain input factors analyzed in GSA, and non‐identifiability refers to the inability to estimate GMCM parameters. VISCOUS proves powerful in estimating first‐order sensitivity with a small amount of input‐output data (e.g., 200 in this study), regardless of function dimension. It always ranks input factors correctly in both first‐ and total‐order terms. For estimating total‐order sensitivity, it is recommended to use VISCOUS when the function dimension is not very high (e.g., less than 20) due to the challenge of producing sufficient input‐output data for accurate GMCM inferences (e.g., more than 10,000 data). In cases where all input factors are equally important (a rarity in practice), VISCOUS faces non‐identifiability issues that impact its performance. We provide a didactic example and an open‐source Python code, pyVISCOUS, for broader user adoption.
Abstract Global sensitivity analysis (GSA) enhances our understanding of computational models and simplifies model parameter estimation. VarIance‐based Sensitivity analysis using COpUlaS (VISCOUS) is a variance‐based GSA framework. The advantage of VISCOUS is that it can use existing model input‐output data (e.g., water model parameters‐responses) to estimate the first‐ and total‐order Sobol’ sensitivity indices. This study improves VISCOUS by refining its handling of marginal densities of the Gaussian mixture copula model (GMCM). We then evaluate VISCOUS using three types of generic functions relevant to water system models. We observe that its performance depends on function dimension, input‐output data size, and non‐identifiability. Function dimension refers to the number of uncertain input factors analyzed in GSA, and non‐identifiability refers to the inability to estimate GMCM parameters. VISCOUS proves powerful in estimating first‐order sensitivity with a small amount of input‐output data (e.g., 200 in this study), regardless of function dimension. It always ranks input factors correctly in both first‐ and total‐order terms. For estimating total‐order sensitivity, it is recommended to use VISCOUS when the function dimension is not very high (e.g., less than 20) due to the challenge of producing sufficient input‐output data for accurate GMCM inferences (e.g., more than 10,000 data). In cases where all input factors are equally important (a rarity in practice), VISCOUS faces non‐identifiability issues that impact its performance. We provide a didactic example and an open‐source Python code, pyVISCOUS, for broader user adoption.
Global sensitivity analysis (GSA) enhances our understanding of computational models and simplifies model parameter estimation. VarIance‐based Sensitivity analysis using COpUlaS (VISCOUS) is a variance‐based GSA framework. The advantage of VISCOUS is that it can use existing model input‐output data (e.g., water model parameters‐responses) to estimate the first‐ and total‐order Sobol’ sensitivity indices. This study improves VISCOUS by refining its handling of marginal densities of the Gaussian mixture copula model (GMCM). We then evaluate VISCOUS using three types of generic functions relevant to water system models. We observe that its performance depends on function dimension, input‐output data size, and non‐identifiability. Function dimension refers to the number of uncertain input factors analyzed in GSA, and non‐identifiability refers to the inability to estimate GMCM parameters. VISCOUS proves powerful in estimating first‐order sensitivity with a small amount of input‐output data (e.g., 200 in this study), regardless of function dimension. It always ranks input factors correctly in both first‐ and total‐order terms. For estimating total‐order sensitivity, it is recommended to use VISCOUS when the function dimension is not very high (e.g., less than 20) due to the challenge of producing sufficient input‐output data for accurate GMCM inferences (e.g., more than 10,000 data). In cases where all input factors are equally important (a rarity in practice), VISCOUS faces non‐identifiability issues that impact its performance. We provide a didactic example and an open‐source Python code, pyVISCOUS, for broader user adoption. Plain Language Summary Global sensitivity analysis is a method used to better understand and estimate parameters in computational models. VarIance‐based Sensitivity analysis using COpUlaS (VISCOUS) is a framework for this purpose. It estimates the sensitivity of model outcomes to different uncertain model input factors by using the existing input and output data (e.g., water model parameters and responses). This study improved VISCOUS and tested it with various functions. We found that its performance depends on the number of input factors, the amount of input and output data available, and our ability to determine VISCOUS's parameters. VISCOUS is good at estimating the importance of individual input factors, even with limited data (e.g., 200) and numerous input factors. It always correctly ranks input factor importance, whether individually or collectively. When estimating the importance of input factors together, VISCOUS is recommended when the number of input factors is not very high (e.g., <20), as it is challenging to generate enough input and output data for estimating VISCOUS's parameters. When all input factors hold equal importance (though rare in practice), VISCOUS's performance is impacted due to the difficulty of estimating VISCOUS's parameters. To help people use VISCOUS, we provide an example and an open‐source Python code, pyVISCOUS. Key Points We improve the VarIance‐based Sensitivity analysis using COpUlaS (VISCOUS) global sensitivity analysis framework in its handling of marginal densities of the Gaussian mixture copula model We evaluate VISCOUS and demonstrate how its performance is affected by function dimension, input‐output size, and non‐identifiability We provide a didactic example and an open‐source Python code called pyVISCOUS to make VISCOUS easier to understand and apply
Global sensitivity analysis (GSA) enhances our understanding of computational models and simplifies model parameter estimation. VarIance‐based Sensitivity analysis using COpUlaS (VISCOUS) is a variance‐based GSA framework. The advantage of VISCOUS is that it can use existing model input‐output data (e.g., water model parameters‐responses) to estimate the first‐ and total‐order Sobol’ sensitivity indices. This study improves VISCOUS by refining its handling of marginal densities of the Gaussian mixture copula model (GMCM). We then evaluate VISCOUS using three types of generic functions relevant to water system models. We observe that its performance depends on function dimension, input‐output data size, and non‐identifiability. Function dimension refers to the number of uncertain input factors analyzed in GSA, and non‐identifiability refers to the inability to estimate GMCM parameters. VISCOUS proves powerful in estimating first‐order sensitivity with a small amount of input‐output data (e.g., 200 in this study), regardless of function dimension. It always ranks input factors correctly in both first‐ and total‐order terms. For estimating total‐order sensitivity, it is recommended to use VISCOUS when the function dimension is not very high (e.g., less than 20) due to the challenge of producing sufficient input‐output data for accurate GMCM inferences (e.g., more than 10,000 data). In cases where all input factors are equally important (a rarity in practice), VISCOUS faces non‐identifiability issues that impact its performance. We provide a didactic example and an open‐source Python code, pyVISCOUS, for broader user adoption. Global sensitivity analysis is a method used to better understand and estimate parameters in computational models. VarIance‐based Sensitivity analysis using COpUlaS (VISCOUS) is a framework for this purpose. It estimates the sensitivity of model outcomes to different uncertain model input factors by using the existing input and output data (e.g., water model parameters and responses). This study improved VISCOUS and tested it with various functions. We found that its performance depends on the number of input factors, the amount of input and output data available, and our ability to determine VISCOUS's parameters. VISCOUS is good at estimating the importance of individual input factors, even with limited data (e.g., 200) and numerous input factors. It always correctly ranks input factor importance, whether individually or collectively. When estimating the importance of input factors together, VISCOUS is recommended when the number of input factors is not very high (e.g., <20), as it is challenging to generate enough input and output data for estimating VISCOUS's parameters. When all input factors hold equal importance (though rare in practice), VISCOUS's performance is impacted due to the difficulty of estimating VISCOUS's parameters. To help people use VISCOUS, we provide an example and an open‐source Python code, pyVISCOUS. We improve the VarIance‐based Sensitivity analysis using COpUlaS (VISCOUS) global sensitivity analysis framework in its handling of marginal densities of the Gaussian mixture copula model We evaluate VISCOUS and demonstrate how its performance is affected by function dimension, input‐output size, and non‐identifiability We provide a didactic example and an open‐source Python code called pyVISCOUS to make VISCOUS easier to understand and apply
Author Knoben, Wouter J. M.
Sheikholeslami, Razi
Clark, Martyn P.
Papalexiou, Simon Michael
Marsh, Christopher B.
Freer, Jim
Liu, Hongli
Gharari, Shervan
Author_xml – sequence: 1
  givenname: Hongli
  orcidid: 0000-0002-2756-3247
  surname: Liu
  fullname: Liu, Hongli
  email: hongli.liu@ualberta.ca
  organization: University of Saskatchewan
– sequence: 2
  givenname: Martyn P.
  orcidid: 0000-0002-2186-2625
  surname: Clark
  fullname: Clark, Martyn P.
  organization: University of Saskatchewan
– sequence: 3
  givenname: Shervan
  orcidid: 0000-0002-5358-5714
  surname: Gharari
  fullname: Gharari, Shervan
  organization: University of Saskatchewan
– sequence: 4
  givenname: Razi
  orcidid: 0000-0001-8004-1985
  surname: Sheikholeslami
  fullname: Sheikholeslami, Razi
  organization: Sharif University of Technology
– sequence: 5
  givenname: Jim
  surname: Freer
  fullname: Freer, Jim
  organization: University of Saskatchewan
– sequence: 6
  givenname: Wouter J. M.
  orcidid: 0000-0001-8301-3787
  surname: Knoben
  fullname: Knoben, Wouter J. M.
  organization: University of Saskatchewan
– sequence: 7
  givenname: Christopher B.
  orcidid: 0000-0002-1372-4513
  surname: Marsh
  fullname: Marsh, Christopher B.
