Effects of Polymer Coatings on Electrodeposited Lithium Metal

The electrodeposition of lithium metal is a key process in next-generation, high energy density storage devices. However, the high reactivity of the lithium metal causes short cycling lifetimes and dendrite growth that can pose a serious safety issue. Recently, a number of approaches have been pursu...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 140; no. 37; pp. 11735 - 11744
Main Authors Lopez, Jeffrey, Pei, Allen, Oh, Jin Young, Wang, Ging-Ji Nathan, Cui, Yi, Bao, Zhenan
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 19.09.2018
Subjects
Online AccessGet full text
ISSN0002-7863
1520-5126
1520-5126
DOI10.1021/jacs.8b06047

Cover

Abstract The electrodeposition of lithium metal is a key process in next-generation, high energy density storage devices. However, the high reactivity of the lithium metal causes short cycling lifetimes and dendrite growth that can pose a serious safety issue. Recently, a number of approaches have been pursued to stabilize the lithium metal–electrolyte interface, including soft polymeric coatings that have shown the ability to enable high-rate and high-capacity lithium metal cycling, but a clear understanding of how to design and modify these coatings has not yet been established. In this work, we studied the effects of several polymers with systematically varied chemical and mechanical properties as coatings on the lithium metal anode. By examining the early stages of lithium metal deposition, we determine that the morphology of the lithium particles is strongly influenced by the chemistry of the polymer coating. We have identified polymer dielectric constant and surface energy as two key descriptors of the lithium deposit size. Low surface energy polymers were found to promote larger deposits with smaller surface areas. This may be explained by a reduced interaction between the coating and the lithium surface and thus an increase in the interfacial energy. On the other hand, high dielectric constant polymers were found to increase the exchange current and gave larger lithium deposits due to the decreased overpotentials at a fixed current density. We also observed that the thickness of the polymer coating should be optimized for each individual polymer. Furthermore, polymer reactivity was found to strongly influence the Coulombic efficiency. Overall, this work offers new fundamental insights into lithium electrodeposition processes and provides direction for the design of new polymer coatings to better stabilize the lithium metal anode.
AbstractList The electrodeposition of lithium metal is a key process in next-generation, high energy density storage devices. However, the high reactivity of the lithium metal causes short cycling lifetimes and dendrite growth that can pose a serious safety issue. Recently, a number of approaches have been pursued to stabilize the lithium metal–electrolyte interface, including soft polymeric coatings that have shown the ability to enable high-rate and high-capacity lithium metal cycling, but a clear understanding of how to design and modify these coatings has not yet been established. In this work, we studied the effects of several polymers with systematically varied chemical and mechanical properties as coatings on the lithium metal anode. By examining the early stages of lithium metal deposition, we determine that the morphology of the lithium particles is strongly influenced by the chemistry of the polymer coating. We have identified polymer dielectric constant and surface energy as two key descriptors of the lithium deposit size. Low surface energy polymers were found to promote larger deposits with smaller surface areas. This may be explained by a reduced interaction between the coating and the lithium surface and thus an increase in the interfacial energy. On the other hand, high dielectric constant polymers were found to increase the exchange current and gave larger lithium deposits due to the decreased overpotentials at a fixed current density. We also observed that the thickness of the polymer coating should be optimized for each individual polymer. Furthermore, polymer reactivity was found to strongly influence the Coulombic efficiency. Overall, this work offers new fundamental insights into lithium electrodeposition processes and provides direction for the design of new polymer coatings to better stabilize the lithium metal anode.
The electrodeposition of lithium metal is a key process in next-generation, high energy density storage devices. However, the high reactivity of the lithium metal causes short cycling lifetimes and dendrite growth that can pose a serious safety issue. Recently, a number of approaches have been pursued to stabilize the lithium metal-electrolyte interface, including soft polymeric coatings that have shown the ability to enable high-rate and high-capacity lithium metal cycling, but a clear understanding of how to design and modify these coatings has not yet been established. In this work, we studied the effects of several polymers with systematically varied chemical and mechanical properties as coatings on the lithium metal anode. By examining the early stages of lithium metal deposition, we determine that the morphology of the lithium particles is strongly influenced by the chemistry of the polymer coating. We have identified polymer dielectric constant and surface energy as two key descriptors of the lithium deposit size. Low surface energy polymers were found to promote larger deposits with smaller surface areas. This may be explained by a reduced interaction between the coating and the lithium surface and thus an increase in the interfacial energy. On the other hand, high dielectric constant polymers were found to increase the exchange current and gave larger lithium deposits due to the decreased overpotentials at a fixed current density. We also observed that the thickness of the polymer coating should be optimized for each individual polymer. Furthermore, polymer reactivity was found to strongly influence the Coulombic efficiency. Overall, this work offers new fundamental insights into lithium electrodeposition processes and provides direction for the design of new polymer coatings to better stabilize the lithium metal anode.The electrodeposition of lithium metal is a key process in next-generation, high energy density storage devices. However, the high reactivity of the lithium metal causes short cycling lifetimes and dendrite growth that can pose a serious safety issue. Recently, a number of approaches have been pursued to stabilize the lithium metal-electrolyte interface, including soft polymeric coatings that have shown the ability to enable high-rate and high-capacity lithium metal cycling, but a clear understanding of how to design and modify these coatings has not yet been established. In this work, we studied the effects of several polymers with systematically varied chemical and mechanical properties as coatings on the lithium metal anode. By examining the early stages of lithium metal deposition, we determine that the morphology of the lithium particles is strongly influenced by the chemistry of the polymer coating. We have identified polymer dielectric constant and surface energy as two key descriptors of the lithium deposit size. Low surface energy polymers were found to promote larger deposits with smaller surface areas. This may be explained by a reduced interaction between the coating and the lithium surface and thus an increase in the interfacial energy. On the other hand, high dielectric constant polymers were found to increase the exchange current and gave larger lithium deposits due to the decreased overpotentials at a fixed current density. We also observed that the thickness of the polymer coating should be optimized for each individual polymer. Furthermore, polymer reactivity was found to strongly influence the Coulombic efficiency. Overall, this work offers new fundamental insights into lithium electrodeposition processes and provides direction for the design of new polymer coatings to better stabilize the lithium metal anode.
Author Pei, Allen
Wang, Ging-Ji Nathan
Lopez, Jeffrey
Bao, Zhenan
Oh, Jin Young
Cui, Yi
AuthorAffiliation Department of Chemistry
Department of Chemical Engineering
Department of Materials Science and Engineering
Stanford Institute for Materials and Energy Sciences
SLAC National Accelerator Laboratory
AuthorAffiliation_xml – name: Department of Chemical Engineering
– name: Department of Chemistry
– name: Stanford Institute for Materials and Energy Sciences
– name: SLAC National Accelerator Laboratory
– name: Department of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: Jeffrey
  orcidid: 0000-0002-6425-5550
  surname: Lopez
  fullname: Lopez, Jeffrey
– sequence: 2
  givenname: Allen
  orcidid: 0000-0001-8930-2125
  surname: Pei
  fullname: Pei, Allen
– sequence: 3
  givenname: Jin Young
  orcidid: 0000-0003-2260-9960
  surname: Oh
  fullname: Oh, Jin Young
  organization: Department of Chemical Engineering
– sequence: 4
  givenname: Ging-Ji Nathan
  orcidid: 0000-0002-5432-3046
  surname: Wang
  fullname: Wang, Ging-Ji Nathan
– sequence: 5
  givenname: Yi
  orcidid: 0000-0002-6103-6352
  surname: Cui
  fullname: Cui, Yi
  email: yicui@stanford.edu
  organization: SLAC National Accelerator Laboratory
– sequence: 6
  givenname: Zhenan
  orcidid: 0000-0002-0972-1715
  surname: Bao
  fullname: Bao, Zhenan
  email: zbao@stanford.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30152228$$D View this record in MEDLINE/PubMed
BookMark eNqFkD1PxCAYgInReB-6OZuODvYEWko7OJjL-ZGc0eH2BtoX5dKWE-hw_16aqw5G4_J-PhB4Zui4Mx0gdEHwgmBKbraicotc4gyn_AhNCaM4ZoRmx2iKMaYxz7NkgmbObUOb0pycokmCA0ZpPkW3K6Wg8i4yKno1zb4FGy2N8Lp7C7MuWjVha00NO-O0hzpaa_-u-zZ6Bi-aM3SiROPgfMxztLlfbZaP8frl4Wl5t45FmlEf57IgmRChYULVGQwFl7hQiaxyRnIOUjDJVQEhqDRJheSYiIrXHOMakjm6Oly7s-ajB-fLVrsKmkZ0YHpXUppwlpDw2_9RXDBGk4LygF6OaC9bqMud1a2w-_JLTgCuD0BljXMW1DdCcDm4Lwf35eg-4PQHXmkfTJrOW6Gbvw6N7x2GW9PbLnj8Hf0E3hmUIg
CitedBy_id crossref_primary_10_1016_j_ensm_2019_10_017
crossref_primary_10_1038_s41467_023_38387_8
crossref_primary_10_1016_j_cej_2021_130326
crossref_primary_10_1021_acsami_0c13485
crossref_primary_10_1021_acs_jpcc_9b06070
crossref_primary_10_1002_eem2_12861
crossref_primary_10_1002_adma_202409062
crossref_primary_10_1002_adfm_202409812
crossref_primary_10_1002_adma_201905245
crossref_primary_10_1002_aenm_202402671
crossref_primary_10_1016_j_gee_2021_12_006
crossref_primary_10_1038_s41578_019_0165_5
crossref_primary_10_1021_acs_chemrev_0c00275
crossref_primary_10_1039_C9EE03545A
crossref_primary_10_1002_adfm_202007172
crossref_primary_10_1007_s12274_019_2519_0
crossref_primary_10_1039_D0TA06020H
crossref_primary_10_1021_acsami_2c21612
crossref_primary_10_1149_2_0271816jes
crossref_primary_10_1007_s12274_021_3872_3
crossref_primary_10_1002_adma_202101726
crossref_primary_10_1038_s41467_021_23155_3
crossref_primary_10_1149_1945_7111_ad1e3e
crossref_primary_10_1002_anie_202300823
crossref_primary_10_1021_acsanm_1c01932
crossref_primary_10_1002_adfm_202003800
crossref_primary_10_1002_anie_202214386
crossref_primary_10_1016_j_ensm_2024_103724
crossref_primary_10_1021_acsami_2c09287
crossref_primary_10_1021_acsami_1c01476
crossref_primary_10_1016_j_matt_2021_09_025
crossref_primary_10_1016_j_jpowsour_2019_02_033
crossref_primary_10_1021_jacs_4c10106
crossref_primary_10_1039_D4TA02003K
crossref_primary_10_1016_j_jpowsour_2022_231819
crossref_primary_10_1002_adma_202007406
crossref_primary_10_1016_j_joule_2019_07_025
crossref_primary_10_1002_adma_201900342
crossref_primary_10_2139_ssrn_4103278
crossref_primary_10_1149_2_1171913jes
crossref_primary_10_1016_j_electacta_2024_143998
crossref_primary_10_1021_acs_jpcc_3c02437
crossref_primary_10_1002_admi_202102428
crossref_primary_10_1016_j_jpowsour_2021_229919
crossref_primary_10_1039_D4EE03192J
crossref_primary_10_1073_pnas_2012071118
crossref_primary_10_1002_adfm_202102336
crossref_primary_10_1002_adma_202110423
crossref_primary_10_1002_adma_202203194
crossref_primary_10_1002_aenm_202200013
crossref_primary_10_1016_j_jcis_2020_10_075
crossref_primary_10_1002_aenm_202300627
crossref_primary_10_1016_j_matlet_2021_129705
crossref_primary_10_1021_jacs_0c12051
crossref_primary_10_1002_eom2_12416
crossref_primary_10_1038_s41578_019_0103_6
crossref_primary_10_1002_anie_202423531
crossref_primary_10_1016_j_cej_2020_126808
crossref_primary_10_1016_j_jcis_2024_08_151
crossref_primary_10_1021_acs_chemrev_0c01100
crossref_primary_10_1073_pnas_2001837117
crossref_primary_10_1021_acs_iecr_0c00254
crossref_primary_10_1002_ange_202403432
crossref_primary_10_1021_acsnano_2c11734
crossref_primary_10_1039_D2EE03557J
crossref_primary_10_1002_anie_201814563
crossref_primary_10_1016_j_nanoen_2022_107009
crossref_primary_10_1007_s11426_024_2399_2
crossref_primary_10_1021_acsami_4c09699
crossref_primary_10_1016_j_jallcom_2024_178118
crossref_primary_10_1016_j_jpowsour_2022_232018
crossref_primary_10_1016_j_cej_2021_132659
crossref_primary_10_1016_j_nanoen_2021_106510
crossref_primary_10_1016_j_nanoen_2024_109970
crossref_primary_10_1016_j_ijsolstr_2020_04_013
crossref_primary_10_1021_acs_nanolett_0c03206
crossref_primary_10_1021_jacs_3c08733
crossref_primary_10_1038_s41467_024_51958_7
crossref_primary_10_1016_j_jechem_2024_10_021
crossref_primary_10_1002_anie_202408611
crossref_primary_10_1149_1945_7111_ac0f89
crossref_primary_10_1007_s11581_019_02993_8
crossref_primary_10_1016_j_electacta_2021_139668
crossref_primary_10_1016_j_ensm_2023_102827
crossref_primary_10_1002_aenm_202403525
crossref_primary_10_1016_j_matt_2022_11_003
crossref_primary_10_1002_cey2_147
crossref_primary_10_1021_acssuschemeng_1c03904
crossref_primary_10_1021_acsami_3c02728
crossref_primary_10_1021_acsenergylett_9b00539
crossref_primary_10_1149_1945_7111_ac18e1
crossref_primary_10_1002_er_4699
crossref_primary_10_1039_C9TA12979K
crossref_primary_10_26599_NRE_2023_9120046
crossref_primary_10_1021_acsaenm_3c00266
crossref_primary_10_1021_acsomega_0c00729
crossref_primary_10_1002_aenm_202301899
crossref_primary_10_1016_j_progpolymsci_2021_101453
crossref_primary_10_1039_D3YA00137G
crossref_primary_10_1039_C9CS00883G
crossref_primary_10_1039_C9TA08798B
crossref_primary_10_1016_j_cclet_2019_06_013
crossref_primary_10_1002_adma_202106937
crossref_primary_10_1016_j_electacta_2019_134825
crossref_primary_10_1021_acs_energyfuels_1c00643
crossref_primary_10_1039_D0TA03774E
crossref_primary_10_1016_j_jechem_2022_09_030
crossref_primary_10_1016_j_est_2023_107687
crossref_primary_10_1016_j_electacta_2021_138526
crossref_primary_10_1016_j_mattod_2022_01_015
crossref_primary_10_1016_j_jechem_2020_09_030
crossref_primary_10_1039_D0SC06651F
crossref_primary_10_1039_D1MA00121C
crossref_primary_10_1002_adfm_202403222
crossref_primary_10_1002_smll_202308499
crossref_primary_10_1039_D1TA03533A
crossref_primary_10_1016_j_cej_2024_150667
crossref_primary_10_1021_acsami_0c09730
crossref_primary_10_1002_ange_202423531
crossref_primary_10_1002_smll_202402213
crossref_primary_10_1021_acsenergylett_1c02723
crossref_primary_10_1016_j_matt_2020_08_011
crossref_primary_10_1017_jfm_2021_907
crossref_primary_10_1021_acsaem_0c00055
crossref_primary_10_1002_eng2_12339
crossref_primary_10_1016_j_cej_2024_153002
crossref_primary_10_1002_aenm_202201025
crossref_primary_10_1039_D1TA02796D
crossref_primary_10_1002_adfm_202007255
crossref_primary_10_1038_s41467_023_44161_7
crossref_primary_10_1002_smll_202103617
crossref_primary_10_1016_j_cej_2023_144477
crossref_primary_10_1038_s41467_021_26814_7
crossref_primary_10_1002_anie_201907759
crossref_primary_10_1016_j_est_2024_113508
crossref_primary_10_1021_acsenergylett_2c02042
crossref_primary_10_1016_j_ensm_2022_09_006
crossref_primary_10_1021_acsnano_0c05636
crossref_primary_10_1016_j_chempr_2018_12_002
crossref_primary_10_1021_acsami_1c16263
crossref_primary_10_1021_jacs_0c09649
crossref_primary_10_1021_acsami_2c18783
crossref_primary_10_1002_aenm_202002390
crossref_primary_10_1021_acs_energyfuels_4c01042
crossref_primary_10_1016_j_pmatsci_2022_100996
crossref_primary_10_1039_D1NR05681F
crossref_primary_10_1016_j_ensm_2019_09_020
crossref_primary_10_1038_s41570_022_00384_8
crossref_primary_10_1016_j_cej_2021_130939
crossref_primary_10_1016_j_gee_2019_05_003
crossref_primary_10_1073_pnas_2311732121
crossref_primary_10_1002_eem2_12393
crossref_primary_10_1016_j_jechem_2022_10_026
crossref_primary_10_2139_ssrn_3991432
crossref_primary_10_1021_acs_nanolett_0c01501
crossref_primary_10_1021_acsami_2c07551
crossref_primary_10_1021_jacs_4c08766
crossref_primary_10_1038_s41560_023_01252_5
crossref_primary_10_3390_polym14235327
crossref_primary_10_1016_j_gee_2021_04_011
crossref_primary_10_1039_C9TA09523C
crossref_primary_10_3389_fchem_2019_00421
crossref_primary_10_1039_D4SE01640H
crossref_primary_10_1039_C9EE00596J
crossref_primary_10_1039_C9TA00143C
crossref_primary_10_1039_C9TA00862D
crossref_primary_10_1002_adfm_202310801
crossref_primary_10_1016_j_cej_2023_141509
crossref_primary_10_1016_j_cej_2019_04_068
crossref_primary_10_5796_electrochemistry_20_00085
crossref_primary_10_1016_j_ensm_2023_102900
crossref_primary_10_1002_adfm_201910138
crossref_primary_10_1002_aenm_202403845
crossref_primary_10_1002_ange_202308724
crossref_primary_10_1016_j_electacta_2020_137702
crossref_primary_10_1039_D1TA00408E
crossref_primary_10_1002_adma_202402626
crossref_primary_10_1016_j_jpowsour_2020_228812
crossref_primary_10_1039_C9TA11311H
crossref_primary_10_1007_s12274_022_5227_0
crossref_primary_10_1016_j_ceramint_2023_06_026
crossref_primary_10_1016_j_ensm_2023_02_037
crossref_primary_10_1016_j_jpowsour_2021_229744
crossref_primary_10_1016_j_nanoen_2021_106808
crossref_primary_10_1002_celc_202101596
crossref_primary_10_1002_aenm_202103187
crossref_primary_10_1016_j_ensm_2025_104023
crossref_primary_10_1016_j_ensm_2025_104020
crossref_primary_10_1016_j_giant_2020_100027
crossref_primary_10_1002_ange_201907759
crossref_primary_10_1149_1945_7111_ac47ea
crossref_primary_10_3390_coatings12020289
crossref_primary_10_1016_j_cej_2021_133442
crossref_primary_10_1021_acsami_4c13335
crossref_primary_10_1021_acs_macromol_0c00475
crossref_primary_10_1002_adfm_202203652
crossref_primary_10_1021_jacs_0c10258
crossref_primary_10_1021_acsami_0c14050
crossref_primary_10_1016_j_joule_2018_11_001
crossref_primary_10_1007_s10338_024_00579_0
crossref_primary_10_1021_acsami_1c23781
crossref_primary_10_1016_j_cej_2024_149188
crossref_primary_10_1002_anie_202308724
crossref_primary_10_1016_j_joule_2021_03_024
crossref_primary_10_1063_5_0008206
crossref_primary_10_1021_acsenergylett_0c00031
crossref_primary_10_1021_acsapm_3c00538
crossref_primary_10_1002_smll_202404437
crossref_primary_10_1021_acsami_2c17084
crossref_primary_10_1021_jacs_8b08963
crossref_primary_10_1016_j_jechem_2021_06_026
crossref_primary_10_1039_D1QM00185J
crossref_primary_10_1088_1674_1056_28_7_078202
crossref_primary_10_1039_D4NR00842A
crossref_primary_10_1021_acsami_1c13186
crossref_primary_10_1039_D3EE02372A
crossref_primary_10_1039_D3NA00248A
crossref_primary_10_1002_batt_202200262
crossref_primary_10_1002_ange_202407304
crossref_primary_10_1016_j_isci_2021_102578
crossref_primary_10_1039_D3TA04883G
crossref_primary_10_1016_j_cej_2025_160157
crossref_primary_10_1016_j_ensm_2021_01_007
crossref_primary_10_1016_j_apsusc_2021_152239
crossref_primary_10_1016_j_cej_2023_143222
crossref_primary_10_1002_advs_202000237
crossref_primary_10_1016_j_jpowsour_2020_229203
crossref_primary_10_1039_C9TA07165B
crossref_primary_10_1039_D3TA05925A
crossref_primary_10_1002_adma_202205194
crossref_primary_10_1039_D0TA05372D
crossref_primary_10_1016_j_jallcom_2019_03_281
crossref_primary_10_1021_acs_chemrev_0c01184
crossref_primary_10_1007_s12274_022_4116_x
crossref_primary_10_1016_j_cej_2023_142937
crossref_primary_10_1038_s41560_021_00910_w
crossref_primary_10_1016_j_jmst_2024_09_003
crossref_primary_10_1016_j_mattod_2020_06_011
crossref_primary_10_1002_adfm_202311301
crossref_primary_10_1002_ange_202111199
crossref_primary_10_1016_j_nanoen_2021_106353
crossref_primary_10_1039_D3YA00470H
crossref_primary_10_1016_j_ijengsci_2024_104137
crossref_primary_10_1007_s41918_020_00076_1
crossref_primary_10_1016_j_ensm_2019_04_043
crossref_primary_10_1021_acsami_1c21263
crossref_primary_10_1021_acs_jpcc_0c11194
crossref_primary_10_1016_j_mtener_2023_101444
crossref_primary_10_1021_acssuschemeng_0c05153
crossref_primary_10_1021_acsaem_3c02350
crossref_primary_10_1002_adfm_202104930
crossref_primary_10_1002_adma_202108400
crossref_primary_10_1016_j_ensm_2023_103084
crossref_primary_10_1002_smtd_202401021
crossref_primary_10_1039_C9CS00636B
crossref_primary_10_1039_D3EE01724A
crossref_primary_10_1021_acsnano_1c05497
crossref_primary_10_1002_ente_202000700
crossref_primary_10_1007_s12598_023_02319_8
crossref_primary_10_1002_advs_201901120
crossref_primary_10_1177_09506608251318467
crossref_primary_10_1002_anie_202403432
crossref_primary_10_1039_D1EE01404H
crossref_primary_10_1002_ange_202408611
crossref_primary_10_1021_acsaem_0c01175
crossref_primary_10_1016_j_jechem_2021_03_018
crossref_primary_10_1002_adfm_201907579
crossref_primary_10_1002_ange_201814563
crossref_primary_10_1039_C9TA09146G
crossref_primary_10_1002_ange_202214386
crossref_primary_10_1016_j_cej_2022_141015
crossref_primary_10_1039_D4EE03542A
crossref_primary_10_1039_C9SE01046G
crossref_primary_10_1002_smll_202303266
crossref_primary_10_1039_C9TA03395E
crossref_primary_10_1002_smll_202200131
crossref_primary_10_1007_s12274_023_5478_4
crossref_primary_10_1016_j_ifacol_2023_12_065
crossref_primary_10_1016_j_jechem_2023_04_047
crossref_primary_10_1002_anie_202111199
crossref_primary_10_1002_smll_202201349
crossref_primary_10_1039_C9TA13384D
crossref_primary_10_1002_adfm_202102128
crossref_primary_10_1002_adfm_202305098
crossref_primary_10_1016_j_jpowsour_2019_227632
crossref_primary_10_1002_anie_202407304
crossref_primary_10_1021_acsaem_2c01617
crossref_primary_10_1039_D0EE01897J
crossref_primary_10_1016_j_est_2024_112110
crossref_primary_10_1016_j_ensm_2023_04_004
crossref_primary_10_1002_cssc_202401139
crossref_primary_10_1002_adma_202308684
crossref_primary_10_1021_acsami_1c06289
crossref_primary_10_1016_j_ensm_2020_08_025
crossref_primary_10_1016_j_mtener_2021_100897
crossref_primary_10_1039_D2NR01097F
crossref_primary_10_1039_D4NR02780A
crossref_primary_10_1021_acsmaterialslett_1c00276
crossref_primary_10_1002_adma_202002550
crossref_primary_10_1002_smll_202000769
crossref_primary_10_1002_eom2_12503
crossref_primary_10_1002_adfm_202316838
crossref_primary_10_3390_batteries9060299
crossref_primary_10_1016_j_xcrp_2021_100324
crossref_primary_10_1002_smtd_201800551
crossref_primary_10_1039_D2NR04158H
crossref_primary_10_1016_j_ensm_2021_06_026
crossref_primary_10_1088_1361_6528_ac3fe2
crossref_primary_10_1002_ange_202300823
crossref_primary_10_1002_adfm_202410158
crossref_primary_10_1007_s12274_020_2923_5
crossref_primary_10_1016_j_jpowsour_2025_236801
crossref_primary_10_1038_s41578_021_00345_5
crossref_primary_10_1016_j_apsusc_2021_150899
crossref_primary_10_1016_j_scib_2022_11_026
crossref_primary_10_1039_D1TA09481E
crossref_primary_10_1016_j_jpowsour_2022_231928
crossref_primary_10_1002_cssc_202400738
crossref_primary_10_1021_acssuschemeng_0c08338
crossref_primary_10_1002_aenm_202401289
crossref_primary_10_1002_aenm_202405767
crossref_primary_10_1002_mame_202100923
crossref_primary_10_1039_D1EE00110H
crossref_primary_10_1039_D2TA04974K
crossref_primary_10_1016_j_jechem_2022_01_019
crossref_primary_10_1016_j_xcrp_2023_101328
crossref_primary_10_1016_j_jechem_2020_08_044
crossref_primary_10_1016_j_nanoen_2020_105500
crossref_primary_10_1039_D1CC02932K
crossref_primary_10_1002_adma_202211679
crossref_primary_10_1021_acsami_2c13256
crossref_primary_10_1021_jacs_2c06757
crossref_primary_10_1039_D0EE03181J
crossref_primary_10_1002_adma_202311529
crossref_primary_10_1002_batt_202200232
crossref_primary_10_3390_batteries8100141
crossref_primary_10_1021_acsaem_2c01873
crossref_primary_10_1016_j_jcis_2023_03_168
crossref_primary_10_1039_D3TA05619H
crossref_primary_10_1039_D0TA03929B
crossref_primary_10_1039_D1EE00767J
crossref_primary_10_1039_D4TA05386A
crossref_primary_10_1002_adfm_202423115
crossref_primary_10_1002_eom2_12283
crossref_primary_10_1002_aenm_202103972
crossref_primary_10_1002_celc_202400278
crossref_primary_10_1016_j_nanoen_2021_105907
crossref_primary_10_1007_s11581_023_05044_5
crossref_primary_10_1039_D0EE03005H
crossref_primary_10_1016_j_ensm_2024_103460
crossref_primary_10_1021_acsaem_3c02937
crossref_primary_10_1021_acsenergylett_1c02224
crossref_primary_10_1002_adma_202200782
crossref_primary_10_1002_adfm_201905078
crossref_primary_10_1016_j_est_2024_112144
crossref_primary_10_1021_acsaem_1c04106
crossref_primary_10_1038_s41565_019_0427_9
crossref_primary_10_1016_j_ensm_2023_102868
crossref_primary_10_1021_acsenergylett_4c00376
crossref_primary_10_1016_j_isci_2020_101089
crossref_primary_10_1021_acsami_1c02951
crossref_primary_10_1016_j_cej_2019_123645
crossref_primary_10_1021_acsami_1c20480
Cites_doi 10.1002/aenm.201702097
10.1038/nmat4041
10.1021/jacs.6b13314
10.1002/adma.201504723
10.1038/ncomms7362
10.1007/s12274-017-1596-1
10.1007/978-3-319-26073-0
10.1038/srep14458
10.1038/nmat4777
10.1002/adma.201605531
10.1002/adma.201604460
10.1002/anie.201710806
10.1021/nl503125u
10.1149/1.1850854
10.1073/pnas.1708224114
10.1016/j.joule.2017.08.009
10.1016/j.chempr.2017.12.003
10.1038/nnano.2014.152
10.1126/sciadv.1600320
10.1021/acs.chemrev.7b00115
10.1002/adma.201701169
10.1021/jacs.7b06437
10.1016/j.jpowsour.2013.01.051
10.1038/ncomms8436
10.1109/JPROC.2012.2190170
10.1038/nenergy.2017.12
10.1038/nmat4834
10.1149/1.1391968
10.1038/nmat3191
10.1038/nmat3602
10.1039/C3EE40795K
10.1002/adma.201603755
10.1021/jacs.7b10864
10.1038/nenergy.2016.132
10.1038/ncomms7152
10.1073/pnas.1806878115
10.1038/ncomms10101
10.1021/ja502133j
10.1021/acs.nanolett.6b04755
10.1021/acsenergylett.6b00456
10.1038/nenergy.2016.128
10.1038/nnano.2017.16
10.1002/aenm.201701482
10.1021/j150553a013
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/jacs.8b06047
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 11744
ExternalDocumentID 30152228
10_1021_jacs_8b06047
a95053832
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
NPM
7X8
AAYWT
7S9
L.6
ID FETCH-LOGICAL-a462t-8b916aaa465afd6ea4657b09f3bc85187eba5b7f9eb7ff434ab701ac7d700de3
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Fri Sep 05 03:55:53 EDT 2025
Fri Sep 05 10:14:19 EDT 2025
Thu Apr 03 06:57:27 EDT 2025
Tue Jul 01 03:21:34 EDT 2025
Thu Apr 24 23:07:01 EDT 2025
Thu Aug 27 13:42:20 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 37
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a462t-8b916aaa465afd6ea4657b09f3bc85187eba5b7f9eb7ff434ab701ac7d700de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6103-6352
0000-0002-6425-5550
0000-0003-2260-9960
0000-0001-8930-2125
0000-0002-0972-1715
0000-0002-5432-3046
PMID 30152228
PQID 2095523927
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2237531002
proquest_miscellaneous_2095523927
pubmed_primary_30152228
crossref_primary_10_1021_jacs_8b06047
crossref_citationtrail_10_1021_jacs_8b06047
acs_journals_10_1021_jacs_8b06047
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-19
PublicationDateYYYYMMDD 2018-09-19
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-19
  day: 19
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
Plieth W. (ref40/cit40) 2008
ref3/cit3
ref27/cit27
ref18/cit18
Popov K. I. (ref42/cit42) 2016
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
Bard A. J. (ref44/cit44) 2000
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref46/cit46
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – volume-title: Electrochemical Methods: Fundamentals and Applications
  year: 2000
  ident: ref44/cit44
– ident: ref46/cit46
  doi: 10.1002/aenm.201702097
– ident: ref15/cit15
  doi: 10.1038/nmat4041
– ident: ref27/cit27
  doi: 10.1021/jacs.6b13314
– ident: ref36/cit36
  doi: 10.1002/adma.201504723
– ident: ref13/cit13
  doi: 10.1038/ncomms7362
– ident: ref37/cit37
  doi: 10.1007/s12274-017-1596-1
– volume-title: Morphology of Electrochemically and Chemically Deposited Metals
  year: 2016
  ident: ref42/cit42
  doi: 10.1007/978-3-319-26073-0
– ident: ref30/cit30
  doi: 10.1038/srep14458
– ident: ref8/cit8
  doi: 10.1038/nmat4777
– ident: ref29/cit29
  doi: 10.1002/adma.201605531
– ident: ref22/cit22
  doi: 10.1002/adma.201604460
– ident: ref28/cit28
  doi: 10.1002/anie.201710806
– ident: ref24/cit24
  doi: 10.1021/nl503125u
– ident: ref34/cit34
  doi: 10.1149/1.1850854
– ident: ref38/cit38
  doi: 10.1073/pnas.1708224114
– ident: ref14/cit14
  doi: 10.1016/j.joule.2017.08.009
– ident: ref12/cit12
  doi: 10.1016/j.chempr.2017.12.003
– ident: ref23/cit23
  doi: 10.1038/nnano.2014.152
– ident: ref33/cit33
  doi: 10.1126/sciadv.1600320
– ident: ref10/cit10
  doi: 10.1021/acs.chemrev.7b00115
– ident: ref9/cit9
  doi: 10.1002/adma.201701169
– ident: ref32/cit32
  doi: 10.1021/jacs.7b06437
– ident: ref41/cit41
  doi: 10.1016/j.jpowsour.2013.01.051
– ident: ref17/cit17
  doi: 10.1038/ncomms8436
– ident: ref7/cit7
  doi: 10.1109/JPROC.2012.2190170
– ident: ref16/cit16
  doi: 10.1038/nenergy.2017.12
– ident: ref3/cit3
  doi: 10.1038/nmat4834
– volume-title: Electrochemistry for Materials Science
  year: 2008
  ident: ref40/cit40
– ident: ref45/cit45
  doi: 10.1149/1.1391968
– ident: ref4/cit4
  doi: 10.1038/nmat3191
– ident: ref19/cit19
  doi: 10.1038/nmat3602
– ident: ref1/cit1
  doi: 10.1039/C3EE40795K
– ident: ref25/cit25
  doi: 10.1002/adma.201603755
– ident: ref11/cit11
  doi: 10.1021/jacs.7b10864
– ident: ref5/cit5
  doi: 10.1038/nenergy.2016.132
– ident: ref18/cit18
  doi: 10.1038/ncomms7152
– ident: ref39/cit39
  doi: 10.1073/pnas.1806878115
– ident: ref20/cit20
  doi: 10.1038/ncomms10101
– ident: ref21/cit21
  doi: 10.1021/ja502133j
– ident: ref35/cit35
  doi: 10.1021/acs.nanolett.6b04755
– ident: ref26/cit26
  doi: 10.1021/acsenergylett.6b00456
– ident: ref6/cit6
  doi: 10.1038/nenergy.2016.128
– ident: ref2/cit2
  doi: 10.1038/nnano.2017.16
– ident: ref31/cit31
  doi: 10.1002/aenm.201701482
– ident: ref43/cit43
  doi: 10.1021/j150553a013
SSID ssj0004281
Score 2.6785
Snippet The electrodeposition of lithium metal is a key process in next-generation, high energy density storage devices. However, the high reactivity of the lithium...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11735
SubjectTerms anodes
coatings
dielectric properties
energy
energy density
lithium
mechanical properties
polymers
Title Effects of Polymer Coatings on Electrodeposited Lithium Metal
URI http://dx.doi.org/10.1021/jacs.8b06047
https://www.ncbi.nlm.nih.gov/pubmed/30152228
https://www.proquest.com/docview/2095523927
https://www.proquest.com/docview/2237531002
Volume 140
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1520-5126
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004281
  issn: 0002-7863
  databaseCode: ACS
  dateStart: 18790101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT4MwFG50PuiL98u8hSX6ZFhGobQ8LmRzMWpMnMneSFtKXNzADHjQX-8ply3OTH0h0BxCb9DvcL5-B6ErSbDgLJSmFB4xHeIxkwPuN7neWOJy5ViyIMg-uoMX525ERguC7HIEH2t9IJm2mdAiL3QdbWCXWdrJ6vrPi_2PmFk1zKXMtSuC-_LdegGS6fcFaAWqLFaX_g66rffolKSSt3aeibb8_CnZ-EfFd9F2BTCNbjkj9tCaivfRpl_ndTtAlWBxaiSR8ZRMPqZqZvgJ1_RnKIuNXpkYJ1QFn0uFxv04ex3nU-NBAVA_RMN-b-gPzCqJgskdF2cmEwAAOYcLwqPQVfqEio4X2UIC2mJUCU4EjTwFh8ixHS5ox-KShrTTCZV9hBpxEqsTZHAAG8J1ScSo7QhicXB2IstTMKLClp7VRC1ocVC9A2lQhLcxuBe6tOqHJrqpOz-QlQi5zoUxWWF9Pbd-L8U3Vti16nEMoDN1yIPHKsnTAGuFPQwY8DcbbIPPpqVom-i4nATzp8Hnj-h_ZKf_aNsZ2gI0VZBJLO8cNbJZri4AsWTispiuX6Q35Lo
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4oHvDi-4HPkujJlNDHdtujIRBUICZiwq3Z3W4jEVpDy0F_vbNLgUiC4dK0m2n32e43nZlvAO4EsTnzI2EKHhDTJYFvMsT9JlOBJR6TriW0g2zPa7-7zwMyKILVVSwMNiLDJ2XaiL9kF1A0QVjoc8X1QrdhR5OgKCTUeFuGQdq-NUe71Pecws999W61D4ns7z60BlzqTaa1D71F87RvyWdtmvOa-Flhbty4_QewV8BN43G2Pg5hSyZHUG7Ms7wdQ0FfnBlpbLymo--xnBiNlClnaCxLjOYsTU4ktXeXjIzOMP8YTsdGVyJsP4F-q9lvtM0ipYLJXM_OTZ8jHGQMLwiLI0-qE8rrQexwgdjLp5IzwmkcSDzEruMyTusWEzSi9XoknVMoJWkiz8FgCD2455HYp47LicVQ9YmtQOL8ckcEVgWq2OOweCOyUBu7bVQ2VGkxDhV4mM9BKApKcpUZY7RG-n4h_TWj4lgjV51PZ4iDqQwgLJHpNAttxbdnIyL8T8Z2UINTxLQVOJuthUVt-DEk6o_ZxQZ9u4Vyu9_thJ2n3ssl7CLO0m4mVnAFpXwyldeIZXJ-o1fwL9KL7SU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZT8JAEJ4gJuqL94FnSfTJlNBju-2jQYgHEqKY8NbsbreRCC2h5UF_vbOlxUiC0Zem3U7bvffbzsw3AJeCmJy5gdAF94huE8_VGeJ-nSnHEodJ2xCZgWzHuXu1H_qkXwKj8IXBTCT4piRT4qtRPQ7CnGFAUQXhDZcrvhe6AqtEsb8pNNR4-XaFNF2jQLzUdazc1n3xabUWieTnWrQEYGYLTWsLnudZzOxL3mvTlNfE5wJ747_KsA2bOezUbmb9ZAdKMtqF9UYR7W0PchrjRItDrRsPP0ZyojVipoyiMS3SmrNwOYHMrLxkoLUH6dtgOtKeJML3fei1mr3GnZ6HVtCZ7Zip7nKEhYzhBWFh4Eh1QnndCy0uEIO5VHJGOA09iYfQtmzGad1ggga0Xg-kdQDlKI7kEWgMIQh3HBK61LI5MRhugULDk9jO3BKeUYEqltjPR0biZ0pvEzcdKjWvhwpcF-3gi5yaXEXIGC6RvppLj2eUHEvkqkWT-liZShHCIhlPE99UvHsmIsPfZEwLd3KKoLYCh7P-MP8aTopE_Tk7_kPZLmCte9vy2_edxxPYQLiVWZsY3imU08lUniGkSfl51om_AIZV758
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Polymer+Coatings+on+Electrodeposited+Lithium+Metal&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Lopez%2C+Jeffrey&rft.au=Pei%2C+Allen&rft.au=Oh%2C+Jin+Young&rft.au=Wang%2C+Ging-Ji+Nathan&rft.date=2018-09-19&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=140&rft.issue=37&rft.spage=11735&rft.epage=11744&rft_id=info:doi/10.1021%2Fjacs.8b06047&rft.externalDocID=a95053832
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon