Albumin Neutralizes Hydrophobic Toxins and Modulates Candida albicans Pathogenicity
Albumin is the most abundant serum protein in humans. During inflammation, serum albumin levels decrease drastically, and low albumin levels are associated with poor patient outcome. Albumin is abundant in serum but is also excreted at mucosal surfaces and enters tissues when inflammation increases...
Saved in:
Published in | mBio Vol. 12; no. 3; p. e0053121 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
1752 N St., N.W., Washington, DC
American Society for Microbiology
29.06.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2150-7511 2150-7511 |
DOI | 10.1128/mBio.00531-21 |
Cover
Abstract | Albumin is the most abundant serum protein in humans. During inflammation, serum albumin levels decrease drastically, and low albumin levels are associated with poor patient outcome.
Albumin is abundant in serum but is also excreted at mucosal surfaces and enters tissues when inflammation increases vascular permeability. Host-associated opportunistic pathogens encounter albumin during commensalism and when causing infections. Considering the ubiquitous presence of albumin, we investigated its role in the pathogenesis of infections with the model human fungal pathogen,
Candida albicans
. Albumin was introduced in various
in vitro
models that mimic different stages of systemic or mucosal candidiasis, where it reduced the ability of
C. albicans
to damage host cells. The amphipathic toxin candidalysin mediates necrotic host cell damage induced by
C. albicans
. Using cellular and biophysical assays, we determined that albumin functions by neutralizing candidalysin through hydrophobic interactions. We discovered that albumin, similarly, can neutralize a variety of fungal (α-amanitin), bacterial (streptolysin O and staurosporin), and insect (melittin) hydrophobic toxins. These data suggest albumin as a defense mechanism against toxins, which can play a role in the pathogenesis of microbial infections.
IMPORTANCE
Albumin is the most abundant serum protein in humans. During inflammation, serum albumin levels decrease drastically, and low albumin levels are associated with poor patient outcome. Thus, albumin may have specific functions during infection. Here, we describe the ability of albumin to neutralize hydrophobic microbial toxins. We show that albumin can protect against damage induced by the pathogenic yeast
C. albicans
by neutralizing its cytolytic toxin candidalysin. These findings suggest that albumin is a toxin-neutralizing protein that may play a role during infections with toxin-producing microorganisms. |
---|---|
AbstractList | Albumin is abundant in serum but is also excreted at mucosal surfaces and enters tissues when inflammation increases vascular permeability. Host-associated opportunistic pathogens encounter albumin during commensalism and when causing infections. Considering the ubiquitous presence of albumin, we investigated its role in the pathogenesis of infections with the model human fungal pathogen, Candida albicans. Albumin was introduced in various in vitro models that mimic different stages of systemic or mucosal candidiasis, where it reduced the ability of C. albicans to damage host cells. The amphipathic toxin candidalysin mediates necrotic host cell damage induced by C. albicans. Using cellular and biophysical assays, we determined that albumin functions by neutralizing candidalysin through hydrophobic interactions. We discovered that albumin, similarly, can neutralize a variety of fungal (α-amanitin), bacterial (streptolysin O and staurosporin), and insect (melittin) hydrophobic toxins. These data suggest albumin as a defense mechanism against toxins, which can play a role in the pathogenesis of microbial infections. IMPORTANCE Albumin is the most abundant serum protein in humans. During inflammation, serum albumin levels decrease drastically, and low albumin levels are associated with poor patient outcome. Thus, albumin may have specific functions during infection. Here, we describe the ability of albumin to neutralize hydrophobic microbial toxins. We show that albumin can protect against damage induced by the pathogenic yeast C. albicans by neutralizing its cytolytic toxin candidalysin. These findings suggest that albumin is a toxin-neutralizing protein that may play a role during infections with toxin-producing microorganisms.Albumin is abundant in serum but is also excreted at mucosal surfaces and enters tissues when inflammation increases vascular permeability. Host-associated opportunistic pathogens encounter albumin during commensalism and when causing infections. Considering the ubiquitous presence of albumin, we investigated its role in the pathogenesis of infections with the model human fungal pathogen, Candida albicans. Albumin was introduced in various in vitro models that mimic different stages of systemic or mucosal candidiasis, where it reduced the ability of C. albicans to damage host cells. The amphipathic toxin candidalysin mediates necrotic host cell damage induced by C. albicans. Using cellular and biophysical assays, we determined that albumin functions by neutralizing candidalysin through hydrophobic interactions. We discovered that albumin, similarly, can neutralize a variety of fungal (α-amanitin), bacterial (streptolysin O and staurosporin), and insect (melittin) hydrophobic toxins. These data suggest albumin as a defense mechanism against toxins, which can play a role in the pathogenesis of microbial infections. IMPORTANCE Albumin is the most abundant serum protein in humans. During inflammation, serum albumin levels decrease drastically, and low albumin levels are associated with poor patient outcome. Thus, albumin may have specific functions during infection. Here, we describe the ability of albumin to neutralize hydrophobic microbial toxins. We show that albumin can protect against damage induced by the pathogenic yeast C. albicans by neutralizing its cytolytic toxin candidalysin. These findings suggest that albumin is a toxin-neutralizing protein that may play a role during infections with toxin-producing microorganisms. Albumin is the most abundant serum protein in humans. During inflammation, serum albumin levels decrease drastically, and low albumin levels are associated with poor patient outcome. Albumin is abundant in serum but is also excreted at mucosal surfaces and enters tissues when inflammation increases vascular permeability. Host-associated opportunistic pathogens encounter albumin during commensalism and when causing infections. Considering the ubiquitous presence of albumin, we investigated its role in the pathogenesis of infections with the model human fungal pathogen, Candida albicans . Albumin was introduced in various in vitro models that mimic different stages of systemic or mucosal candidiasis, where it reduced the ability of C. albicans to damage host cells. The amphipathic toxin candidalysin mediates necrotic host cell damage induced by C. albicans . Using cellular and biophysical assays, we determined that albumin functions by neutralizing candidalysin through hydrophobic interactions. We discovered that albumin, similarly, can neutralize a variety of fungal (α-amanitin), bacterial (streptolysin O and staurosporin), and insect (melittin) hydrophobic toxins. These data suggest albumin as a defense mechanism against toxins, which can play a role in the pathogenesis of microbial infections. IMPORTANCE Albumin is the most abundant serum protein in humans. During inflammation, serum albumin levels decrease drastically, and low albumin levels are associated with poor patient outcome. Thus, albumin may have specific functions during infection. Here, we describe the ability of albumin to neutralize hydrophobic microbial toxins. We show that albumin can protect against damage induced by the pathogenic yeast C. albicans by neutralizing its cytolytic toxin candidalysin. These findings suggest that albumin is a toxin-neutralizing protein that may play a role during infections with toxin-producing microorganisms. Albumin is the most abundant serum protein in humans. During inflammation, serum albumin levels decrease drastically, and low albumin levels are associated with poor patient outcome. Albumin is abundant in serum but is also excreted at mucosal surfaces and enters tissues when inflammation increases vascular permeability. Host-associated opportunistic pathogens encounter albumin during commensalism and when causing infections. Considering the ubiquitous presence of albumin, we investigated its role in the pathogenesis of infections with the model human fungal pathogen, Candida albicans . Albumin was introduced in various in vitro models that mimic different stages of systemic or mucosal candidiasis, where it reduced the ability of C. albicans to damage host cells. The amphipathic toxin candidalysin mediates necrotic host cell damage induced by C. albicans . Using cellular and biophysical assays, we determined that albumin functions by neutralizing candidalysin through hydrophobic interactions. We discovered that albumin, similarly, can neutralize a variety of fungal (α-amanitin), bacterial (streptolysin O and staurosporin), and insect (melittin) hydrophobic toxins. These data suggest albumin as a defense mechanism against toxins, which can play a role in the pathogenesis of microbial infections. Albumin is abundant in serum but is also excreted at mucosal surfaces and enters tissues when inflammation increases vascular permeability. Host-associated opportunistic pathogens encounter albumin during commensalism and when causing infections. Considering the ubiquitous presence of albumin, we investigated its role in the pathogenesis of infections with the model human fungal pathogen, Candida albicans. Albumin was introduced in various in vitro models that mimic different stages of systemic or mucosal candidiasis, where it reduced the ability of C. albicans to damage host cells. The amphipathic toxin candidalysin mediates necrotic host cell damage induced by C. albicans. Using cellular and biophysical assays, we determined that albumin functions by neutralizing candidalysin through hydrophobic interactions. We discovered that albumin, similarly, can neutralize a variety of fungal (α-amanitin), bacterial (streptolysin O and staurosporin), and insect (melittin) hydrophobic toxins. These data suggest albumin as a defense mechanism against toxins, which can play a role in the pathogenesis of microbial infections. IMPORTANCE Albumin is the most abundant serum protein in humans. During inflammation, serum albumin levels decrease drastically, and low albumin levels are associated with poor patient outcome. Thus, albumin may have specific functions during infection. Here, we describe the ability of albumin to neutralize hydrophobic microbial toxins. We show that albumin can protect against damage induced by the pathogenic yeast C. albicans by neutralizing its cytolytic toxin candidalysin. These findings suggest that albumin is a toxin-neutralizing protein that may play a role during infections with toxin-producing microorganisms. |
Author | Moyes, David L. Kichik, Nessim Lee, Sejeong Gresnigt, Mark S. Hube, Bernhard Austermeier, Sophie Naglik, Julian R. Kotowicz, Natalia K. Ho, Jemima Pekmezović, Marina Porschitz, Pauline |
Author_xml | – sequence: 1 givenname: Sophie orcidid: 0000-0002-1048-5983 surname: Austermeier fullname: Austermeier, Sophie organization: Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany<?A3B2 show [zaq no="AQGRid1"]?> – sequence: 2 givenname: Marina orcidid: 0000-0003-1991-9634 surname: Pekmezović fullname: Pekmezović, Marina organization: Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany<?A3B2 show [zaq no="AQGRid1"]?> – sequence: 3 givenname: Pauline surname: Porschitz fullname: Porschitz, Pauline organization: Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany – sequence: 4 givenname: Sejeong orcidid: 0000-0001-8617-3436 surname: Lee fullname: Lee, Sejeong organization: Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom – sequence: 5 givenname: Nessim surname: Kichik fullname: Kichik, Nessim organization: Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom – sequence: 6 givenname: David L. orcidid: 0000-0002-1657-918X surname: Moyes fullname: Moyes, David L. organization: Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom – sequence: 7 givenname: Jemima orcidid: 0000-0002-2356-9190 surname: Ho fullname: Ho, Jemima organization: Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom – sequence: 8 givenname: Natalia K. orcidid: 0000-0001-9637-4119 surname: Kotowicz fullname: Kotowicz, Natalia K. organization: Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom – sequence: 9 givenname: Julian R. orcidid: 0000-0002-8072-7917 surname: Naglik fullname: Naglik, Julian R. organization: Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom – sequence: 10 givenname: Bernhard orcidid: 0000-0002-6028-0425 surname: Hube fullname: Hube, Bernhard organization: Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany<?A3B2 show [zaq no="AQGRid1"]?>, Institute for Microbiology, Friedrich Schiller University of Jena, Jena, Germany – sequence: 11 givenname: Mark S. orcidid: 0000-0002-9514-4634 surname: Gresnigt fullname: Gresnigt, Mark S. organization: Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany |
BookMark | eNp1kdFvFCEQxompsbX20fd9NCZbgYUFXkzqRW2TVk2sz2QW2Dsuu3DCrvH862V7NWmN8gIz85svzDfP0VGIwSH0kuBzQqh8M77z8Rxj3pCakifohBKOa8EJOXrwPkZnOW9xOU1DZIOfoeOGEc4Ybk7Q14uhm0cfqk9unhIM_pfL1eXeprjbxM6b6jb-9CFXEGx1E-08wFSAVQm9hQqGgkApf4FpE9cueOOn_Qv0tIchu7P7-xR9-_D-dnVZX3_-eLW6uK6BtXyqO962YLhkTNBO4bbrpWmA9xZTIYBiymUnlQTRESlM30vHStJyB8KoRtDmFF0ddG2Erd4lP0La6whe3yViWmtIkzeD08xhXGanVkHLlLAKE6ZaJbkwrhNk0Xp70NrN3eiscWFx45Ho40rwG72OP7SkLVVqEXh1L5Di99nlSY8-GzcMEFycs6bFcNIy1rKCvj6gkEeqt3FOodikCdbLUvWyVH23VE1JgZsDbFLMObleF4th8nH5hh_-21X_1fVnkn_zvwHI8bRt |
CitedBy_id | crossref_primary_10_1038_s41467_024_54173_6 crossref_primary_10_1002_iub_2653 crossref_primary_10_3390_ijms24044081 crossref_primary_10_3390_microorganisms12122455 crossref_primary_10_3390_microorganisms12040732 crossref_primary_10_1016_j_job_2023_03_002 crossref_primary_10_3390_ijms23042066 crossref_primary_10_3390_microorganisms12081597 crossref_primary_10_1039_D4BM00099D crossref_primary_10_1038_s41564_024_01794_8 crossref_primary_10_1128_mbio_03409_23 crossref_primary_10_1111_1348_0421_13042 crossref_primary_10_1021_acsnano_2c12644 crossref_primary_10_1016_j_amolm_2023_100033 crossref_primary_10_1364_OE_469496 crossref_primary_10_1128_spectrum_00253_23 crossref_primary_10_3390_ijms221810086 crossref_primary_10_1080_21505594_2021_2019950 crossref_primary_10_1039_D4RA08397K crossref_primary_10_1128_aem_01626_24 |
Cites_doi | 10.1128/MCB.25.21.9435-9446.2005 10.1128/mBio.00117-12 10.1002/jpen.1451 10.1128/mBio.00607-20 10.1128/iai.62.2.709-712.1994 10.1111/j.1462-5822.2012.01757.x 10.2119/molmed.2016.00119 10.1038/s41598-018-33072-z 10.1038/nature17625 10.1007/BF00328721 10.1007/s00204-020-02718-1 10.1093/protein/12.6.439 10.1186/2110-5820-3-4 10.1371/journal.pcbi.1003479 10.3904/kjim.2015.340 10.1128/IAI.00116-17 10.1186/s41100-018-0173-8 10.1021/bi00449a001 10.1111/j.1365-2958.2005.04557.x 10.1186/1471-2180-14-80 10.1093/nar/gkv342 10.1128/mBio.02178-17 10.1128/IAI.00645-17 10.1128/JB.181.20.6339-6346.1999 10.1086/430952 10.1371/journal.pone.0105983 10.1056/NEJM199902113400607 10.1016/j.mib.2019.05.006 10.1371/journal.ppat.0040035 10.4049/jimmunol.1500740 10.1038/s41467-018-06607-1 10.1007/978-1-4615-5373-1_47 10.1128/AAC.02026-15 10.1093/infdis/jiy338 10.1016/s0020-7292(03)00268-6 10.1093/bioinformatics/btw141 10.1002/open.201900113 10.1186/1471-2334-5-22 10.1038/nmeth.2019 10.2133/dmpk.dmpk-11-rg-127 10.1159/000167867 10.1371/journal.pone.0062902 10.1038/nature17319 10.1128/IAI.71.11.6648-6652.2003 10.1016/j.amjmed.2017.07.020 10.3389/fphys.2014.00299 10.1016/0305-4179(81)90087-5 10.4161/viru.22913 10.1038/nri2620 10.1007/s00284-017-1417-5 10.1038/s41591-019-0709-7 10.1371/journal.pone.0054379 10.1016/j.mib.2020.05.006 10.1111/j.1600-0765.1993.tb01049.x 10.1093/infdis/jiz322 10.1111/j.1439-0507.2009.01787.x 10.1021/pr0700899 10.1128/IAI.00784-19 10.1016/j.ejim.2017.10.015 10.1080/13693780500129814 10.3390/jof4040122 10.3389/fmicb.2015.00625 10.1371/journal.ppat.1005867 10.1242/dmm.039719 10.2133/dmpk.24.300 10.1159/000321157 10.1056/NEJMra1315399 10.1007/BF01692917 10.1111/j.1462-5822.2007.01009.x 10.1097/MOH.0b013e3283386638 10.1371/journal.pone.0036952 10.1007/s10517-019-04618-6 10.2147/IJGM.S102819 10.1128/mBio.00915-18 10.2116/analsci.25.115 10.1128/MMBR.67.3.400-428.2003 10.1016/s0015-0282(16)42982-1 10.3389/fgene.2019.00336 10.1074/jbc.M110.148171 10.1016/j.chom.2019.02.008 10.1172/JCI113000 10.3389/fimmu.2020.507092 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Austermeier et al. Copyright © 2021 Austermeier et al. 2021 Austermeier et al. |
Copyright_xml | – notice: Copyright © 2021 Austermeier et al. – notice: Copyright © 2021 Austermeier et al. 2021 Austermeier et al. |
DBID | AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1128/mBio.00531-21 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2150-7511 |
Editor | Cowen, Leah E |
Editor_xml | – sequence: 1 givenname: Leah E surname: Cowen fullname: Cowen, Leah E |
ExternalDocumentID | oai_doaj_org_article_4e001832d9a6497d9014969857ceb712 PMC8262992 mBio00531-21 10_1128_mBio_00531_21 |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft (DFG) grantid: Emmy Noether Program (project no. 434385622 / GR 5617/1-1) funderid: https://doi.org/10.13039/501100001659 – fundername: NIH Research at Guys and St. Thomas's NHS Foundation Trust – fundername: European Union Horizon 2020 research and innovation program grantid: grant agreement No 847507 (HDM-FUN) – fundername: King's College London grantid: Biomedical Research Centre (IS-BRC-1215-20006) funderid: https://doi.org/10.13039/100009360 – fundername: Wellcome Trust grantid: 214229_Z_18_Z funderid: https://doi.org/10.13039/100010269 – fundername: Alexander von Humboldt-Stiftung (Humboldt-Stiftung) grantid: Postdoctoral Fellowship funderid: https://doi.org/10.13039/100005156 – fundername: HHS | National Institutes of Health (NIH) grantid: R37-DE022550 funderid: https://doi.org/10.13039/100000002 – fundername: European Society of Clinical Microbiology and Infectious Diseases (ESCMID) grantid: Research Grant funderid: https://doi.org/10.13039/501100001704 – fundername: ; – fundername: ; grantid: Biomedical Research Centre (IS-BRC-1215-20006) – fundername: ; grantid: Research Grant – fundername: ; grantid: grant agreement No 847507 (HDM-FUN) – fundername: ; grantid: R37-DE022550 – fundername: ; grantid: Postdoctoral Fellowship – fundername: ; grantid: 214229_Z_18_Z – fundername: ; grantid: Emmy Noether Program (project no. 434385622 / GR 5617/1-1) |
GroupedDBID | --- 0R~ 53G 5VS AAFWJ AAGFI AAUOK AAYXX ADBBV AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BTFSW CITATION DIK E3Z EBS FRP GROUPED_DOAJ GX1 H13 HYE HZ~ KQ8 M48 O5R O5S O9- OK1 P2P PGMZT RHI RNS RPM RSF - 0R ADACO BXI HZ M~E RHF 7X8 5PM |
ID | FETCH-LOGICAL-a465t-b566ac584472b906bf8c3a5fd0277a20258b898a7b187cff8e4202d5ea7c93723 |
IEDL.DBID | AAUOK |
ISSN | 2150-7511 |
IngestDate | Wed Aug 27 01:26:45 EDT 2025 Thu Aug 21 13:34:35 EDT 2025 Fri Jul 11 06:40:32 EDT 2025 Tue Dec 28 13:59:18 EST 2021 Thu Apr 24 22:57:56 EDT 2025 Tue Jul 01 01:52:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | microbial cytotoxicity cytolysis virulence serum proteins toxins |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a465t-b566ac584472b906bf8c3a5fd0277a20258b898a7b187cff8e4202d5ea7c93723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9514-4634 0000-0002-1657-918X 0000-0002-8072-7917 0000-0001-8617-3436 0000-0002-6028-0425 0000-0001-9637-4119 0000-0003-1991-9634 0000-0002-1048-5983 0000-0002-2356-9190 |
OpenAccessLink | https://journals.asm.org/doi/10.1128/mBio.00531-21 |
PMID | 34154403 |
PQID | 2544164464 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4e001832d9a6497d9014969857ceb712 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8262992 proquest_miscellaneous_2544164464 asm2_journals_10_1128_mBio_00531_21 crossref_citationtrail_10_1128_mBio_00531_21 crossref_primary_10_1128_mBio_00531_21 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210629 |
PublicationDateYYYYMMDD | 2021-06-29 |
PublicationDate_xml | – month: 06 year: 2021 text: 20210629 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | 1752 N St., N.W., Washington, DC |
PublicationPlace_xml | – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | mBio |
PublicationTitleAbbrev | mBio |
PublicationYear | 2021 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_60_2 e_1_3_2_83_2 e_1_3_2_81_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_75_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_73_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_79_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_77_2 e_1_3_2_50_2 e_1_3_2_71_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_65_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_63_2 e_1_3_2_84_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_69_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_67_2 e_1_3_2_61_2 e_1_3_2_82_2 e_1_3_2_80_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_76_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_74_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_78_2 e_1_3_2_2_2 e_1_3_2_72_2 e_1_3_2_70_2 Fulks M (e_1_3_2_62_2) 2010; 42 Witchley, JN, Penumetcha, P, Abon, NV, Woolford, CA, Mitchell, AP, Noble, SM (B8) 2019; 25 van der Vusse, GJ (B2) 2009; 24 Corcione, S, Angilletta, R, Raviolo, S, Filippini, C, Fossati, L, Di Perri, G, Cavallo, R, De Rosa, FG (B74) 2018; 48 Tang, LJ, De Seta, F, Odreman, F, Venge, P, Piva, C, Guaschino, S, Garcia, RC (B39) 2007; 6 Yumoto, R, Suzuka, S, Oda, K, Nagai, J, Takano, M (B50) 2012; 27 Moyes, DL, Wilson, D, Richardson, JP, Mogavero, S, Tang, SX, Wernecke, J, Hofs, S, Gratacap, RL, Robbins, J, Runglall, M, Murciano, C, Blagojevic, M, Thavaraj, S, Forster, TM, Hebecker, B, Kasper, L, Vizcay, G, Iancu, SI, Kichik, N, Hader, A, Kurzai, O, Luo, T, Kruger, T, Kniemeyer, O, Cota, E, Bader, O, Wheeler, RT, Gutsmann, T, Hube, B, Naglik, JR (B30) 2016; 532 Pierce, JV, Kumamoto, CA (B7) 2012; 3 Lionakis, MS, Lim, JK, Lee, CC, Murphy, PM (B14) 2011; 3 Drell, T, Lillsaar, T, Tummeleht, L, Simm, J, Aaspollu, A, Vain, E, Saarma, I, Salumets, A, Donders, GG, Metsis, M (B6) 2013; 8 Naglik, JR, Challacombe, SJ, Hube, B (B45) 2003; 67 Spellberg, B, Ibrahim, AS, Edwards, JE, Filler, SG (B51) 2005; 192 Duhring, S, Germerodt, S, Skerka, C, Zipfel, PF, Dandekar, T, Schuster, S (B19) 2015; 6 Richardson, JPW, Willems, HME, Moyes, DL, Shoaie, S, Barker, KS, Tan, SL, Palmer, GE, Hube, B, Naglik, JR, Peters, BM (B37) 2018; 86 Yang, J, Zhang, Y (B81) 2015; 43 Minchiotti, L, Caridi, G, Campagnoli, M, Lugani, F, Galliano, M, Kragh-Hansen, U (B75) 2019; 10 Gabay, C, Kushner, I (B65) 1999; 340 Mitchell, AP (B32) 2016; 532 Schultz, CM, Goel, A, Dunn, A, Knauss, H, Huss, C, Launder, D, Wuescher, LM, Conti, HR, Worth, RG (B18) 2020; 88 Huber, R, Carrell, RW (B47) 1989; 28 Zhai, B, Ola, M, Rolling, T, Tosini, NL, Joshowitz, S, Littmann, ER, Amoretti, LA, Fontana, E, Wright, RJ, Miranda, E, Veelken, CA, Morjaria, SM, Peled, JU, van den Brink, MRM, Babady, NE, Butler, G, Taur, Y, Hohl, TM (B13) 2020; 26 Haeri, HH, Schunk, B, Tomaszewski, J, Schimm, H, Gelos, MJ, Hinderberger, D (B33) 2019; 8 Merlot, AM, Kalinowski, DS, Richardson, DR (B1) 2014; 5 Zipfel, PF, Skerka, C (B20) 2009; 9 Ogle, CK, Wesley Alexander, J, Macmillan, BG (B72) 1981; 8 Dvorak, HF (B5) 2010; 17 Vogel, I, Thorsen, P, Flyvbjerg, A, Grønbaek, H (B73) 2003; 83 Rodrigues, AG, Araujo, R, Pina-Vaz, C (B55) 2005; 43 Soeters, PB, Wolfe, RR, Shenkin, A (B66) 2019; 43 Montelongo-Jauregui, D, Lopez-Ribot, JL (B9) 2018; 4 Hunniger, K, Lehnert, T, Bieber, K, Martin, R, Figge, MT, Kurzai, O (B22) 2014; 10 Raffi, RO, Moghissi, KS, Sacco, AG (B40) 1977; 28 Takehara, K, Yuki, K, Shirasawa, M, Yamasaki, S, Yamada, S (B35) 2009; 25 Smith, AC, Rice, A, Sutton, B, Gabrilska, R, Wessel, AK, Whiteley, M, Rumbaugh, KP (B59) 2017; 85 Jellinge, ME, Henriksen, DP, Hallas, P, Brabrand, M (B62) 2014; 9 Moshage, HJJ, Janssen, JA, Franssen, JH, Hafkenscheid, JCM, Yap, SH (B64) 1987; 79 Wilson, D, Naglik, JR, Hube, B (B31) 2016; 12 Wachtler, B, Citiulo, F, Jablonowski, N, Forster, S, Dalle, F, Schaller, M, Wilson, D, Hube, B (B25) 2012; 7 Kumamoto, CA, Gresnigt, MS, Hube, B (B16) 2020; 56 Feng, Q, Summers, E, Guo, B, Fink, G (B26) 1999; 181 Richardson, JP, Mogavero, S, Moyes, DL, Blagojevic, M, Kruger, T, Verma, AH, Coleman, BM, De La Cruz Diaz, J, Schulz, D, Ponde, NO, Carrano, G, Kniemeyer, O, Wilson, D, Bader, O, Enoiu, SI, Ho, J, Kichik, N, Gaffen, SL, Hube, B, Naglik, JR (B34) 2018; 9 Mayer, FL, Wilson, D, Hube, B (B10) 2013; 4 Sugio, S, Kashima, A, Mochizuki, S, Noda, M, Kobayashi, K (B82) 1999; 12 Henskens, YMC, Velden, U, Veerman, ECI, Amerongen, AVN (B38) 1993; 28 Egesten, A, Frick, IM, Morgelin, M, Olin, AI, Bjorck, L (B56) 2011; 286 Rodrigues, DF, Pires das Neves, R, Carvalho, ATP, Lourdes Bastos, M, Costa, VM, Carvalho, F (B80) 2020; 94 Allert, S, Forster, TM, Svensson, CM, Richardson, JP, Pawlik, T, Hebecker, B, Rudolphi, S, Juraschitz, M, Schaller, M, Blagojevic, M, Morschhauser, J, Figge, MT, Jacobsen, ID, Naglik, JR, Kasper, L, Mogavero, S, Hube, B (B27) 2018; 9 Fradin, C, De Groot, P, MacCallum, D, Schaller, M, Klis, F, Odds, FC, Hube, B (B21) 2005; 56 Kasper, L, König, A, Koenig, P-A, Gresnigt, MS, Westman, J, Drummond, RA, Lionakis, MS, Gross, O, Ruland, J, Naglik, JR, Hube, B (B78) 2018; 9 Wolf, JM, Rivera, J, Casadevall, A (B53) 2012; 14 Schindelin, J, Arganda-Carreras, I, Frise, E, Kaynig, V, Longair, M, Pietzsch, T, Preibisch, S, Rueden, C, Saalfeld, S, Schmid, B, Tinevez, JY, White, DJ, Hartenstein, V, Eliceiri, K, Tomancak, P, Cardona, A (B79) 2012; 9 Martinez, JP, Lopez-Ribot, JL, Chaffin, WL (B17) 1994; 62 Cheng, MF, Yang, YL, Yao, TJ, Lin, CY, Liu, JS, Tang, RB, Yu, KW, Fan, YH, Hsieh, KS, Ho, M, Lo, HJ (B11) 2005; 5 Frenzel, E, Wrenger, S, Brugger, B, Salipalli, S, Immenschuh, S, Aggarwal, N, Lichtinghagen, R, Mahadeva, R, Marcondes, AM, Dinarello, CA, Welte, T, Janciauskiene, S (B49) 2015; 195 Ding, X, Liu, Z, Su, J, Yan, D (B23) 2014; 14 Martinez, P, Ljungdahl, PO (B46) 2005; 25 Pinsky, M, Roy, U, Moshe, S, Weissman, Z, Kornitzer, D (B29) 2020; 11 Kullberg, BJ, Arendrup, MC (B15) 2015; 373 Zakikhany, K, Naglik, JR, Schmidt-Westhausen, A, Holland, G, Schaller, M, Hube, B (B77) 2007; 9 Giles, S, Czuprynski, C (B52) 2003; 71 Levitt, DG, Levitt, MD (B4) 2016; 9 Ioannou, P, Andrianaki, A, Akoumianaki, T, Kyrmizi, I, Albert, N, Perlin, D, Samonis, G, Kontoyiannis, DP, Chamilos, G (B54) 2016; 60 Quinn, B, Traglia, GM, Nguyen, M, Martinez, J, Liu, C, Fernandez, JS, Ramirez, MS (B58) 2019; 76 Dominguez de Villota, E, Mosquera, JM, Rubio, JJ, Galdos, P, Diez Balda, V, de la Serna, JL, Tomas, MI (B67) 1980; 7 Fulks, M, Stout, RL, Dolan, VF (B61) 2010; 42 Pratikaki, M, Platsouka, E, Sotiropoulou, C, Douka, E, Paramythiotou, E, Kaltsas, P, Kotanidou, A, Paniara, O, Roussos, C, Routsi, C (B70) 2011; 54 Ram, R, Swarnalatha, G, Neela, P, Murty, KV (B71) 2008; 110 Graf, K, Last, A, Gratz, R, Allert, S, Linde, S, Westermann, M, Groger, M, Mosig, AS, Gresnigt, MS, Hube, B (B28) 2019; 12 Vita, GM, De Simone, G, Leboffe, L, Montagnani, F, Mariotti, D, Di, BS, Luzzati, R, Gori, A, Ascenzi, P, di Masi, A (B41) 2020; 11 Koh, AY, Kohler, JR, Coggshall, KT, Van Rooijen, N, Pier, GB (B12) 2008; 4 Arzumanyan, VG, Ozhovan, IM, Svitich, OA (B42) 2019; 167 Quinn, B, Rodman, N, Jara, E, Fernandez, JS, Martinez, J, Traglia, GM, Montana, S, Cantera, V, Place, K, Bonomo, RA, Iriarte, A, Ramirez, MS (B57) 2018; 8 Gillum, AM, Tsay, EY, Kirsch, DR (B76) 1984; 198 Roy, U, Kornitzer, D (B43) 2019; 52 Swidergall, M, Khalaji, M, Solis, NV, Moyes, DL, Drummond, RA, Hube, B, Lionakis, MS, Murdoch, C, Filler, SG, Naglik, JR (B36) 2019; 220 Hube, B, Ruchel, R, Monod, M, Sanglard, D, Odds, FC (B44) 1998; 436 di Masi, A, Leboffe, L, Polticelli, F, Tonon, F, Zennaro, C, Caterino, M, Stano, P, Fischer, S, Hagele, M, Muller, M, Kleger, A, Papatheodorou, P, Nocca, G, Arcovito, A, Gori, A, Ruoppolo, M, Barth, H, Petrosillo, N, Ascenzi, P, Di Bella, S (B60) 2018; 218 Lee, HY, Kang, HS, Lee, HY, Rhee, CK, Lee, SY, Kim, SC, Kim, SJ, Park, YJ, Kim, YK, Kang, JY (B69) 2017; 32 Samaranayake, YH, Cheung, BP, Yau, JY, Yeung, SK, Samaranayake, LP (B24) 2013; 8 Taverna, M, Marie, AL, Mira, JP, Guidet, B (B3) 2013; 3 Aggarwal, N, Korenbaum, E, Mahadeva, R, Immenschuh, S, Grau, V, Dinarello, CA, Welte, T, Janciauskiene, S (B48) 2016; 22 Minatoguchi, S, Nomura, A, Imaizumi, T, Sasaki, S, Ozeki, T, Uchida, D, Kawarazaki, H, Sasai, F, Tomita, K, Shimizu, H, Fujita, Y (B68) 2018; 4 Ramirez-Aportela, E, Lopez-Blanco, JR, Chacon, P (B83) 2016; 32 Akirov, A, Masri-Iraqi, H, Atamna, A, Shimon, I (B63) 2017; 130 |
References_xml | – ident: e_1_3_2_47_2 doi: 10.1128/MCB.25.21.9435-9446.2005 – ident: e_1_3_2_8_2 doi: 10.1128/mBio.00117-12 – ident: e_1_3_2_67_2 doi: 10.1002/jpen.1451 – ident: e_1_3_2_30_2 doi: 10.1128/mBio.00607-20 – ident: e_1_3_2_18_2 doi: 10.1128/iai.62.2.709-712.1994 – ident: e_1_3_2_54_2 doi: 10.1111/j.1462-5822.2012.01757.x – ident: e_1_3_2_49_2 doi: 10.2119/molmed.2016.00119 – ident: e_1_3_2_58_2 doi: 10.1038/s41598-018-33072-z – ident: e_1_3_2_31_2 doi: 10.1038/nature17625 – ident: e_1_3_2_77_2 doi: 10.1007/BF00328721 – ident: e_1_3_2_81_2 doi: 10.1007/s00204-020-02718-1 – ident: e_1_3_2_83_2 doi: 10.1093/protein/12.6.439 – ident: e_1_3_2_4_2 doi: 10.1186/2110-5820-3-4 – ident: e_1_3_2_23_2 doi: 10.1371/journal.pcbi.1003479 – ident: e_1_3_2_70_2 doi: 10.3904/kjim.2015.340 – ident: e_1_3_2_60_2 doi: 10.1128/IAI.00116-17 – ident: e_1_3_2_69_2 doi: 10.1186/s41100-018-0173-8 – ident: e_1_3_2_48_2 doi: 10.1021/bi00449a001 – ident: e_1_3_2_22_2 doi: 10.1111/j.1365-2958.2005.04557.x – ident: e_1_3_2_24_2 doi: 10.1186/1471-2180-14-80 – ident: e_1_3_2_82_2 doi: 10.1093/nar/gkv342 – ident: e_1_3_2_35_2 doi: 10.1128/mBio.02178-17 – ident: e_1_3_2_38_2 doi: 10.1128/IAI.00645-17 – ident: e_1_3_2_27_2 doi: 10.1128/JB.181.20.6339-6346.1999 – ident: e_1_3_2_52_2 doi: 10.1086/430952 – ident: e_1_3_2_63_2 doi: 10.1371/journal.pone.0105983 – ident: e_1_3_2_66_2 doi: 10.1056/NEJM199902113400607 – ident: e_1_3_2_44_2 doi: 10.1016/j.mib.2019.05.006 – ident: e_1_3_2_13_2 doi: 10.1371/journal.ppat.0040035 – ident: e_1_3_2_50_2 doi: 10.4049/jimmunol.1500740 – ident: e_1_3_2_79_2 doi: 10.1038/s41467-018-06607-1 – ident: e_1_3_2_45_2 doi: 10.1007/978-1-4615-5373-1_47 – ident: e_1_3_2_55_2 doi: 10.1128/AAC.02026-15 – ident: e_1_3_2_61_2 doi: 10.1093/infdis/jiy338 – ident: e_1_3_2_74_2 doi: 10.1016/s0020-7292(03)00268-6 – ident: e_1_3_2_84_2 doi: 10.1093/bioinformatics/btw141 – ident: e_1_3_2_34_2 doi: 10.1002/open.201900113 – ident: e_1_3_2_12_2 doi: 10.1186/1471-2334-5-22 – ident: e_1_3_2_80_2 doi: 10.1038/nmeth.2019 – ident: e_1_3_2_51_2 doi: 10.2133/dmpk.dmpk-11-rg-127 – ident: e_1_3_2_72_2 doi: 10.1159/000167867 – ident: e_1_3_2_25_2 doi: 10.1371/journal.pone.0062902 – ident: e_1_3_2_33_2 doi: 10.1038/nature17319 – ident: e_1_3_2_53_2 doi: 10.1128/IAI.71.11.6648-6652.2003 – ident: e_1_3_2_64_2 doi: 10.1016/j.amjmed.2017.07.020 – ident: e_1_3_2_2_2 doi: 10.3389/fphys.2014.00299 – ident: e_1_3_2_73_2 doi: 10.1016/0305-4179(81)90087-5 – ident: e_1_3_2_11_2 doi: 10.4161/viru.22913 – ident: e_1_3_2_21_2 doi: 10.1038/nri2620 – ident: e_1_3_2_59_2 doi: 10.1007/s00284-017-1417-5 – ident: e_1_3_2_14_2 doi: 10.1038/s41591-019-0709-7 – ident: e_1_3_2_7_2 doi: 10.1371/journal.pone.0054379 – ident: e_1_3_2_17_2 doi: 10.1016/j.mib.2020.05.006 – ident: e_1_3_2_39_2 doi: 10.1111/j.1600-0765.1993.tb01049.x – ident: e_1_3_2_37_2 doi: 10.1093/infdis/jiz322 – ident: e_1_3_2_71_2 doi: 10.1111/j.1439-0507.2009.01787.x – ident: e_1_3_2_40_2 doi: 10.1021/pr0700899 – ident: e_1_3_2_19_2 doi: 10.1128/IAI.00784-19 – volume: 42 start-page: 11 year: 2010 ident: e_1_3_2_62_2 article-title: Albumin and all-cause mortality risk in insurance applicants publication-title: J Insur Med – ident: e_1_3_2_75_2 doi: 10.1016/j.ejim.2017.10.015 – ident: e_1_3_2_56_2 doi: 10.1080/13693780500129814 – ident: e_1_3_2_10_2 doi: 10.3390/jof4040122 – ident: e_1_3_2_20_2 doi: 10.3389/fmicb.2015.00625 – ident: e_1_3_2_32_2 doi: 10.1371/journal.ppat.1005867 – ident: e_1_3_2_29_2 doi: 10.1242/dmm.039719 – ident: e_1_3_2_3_2 doi: 10.2133/dmpk.24.300 – ident: e_1_3_2_15_2 doi: 10.1159/000321157 – ident: e_1_3_2_16_2 doi: 10.1056/NEJMra1315399 – ident: e_1_3_2_68_2 doi: 10.1007/BF01692917 – ident: e_1_3_2_78_2 doi: 10.1111/j.1462-5822.2007.01009.x – ident: e_1_3_2_6_2 doi: 10.1097/MOH.0b013e3283386638 – ident: e_1_3_2_26_2 doi: 10.1371/journal.pone.0036952 – ident: e_1_3_2_43_2 doi: 10.1007/s10517-019-04618-6 – ident: e_1_3_2_5_2 doi: 10.2147/IJGM.S102819 – ident: e_1_3_2_28_2 doi: 10.1128/mBio.00915-18 – ident: e_1_3_2_36_2 doi: 10.2116/analsci.25.115 – ident: e_1_3_2_46_2 doi: 10.1128/MMBR.67.3.400-428.2003 – ident: e_1_3_2_41_2 doi: 10.1016/s0015-0282(16)42982-1 – ident: e_1_3_2_76_2 doi: 10.3389/fgene.2019.00336 – ident: e_1_3_2_57_2 doi: 10.1074/jbc.M110.148171 – ident: e_1_3_2_9_2 doi: 10.1016/j.chom.2019.02.008 – ident: e_1_3_2_65_2 doi: 10.1172/JCI113000 – ident: e_1_3_2_42_2 doi: 10.3389/fimmu.2020.507092 – volume: 9 start-page: 4260 year: 2018 ident: B78 article-title: The fungal peptide toxin candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes publication-title: Nat Commun doi: 10.1038/s41467-018-06607-1 – volume: 12 start-page: 439 year: 1999 end-page: 446 ident: B82 article-title: Crystal structure of human serum albumin at 2.5-Å resolution publication-title: Protein Eng doi: 10.1093/protein/12.6.439 – volume: 195 start-page: 3605 year: 2015 end-page: 3616 ident: B49 article-title: α1-Antitrypsin combines with plasma fatty acids and induces angiopoietin-like protein 4 expression publication-title: J Immunol doi: 10.4049/jimmunol.1500740 – volume: 54 start-page: 154 year: 2011 end-page: 161 ident: B70 article-title: Epidemiology, risk factors for and outcome of candidaemia among non-neutropenic patients in a Greek intensive care unit publication-title: Mycoses doi: 10.1111/j.1439-0507.2009.01787.x – volume: 6 start-page: 2874 year: 2007 end-page: 2883 ident: B39 article-title: Proteomic analysis of human cervical-vaginal fluids publication-title: J Proteome Res doi: 10.1021/pr0700899 – volume: 25 start-page: 115 year: 2009 end-page: 120 ident: B35 article-title: Binding properties of hydrophobic molecules to human serum albumin studied by fluorescence titration publication-title: Anal Sci doi: 10.2116/analsci.25.115 – volume: 286 start-page: 2469 year: 2011 end-page: 2476 ident: B56 article-title: Binding of albumin promotes bacterial survival at the epithelial surface publication-title: J Biol Chem doi: 10.1074/jbc.M110.148171 – volume: 8 start-page: 32 year: 1981 end-page: 38 ident: B72 article-title: The relationship of bacteremia to levels of transferrin, albumin, and total serum protein in burn patients publication-title: Burns doi: 10.1016/0305-4179(81)90087-5 – volume: 3 year: 2012 ident: B7 article-title: Variation in Candida albicans EFG1 expression enables host-dependent changes in colonizing fungal populations publication-title: mBio doi: 10.1128/mBio.00117-12 – volume: 9 start-page: 729 year: 2009 end-page: 740 ident: B20 article-title: Complement regulators and inhibitory proteins publication-title: Nat Rev Immunol doi: 10.1038/nri2620 – volume: 86 year: 2018 ident: B37 article-title: Candidalysin drives epithelial signaling, neutrophil recruitment, and immunopathology at the vaginal mucosa publication-title: Infect Immun doi: 10.1128/IAI.00645-17 – volume: 62 start-page: 709 year: 1994 end-page: 712 ident: B17 article-title: Heterogeneous surface distribution of the fibrinogen-binding protein on Candida albicans publication-title: Infect Immun doi: 10.1128/iai.62.2.709-712.1994 – volume: 42 start-page: 11 year: 2010 end-page: 17 ident: B61 article-title: Albumin and all-cause mortality risk in insurance applicants publication-title: J Insur Med – volume: 192 start-page: 336 year: 2005 end-page: 343 ident: B51 article-title: Mice with disseminated candidiasis die of progressive sepsis publication-title: J Infect Dis doi: 10.1086/430952 – volume: 5 start-page: 22 year: 2005 ident: B11 article-title: Risk factors for fatal candidemia caused by Candida albicans and non-albicans Candida species publication-title: BMC Infect Dis doi: 10.1186/1471-2334-5-22 – volume: 71 start-page: 6648 year: 2003 end-page: 6652 ident: B52 article-title: Novel role for albumin in innate immunity: serum albumin inhibits the growth of Blastomyces dermatitidis yeast form in vitro publication-title: Infect Immun doi: 10.1128/IAI.71.11.6648-6652.2003 – volume: 10 start-page: 336 year: 2019 ident: B75 article-title: Diagnosis, phenotype, and molecular genetics of congenital analbuminemia publication-title: Front Genet doi: 10.3389/fgene.2019.00336 – volume: 220 start-page: 1477 year: 2019 end-page: 1488 ident: B36 article-title: Candidalysin is required for neutrophil recruitment and virulence during systemic Candida albicans infection publication-title: J Infect Dis doi: 10.1093/infdis/jiz322 – volume: 8 start-page: 14741 year: 2018 ident: B57 article-title: Human serum albumin alters specific genes that can play a role in survival and persistence in Acinetobacter baumannii publication-title: Sci Rep doi: 10.1038/s41598-018-33072-z – volume: 32 start-page: 2386 year: 2016 end-page: 2388 ident: B83 article-title: FRODOCK 2.0: fast protein-protein docking server publication-title: Bioinformatics – volume: 43 start-page: 711 year: 2005 end-page: 717 ident: B55 article-title: Human albumin promotes germination, hyphal growth, and antifungal resistance by Aspergillus fumigatus publication-title: Med Mycol doi: 10.1080/13693780500129814 – volume: 85 year: 2017 ident: B59 article-title: Albumin inhibits Pseudomonas aeruginosa quorum sensing and alters polymicrobial interactions publication-title: Infect Immun doi: 10.1128/IAI.00116-17 – volume: 27 start-page: 336 year: 2012 end-page: 343 ident: B50 article-title: Endocytic uptake of FITC-albumin by human alveolar epithelial cell line A549 publication-title: Drug Metab Pharmacokinet doi: 10.2133/dmpk.dmpk-11-rg-127 – volume: 22 start-page: 680 year: 2016 end-page: 693 ident: B48 article-title: α-Linoleic acid enhances the capacity of α-1 antitrypsin to inhibit lipopolysaccharide induced IL-1β in human blood neutrophils publication-title: Mol Med doi: 10.2119/molmed.2016.00119 – volume: 198 start-page: 179 year: 1984 end-page: 182 ident: B76 article-title: Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and Escherichia coli pyrF mutations publication-title: Mol Gen Genet doi: 10.1007/BF00328721 – volume: 9 year: 2018 ident: B27 article-title: Candida albicans-induced epithelial damage mediates translocation through intestinal barriers publication-title: mBio doi: 10.1128/mBio.00915-18 – volume: 4 year: 2008 ident: B12 article-title: Mucosal damage and neutropenia are required for Candida albicans dissemination publication-title: PLoS Pathog doi: 10.1371/journal.ppat.0040035 – volume: 26 start-page: 59 year: 2020 end-page: 64 ident: B13 article-title: High-resolution mycobiota analysis reveals dynamic intestinal translocation preceding invasive candidiasis publication-title: Nat Med doi: 10.1038/s41591-019-0709-7 – volume: 436 start-page: 339 year: 1998 end-page: 344 ident: B44 article-title: Functional aspects of secreted Candida proteinases publication-title: Adv Exp Med Biol doi: 10.1007/978-1-4615-5373-1_47 – volume: 373 start-page: 1445 year: 2015 end-page: 1456 ident: B15 article-title: Invasive candidiasis publication-title: N Engl J Med doi: 10.1056/NEJMra1315399 – volume: 9 year: 2018 ident: B34 article-title: Processing of Candida albicans Ece1p is critical for candidalysin maturation and fungal virulence publication-title: mBio doi: 10.1128/mBio.02178-17 – volume: 28 start-page: 1345 year: 1977 end-page: 1348 ident: B40 article-title: Proteins of human vaginal fluid publication-title: Fertil Steril doi: 10.1016/s0015-0282(16)42982-1 – volume: 79 start-page: 1635 year: 1987 end-page: 1641 ident: B64 article-title: Study of the molecular mechanism of decreased liver synthesis of albumin in inflammation publication-title: J Clin Invest doi: 10.1172/JCI113000 – volume: 88 year: 2020 ident: B18 article-title: Stepping up to the plate(let) against Candida albicans publication-title: Infect Immun doi: 10.1128/IAI.00784-19 – volume: 4 start-page: 122 year: 2018 ident: B9 article-title: Candida interactions with the oral bacterial microbiota publication-title: J Fungi (Basel) doi: 10.3390/jof4040122 – volume: 28 start-page: 8951 year: 1989 end-page: 8966 ident: B47 article-title: Implications of the three-dimensional structure of α1-antitrypsin for structure and function of serpins publication-title: Biochemistry doi: 10.1021/bi00449a001 – volume: 43 start-page: W174 year: 2015 end-page: W181 ident: B81 article-title: I-TASSER server: new development for protein structure and function predictions publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv342 – volume: 12 year: 2016 ident: B31 article-title: The missing link between Candida albicans hyphal morphogenesis and host cell damage publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1005867 – volume: 4 start-page: 119 year: 2013 end-page: 128 ident: B10 article-title: Candida albicans pathogenicity mechanisms publication-title: Virulence doi: 10.4161/viru.22913 – volume: 56 start-page: 7 year: 2020 end-page: 15 ident: B16 article-title: The gut, the bad, and the harmless: Candida albicans as a commensal and opportunistic pathogen in the intestine publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2020.05.006 – volume: 14 start-page: 762 year: 2012 end-page: 773 ident: B53 article-title: Serum albumin disrupts Cryptococcus neoformans and Bacillus anthracis extracellular vesicles publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2012.01757.x – volume: 14 start-page: 80 year: 2014 ident: B23 article-title: Human serum inhibits adhesion and biofilm formation in Candida albicans publication-title: BMC Microbiol doi: 10.1186/1471-2180-14-80 – volume: 167 start-page: 763 year: 2019 end-page: 766 ident: B42 article-title: Antimicrobial effect of albumin on bacteria and yeast cells publication-title: Bull Exp Biol Med doi: 10.1007/s10517-019-04618-6 – volume: 28 start-page: 43 year: 1993 end-page: 48 ident: B38 article-title: Protein, albumin and cystatin concentrations in saliva of healthy subjects and of patients with gingivitis or periodontitis publication-title: J Periodontal Res doi: 10.1111/j.1600-0765.1993.tb01049.x – volume: 9 year: 2014 ident: B62 article-title: Hypoalbuminemia is a strong predictor of 30-day all-cause mortality in acutely admitted medical patients: a prospective, observational, cohort study publication-title: PLoS One doi: 10.1371/journal.pone.0105983 – volume: 9 start-page: 229 year: 2016 end-page: 255 ident: B4 article-title: Human serum albumin homeostasis: a new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements publication-title: Int J Gen Med doi: 10.2147/IJGM.S102819 – volume: 181 start-page: 6339 year: 1999 end-page: 6346 ident: B26 article-title: Ras signaling is required for serum-induced hyphal differentiation in Candida albicans publication-title: J Bacteriol doi: 10.1128/JB.181.20.6339-6346.1999 – volume: 52 start-page: 77 year: 2019 end-page: 83 ident: B43 article-title: Heme-iron acquisition in fungi publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2019.05.006 – volume: 6 start-page: 625 year: 2015 ident: B19 article-title: Host-pathogen interactions between the human innate immune system and Candida albicans-understanding and modeling defense and evasion strategies publication-title: Front Microbiol doi: 10.3389/fmicb.2015.00625 – volume: 24 start-page: 300 year: 2009 end-page: 307 ident: B2 article-title: Albumin as fatty acid transporter publication-title: Drug Metab Pharmacokinet doi: 10.2133/dmpk.24.300 – volume: 12 start-page: dmm039719 year: 2019 ident: B28 article-title: Keeping Candida commensal: how lactobacilli antagonize pathogenicity of Candida albicans in an in vitro gut model publication-title: Dis Model Mech – volume: 9 start-page: 676 year: 2012 end-page: 682 ident: B79 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nat Methods doi: 10.1038/nmeth.2019 – volume: 94 start-page: 2061 year: 2020 end-page: 2078 ident: B80 article-title: In vitro mechanistic studies on alpha-amanitin and its putative antidotes publication-title: Arch Toxicol doi: 10.1007/s00204-020-02718-1 – volume: 10 year: 2014 ident: B22 article-title: A virtual infection model quantifies innate effector mechanisms and Candida albicans immune escape in human blood publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1003479 – volume: 11 start-page: 507092 year: 2020 ident: B41 article-title: Human serum albumin binds streptolysin O (SLO) toxin produced by group A Streptococcus and inhibits its cytotoxic and hemolytic effects publication-title: Front Immunol doi: 10.3389/fimmu.2020.507092 – volume: 48 start-page: 44 year: 2018 end-page: 49 ident: B74 article-title: Epidemiology and risk factors for mortality in bloodstream infection by CP-Kp, ESBL-E, Candida and CDI: a single center retrospective study publication-title: Eur J Intern Med doi: 10.1016/j.ejim.2017.10.015 – volume: 340 start-page: 448 year: 1999 end-page: 454 ident: B65 article-title: Acute-phase proteins and other systemic responses to inflammation publication-title: N Engl J Med doi: 10.1056/NEJM199902113400607 – volume: 4 year: 2018 ident: B68 article-title: Low serum albumin as a risk factor for infection-related in-hospital death among hemodialysis patients hospitalized on suspicion of infectious disease: a Japanese multicenter retrospective cohort study publication-title: Ren Replace Ther doi: 10.1186/s41100-018-0173-8 – volume: 56 start-page: 397 year: 2005 end-page: 415 ident: B21 article-title: Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2005.04557.x – volume: 25 start-page: 9435 year: 2005 end-page: 9446 ident: B46 article-title: Divergence of Stp1 and Stp2 transcription factors in Candida albicans places virulence factors required for proper nutrient acquisition under amino acid control publication-title: Mol Cell Biol doi: 10.1128/MCB.25.21.9435-9446.2005 – volume: 43 start-page: 181 year: 2019 end-page: 193 ident: B66 article-title: Hypoalbuminemia: pathogenesis and clinical significance publication-title: JPEN J Parenter Enteral Nutr doi: 10.1002/jpen.1451 – volume: 9 start-page: 2938 year: 2007 end-page: 2954 ident: B77 article-title: In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2007.01009.x – volume: 110 start-page: c207 year: 2008 end-page: c212 ident: B71 article-title: Fungal peritonitis in patients on continuous ambulatory peritoneal dialysis: a single-centre experience in India publication-title: Nephron Clin Pract doi: 10.1159/000167867 – volume: 83 start-page: 307 year: 2003 end-page: 308 ident: B73 article-title: Albumin in vaginal fluid is a marker of infection in early pregnancy publication-title: Int J Gynaecol Obstet doi: 10.1016/s0020-7292(03)00268-6 – volume: 25 start-page: 432 year: 2019 end-page: 443 e6 ident: B8 article-title: Candida albicans morphogenesis programs control the balance between gut commensalism and invasive infection publication-title: Cell Host Microbe doi: 10.1016/j.chom.2019.02.008 – volume: 17 start-page: 225 year: 2010 end-page: 229 ident: B5 article-title: Vascular permeability to plasma, plasma proteins, and cells: an update publication-title: Curr Opin Hematol doi: 10.1097/MOH.0b013e3283386638 – volume: 5 start-page: 299 year: 2014 ident: B1 article-title: Unraveling the mysteries of serum albumin-more than just a serum protein publication-title: Front Physiol doi: 10.3389/fphys.2014.00299 – volume: 8 year: 2013 ident: B24 article-title: Human serum promotes Candida albicans biofilm growth and virulence gene expression on silicone biomaterial publication-title: PLoS One doi: 10.1371/journal.pone.0062902 – volume: 11 year: 2020 ident: B29 article-title: Human serum albumin facilitates heme-iron utilization by fungi publication-title: mBio doi: 10.1128/mBio.00607-20 – volume: 3 start-page: 4 year: 2013 ident: B3 article-title: Specific antioxidant properties of human serum albumin publication-title: Ann Intensive Care doi: 10.1186/2110-5820-3-4 – volume: 7 start-page: 19 year: 1980 end-page: 22 ident: B67 article-title: Association of a low serum albumin with infection and increased mortality in critically ill patients publication-title: Intensive Care Med doi: 10.1007/BF01692917 – volume: 60 start-page: 1226 year: 2016 end-page: 1233 ident: B54 article-title: Albumin enhances caspofungin activity against Aspergillus species by facilitating drug delivery to germinating hyphae publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.02026-15 – volume: 8 start-page: 650 year: 2019 end-page: 656 ident: B33 article-title: Fatty acid binding to human serum albumin in blood serum characterized by EPR spectroscopy publication-title: ChemistryOpen doi: 10.1002/open.201900113 – volume: 532 start-page: 64 year: 2016 end-page: 68 ident: B30 article-title: Candidalysin is a fungal peptide toxin critical for mucosal infection publication-title: Nature doi: 10.1038/nature17625 – volume: 218 start-page: 1424 year: 2018 end-page: 1435 ident: B60 article-title: Human serum albumin is an essential component of the host defense mechanism against Clostridium difficile intoxication publication-title: J Infect Dis doi: 10.1093/infdis/jiy338 – volume: 130 start-page: 1465e11 year: 2017 end-page: 1465e19 ident: B63 article-title: Low albumin levels are associated with mortality risk in hospitalized patients publication-title: Am J Med doi: 10.1016/j.amjmed.2017.07.020 – volume: 532 start-page: 41 year: 2016 end-page: 42 ident: B32 article-title: Microbiology: fungus produces a toxic surprise publication-title: Nature doi: 10.1038/nature17319 – volume: 76 start-page: 950 year: 2019 end-page: 953 ident: B58 article-title: Effect of host human products on natural transformation in Acinetobacter baumannii publication-title: Curr Microbiol doi: 10.1007/s00284-017-1417-5 – volume: 32 start-page: 478 year: 2017 end-page: 485 ident: B69 article-title: Clinical significance of positive Pneumocystis jirovecii polymerase chain reaction in non-human immunodeficiency virus immunocompromised patients in a real practice publication-title: Korean J Intern Med doi: 10.3904/kjim.2015.340 – volume: 67 start-page: 400 year: 2003 end-page: 428 ident: B45 article-title: Candida albicans secreted aspartyl proteinases in virulence and pathogenesis publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.67.3.400-428.2003 – volume: 8 year: 2013 ident: B6 article-title: Characterization of the vaginal micro- and mycobiome in asymptomatic reproductive-age Estonian women publication-title: PLoS One doi: 10.1371/journal.pone.0054379 – volume: 3 start-page: 180 year: 2011 end-page: 199 ident: B14 article-title: Organ-specific innate immune responses in a mouse model of invasive candidiasis publication-title: J Innate Immun doi: 10.1159/000321157 – volume: 7 year: 2012 ident: B25 article-title: Candida albicans-epithelial interactions: dissecting the roles of active penetration, induced endocytosis, and host factors on the infection process publication-title: PLoS One doi: 10.1371/journal.pone.0036952 |
SSID | ssj0000331830 |
Score | 2.441545 |
Snippet | Albumin is the most abundant serum protein in humans. During inflammation, serum albumin levels decrease drastically, and low albumin levels are associated... Albumin is abundant in serum but is also excreted at mucosal surfaces and enters tissues when inflammation increases vascular permeability. Host-associated... |
SourceID | doaj pubmedcentral proquest asm2 crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | e0053121 |
SubjectTerms | Host-Microbial Interactions Research Article |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS-QwFA4yIOxl0XWXHdddIoqn7dpJ0yY57gzKICiCCt5CfhUL2oqdgdW_3vfSjkwPshev6YOG974k38uP7xFyyFPPDOchcar0CfdykhiBqvuOuUwGpKi433F-Ucxv-NltfrtW6gvvhHXywJ3jjnnAunEZ88oUXAmPx36qUDIXLlgR6wuzVKVryVScgzPEaroS1WTy-GFaNX8i5BLUBR2Z9oEN1qIo2T_gmcNbkmvLzukW-dzzRfq36-c22Qj1F7LZVZB83iFXcYu9qulFWMY9i5fQ0vmzf2oe7xpbOXrd_Kvqlpra0_PGY60uMJjhWxZvqLm3OAu29BJ4YANQqhyQ8q_k5vTkejZP-joJieFFvkgsUDLjgElwwaxKC1tKl5m89Hg-axiwGmmlkkbYiRSuLGXg0OjzYIQDdsKyb2RUN3X4TmjmjPWFg5DBOA1A_4T1XpWQyConMuHH5AAdp3ugtzrmEExqdK-O7tVsMia_V37Vrpcax4oX9--ZH72ZP3YaG-8ZTjFIb0YojR0bADC6B4z-H2DGZH8VYg1DCc9HTB2aZatRrQ2yR17wMRGD2A_-OPxSV3dRlBvSNFjZ2e5HdPEH-cTw6kxaJEztkdHiaRl-AvdZ2F8R5q-QqP-n priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEA9SEXwR6wdetSWi-OTWvWx2kzxIscVyCC2CPehbyNfaheum3t5Br399Z3J71RULvmZn2WU-kt9kkt8Q8p7nnhnOQ-ZU7TPu5TgzAln3HXOFDAhRcb_j5LSaTPm38_L8N6VQr8Dun6kd9pOazmf7179WBxDwn9cXYOSny8Mm7idvyvBK-cNUKsJTfD3ST5Nygc6bb1g2_34LJmTTXbLB4pQ4_AfAc3hs8o916PgpedIDSPplbfFt8iC0z8ijdUvJ1XPyI-25Ny09Dcu0iXETOjpZ-Xm8uoi2cfQsXjdtR03r6Un02LwLBI7wcos31MwsTosd_Q7AMIJvNQ5Q-gsyPf56djTJ-sYJmeFVucgsYDTjAFpwwazKK1tLV5iy9liwNQxgjrRSSSPsWApX1zJwGPRlMMIBXGHFS7LVxja8IrRwxvrKgQ0hcAPgQWG9VzVktsqJQvgReYeK0xvD6ZRUMKlRvTqpV7PxiHzc6FW7nnscW2DM7hP_cCd-tSbduE_wEI10J4Rc2Wkgzn_qPvQ0_HaOE5dXpuJKeCwcq0rJUrhgxZiNyNuNiTXEFhZMTBvistNI3wbpJK_4iIiB7QdfHD5pm4vE0g15Gyz1bOe_FPSaPGZ4WCavMqbekK3FfBl2Ae0s7F7y41vVp_ze priority: 102 providerName: Scholars Portal |
Title | Albumin Neutralizes Hydrophobic Toxins and Modulates Candida albicans Pathogenicity |
URI | https://journals.asm.org/doi/10.1128/mBio.00531-21 https://www.proquest.com/docview/2544164464 https://pubmed.ncbi.nlm.nih.gov/PMC8262992 https://doaj.org/article/4e001832d9a6497d9014969857ceb712 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEF9KS8EXUat4VcsWxSdTk80mu_t4LbaHclWwB_e27FdooE1KcwfWv96ZveQwQsGXPGwmH8zH7m9mdmcI-cBTzwznIXGq8gn3MkuMwKr7jrlcBoSoGO-YX5azBf-6LJY7hA1nYXoOdiemu42J_K1lM_n59rRuT6LaJHh2fK8AuA8O1950uvj-bRtZSXPU03QoqPnvczD3wrvZaB2K5fpHGHO8Q_KvJef8GXnaY0U63Qj3OdkJzQuyv-ke-XBAfsbwet3Qy7CO8YrfoaOzB3_f3l23tnb0qv1VNx01jafz1mOfLiA4w3Ms3lBzY3EG7OgPwIAtqFHtAJC_JIvzL1dns6TvkZAYXharxAIcMw5QBBfMqrS0lXS5KSqPuVnDANFIK5U0wmZSuKqSgcOgL4IRDpAJy1-R3aZtwmtCc2esLx2IC2w0APQT1ntVgROrnMiFn5D3yDg9iEhH_4FJjezVkb2aZRPyaeCrdn2Zcex2cfMY-cct-d2mvsZjhKcopC0RlsWOA6AkurcyDb-d4hzllSm5Eh5zxKpUshAuWJGxCTkeRKzBjDA3YprQrjuNldrAc-QlnxAxkv3oi-M7TX0dC3KDiwarOjv8Lwa9IU8Y7otJy4Spt2R3db8O7wDYrOxRr8lHMTAA14tlBtc5l38ASir3qw |
linkProvider | American Society for Microbiology |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9swFBalZWwvY1eW3aqxsae5c2TZkh7T0pKtTTZYAn0Tupl6pHapE1j363eO4oS5UOirfYzMuUifzpG-Q8gnnnpmOA-JU6VPuJfDxAhk3XfMZTIgRMV8x2RajOf8-3l-vkOKzV2Y39iXd9EemPYy1vExsDER3fUjlF8vD6vmILpOgvfH93KmUvDvvdFo_uN0m11JM_TVdEOqefs7mH9hANZbiyJlfw9n9k9J_rfsnDwhjzu8SEdrAz8lO6F-Rh6sO0jePCe_Yoq9quk0rGLO4m9o6fjGXzdXF42tHJ01f6q6pab2dNJ47NUFAkd4l8UbahYWZ8GW_gQc2IArVQ5A-QsyPzmeHY2Trk9CYniRLxMLkMw4QBJcMKvSwpbSZSYvPdZnDQNUI61U0gg7lMKVpQwcHvo8GOEAnbDsJdmtmzq8IjRzxvrCgckgTgPAP2G9VyVsZJUTmfAD8hEVpztHb3XcQzCpUb06qlez4YB82ehVu45qHDteLO4S_7wVv1pzbNwleIhG2gohNXZ8AJ6iu0jT8NspzlNemYIr4bFOrAolc-GCFUM2IB82JtYQSlgfMXVoVq1GtjbYPfKCD4jo2b43Yv9NXV1EUm7YpsHKzl7fS0H75OF4NjnTZ9-mp2_II4bnZNIiYeot2V1er8I7ADpL-77z6n8iVvk8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLamTiBeEFdRrkYgnshIHSe2H7tBVRgrk1ilvVm-RYu0JdXSSoxfzzluUhGkSbwmJxedi_35HPs7hLznqWeG85A4VfqEezlJjEDWfcdcJgNCVMx3nCyK-ZJ_O8_P90jRn4XpNNgemPYqFvIxsle-7PoRyk9Xh1VzEF0nwfPj-zlWykZkfzpd_jjeZVfSDH017Uk1_30Oxl94PxvMRZGyf4Azh7sk_5p2Zg_I_Q4v0unWwA_JXqgfkTvbDpI3j8nPmGKvaroIm5iz-B1aOr_x183qorGVo2fNr6puqak9PWk89uoCgSM8y-INNZcWR8GWngIObMCVKgeg_AlZzr6cHc2Trk9CYniRrxMLkMw4QBJcMKvSwpbSZSYvPdZnDQNUI61U0gg7kcKVpQwcLvo8GOEAnbDsKRnVTR2eEZo5Y33hwGQQpwHgn7DeqxIWssqJTPgxeYeK072ZdFxDMKlRvTqqV7PJmHzs9apdRzWOHS8ubxP_sBNfbTk2bhM8RCPthJAaO14AR9FdpGn47RTHKa9MwZXwWCdWhZK5cMGKCRuTt72JNYQS1kdMHZpNq5GtDVaPvOBjIga2H3xxeKeuLiIpNyzTYGZnz_9LQW_I3dPPM_396-L4BbnHcJtMWiRMvSSj9fUmvAKcs7avO6f-AyeY-OE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Albumin+Neutralizes+Hydrophobic+Toxins+and+Modulates+Candida+albicans+Pathogenicity&rft.jtitle=mBio&rft.au=Austermeier%2C+Sophie&rft.au=Pekmezovi%C4%87%2C+Marina&rft.au=Porschitz%2C+Pauline&rft.au=Lee%2C+Sejeong&rft.date=2021-06-29&rft.pub=American+Society+for+Microbiology&rft.eissn=2150-7511&rft.volume=12&rft.issue=3&rft_id=info:doi/10.1128%2FmBio.00531-21&rft.externalDocID=mBio00531-21 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2150-7511&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2150-7511&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2150-7511&client=summon |