  organization: University of Saskatchewan
– sequence: 8
  givenname: Simon Michael
  orcidid: 0000-0001-5633-0154
  surname: Papalexiou
  fullname: Papalexiou, Simon Michael
  organization: University of Calgary
BookMark eNp9kc1uEzEURi1UJNLCjgcYiQ0LBvw_42WI2hKpAimAurTueGzk4IyDPdMoOx6BZ-RJcBhgUQEry9a532cfn6OzIQ4WoacEvySYqlcUU3q7wYy1uH2AFkRxXjeqYWdogTFnNWGqeYTOc95iTLiQzQK9XQ7VerdP8c721SrupwDfv357DblsrxLs7CGmz5WLqbp0zhtvh7G6DrGDUL23Q_ajv_PjsVoOEI7Z58fooYOQ7ZNf6wX6eHX5YfWmvnl3vV4tb2rgsiE1tUwq6phoWwVd2wlJsOp63ou-cW1LHMdAXEd6Z_um6x2I05MM5kpK0-OOXaD1nNtH2Op98jtIRx3B658HMX3SkEZvgtXGGOIwd1xQxSURqhWYAJYdN04yIUpWPWdNwx6OBwjhTyDB-iRWn8Qe0iy28M9nvlj7Mtk86p3PxoYAg41T1qWGkuJX8YI-u4du45SKqxNFFCuXwbJQL2bKpJhzsu6v_b8_tuD0Hm78CKOPw5jAh38NsXno4IM9_rdA325WG9pgRtgP_O-zvA
CitedBy_id crossref_primary_10_1016_j_jhydrol_2024_132014
crossref_primary_10_1029_2022WR032400
crossref_primary_10_1029_2024WR037398
Cites_doi 10.5194/hess-20-4655-2016
10.1016/s0010-4655(02)00280-1
10.1037/a0027127
10.1016/j.ress.2018.12.003
10.1109/ICDMW.2011.135
10.1016/j.csda.2006.01.001
10.1016/j.envsoft.2011.06.006
10.1016/j.envsoft.2015.09.011
10.1016/j.envsoft.2016.02.008
10.1198/106186005X59586
10.1016/J.JHYDROL.2005.09.008
10.1007/s00357-005-0014-7
10.1016/J.ENVSOFT.2018.09.002
10.5281/zenodo.10205100
10.5194/hess-5-13-2001
10.1080/10618600.2016.1200472
10.1016/0951-8320(95)00099-2
10.1016/j.envsoft.2015.03.020
10.1109/TAC.1974.1100705
10.1016/j.ress.2010.11.003
10.1029/2020wr028435
10.1002/9780470725184
10.1080/00401706.1986.10488093
10.1198/016214506000000302
10.1002/2014WR016527
10.1016/j.envsoft.2019.07.007
10.1093/comjnl/3.3.175
10.1016/j.ejor.2012.11.047
10.1016/0951-8320(96)00002-6
10.1016/j.automatica.2012.05.004
10.1016/J.ENVSOFT.2011.08.010
10.1016/j.envsoft.2020.104954
10.1029/2009WR008328
10.1016/S0378-4754(00)00270-6
10.1162/neco.1996.8.1.129
10.1029/2020GL089829
10.1029/2006JD007534
ContentType Journal Article
Copyright 2024. The Authors.
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. The Authors.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
ADTOC
UNPAY
DOA
DOI 10.1029/2022WR033808
DatabaseName Wiley Online Library Open Access
CrossRef
Aqualine
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


CrossRef
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
EISSN 1944-7973
EndPage n/a
ExternalDocumentID oai_doaj_org_article_ccc1f04f4529461598501a06b4cf6355
10.1029/2022wr033808
10_1029_2022WR033808
WRCR27031
Genre methodAndProtocol
GroupedDBID -~X
..I
.DC
05W
0R~
123
1OB
1OC
24P
31~
33P
3V.
50Y
5VS
6TJ
7WY
7XC
8-1
8CJ
8FE
8FG
8FH
8FL
8G5
8R4
8R5
8WZ
A00
A6W
AAESR
AAHBH
AAHHS
AAIHA
AAIKC
AAMNW
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
AAYOK
AAZKR
ABCUV
ABJCF
ABJNI
ABPPZ
ABTAH
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYN
AEUYR
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AFZJQ
AIDBO
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BEZIV
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D0L
D1J
DCZOG
DDYGU
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FEDTE
FRNLG
G-S
GNUQQ
GODZA
GROUPED_ABI_INFORM_COMPLETE
GUQSH
HCIFZ
HVGLF
HZ~
K60
K6~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M0C
M2O
M7R
M7S
MEWTI
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
MY~
O9-
OHT
OK1
P-X
P2P
P2W
PALCI
PATMY
PCBAR
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TAE
TN5
TWZ
UQL
VJK
VOH
WBKPD
WXSBR
WYJ
XOL
XSW
YHZ
YV5
ZCG
ZY4
ZZTAW
~02
~KM
~OA
~~A
AAMMB
AAYXX
ADXHL
AEFGJ
AETEA
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
GROUPED_DOAJ
PHGZM
PHGZT
PQGLB
PUEGO
WIN
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
ADTOC
UNPAY
ID FETCH-LOGICAL-a4671-2e3692f35889ab8b56109bd4d5d7f881f40a1fb1dfed7bdfa53808c04966cd0b3
IEDL.DBID DOA
ISSN 0043-1397
1944-7973
IngestDate Tue Oct 14 14:55:01 EDT 2025
Sun Oct 26 04:05:24 EDT 2025
Thu Oct 02 23:58:19 EDT 2025
Sat Aug 23 12:39:24 EDT 2025
Wed Oct 01 06:35:02 EDT 2025
Thu Apr 24 22:55:46 EDT 2025
Wed Jan 22 16:15:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4671-2e3692f35889ab8b56109bd4d5d7f881f40a1fb1dfed7bdfa53808c04966cd0b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1372-4513
0000-0002-2186-2625
0000-0001-8301-3787
0000-0002-2756-3247
0000-0001-5633-0154
0000-0002-5358-5714
0000-0001-8004-1985
OpenAccessLink https://doaj.org/article/ccc1f04f4529461598501a06b4cf6355
PQID 2919359806
PQPubID 105507
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_ccc1f04f4529461598501a06b4cf6355
unpaywall_primary_10_1029_2022wr033808
proquest_miscellaneous_2942101494
proquest_journals_2919359806
crossref_primary_10_1029_2022WR033808
crossref_citationtrail_10_1029_2022WR033808
wiley_primary_10_1029_2022WR033808_WRCR27031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2024
2024-01-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Water resources research
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 1995; 50
2017; 26
1960; 3
2011
2015; 51
2013; 226
2015; 74
2011; 96
2008
1996; 52
2004
2012; 17
2007; 51
2012; 34
2005; 22
1959; 8
1974; 19
2016; 79
2019; 187
2021; 57
2007; 112
2015; 69
2010; 46
2023
2021; 137
2001; 5
2002; 145
1986; 28
2016; 20
2019
2020; 47
2019; 119
2011; 26
2012; 48
2001; 55
2006; 324
2019; 111
2006; 101
1996; 8
2005; 14
e_1_2_14_30_1
e_1_2_14_31_1
Saltelli A. (e_1_2_14_28_1) 2004
e_1_2_14_11_1
e_1_2_14_34_1
e_1_2_14_10_1
e_1_2_14_35_1
e_1_2_14_13_1
e_1_2_14_32_1
e_1_2_14_12_1
e_1_2_14_15_1
e_1_2_14_38_1
e_1_2_14_14_1
e_1_2_14_39_1
e_1_2_14_17_1
e_1_2_14_36_1
e_1_2_14_16_1
e_1_2_14_37_1
e_1_2_14_29_1
e_1_2_14_6_1
e_1_2_14_5_1
e_1_2_14_8_1
e_1_2_14_7_1
e_1_2_14_9_1
e_1_2_14_2_1
e_1_2_14_41_1
e_1_2_14_20_1
e_1_2_14_4_1
Sklar A. (e_1_2_14_33_1) 1959; 8
e_1_2_14_3_1
e_1_2_14_40_1
e_1_2_14_23_1
e_1_2_14_24_1
e_1_2_14_21_1
e_1_2_14_22_1
e_1_2_14_27_1
e_1_2_14_25_1
e_1_2_14_26_1
e_1_2_14_19_1
e_1_2_14_18_1
References_xml – volume: 3
  start-page: 175
  year: 1960
  end-page: 184
  article-title: An automatic method for finding the greatest or least value of a function
  publication-title: The Computer Journal
– volume: 8
  start-page: 229
  year: 1959
  end-page: 231
  article-title: Fonctions de répartition à N dimensions et leurs marges
  publication-title: Publ. L’Institut Stat. L’Universit{é} Paris
– volume: 74
  start-page: 140
  year: 2015
  end-page: 155
  article-title: Simple approach to emulating complex computer models for global sensitivity analysis
  publication-title: Environmental Modelling & Software
– volume: 101
  start-page: 1566
  issue: 476
  year: 2006
  end-page: 1581
  article-title: Hierarchical Dirichlet processes
  publication-title: Journal of the American Statistical Association
– volume: 34
  start-page: 105
  year: 2012
  end-page: 115
  article-title: Model emulation and moment‐independent sensitivity analysis: An application to environmental modelling
  publication-title: Environmental Modelling & Software
– volume: 51
  start-page: 2573
  issue: 5
  year: 2007
  end-page: 2585
  article-title: A mixture of mixture models for a classification problem: The unity measure error
  publication-title: Computational Statistics & Data Analysis
– volume: 119
  start-page: 418
  year: 2019
  end-page: 432
  article-title: Introductory overview of identifiability analysis: A guide to evaluating whether you have the right type of data for your modeling purpose
  publication-title: Environmental Modelling & Software
– volume: 28
  start-page: 11
  issue: 1
  year: 1986
  end-page: 18
  article-title: An analysis for unreplicated fractional factorials
  publication-title: Technometrics
– year: 2008
  article-title: Global sensitivity analysis
  publication-title: The Primer
– volume: 112
  issue: D11
  year: 2007
  article-title: Monte Carlo sensitivity analysis of land surface parameters using the Variable Infiltration Capacity model
  publication-title: Journal of Geophysical Research
– volume: 187
  start-page: 40
  year: 2019
  end-page: 57
  article-title: Probability models for data‐driven global sensitivity analysis
  publication-title: Reliability Engineering & System Safety
– volume: 5
  start-page: 13
  issue: 1
  year: 2001
  end-page: 26
  article-title: A framework for development and application of hydrological models
  publication-title: Hydrology and Earth System Sciences
– volume: 22
  start-page: 203
  issue: 2
  year: 2005
  end-page: 219
  article-title: Clustering univariate observations via mixtures of unimodal normal mixtures
  publication-title: Journal of Classification
– volume: 79
  start-page: 214
  year: 2016
  end-page: 232
  article-title: Sensitivity analysis of environmental models: A systematic review with practical workflow
  publication-title: Environmental Modelling & Software
– volume: 48
  start-page: 2740
  issue: 11
  year: 2012
  end-page: 2749
  article-title: Limits of variance‐based sensitivity analysis for non‐identifiability testing in high dimensional dynamic models
  publication-title: Automatica
– volume: 47
  issue: 20
  year: 2020
  article-title: A fresh look at variography: Measuring dependence and possible sensitivities across geophysical systems from any given data
  publication-title: Geophysical Research Letters
– volume: 226
  start-page: 536
  issue: 3
  year: 2013
  end-page: 550
  article-title: Global sensitivity measures from given data
  publication-title: European Journal of Operational Research
– volume: 57
  issue: 7
  year: 2021
  article-title: VISCOUS: A variance‐based sensitivity analysis using copulas for efficient identification of dominant hydrological processes
  publication-title: Water Resources Research
– volume: 26
  start-page: 1515
  issue: 12
  year: 2011
  end-page: 1525
  article-title: Sobol’ sensitivity analysis of a complex environmental model
  publication-title: Environmental Modelling & Software
– volume: 26
  start-page: 285
  issue: 2
  year: 2017
  end-page: 295
  article-title: Identifying mixtures of mixtures using Bayesian estimation
  publication-title: Journal of Computational & Graphical Statistics
– volume: 51
  start-page: 3070
  issue: 5
  year: 2015
  end-page: 3092
  article-title: What do we mean by sensitivity analysis? The need for comprehensive characterization of “global” sensitivity in earth and environmental systems models
  publication-title: Water Resources Research
– volume: 324
  start-page: 10
  issue: 1–4
  year: 2006
  end-page: 23
  article-title: A global sensitivity analysis tool for the parameters of multi‐variable catchment models
  publication-title: Journal of Hydrology
– volume: 20
  start-page: 4655
  issue: 11
  year: 2016
  end-page: 4671
  article-title: Towards simplification of hydrologic modeling: Identification of dominant processes
  publication-title: Hydrology and Earth System Sciences
– volume: 19
  start-page: 716
  issue: 6
  year: 1974
  end-page: 723
  article-title: A new look at the statistical model identification
  publication-title: IEEE Transactions on Automatic Control
– volume: 50
  start-page: 225
  issue: 3
  year: 1995
  end-page: 239
  article-title: About the use of rank transformation in sensitivity analysis of model output
  publication-title: Reliability Engineering & System Safety
– volume: 96
  start-page: 440
  issue: 4
  year: 2011
  end-page: 449
  article-title: The identification of model effective dimensions using global sensitivity analysis
  publication-title: Reliability Engineering & System Safety
– volume: 111
  start-page: 282
  year: 2019
  end-page: 299
  article-title: Global sensitivity analysis for high‐dimensional problems: How to objectively group factors and measure robustness and convergence while reducing computational cost
  publication-title: Environmental Modelling & Software
– year: 2004
– year: 2023
– volume: 52
  start-page: 1
  year: 1996
  end-page: 17
  article-title: Importance measures in global sensitivity analysis of nonlinear models
  publication-title: Reliability Engineering & System Safety
– volume: 55
  start-page: 271
  issue: 1–3
  year: 2001
  end-page: 280
  article-title: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates
  publication-title: Mathematics and Computers in Simulation
– volume: 69
  start-page: 166
  year: 2015
  end-page: 174
  article-title: An introduction to sensitivity assessment of simulation models
  publication-title: Environmental Modelling & Software
– volume: 8
  start-page: 129
  issue: 1
  year: 1996
  end-page: 151
  article-title: On convergence properties of the EM algorithm for Gaussian mixtures
  publication-title: Neural Computation
– volume: 17
  start-page: 228
  issue: 2
  year: 2012
  end-page: 243
  article-title: Model selection and psychological theory: A discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC)
  publication-title: Psychological Methods
– volume: 14
  start-page: 547
  issue: 3
  year: 2005
  end-page: 568
  article-title: Clustering based on a multilayer mixture model
  publication-title: Journal of Computational & Graphical Statistics
– volume: 137
  year: 2021
  article-title: The future of sensitivity analysis: An essential discipline for systems modeling and policy support
  publication-title: Environmental Modelling & Software
– volume: 46
  issue: 5
  year: 2010
  article-title: Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors
  publication-title: Water Resources Research
– year: 2019
– volume: 145
  start-page: 280
  issue: 2
  year: 2002
  end-page: 297
  article-title: Making best use of model evaluations to compute sensitivity indices
  publication-title: Computer Physics Communications
– start-page: 286
  year: 2011
  end-page: 292
  article-title: Parametric characterization of multimodal distributions with non‐Gaussian modes
  publication-title: Proc. ‐ IEEE Int. Conf. Data Mining, ICDM
– ident: e_1_2_14_16_1
  doi: 10.5194/hess-20-4655-2016
– volume: 8
  start-page: 229
  year: 1959
  ident: e_1_2_14_33_1
  article-title: Fonctions de répartition à N dimensions et leurs marges
  publication-title: Publ. L’Institut Stat. L’Universit{é} Paris
– ident: e_1_2_14_25_1
  doi: 10.1016/s0010-4655(02)00280-1
– ident: e_1_2_14_39_1
  doi: 10.1037/a0027127
– ident: e_1_2_14_11_1
  doi: 10.1016/j.ress.2018.12.003
– ident: e_1_2_14_32_1
– ident: e_1_2_14_37_1
  doi: 10.1109/ICDMW.2011.135
– ident: e_1_2_14_7_1
  doi: 10.1016/j.csda.2006.01.001
– ident: e_1_2_14_4_1
  doi: 10.1016/j.envsoft.2011.06.006
– ident: e_1_2_14_35_1
  doi: 10.1016/j.envsoft.2015.09.011
– ident: e_1_2_14_19_1
  doi: 10.1016/j.envsoft.2016.02.008
– ident: e_1_2_14_13_1
  doi: 10.1198/106186005X59586
– ident: e_1_2_14_38_1
  doi: 10.1016/J.JHYDROL.2005.09.008
– ident: e_1_2_14_3_1
  doi: 10.1007/s00357-005-0014-7
– ident: e_1_2_14_31_1
  doi: 10.1016/J.ENVSOFT.2018.09.002
– ident: e_1_2_14_14_1
  doi: 10.5281/zenodo.10205100
– ident: e_1_2_14_40_1
  doi: 10.5194/hess-5-13-2001
– ident: e_1_2_14_15_1
  doi: 10.1080/10618600.2016.1200472
– ident: e_1_2_14_27_1
  doi: 10.1016/0951-8320(95)00099-2
– ident: e_1_2_14_17_1
  doi: 10.1016/j.envsoft.2015.03.020
– ident: e_1_2_14_2_1
  doi: 10.1109/TAC.1974.1100705
– ident: e_1_2_14_12_1
  doi: 10.1016/j.ress.2010.11.003
– volume-title: Sensitivity analysis in practice: A guide to assessing scientific models
  year: 2004
  ident: e_1_2_14_28_1
– ident: e_1_2_14_29_1
  doi: 10.1029/2020wr028435
– ident: e_1_2_14_26_1
  doi: 10.1002/9780470725184
– ident: e_1_2_14_5_1
  doi: 10.1080/00401706.1986.10488093
– ident: e_1_2_14_36_1
  doi: 10.1198/016214506000000302
– ident: e_1_2_14_21_1
  doi: 10.1002/2014WR016527
– ident: e_1_2_14_9_1
  doi: 10.1016/j.envsoft.2019.07.007
– ident: e_1_2_14_24_1
  doi: 10.1093/comjnl/3.3.175
– ident: e_1_2_14_20_1
  doi: 10.1016/j.ejor.2012.11.047
– ident: e_1_2_14_10_1
  doi: 10.1016/0951-8320(96)00002-6
– ident: e_1_2_14_8_1
  doi: 10.1016/j.automatica.2012.05.004
– ident: e_1_2_14_18_1
  doi: 10.1016/J.ENVSOFT.2011.08.010
– ident: e_1_2_14_22_1
  doi: 10.1016/j.envsoft.2020.104954
– ident: e_1_2_14_23_1
  doi: 10.1029/2009WR008328
– ident: e_1_2_14_34_1
  doi: 10.1016/S0378-4754(00)00270-6
– ident: e_1_2_14_41_1
  doi: 10.1162/neco.1996.8.1.129
– ident: e_1_2_14_30_1
  doi: 10.1029/2020GL089829
– ident: e_1_2_14_6_1
  doi: 10.1029/2006JD007534
SSID ssj0014567
Score 2.465739
Snippet Global sensitivity analysis (GSA) enhances our understanding of computational models and simplifies model parameter estimation. VarIance‐based Sensitivity...
Abstract Global sensitivity analysis (GSA) enhances our understanding of computational models and simplifies model parameter estimation. VarIance‐based...
SourceID doaj
unpaywall
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms computationally efficient
Computer applications
computer software
Fluid dynamics
Gaussian mixture copula model
given‐data approach
global sensitivity analysis
Mathematical models
Methods
non‐identifiability
Parameter estimation
Parameter identification
Parameter sensitivity
Parameters
Physical simulation
Python
Random variables
Sensitivity analysis
Sensitivity enhancement
Sobol' sensitivity index
Variance analysis
water
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEBZlc8ipbfpDXdKgQttL62DZsiwdN0uWUOhStl2Snox-G-jiXTa7hOSUR8gz5kmqkWWTLW0p9GZsSUjWjPSNRvMNQm-Y0s4aUqQy4zT19pdKpdVF6s1r5krmjOMQ7_xpwk5m9ONZeXYvFqblh-gP3EAzwnoNCr40rl3nI-WAAMs9P51m3syCeN8dVno8PkA7s8nn4bfOtQwQJ7iWKU0rURXx9ntX_XLVVt_alwJ9_xbm3N00S3l1KefzbRQbtqHxI6S7AbS3T34cbtbqUF__wu34fyN8jB5GlIqHrVjtoQe2eYJ2uyDmC_8ck6efXz1Fk2GD27MJa_AoJAS7u7k98tujwePu7hf24BgfB74Kv83hNtUA_gLX59v8FbijR3mGZuPjr6OTNKZpSKVfZUma24KJ3BUl50IqrgCRCWWoKU3lOCeOZpI4RYwXikoZJ0sYjPamCWPaZKp4jgbNorEvECbKT1BR6SKzhPqGfGu6yAmzlnOjKUvQ-26Sah05zCGVxrwOvvRc1Pf_V4Le9qWXLXfHH8odwXz3ZYBxO7xYrL7XUYFrrTVxGXXgqKYeBgpeZkRmTFHtALQlaL-TljouAxd1LghEPvPM9_x1_9krMHhlZGMXGyhDc0iYLGiC3vVS9tsOd7KaoA9Bbv46qvp0OprmkJ7g5b-2u48G69XGvvIwa60Ooh79BMJeIXQ
  priority: 102
  providerName: Unpaywall
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQOZQL4ikWCjIScIGI-BHHObarriokKrRQtbfIT3pYZavdrqre-An9jf0lzDhO1JUAiVuUjCPH44m_8Xi-IeSdsi4Gz0RhSi0L8L9sYYITBbjXKlYq-qgx3_nrsTo6kV_OqrO84Ya5MD0_xLjhhpaR_tdo4MauM9kAcmSC185P5yW4WJjre58BlMEZzuW3MYoA4KAeIsyIdPLBd2j_-W7rrSUpMfdvwc3dTXdhrq_MYrENYNMKNHtEHmboSPd7XT8m90L3hOwOmcVruM4Vzc-vn5Lj_Y72GwbB02mq0nX76-YA1ixPZ8OBLAqIlR4mEglYe2jP_0-_45n2vqgEHThLnpGT2eGP6VGRaycUBn59rOBBqIZHUWndGKstwqTGeukrX0etWZSlYdEyD5qqrY-mwpFw4C8o5XxpxXOy0y278IJQZptaiNqJMjAJL4K3OcGZCkFr76SakI_D8LUuE4tjfYtFmwLcvGnvDvaEvB-lL3pCjb_IHaAmRhmkwU43lqufbbaq1jnHYikjRo8lYLNGVyUzpbLSRURSE7I36LHNtrluecMwHVmX0PO342OwKgyVmC4sNygjOVYxbuSEfBj1_8cOX62GDn9Kk-OfX9WezqdzjjUDXv6f-CvyAB7IfvNnj-xcrjbhNcChS_smzfnfIhL-gQ
  priority: 102
  providerName: Wiley-Blackwell
Title An Improved Copula‐Based Framework for Efficient Global Sensitivity Analysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022WR033808
https://www.proquest.com/docview/2919359806
https://www.proquest.com/docview/2942101494
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2022WR033808
https://doaj.org/article/ccc1f04f4529461598501a06b4cf6355
UnpaywallVersion publishedVersion
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: DOA
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: 24P
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEG40HuJFfOJqXFpQLzrYr-npPm6WLEFwCatL4mnoJzksk5BkCbn5E_yN_hKr5rFswMfF2zBTNDVd1V1VXdX1EfJG-5BT5LJwzKgC4i9fuBRkAeG1zqXOMRu87_x5rg-X6tNJebIF9YU1YV174G7iPoYQeGYqY4JQgfm1pmTcMe1VyGgscfdlxg7BVJ8_ALegGnLL6OP0Je9MWIz2xfGCQWiGkJJbxqjt2X_L0dxdN-fu5tqtVrdd19b2zB6SB73TSCcds4_IndQ8JrvDneJLeO6xzE9vnpD5pKHdUUGKdNric_38_mMfrFWks6EUi4KvSg_a9hFgdWjX-Z9-wWr2Dk6CDt1KnpLl7ODr9LDoURMKB5seL0SS2oosS2Os88ajg2R9VLGMVTaGZ8Ucz55HkFHlY3YlzkSASEHrEJmXz8hOc9ak54RybyspqyBZ4goGgtGCFFynZEwMSo_I-2H66tC3FEdki1XdpraFrbcne0TebqjPu1Yaf6DbR0lsaLABdvsC1KLu1aL-l1qMyN4gx7pflZe1sBwvIhsGnL_efIb1hEkS16SzNdIogfjFVo3Iu438f8vw9cXA8IdWOf76V_XxYroQiBbw4n_830tyH0ZX3WHQHtm5ulinV-AeXfkxuSvU0bhdD2Nybzk_mnz7BUodB9I
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQOSwXxFMsFDAScIEI23Ec59iuulqgXaGlVXuz_ITDKlttu6p64yfwG_klzOSlrgRI3KJkHDkeT_yNx_MNIa-V8ykGnmeWaZmB_-UyG32egXutUqFSSBrznY_manYiP50VZ12dU8yFafkhhg03tIzmf40GjhvSHdsAkmSC2y5OFwx8LEz2vS0VV-h9CfllCCMAOij7EDNCne7kO7T_cLP11prUUPdv4c3Rpj6311d2udxGsM0SNL1H7nbYke61yr5PbsX6ARn1qcUXcN2VNP9-_ZDM92ra7hjEQCdNma5fP37uw6IV6LQ_kUUBstKDhkUCFh_aFgCgX_FQe1tVgvakJY_IyfTgeDLLuuIJmYV_H89EzFUlUl5oXVmnHeKkygUZilAmrXmSzPLkeABVlS4kW-BIeHAYlPKBufwx2alXdXxCKHdVmeelz1nkEl4Eb_O54CpGrYOXakze9cNnfMcsjgUulqaJcIvK3BzsMXkzSJ-3jBp_kdtHTQwyyIPd3Fitv5nOrIz3nicmE4aPYQIUlS4Yt0w56RNCqTHZ7fVoOuO8MKLimI-sGfT81fAYzApjJbaOqw3KSIFljCs5Jm8H_f-xw1frvsPvm8nxz68yp4vJQmDRgKf_J_6SjGbHR4fm8OP88zNyB4RkuxO0S3Yu15v4HLDRpXvRzP_f6ScB_A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQK1EuiKdYKGAk4AIRduI4zrFduiqvVbVQtTfLTzissqttV1Vv_Qn8Rn4JM4kTdSVA4hYlk8jxZDLfeDzfEPJSWheD50VmmBIZxF82M8EVGYTXMpYy-qiw3vnLVB4ei4-n5Wnqc4q1MB0_xLDghpbR_q_RwMPSx8Q2gCSZELbnJzMGMRYW-26LEpwhUjuLoyGNAOig6lPMCHXSzne4_931uzd8Ukvdv4E3d9bN0lxemPl8E8G2Lmhyh9xO2JHudcq-S26E5h7Z6UuLz-A4tTT_cXmfTPca2q0YBE_HbZuuX1c_98FpeTrpd2RRgKz0oGWRAOdDuwYA9Ctuau-6StCetOQBOZ4cfBsfZql5Qmbg38ezPBSyzmNRKlUbqyzipNp64UtfRaV4FMzwaLkHVVXWR1PiTDgIGKR0ntniIdlqFk14RCi3dVUUlStY4AIeBE9zRc5lCEp5J-SIvOmnT7vELI4NLua6zXDntb4-2SPyapBedowaf5HbR00MMsiD3Z5YrL7rZFbaOccjExHTxwLAWa1Kxg2TVriIUGpEdns96mScZzqvOdYjKwYjfzFcBrPCXIlpwmKNMiLHNsa1GJHXg_7_OOCLVT_gt-3H8c-30iez8SzHpgGP_0_8Obl59H6iP3-YfnpCboGM6BaCdsnW-WodngI0OrfP2s__N5-MAYs
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEBZlc8ipbfpDXdKgQttL62DZsiwdN0uWUOhStl2Snox-G-jiXTa7hOSUR8gz5kmqkWWTLW0p9GZsSUjWjPSNRvMNQm-Y0s4aUqQy4zT19pdKpdVF6s1r5krmjOMQ7_xpwk5m9ONZeXYvFqblh-gP3EAzwnoNCr40rl3nI-WAAMs9P51m3syCeN8dVno8PkA7s8nn4bfOtQwQJ7iWKU0rURXx9ntX_XLVVt_alwJ9_xbm3N00S3l1KefzbRQbtqHxI6S7AbS3T34cbtbqUF__wu34fyN8jB5GlIqHrVjtoQe2eYJ2uyDmC_8ck6efXz1Fk2GD27MJa_AoJAS7u7k98tujwePu7hf24BgfB74Kv83hNtUA_gLX59v8FbijR3mGZuPjr6OTNKZpSKVfZUma24KJ3BUl50IqrgCRCWWoKU3lOCeOZpI4RYwXikoZJ0sYjPamCWPaZKp4jgbNorEvECbKT1BR6SKzhPqGfGu6yAmzlnOjKUvQ-26Sah05zCGVxrwOvvRc1Pf_V4Le9qWXLXfHH8odwXz3ZYBxO7xYrL7XUYFrrTVxGXXgqKYeBgpeZkRmTFHtALQlaL-TljouAxd1LghEPvPM9_x1_9krMHhlZGMXGyhDc0iYLGiC3vVS9tsOd7KaoA9Bbv46qvp0OprmkJ7g5b-2u48G69XGvvIwa60Ooh79BMJeIXQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Copula%E2%80%90Based+Framework+for+Efficient+Global+Sensitivity+Analysis&rft.jtitle=Water+resources+research&rft.au=Hongli+Liu&rft.au=Martyn+P.+Clark&rft.au=Shervan+Gharari&rft.au=Razi+Sheikholeslami&rft.date=2024-01-01&rft.pub=Wiley&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=60&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2022WR033808&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ccc1f04f4529461598501a06b4cf6355
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon