An Improved Copula‐Based Framework for Efficient Global Sensitivity Analysis
Global sensitivity analysis (GSA) enhances our understanding of computational models and simplifies model parameter estimation. VarIance‐based Sensitivity analysis using COpUlaS (VISCOUS) is a variance‐based GSA framework. The advantage of VISCOUS is that it can use existing model input‐output data...
        Saved in:
      
    
          | Published in | Water resources research Vol. 60; no. 1 | 
|---|---|
| Main Authors | , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Washington
          John Wiley & Sons, Inc
    
        01.01.2024
     Wiley  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0043-1397 1944-7973 1944-7973  | 
| DOI | 10.1029/2022WR033808 | 
Cover
| Abstract | Global sensitivity analysis (GSA) enhances our understanding of computational models and simplifies model parameter estimation. VarIance‐based Sensitivity analysis using COpUlaS (VISCOUS) is a variance‐based GSA framework. The advantage of VISCOUS is that it can use existing model input‐output data (e.g., water model parameters‐responses) to estimate the first‐ and total‐order Sobol’ sensitivity indices. This study improves VISCOUS by refining its handling of marginal densities of the Gaussian mixture copula model (GMCM). We then evaluate VISCOUS using three types of generic functions relevant to water system models. We observe that its performance depends on function dimension, input‐output data size, and non‐identifiability. Function dimension refers to the number of uncertain input factors analyzed in GSA, and non‐identifiability refers to the inability to estimate GMCM parameters. VISCOUS proves powerful in estimating first‐order sensitivity with a small amount of input‐output data (e.g., 200 in this study), regardless of function dimension. It always ranks input factors correctly in both first‐ and total‐order terms. For estimating total‐order sensitivity, it is recommended to use VISCOUS when the function dimension is not very high (e.g., less than 20) due to the challenge of producing sufficient input‐output data for accurate GMCM inferences (e.g., more than 10,000 data). In cases where all input factors are equally important (a rarity in practice), VISCOUS faces non‐identifiability issues that impact its performance. We provide a didactic example and an open‐source Python code, pyVISCOUS, for broader user adoption.
Plain Language Summary
Global sensitivity analysis is a method used to better understand and estimate parameters in computational models. VarIance‐based Sensitivity analysis using COpUlaS (VISCOUS) is a framework for this purpose. It estimates the sensitivity of model outcomes to different uncertain model input factors by using the existing input and output data (e.g., water model parameters and responses). This study improved VISCOUS and tested it with various functions. We found that its performance depends on the number of input factors, the amount of input and output data available, and our ability to determine VISCOUS's parameters. VISCOUS is good at estimating the importance of individual input factors, even with limited data (e.g., 200) and numerous input factors. It always correctly ranks input factor importance, whether individually or collectively. When estimating the importance of input factors together, VISCOUS is recommended when the number of input factors is not very high (e.g., <20), as it is challenging to generate enough input and output data for estimating VISCOUS's parameters. When all input factors hold equal importance (though rare in practice), VISCOUS's performance is impacted due to the difficulty of estimating VISCOUS's parameters. To help people use VISCOUS, we provide an example and an open‐source Python code, pyVISCOUS.
Key Points
We improve the VarIance‐based Sensitivity analysis using COpUlaS (VISCOUS) global sensitivity analysis framework in its handling of marginal densities of the Gaussian mixture copula model
We evaluate VISCOUS and demonstrate how its performance is affected by function dimension, input‐output size, and non‐identifiability
We provide a didactic example and an open‐source Python code called pyVISCOUS to make VISCOUS easier to understand and apply | 
    
|---|---|
| AbstractList | Global sensitivity analysis (GSA) enhances our understanding of computational models and simplifies model parameter estimation. VarIance‐based Sensitivity analysis using COpUlaS (VISCOUS) is a variance‐based GSA framework. The advantage of VISCOUS is that it can use existing model input‐output data (e.g., water model parameters‐responses) to estimate the first‐ and total‐order Sobol’ sensitivity indices. This study improves VISCOUS by refining its handling of marginal densities of the Gaussian mixture copula model (GMCM). We then evaluate VISCOUS using three types of generic functions relevant to water system models. We observe that its performance depends on function dimension, input‐output data size, and non‐identifiability. Function dimension refers to the number of uncertain input factors analyzed in GSA, and non‐identifiability refers to the inability to estimate GMCM parameters. VISCOUS proves powerful in estimating first‐order sensitivity with a small amount of input‐output data (e.g., 200 in this study), regardless of function dimension. It always ranks input factors correctly in both first‐ and total‐order terms. For estimating total‐order sensitivity, it is recommended to use VISCOUS when the function dimension is not very high (e.g., less than 20) due to the challenge of producing sufficient input‐output data for accurate GMCM inferences (e.g., more than 10,000 data). In cases where all input factors are equally important (a rarity in practice), VISCOUS faces non‐identifiability issues that impact its performance. We provide a didactic example and an open‐source Python code, pyVISCOUS, for broader user adoption. Abstract Global sensitivity analysis (GSA) enhances our understanding of computational models and simplifies model parameter estimation. VarIance‐based Sensitivity analysis using COpUlaS (VISCOUS) is a variance‐based GSA framework. The advantage of VISCOUS is that it can use existing model input‐output data (e.g., water model parameters‐responses) to estimate the first‐ and total‐order Sobol’ sensitivity indices. This study improves VISCOUS by refining its handling of marginal densities of the Gaussian mixture copula model (GMCM). We then evaluate VISCOUS using three types of generic functions relevant to water system models. We observe that its performance depends on function dimension, input‐output data size, and non‐identifiability. Function dimension refers to the number of uncertain input factors analyzed in GSA, and non‐identifiability refers to the inability to estimate GMCM parameters. VISCOUS proves powerful in estimating first‐order sensitivity with a small amount of input‐output data (e.g., 200 in this study), regardless of function dimension. It always ranks input factors correctly in both first‐ and total‐order terms. For estimating total‐order sensitivity, it is recommended to use VISCOUS when the function dimension is not very high (e.g., less than 20) due to the challenge of producing sufficient input‐output data for accurate GMCM inferences (e.g., more than 10,000 data). In cases where all input factors are equally important (a rarity in practice), VISCOUS faces non‐identifiability issues that impact its performance. We provide a didactic example and an open‐source Python code, pyVISCOUS, for broader user adoption. Global sensitivity analysis (GSA) enhances our understanding of computational models and simplifies model parameter estimation. VarIance‐based Sensitivity analysis using COpUlaS (VISCOUS) is a variance‐based GSA framework. The advantage of VISCOUS is that it can use existing model input‐output data (e.g., water model parameters‐responses) to estimate the first‐ and total‐order Sobol’ sensitivity indices. This study improves VISCOUS by refining its handling of marginal densities of the Gaussian mixture copula model (GMCM). We then evaluate VISCOUS using three types of generic functions relevant to water system models. We observe that its performance depends on function dimension, input‐output data size, and non‐identifiability. Function dimension refers to the number of uncertain input factors analyzed in GSA, and non‐identifiability refers to the inability to estimate GMCM parameters. VISCOUS proves powerful in estimating first‐order sensitivity with a small amount of input‐output data (e.g., 200 in this study), regardless of function dimension. It always ranks input factors correctly in both first‐ and total‐order terms. For estimating total‐order sensitivity, it is recommended to use VISCOUS when the function dimension is not very high (e.g., less than 20) due to the challenge of producing sufficient input‐output data for accurate GMCM inferences (e.g., more than 10,000 data). In cases where all input factors are equally important (a rarity in practice), VISCOUS faces non‐identifiability issues that impact its performance. We provide a didactic example and an open‐source Python code, pyVISCOUS, for broader user adoption. Plain Language Summary Global sensitivity analysis is a method used to better understand and estimate parameters in computational models. VarIance‐based Sensitivity analysis using COpUlaS (VISCOUS) is a framework for this purpose. It estimates the sensitivity of model outcomes to different uncertain model input factors by using the existing input and output data (e.g., water model parameters and responses). This study improved VISCOUS and tested it with various functions. We found that its performance depends on the number of input factors, the amount of input and output data available, and our ability to determine VISCOUS's parameters. VISCOUS is good at estimating the importance of individual input factors, even with limited data (e.g., 200) and numerous input factors. It always correctly ranks input factor importance, whether individually or collectively. When estimating the importance of input factors together, VISCOUS is recommended when the number of input factors is not very high (e.g., <20), as it is challenging to generate enough input and output data for estimating VISCOUS's parameters. When all input factors hold equal importance (though rare in practice), VISCOUS's performance is impacted due to the difficulty of estimating VISCOUS's parameters. To help people use VISCOUS, we provide an example and an open‐source Python code, pyVISCOUS. Key Points We improve the VarIance‐based Sensitivity analysis using COpUlaS (VISCOUS) global sensitivity analysis framework in its handling of marginal densities of the Gaussian mixture copula model We evaluate VISCOUS and demonstrate how its performance is affected by function dimension, input‐output size, and non‐identifiability We provide a didactic example and an open‐source Python code called pyVISCOUS to make VISCOUS easier to understand and apply Global sensitivity analysis (GSA) enhances our understanding of computational models and simplifies model parameter estimation. VarIance‐based Sensitivity analysis using COpUlaS (VISCOUS) is a variance‐based GSA framework. The advantage of VISCOUS is that it can use existing model input‐output data (e.g., water model parameters‐responses) to estimate the first‐ and total‐order Sobol’ sensitivity indices. This study improves VISCOUS by refining its handling of marginal densities of the Gaussian mixture copula model (GMCM). We then evaluate VISCOUS using three types of generic functions relevant to water system models. We observe that its performance depends on function dimension, input‐output data size, and non‐identifiability. Function dimension refers to the number of uncertain input factors analyzed in GSA, and non‐identifiability refers to the inability to estimate GMCM parameters. VISCOUS proves powerful in estimating first‐order sensitivity with a small amount of input‐output data (e.g., 200 in this study), regardless of function dimension. It always ranks input factors correctly in both first‐ and total‐order terms. For estimating total‐order sensitivity, it is recommended to use VISCOUS when the function dimension is not very high (e.g., less than 20) due to the challenge of producing sufficient input‐output data for accurate GMCM inferences (e.g., more than 10,000 data). In cases where all input factors are equally important (a rarity in practice), VISCOUS faces non‐identifiability issues that impact its performance. We provide a didactic example and an open‐source Python code, pyVISCOUS, for broader user adoption. Global sensitivity analysis is a method used to better understand and estimate parameters in computational models. VarIance‐based Sensitivity analysis using COpUlaS (VISCOUS) is a framework for this purpose. It estimates the sensitivity of model outcomes to different uncertain model input factors by using the existing input and output data (e.g., water model parameters and responses). This study improved VISCOUS and tested it with various functions. We found that its performance depends on the number of input factors, the amount of input and output data available, and our ability to determine VISCOUS's parameters. VISCOUS is good at estimating the importance of individual input factors, even with limited data (e.g., 200) and numerous input factors. It always correctly ranks input factor importance, whether individually or collectively. When estimating the importance of input factors together, VISCOUS is recommended when the number of input factors is not very high (e.g., <20), as it is challenging to generate enough input and output data for estimating VISCOUS's parameters. When all input factors hold equal importance (though rare in practice), VISCOUS's performance is impacted due to the difficulty of estimating VISCOUS's parameters. To help people use VISCOUS, we provide an example and an open‐source Python code, pyVISCOUS. We improve the VarIance‐based Sensitivity analysis using COpUlaS (VISCOUS) global sensitivity analysis framework in its handling of marginal densities of the Gaussian mixture copula model We evaluate VISCOUS and demonstrate how its performance is affected by function dimension, input‐output size, and non‐identifiability We provide a didactic example and an open‐source Python code called pyVISCOUS to make VISCOUS easier to understand and apply  | 
    
| Author | Knoben, Wouter J. M. Sheikholeslami, Razi Clark, Martyn P. Papalexiou, Simon Michael Marsh, Christopher B. Freer, Jim Liu, Hongli Gharari, Shervan  | 
    
| Author_xml | – sequence: 1 givenname: Hongli orcidid: 0000-0002-2756-3247 surname: Liu fullname: Liu, Hongli email: hongli.liu@ualberta.ca organization: University of Saskatchewan – sequence: 2 givenname: Martyn P. orcidid: 0000-0002-2186-2625 surname: Clark fullname: Clark, Martyn P. organization: University of Saskatchewan – sequence: 3 givenname: Shervan orcidid: 0000-0002-5358-5714 surname: Gharari fullname: Gharari, Shervan organization: University of Saskatchewan – sequence: 4 givenname: Razi orcidid: 0000-0001-8004-1985 surname: Sheikholeslami fullname: Sheikholeslami, Razi organization: Sharif University of Technology – sequence: 5 givenname: Jim surname: Freer fullname: Freer, Jim organization: University of Saskatchewan – sequence: 6 givenname: Wouter J. M. orcidid: 0000-0001-8301-3787 surname: Knoben fullname: Knoben, Wouter J. M. organization: University of Saskatchewan – sequence: 7 givenname: Christopher B. orcidid: 0000-0002-1372-4513 surname: Marsh fullname: Marsh, Christopher B. organization: University of Saskatchewan – sequence: 8 givenname: Simon Michael orcidid: 0000-0001-5633-0154 surname: Papalexiou fullname: Papalexiou, Simon Michael organization: University of Calgary  | 
    
| BookMark | eNp9kc1uEzEURi1UJNLCjgcYiQ0LBvw_42WI2hKpAimAurTueGzk4IyDPdMoOx6BZ-RJcBhgUQEry9a532cfn6OzIQ4WoacEvySYqlcUU3q7wYy1uH2AFkRxXjeqYWdogTFnNWGqeYTOc95iTLiQzQK9XQ7VerdP8c721SrupwDfv357DblsrxLs7CGmz5WLqbp0zhtvh7G6DrGDUL23Q_ajv_PjsVoOEI7Z58fooYOQ7ZNf6wX6eHX5YfWmvnl3vV4tb2rgsiE1tUwq6phoWwVd2wlJsOp63ou-cW1LHMdAXEd6Z_um6x2I05MM5kpK0-OOXaD1nNtH2Op98jtIRx3B658HMX3SkEZvgtXGGOIwd1xQxSURqhWYAJYdN04yIUpWPWdNwx6OBwjhTyDB-iRWn8Qe0iy28M9nvlj7Mtk86p3PxoYAg41T1qWGkuJX8YI-u4du45SKqxNFFCuXwbJQL2bKpJhzsu6v_b8_tuD0Hm78CKOPw5jAh38NsXno4IM9_rdA325WG9pgRtgP_O-zvA | 
    
| CitedBy_id | crossref_primary_10_1016_j_jhydrol_2024_132014 crossref_primary_10_1029_2022WR032400 crossref_primary_10_1029_2024WR037398  | 
    
| Cites_doi | 10.5194/hess-20-4655-2016 10.1016/s0010-4655(02)00280-1 10.1037/a0027127 10.1016/j.ress.2018.12.003 10.1109/ICDMW.2011.135 10.1016/j.csda.2006.01.001 10.1016/j.envsoft.2011.06.006 10.1016/j.envsoft.2015.09.011 10.1016/j.envsoft.2016.02.008 10.1198/106186005X59586 10.1016/J.JHYDROL.2005.09.008 10.1007/s00357-005-0014-7 10.1016/J.ENVSOFT.2018.09.002 10.5281/zenodo.10205100 10.5194/hess-5-13-2001 10.1080/10618600.2016.1200472 10.1016/0951-8320(95)00099-2 10.1016/j.envsoft.2015.03.020 10.1109/TAC.1974.1100705 10.1016/j.ress.2010.11.003 10.1029/2020wr028435 10.1002/9780470725184 10.1080/00401706.1986.10488093 10.1198/016214506000000302 10.1002/2014WR016527 10.1016/j.envsoft.2019.07.007 10.1093/comjnl/3.3.175 10.1016/j.ejor.2012.11.047 10.1016/0951-8320(96)00002-6 10.1016/j.automatica.2012.05.004 10.1016/J.ENVSOFT.2011.08.010 10.1016/j.envsoft.2020.104954 10.1029/2009WR008328 10.1016/S0378-4754(00)00270-6 10.1162/neco.1996.8.1.129 10.1029/2020GL089829 10.1029/2006JD007534  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024. The Authors. 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: 2024. The Authors. – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | 24P AAYXX CITATION 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 7S9 L.6 ADTOC UNPAY DOA  | 
    
| DOI | 10.1029/2022WR033808 | 
    
| DatabaseName | Wiley Online Library Open Access CrossRef Aqualine Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts Virology and AIDS Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Technology Research Database Aqualine Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA CrossRef Civil Engineering Abstracts  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography Economics  | 
    
| EISSN | 1944-7973 | 
    
| EndPage | n/a | 
    
| ExternalDocumentID | oai_doaj_org_article_ccc1f04f4529461598501a06b4cf6355 10.1029/2022wr033808 10_1029_2022WR033808 WRCR27031  | 
    
| Genre | methodAndProtocol | 
    
| GroupedDBID | -~X ..I .DC 05W 0R~ 123 1OB 1OC 24P 31~ 33P 3V. 50Y 5VS 6TJ 7WY 7XC 8-1 8CJ 8FE 8FG 8FH 8FL 8G5 8R4 8R5 8WZ A00 A6W AAESR AAHBH AAHHS AAIHA AAIKC AAMNW AANHP AANLZ AASGY AAXRX AAYCA AAYJJ AAYOK AAZKR ABCUV ABJCF ABJNI ABPPZ ABTAH ABUWG ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFO ACGFS ACIWK ACKIV ACNCT ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYN AEUYR AFBPY AFGKR AFKRA AFPWT AFRAH AFWVQ AFZJQ AIDBO AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ASPBG ATCPS AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BEZIV BFHJK BGLVJ BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU CS3 D0L D1J DCZOG DDYGU DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD F5P FEDTE FRNLG G-S GNUQQ GODZA GROUPED_ABI_INFORM_COMPLETE GUQSH HCIFZ HVGLF HZ~ K60 K6~ L6V LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M0C M2O M7R M7S MEWTI MSFUL MSSTM MVM MW2 MXFUL MXSTM MY~ O9- OHT OK1 P-X P2P P2W PALCI PATMY PCBAR PQBIZ PQBZA PQQKQ PROAC PTHSS PYCSY Q2X R.K RIWAO RJQFR ROL SAMSI SUPJJ TAE TN5 TWZ UQL VJK VOH WBKPD WXSBR WYJ XOL XSW YHZ YV5 ZCG ZY4 ZZTAW ~02 ~KM ~OA ~~A AAMMB AAYXX ADXHL AEFGJ AETEA AGQPQ AGXDD AIDQK AIDYY AIQQE CITATION GROUPED_DOAJ PHGZM PHGZT PQGLB PUEGO WIN 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 7S9 L.6 ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-a4671-2e3692f35889ab8b56109bd4d5d7f881f40a1fb1dfed7bdfa53808c04966cd0b3 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 0043-1397 1944-7973  | 
    
| IngestDate | Tue Oct 14 14:55:01 EDT 2025 Sun Oct 26 04:05:24 EDT 2025 Thu Oct 02 23:58:19 EDT 2025 Sat Aug 23 12:39:24 EDT 2025 Wed Oct 01 06:35:02 EDT 2025 Thu Apr 24 22:55:46 EDT 2025 Wed Jan 22 16:15:55 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| License | Attribution cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-a4671-2e3692f35889ab8b56109bd4d5d7f881f40a1fb1dfed7bdfa53808c04966cd0b3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-1372-4513 0000-0002-2186-2625 0000-0001-8301-3787 0000-0002-2756-3247 0000-0001-5633-0154 0000-0002-5358-5714 0000-0001-8004-1985  | 
    
| OpenAccessLink | https://doaj.org/article/ccc1f04f4529461598501a06b4cf6355 | 
    
| PQID | 2919359806 | 
    
| PQPubID | 105507 | 
    
| PageCount | 22 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ccc1f04f4529461598501a06b4cf6355 unpaywall_primary_10_1029_2022wr033808 proquest_miscellaneous_2942101494 proquest_journals_2919359806 crossref_primary_10_1029_2022WR033808 crossref_citationtrail_10_1029_2022WR033808 wiley_primary_10_1029_2022WR033808_WRCR27031  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | January 2024 2024-01-00 20240101 2024-01-01  | 
    
| PublicationDateYYYYMMDD | 2024-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2024 text: January 2024  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Washington | 
    
| PublicationPlace_xml | – name: Washington | 
    
| PublicationTitle | Water resources research | 
    
| PublicationYear | 2024 | 
    
| Publisher | John Wiley & Sons, Inc Wiley  | 
    
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley  | 
    
| References | 1995; 50 2017; 26 1960; 3 2011 2015; 51 2013; 226 2015; 74 2011; 96 2008 1996; 52 2004 2012; 17 2007; 51 2012; 34 2005; 22 1959; 8 1974; 19 2016; 79 2019; 187 2021; 57 2007; 112 2015; 69 2010; 46 2023 2021; 137 2001; 5 2002; 145 1986; 28 2016; 20 2019 2020; 47 2019; 119 2011; 26 2012; 48 2001; 55 2006; 324 2019; 111 2006; 101 1996; 8 2005; 14 e_1_2_14_30_1 e_1_2_14_31_1 Saltelli A. (e_1_2_14_28_1) 2004 e_1_2_14_11_1 e_1_2_14_34_1 e_1_2_14_10_1 e_1_2_14_35_1 e_1_2_14_13_1 e_1_2_14_32_1 e_1_2_14_12_1 e_1_2_14_15_1 e_1_2_14_38_1 e_1_2_14_14_1 e_1_2_14_39_1 e_1_2_14_17_1 e_1_2_14_36_1 e_1_2_14_16_1 e_1_2_14_37_1 e_1_2_14_29_1 e_1_2_14_6_1 e_1_2_14_5_1 e_1_2_14_8_1 e_1_2_14_7_1 e_1_2_14_9_1 e_1_2_14_2_1 e_1_2_14_41_1 e_1_2_14_20_1 e_1_2_14_4_1 Sklar A. (e_1_2_14_33_1) 1959; 8 e_1_2_14_3_1 e_1_2_14_40_1 e_1_2_14_23_1 e_1_2_14_24_1 e_1_2_14_21_1 e_1_2_14_22_1 e_1_2_14_27_1 e_1_2_14_25_1 e_1_2_14_26_1 e_1_2_14_19_1 e_1_2_14_18_1  | 
    
| References_xml | – volume: 3 start-page: 175 year: 1960 end-page: 184 article-title: An automatic method for finding the greatest or least value of a function publication-title: The Computer Journal – volume: 8 start-page: 229 year: 1959 end-page: 231 article-title: Fonctions de répartition à N dimensions et leurs marges publication-title: Publ. L’Institut Stat. L’Universit{é} Paris – volume: 74 start-page: 140 year: 2015 end-page: 155 article-title: Simple approach to emulating complex computer models for global sensitivity analysis publication-title: Environmental Modelling & Software – volume: 101 start-page: 1566 issue: 476 year: 2006 end-page: 1581 article-title: Hierarchical Dirichlet processes publication-title: Journal of the American Statistical Association – volume: 34 start-page: 105 year: 2012 end-page: 115 article-title: Model emulation and moment‐independent sensitivity analysis: An application to environmental modelling publication-title: Environmental Modelling & Software – volume: 51 start-page: 2573 issue: 5 year: 2007 end-page: 2585 article-title: A mixture of mixture models for a classification problem: The unity measure error publication-title: Computational Statistics & Data Analysis – volume: 119 start-page: 418 year: 2019 end-page: 432 article-title: Introductory overview of identifiability analysis: A guide to evaluating whether you have the right type of data for your modeling purpose publication-title: Environmental Modelling & Software – volume: 28 start-page: 11 issue: 1 year: 1986 end-page: 18 article-title: An analysis for unreplicated fractional factorials publication-title: Technometrics – year: 2008 article-title: Global sensitivity analysis publication-title: The Primer – volume: 112 issue: D11 year: 2007 article-title: Monte Carlo sensitivity analysis of land surface parameters using the Variable Infiltration Capacity model publication-title: Journal of Geophysical Research – volume: 187 start-page: 40 year: 2019 end-page: 57 article-title: Probability models for data‐driven global sensitivity analysis publication-title: Reliability Engineering & System Safety – volume: 5 start-page: 13 issue: 1 year: 2001 end-page: 26 article-title: A framework for development and application of hydrological models publication-title: Hydrology and Earth System Sciences – volume: 22 start-page: 203 issue: 2 year: 2005 end-page: 219 article-title: Clustering univariate observations via mixtures of unimodal normal mixtures publication-title: Journal of Classification – volume: 79 start-page: 214 year: 2016 end-page: 232 article-title: Sensitivity analysis of environmental models: A systematic review with practical workflow publication-title: Environmental Modelling & Software – volume: 48 start-page: 2740 issue: 11 year: 2012 end-page: 2749 article-title: Limits of variance‐based sensitivity analysis for non‐identifiability testing in high dimensional dynamic models publication-title: Automatica – volume: 47 issue: 20 year: 2020 article-title: A fresh look at variography: Measuring dependence and possible sensitivities across geophysical systems from any given data publication-title: Geophysical Research Letters – volume: 226 start-page: 536 issue: 3 year: 2013 end-page: 550 article-title: Global sensitivity measures from given data publication-title: European Journal of Operational Research – volume: 57 issue: 7 year: 2021 article-title: VISCOUS: A variance‐based sensitivity analysis using copulas for efficient identification of dominant hydrological processes publication-title: Water Resources Research – volume: 26 start-page: 1515 issue: 12 year: 2011 end-page: 1525 article-title: Sobol’ sensitivity analysis of a complex environmental model publication-title: Environmental Modelling & Software – volume: 26 start-page: 285 issue: 2 year: 2017 end-page: 295 article-title: Identifying mixtures of mixtures using Bayesian estimation publication-title: Journal of Computational & Graphical Statistics – volume: 51 start-page: 3070 issue: 5 year: 2015 end-page: 3092 article-title: What do we mean by sensitivity analysis? The need for comprehensive characterization of “global” sensitivity in earth and environmental systems models publication-title: Water Resources Research – volume: 324 start-page: 10 issue: 1–4 year: 2006 end-page: 23 article-title: A global sensitivity analysis tool for the parameters of multi‐variable catchment models publication-title: Journal of Hydrology – volume: 20 start-page: 4655 issue: 11 year: 2016 end-page: 4671 article-title: Towards simplification of hydrologic modeling: Identification of dominant processes publication-title: Hydrology and Earth System Sciences – volume: 19 start-page: 716 issue: 6 year: 1974 end-page: 723 article-title: A new look at the statistical model identification publication-title: IEEE Transactions on Automatic Control – volume: 50 start-page: 225 issue: 3 year: 1995 end-page: 239 article-title: About the use of rank transformation in sensitivity analysis of model output publication-title: Reliability Engineering & System Safety – volume: 96 start-page: 440 issue: 4 year: 2011 end-page: 449 article-title: The identification of model effective dimensions using global sensitivity analysis publication-title: Reliability Engineering & System Safety – volume: 111 start-page: 282 year: 2019 end-page: 299 article-title: Global sensitivity analysis for high‐dimensional problems: How to objectively group factors and measure robustness and convergence while reducing computational cost publication-title: Environmental Modelling & Software – year: 2004 – year: 2023 – volume: 52 start-page: 1 year: 1996 end-page: 17 article-title: Importance measures in global sensitivity analysis of nonlinear models publication-title: Reliability Engineering & System Safety – volume: 55 start-page: 271 issue: 1–3 year: 2001 end-page: 280 article-title: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates publication-title: Mathematics and Computers in Simulation – volume: 69 start-page: 166 year: 2015 end-page: 174 article-title: An introduction to sensitivity assessment of simulation models publication-title: Environmental Modelling & Software – volume: 8 start-page: 129 issue: 1 year: 1996 end-page: 151 article-title: On convergence properties of the EM algorithm for Gaussian mixtures publication-title: Neural Computation – volume: 17 start-page: 228 issue: 2 year: 2012 end-page: 243 article-title: Model selection and psychological theory: A discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) publication-title: Psychological Methods – volume: 14 start-page: 547 issue: 3 year: 2005 end-page: 568 article-title: Clustering based on a multilayer mixture model publication-title: Journal of Computational & Graphical Statistics – volume: 137 year: 2021 article-title: The future of sensitivity analysis: An essential discipline for systems modeling and policy support publication-title: Environmental Modelling & Software – volume: 46 issue: 5 year: 2010 article-title: Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors publication-title: Water Resources Research – year: 2019 – volume: 145 start-page: 280 issue: 2 year: 2002 end-page: 297 article-title: Making best use of model evaluations to compute sensitivity indices publication-title: Computer Physics Communications – start-page: 286 year: 2011 end-page: 292 article-title: Parametric characterization of multimodal distributions with non‐Gaussian modes publication-title: Proc. ‐ IEEE Int. Conf. Data Mining, ICDM – ident: e_1_2_14_16_1 doi: 10.5194/hess-20-4655-2016 – volume: 8 start-page: 229 year: 1959 ident: e_1_2_14_33_1 article-title: Fonctions de répartition à N dimensions et leurs marges publication-title: Publ. L’Institut Stat. L’Universit{é} Paris – ident: e_1_2_14_25_1 doi: 10.1016/s0010-4655(02)00280-1 – ident: e_1_2_14_39_1 doi: 10.1037/a0027127 – ident: e_1_2_14_11_1 doi: 10.1016/j.ress.2018.12.003 – ident: e_1_2_14_32_1 – ident: e_1_2_14_37_1 doi: 10.1109/ICDMW.2011.135 – ident: e_1_2_14_7_1 doi: 10.1016/j.csda.2006.01.001 – ident: e_1_2_14_4_1 doi: 10.1016/j.envsoft.2011.06.006 – ident: e_1_2_14_35_1 doi: 10.1016/j.envsoft.2015.09.011 – ident: e_1_2_14_19_1 doi: 10.1016/j.envsoft.2016.02.008 – ident: e_1_2_14_13_1 doi: 10.1198/106186005X59586 – ident: e_1_2_14_38_1 doi: 10.1016/J.JHYDROL.2005.09.008 – ident: e_1_2_14_3_1 doi: 10.1007/s00357-005-0014-7 – ident: e_1_2_14_31_1 doi: 10.1016/J.ENVSOFT.2018.09.002 – ident: e_1_2_14_14_1 doi: 10.5281/zenodo.10205100 – ident: e_1_2_14_40_1 doi: 10.5194/hess-5-13-2001 – ident: e_1_2_14_15_1 doi: 10.1080/10618600.2016.1200472 – ident: e_1_2_14_27_1 doi: 10.1016/0951-8320(95)00099-2 – ident: e_1_2_14_17_1 doi: 10.1016/j.envsoft.2015.03.020 – ident: e_1_2_14_2_1 doi: 10.1109/TAC.1974.1100705 – ident: e_1_2_14_12_1 doi: 10.1016/j.ress.2010.11.003 – volume-title: Sensitivity analysis in practice: A guide to assessing scientific models year: 2004 ident: e_1_2_14_28_1 – ident: e_1_2_14_29_1 doi: 10.1029/2020wr028435 – ident: e_1_2_14_26_1 doi: 10.1002/9780470725184 – ident: e_1_2_14_5_1 doi: 10.1080/00401706.1986.10488093 – ident: e_1_2_14_36_1 doi: 10.1198/016214506000000302 – ident: e_1_2_14_21_1 doi: 10.1002/2014WR016527 – ident: e_1_2_14_9_1 doi: 10.1016/j.envsoft.2019.07.007 – ident: e_1_2_14_24_1 doi: 10.1093/comjnl/3.3.175 – ident: e_1_2_14_20_1 doi: 10.1016/j.ejor.2012.11.047 – ident: e_1_2_14_10_1 doi: 10.1016/0951-8320(96)00002-6 – ident: e_1_2_14_8_1 doi: 10.1016/j.automatica.2012.05.004 – ident: e_1_2_14_18_1 doi: 10.1016/J.ENVSOFT.2011.08.010 – ident: e_1_2_14_22_1 doi: 10.1016/j.envsoft.2020.104954 – ident: e_1_2_14_23_1 doi: 10.1029/2009WR008328 – ident: e_1_2_14_34_1 doi: 10.1016/S0378-4754(00)00270-6 – ident: e_1_2_14_41_1 doi: 10.1162/neco.1996.8.1.129 – ident: e_1_2_14_30_1 doi: 10.1029/2020GL089829 – ident: e_1_2_14_6_1 doi: 10.1029/2006JD007534  | 
    
| SSID | ssj0014567 | 
    
| Score | 2.465739 | 
    
| Snippet | Global sensitivity analysis (GSA) enhances our understanding of computational models and simplifies model parameter estimation. VarIance‐based Sensitivity... Abstract Global sensitivity analysis (GSA) enhances our understanding of computational models and simplifies model parameter estimation. VarIance‐based...  | 
    
| SourceID | doaj unpaywall proquest crossref wiley  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| SubjectTerms | computationally efficient Computer applications computer software Fluid dynamics Gaussian mixture copula model given‐data approach global sensitivity analysis Mathematical models Methods non‐identifiability Parameter estimation Parameter identification Parameter sensitivity Parameters Physical simulation Python Random variables Sensitivity analysis Sensitivity enhancement Sobol' sensitivity index Variance analysis water  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEBZlc8ipbfpDXdKgQttL62DZsiwdN0uWUOhStl2Snox-G-jiXTa7hOSUR8gz5kmqkWWTLW0p9GZsSUjWjPSNRvMNQm-Y0s4aUqQy4zT19pdKpdVF6s1r5krmjOMQ7_xpwk5m9ONZeXYvFqblh-gP3EAzwnoNCr40rl3nI-WAAMs9P51m3syCeN8dVno8PkA7s8nn4bfOtQwQJ7iWKU0rURXx9ntX_XLVVt_alwJ9_xbm3N00S3l1KefzbRQbtqHxI6S7AbS3T34cbtbqUF__wu34fyN8jB5GlIqHrVjtoQe2eYJ2uyDmC_8ck6efXz1Fk2GD27MJa_AoJAS7u7k98tujwePu7hf24BgfB74Kv83hNtUA_gLX59v8FbijR3mGZuPjr6OTNKZpSKVfZUma24KJ3BUl50IqrgCRCWWoKU3lOCeOZpI4RYwXikoZJ0sYjPamCWPaZKp4jgbNorEvECbKT1BR6SKzhPqGfGu6yAmzlnOjKUvQ-26Sah05zCGVxrwOvvRc1Pf_V4Le9qWXLXfHH8odwXz3ZYBxO7xYrL7XUYFrrTVxGXXgqKYeBgpeZkRmTFHtALQlaL-TljouAxd1LghEPvPM9_x1_9krMHhlZGMXGyhDc0iYLGiC3vVS9tsOd7KaoA9Bbv46qvp0OprmkJ7g5b-2u48G69XGvvIwa60Ooh79BMJeIXQ priority: 102 providerName: Unpaywall – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQOZQL4ikWCjIScIGI-BHHObarriokKrRQtbfIT3pYZavdrqre-An9jf0lzDhO1JUAiVuUjCPH44m_8Xi-IeSdsi4Gz0RhSi0L8L9sYYITBbjXKlYq-qgx3_nrsTo6kV_OqrO84Ya5MD0_xLjhhpaR_tdo4MauM9kAcmSC185P5yW4WJjre58BlMEZzuW3MYoA4KAeIsyIdPLBd2j_-W7rrSUpMfdvwc3dTXdhrq_MYrENYNMKNHtEHmboSPd7XT8m90L3hOwOmcVruM4Vzc-vn5Lj_Y72GwbB02mq0nX76-YA1ixPZ8OBLAqIlR4mEglYe2jP_0-_45n2vqgEHThLnpGT2eGP6VGRaycUBn59rOBBqIZHUWndGKstwqTGeukrX0etWZSlYdEyD5qqrY-mwpFw4C8o5XxpxXOy0y278IJQZptaiNqJMjAJL4K3OcGZCkFr76SakI_D8LUuE4tjfYtFmwLcvGnvDvaEvB-lL3pCjb_IHaAmRhmkwU43lqufbbaq1jnHYikjRo8lYLNGVyUzpbLSRURSE7I36LHNtrluecMwHVmX0PO342OwKgyVmC4sNygjOVYxbuSEfBj1_8cOX62GDn9Kk-OfX9WezqdzjjUDXv6f-CvyAB7IfvNnj-xcrjbhNcChS_smzfnfIhL-gQ priority: 102 providerName: Wiley-Blackwell  | 
    
| Title | An Improved Copula‐Based Framework for Efficient Global Sensitivity Analysis | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022WR033808 https://www.proquest.com/docview/2919359806 https://www.proquest.com/docview/2942101494 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2022WR033808 https://doaj.org/article/ccc1f04f4529461598501a06b4cf6355  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 60 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1944-7973 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: DOA dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1944-7973 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: 24P dateStart: 20240101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEG40HuJFfOJqXFpQLzrYr-npPm6WLEFwCatL4mnoJzksk5BkCbn5E_yN_hKr5rFswMfF2zBTNDVd1V1VXdX1EfJG-5BT5LJwzKgC4i9fuBRkAeG1zqXOMRu87_x5rg-X6tNJebIF9YU1YV174G7iPoYQeGYqY4JQgfm1pmTcMe1VyGgscfdlxg7BVJ8_ALegGnLL6OP0Je9MWIz2xfGCQWiGkJJbxqjt2X_L0dxdN-fu5tqtVrdd19b2zB6SB73TSCcds4_IndQ8JrvDneJLeO6xzE9vnpD5pKHdUUGKdNric_38_mMfrFWks6EUi4KvSg_a9hFgdWjX-Z9-wWr2Dk6CDt1KnpLl7ODr9LDoURMKB5seL0SS2oosS2Os88ajg2R9VLGMVTaGZ8Ucz55HkFHlY3YlzkSASEHrEJmXz8hOc9ak54RybyspqyBZ4goGgtGCFFynZEwMSo_I-2H66tC3FEdki1XdpraFrbcne0TebqjPu1Yaf6DbR0lsaLABdvsC1KLu1aL-l1qMyN4gx7pflZe1sBwvIhsGnL_efIb1hEkS16SzNdIogfjFVo3Iu438f8vw9cXA8IdWOf76V_XxYroQiBbw4n_830tyH0ZX3WHQHtm5ulinV-AeXfkxuSvU0bhdD2Nybzk_mnz7BUodB9I | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQOSwXxFMsFDAScIEI23Ec59iuulqgXaGlVXuz_ITDKlttu6p64yfwG_klzOSlrgRI3KJkHDkeT_yNx_MNIa-V8ykGnmeWaZmB_-UyG32egXutUqFSSBrznY_manYiP50VZ12dU8yFafkhhg03tIzmf40GjhvSHdsAkmSC2y5OFwx8LEz2vS0VV-h9CfllCCMAOij7EDNCne7kO7T_cLP11prUUPdv4c3Rpj6311d2udxGsM0SNL1H7nbYke61yr5PbsX6ARn1qcUXcN2VNP9-_ZDM92ra7hjEQCdNma5fP37uw6IV6LQ_kUUBstKDhkUCFh_aFgCgX_FQe1tVgvakJY_IyfTgeDLLuuIJmYV_H89EzFUlUl5oXVmnHeKkygUZilAmrXmSzPLkeABVlS4kW-BIeHAYlPKBufwx2alXdXxCKHdVmeelz1nkEl4Eb_O54CpGrYOXakze9cNnfMcsjgUulqaJcIvK3BzsMXkzSJ-3jBp_kdtHTQwyyIPd3Fitv5nOrIz3nicmE4aPYQIUlS4Yt0w56RNCqTHZ7fVoOuO8MKLimI-sGfT81fAYzApjJbaOqw3KSIFljCs5Jm8H_f-xw1frvsPvm8nxz68yp4vJQmDRgKf_J_6SjGbHR4fm8OP88zNyB4RkuxO0S3Yu15v4HLDRpXvRzP_f6ScB_A | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQK1EuiKdYKGAk4AIRduI4zrFduiqvVbVQtTfLTzissqttV1Vv_Qn8Rn4JM4kTdSVA4hYlk8jxZDLfeDzfEPJSWheD50VmmBIZxF82M8EVGYTXMpYy-qiw3vnLVB4ei4-n5Wnqc4q1MB0_xLDghpbR_q_RwMPSx8Q2gCSZELbnJzMGMRYW-26LEpwhUjuLoyGNAOig6lPMCHXSzne4_931uzd8Ukvdv4E3d9bN0lxemPl8E8G2Lmhyh9xO2JHudcq-S26E5h7Z6UuLz-A4tTT_cXmfTPca2q0YBE_HbZuuX1c_98FpeTrpd2RRgKz0oGWRAOdDuwYA9Ctuau-6StCetOQBOZ4cfBsfZql5Qmbg38ezPBSyzmNRKlUbqyzipNp64UtfRaV4FMzwaLkHVVXWR1PiTDgIGKR0ntniIdlqFk14RCi3dVUUlStY4AIeBE9zRc5lCEp5J-SIvOmnT7vELI4NLua6zXDntb4-2SPyapBedowaf5HbR00MMsiD3Z5YrL7rZFbaOccjExHTxwLAWa1Kxg2TVriIUGpEdns96mScZzqvOdYjKwYjfzFcBrPCXIlpwmKNMiLHNsa1GJHXg_7_OOCLVT_gt-3H8c-30iez8SzHpgGP_0_8Obl59H6iP3-YfnpCboGM6BaCdsnW-WodngI0OrfP2s__N5-MAYs | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEBZlc8ipbfpDXdKgQttL62DZsiwdN0uWUOhStl2Snox-G-jiXTa7hOSUR8gz5kmqkWWTLW0p9GZsSUjWjPSNRvMNQm-Y0s4aUqQy4zT19pdKpdVF6s1r5krmjOMQ7_xpwk5m9ONZeXYvFqblh-gP3EAzwnoNCr40rl3nI-WAAMs9P51m3syCeN8dVno8PkA7s8nn4bfOtQwQJ7iWKU0rURXx9ntX_XLVVt_alwJ9_xbm3N00S3l1KefzbRQbtqHxI6S7AbS3T34cbtbqUF__wu34fyN8jB5GlIqHrVjtoQe2eYJ2uyDmC_8ck6efXz1Fk2GD27MJa_AoJAS7u7k98tujwePu7hf24BgfB74Kv83hNtUA_gLX59v8FbijR3mGZuPjr6OTNKZpSKVfZUma24KJ3BUl50IqrgCRCWWoKU3lOCeOZpI4RYwXikoZJ0sYjPamCWPaZKp4jgbNorEvECbKT1BR6SKzhPqGfGu6yAmzlnOjKUvQ-26Sah05zCGVxrwOvvRc1Pf_V4Le9qWXLXfHH8odwXz3ZYBxO7xYrL7XUYFrrTVxGXXgqKYeBgpeZkRmTFHtALQlaL-TljouAxd1LghEPvPM9_x1_9krMHhlZGMXGyhDc0iYLGiC3vVS9tsOd7KaoA9Bbv46qvp0OprmkJ7g5b-2u48G69XGvvIwa60Ooh79BMJeIXQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Copula%E2%80%90Based+Framework+for+Efficient+Global+Sensitivity+Analysis&rft.jtitle=Water+resources+research&rft.au=Hongli+Liu&rft.au=Martyn+P.+Clark&rft.au=Shervan+Gharari&rft.au=Razi+Sheikholeslami&rft.date=2024-01-01&rft.pub=Wiley&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=60&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2022WR033808&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ccc1f04f4529461598501a06b4cf6355 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon |