Effects of Polymer Coatings on Electrodeposited Lithium Metal
The electrodeposition of lithium metal is a key process in next-generation, high energy density storage devices. However, the high reactivity of the lithium metal causes short cycling lifetimes and dendrite growth that can pose a serious safety issue. Recently, a number of approaches have been pursu...
Saved in:
Published in | Journal of the American Chemical Society Vol. 140; no. 37; pp. 11735 - 11744 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
19.09.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0002-7863 1520-5126 1520-5126 |
DOI | 10.1021/jacs.8b06047 |
Cover
Abstract | The electrodeposition of lithium metal is a key process in next-generation, high energy density storage devices. However, the high reactivity of the lithium metal causes short cycling lifetimes and dendrite growth that can pose a serious safety issue. Recently, a number of approaches have been pursued to stabilize the lithium metal–electrolyte interface, including soft polymeric coatings that have shown the ability to enable high-rate and high-capacity lithium metal cycling, but a clear understanding of how to design and modify these coatings has not yet been established. In this work, we studied the effects of several polymers with systematically varied chemical and mechanical properties as coatings on the lithium metal anode. By examining the early stages of lithium metal deposition, we determine that the morphology of the lithium particles is strongly influenced by the chemistry of the polymer coating. We have identified polymer dielectric constant and surface energy as two key descriptors of the lithium deposit size. Low surface energy polymers were found to promote larger deposits with smaller surface areas. This may be explained by a reduced interaction between the coating and the lithium surface and thus an increase in the interfacial energy. On the other hand, high dielectric constant polymers were found to increase the exchange current and gave larger lithium deposits due to the decreased overpotentials at a fixed current density. We also observed that the thickness of the polymer coating should be optimized for each individual polymer. Furthermore, polymer reactivity was found to strongly influence the Coulombic efficiency. Overall, this work offers new fundamental insights into lithium electrodeposition processes and provides direction for the design of new polymer coatings to better stabilize the lithium metal anode. |
---|---|
AbstractList | The electrodeposition of lithium metal is a key process in next-generation, high energy density storage devices. However, the high reactivity of the lithium metal causes short cycling lifetimes and dendrite growth that can pose a serious safety issue. Recently, a number of approaches have been pursued to stabilize the lithium metal–electrolyte interface, including soft polymeric coatings that have shown the ability to enable high-rate and high-capacity lithium metal cycling, but a clear understanding of how to design and modify these coatings has not yet been established. In this work, we studied the effects of several polymers with systematically varied chemical and mechanical properties as coatings on the lithium metal anode. By examining the early stages of lithium metal deposition, we determine that the morphology of the lithium particles is strongly influenced by the chemistry of the polymer coating. We have identified polymer dielectric constant and surface energy as two key descriptors of the lithium deposit size. Low surface energy polymers were found to promote larger deposits with smaller surface areas. This may be explained by a reduced interaction between the coating and the lithium surface and thus an increase in the interfacial energy. On the other hand, high dielectric constant polymers were found to increase the exchange current and gave larger lithium deposits due to the decreased overpotentials at a fixed current density. We also observed that the thickness of the polymer coating should be optimized for each individual polymer. Furthermore, polymer reactivity was found to strongly influence the Coulombic efficiency. Overall, this work offers new fundamental insights into lithium electrodeposition processes and provides direction for the design of new polymer coatings to better stabilize the lithium metal anode. The electrodeposition of lithium metal is a key process in next-generation, high energy density storage devices. However, the high reactivity of the lithium metal causes short cycling lifetimes and dendrite growth that can pose a serious safety issue. Recently, a number of approaches have been pursued to stabilize the lithium metal-electrolyte interface, including soft polymeric coatings that have shown the ability to enable high-rate and high-capacity lithium metal cycling, but a clear understanding of how to design and modify these coatings has not yet been established. In this work, we studied the effects of several polymers with systematically varied chemical and mechanical properties as coatings on the lithium metal anode. By examining the early stages of lithium metal deposition, we determine that the morphology of the lithium particles is strongly influenced by the chemistry of the polymer coating. We have identified polymer dielectric constant and surface energy as two key descriptors of the lithium deposit size. Low surface energy polymers were found to promote larger deposits with smaller surface areas. This may be explained by a reduced interaction between the coating and the lithium surface and thus an increase in the interfacial energy. On the other hand, high dielectric constant polymers were found to increase the exchange current and gave larger lithium deposits due to the decreased overpotentials at a fixed current density. We also observed that the thickness of the polymer coating should be optimized for each individual polymer. Furthermore, polymer reactivity was found to strongly influence the Coulombic efficiency. Overall, this work offers new fundamental insights into lithium electrodeposition processes and provides direction for the design of new polymer coatings to better stabilize the lithium metal anode.The electrodeposition of lithium metal is a key process in next-generation, high energy density storage devices. However, the high reactivity of the lithium metal causes short cycling lifetimes and dendrite growth that can pose a serious safety issue. Recently, a number of approaches have been pursued to stabilize the lithium metal-electrolyte interface, including soft polymeric coatings that have shown the ability to enable high-rate and high-capacity lithium metal cycling, but a clear understanding of how to design and modify these coatings has not yet been established. In this work, we studied the effects of several polymers with systematically varied chemical and mechanical properties as coatings on the lithium metal anode. By examining the early stages of lithium metal deposition, we determine that the morphology of the lithium particles is strongly influenced by the chemistry of the polymer coating. We have identified polymer dielectric constant and surface energy as two key descriptors of the lithium deposit size. Low surface energy polymers were found to promote larger deposits with smaller surface areas. This may be explained by a reduced interaction between the coating and the lithium surface and thus an increase in the interfacial energy. On the other hand, high dielectric constant polymers were found to increase the exchange current and gave larger lithium deposits due to the decreased overpotentials at a fixed current density. We also observed that the thickness of the polymer coating should be optimized for each individual polymer. Furthermore, polymer reactivity was found to strongly influence the Coulombic efficiency. Overall, this work offers new fundamental insights into lithium electrodeposition processes and provides direction for the design of new polymer coatings to better stabilize the lithium metal anode. |
Author | Pei, Allen Wang, Ging-Ji Nathan Lopez, Jeffrey Bao, Zhenan Oh, Jin Young Cui, Yi |
AuthorAffiliation | Department of Chemistry Department of Chemical Engineering Department of Materials Science and Engineering Stanford Institute for Materials and Energy Sciences SLAC National Accelerator Laboratory |
AuthorAffiliation_xml | – name: Department of Chemical Engineering – name: Department of Chemistry – name: Stanford Institute for Materials and Energy Sciences – name: SLAC National Accelerator Laboratory – name: Department of Materials Science and Engineering |
Author_xml | – sequence: 1 givenname: Jeffrey orcidid: 0000-0002-6425-5550 surname: Lopez fullname: Lopez, Jeffrey – sequence: 2 givenname: Allen orcidid: 0000-0001-8930-2125 surname: Pei fullname: Pei, Allen – sequence: 3 givenname: Jin Young orcidid: 0000-0003-2260-9960 surname: Oh fullname: Oh, Jin Young organization: Department of Chemical Engineering – sequence: 4 givenname: Ging-Ji Nathan orcidid: 0000-0002-5432-3046 surname: Wang fullname: Wang, Ging-Ji Nathan – sequence: 5 givenname: Yi orcidid: 0000-0002-6103-6352 surname: Cui fullname: Cui, Yi email: yicui@stanford.edu organization: SLAC National Accelerator Laboratory – sequence: 6 givenname: Zhenan orcidid: 0000-0002-0972-1715 surname: Bao fullname: Bao, Zhenan email: zbao@stanford.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30152228$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkD1PxCAYgInReB-6OZuODvYEWko7OJjL-ZGc0eH2BtoX5dKWE-hw_16aqw5G4_J-PhB4Zui4Mx0gdEHwgmBKbraicotc4gyn_AhNCaM4ZoRmx2iKMaYxz7NkgmbObUOb0pycokmCA0ZpPkW3K6Wg8i4yKno1zb4FGy2N8Lp7C7MuWjVha00NO-O0hzpaa_-u-zZ6Bi-aM3SiROPgfMxztLlfbZaP8frl4Wl5t45FmlEf57IgmRChYULVGQwFl7hQiaxyRnIOUjDJVQEhqDRJheSYiIrXHOMakjm6Oly7s-ajB-fLVrsKmkZ0YHpXUppwlpDw2_9RXDBGk4LygF6OaC9bqMud1a2w-_JLTgCuD0BljXMW1DdCcDm4Lwf35eg-4PQHXmkfTJrOW6Gbvw6N7x2GW9PbLnj8Hf0E3hmUIg |
CitedBy_id | crossref_primary_10_1016_j_ensm_2019_10_017 crossref_primary_10_1038_s41467_023_38387_8 crossref_primary_10_1016_j_cej_2021_130326 crossref_primary_10_1021_acsami_0c13485 crossref_primary_10_1021_acs_jpcc_9b06070 crossref_primary_10_1002_eem2_12861 crossref_primary_10_1002_adma_202409062 crossref_primary_10_1002_adfm_202409812 crossref_primary_10_1002_adma_201905245 crossref_primary_10_1002_aenm_202402671 crossref_primary_10_1016_j_gee_2021_12_006 crossref_primary_10_1038_s41578_019_0165_5 crossref_primary_10_1021_acs_chemrev_0c00275 crossref_primary_10_1039_C9EE03545A crossref_primary_10_1002_adfm_202007172 crossref_primary_10_1007_s12274_019_2519_0 crossref_primary_10_1039_D0TA06020H crossref_primary_10_1021_acsami_2c21612 crossref_primary_10_1149_2_0271816jes crossref_primary_10_1007_s12274_021_3872_3 crossref_primary_10_1002_adma_202101726 crossref_primary_10_1038_s41467_021_23155_3 crossref_primary_10_1149_1945_7111_ad1e3e crossref_primary_10_1002_anie_202300823 crossref_primary_10_1021_acsanm_1c01932 crossref_primary_10_1002_adfm_202003800 crossref_primary_10_1002_anie_202214386 crossref_primary_10_1016_j_ensm_2024_103724 crossref_primary_10_1021_acsami_2c09287 crossref_primary_10_1021_acsami_1c01476 crossref_primary_10_1016_j_matt_2021_09_025 crossref_primary_10_1016_j_jpowsour_2019_02_033 crossref_primary_10_1021_jacs_4c10106 crossref_primary_10_1039_D4TA02003K crossref_primary_10_1016_j_jpowsour_2022_231819 crossref_primary_10_1002_adma_202007406 crossref_primary_10_1016_j_joule_2019_07_025 crossref_primary_10_1002_adma_201900342 crossref_primary_10_2139_ssrn_4103278 crossref_primary_10_1149_2_1171913jes crossref_primary_10_1016_j_electacta_2024_143998 crossref_primary_10_1021_acs_jpcc_3c02437 crossref_primary_10_1002_admi_202102428 crossref_primary_10_1016_j_jpowsour_2021_229919 crossref_primary_10_1039_D4EE03192J crossref_primary_10_1073_pnas_2012071118 crossref_primary_10_1002_adfm_202102336 crossref_primary_10_1002_adma_202110423 crossref_primary_10_1002_adma_202203194 crossref_primary_10_1002_aenm_202200013 crossref_primary_10_1016_j_jcis_2020_10_075 crossref_primary_10_1002_aenm_202300627 crossref_primary_10_1016_j_matlet_2021_129705 crossref_primary_10_1021_jacs_0c12051 crossref_primary_10_1002_eom2_12416 crossref_primary_10_1038_s41578_019_0103_6 crossref_primary_10_1002_anie_202423531 crossref_primary_10_1016_j_cej_2020_126808 crossref_primary_10_1016_j_jcis_2024_08_151 crossref_primary_10_1021_acs_chemrev_0c01100 crossref_primary_10_1073_pnas_2001837117 crossref_primary_10_1021_acs_iecr_0c00254 crossref_primary_10_1002_ange_202403432 crossref_primary_10_1021_acsnano_2c11734 crossref_primary_10_1039_D2EE03557J crossref_primary_10_1002_anie_201814563 crossref_primary_10_1016_j_nanoen_2022_107009 crossref_primary_10_1007_s11426_024_2399_2 crossref_primary_10_1021_acsami_4c09699 crossref_primary_10_1016_j_jallcom_2024_178118 crossref_primary_10_1016_j_jpowsour_2022_232018 crossref_primary_10_1016_j_cej_2021_132659 crossref_primary_10_1016_j_nanoen_2021_106510 crossref_primary_10_1016_j_nanoen_2024_109970 crossref_primary_10_1016_j_ijsolstr_2020_04_013 crossref_primary_10_1021_acs_nanolett_0c03206 crossref_primary_10_1021_jacs_3c08733 crossref_primary_10_1038_s41467_024_51958_7 crossref_primary_10_1016_j_jechem_2024_10_021 crossref_primary_10_1002_anie_202408611 crossref_primary_10_1149_1945_7111_ac0f89 crossref_primary_10_1007_s11581_019_02993_8 crossref_primary_10_1016_j_electacta_2021_139668 crossref_primary_10_1016_j_ensm_2023_102827 crossref_primary_10_1002_aenm_202403525 crossref_primary_10_1016_j_matt_2022_11_003 crossref_primary_10_1002_cey2_147 crossref_primary_10_1021_acssuschemeng_1c03904 crossref_primary_10_1021_acsami_3c02728 crossref_primary_10_1021_acsenergylett_9b00539 crossref_primary_10_1149_1945_7111_ac18e1 crossref_primary_10_1002_er_4699 crossref_primary_10_1039_C9TA12979K crossref_primary_10_26599_NRE_2023_9120046 crossref_primary_10_1021_acsaenm_3c00266 crossref_primary_10_1021_acsomega_0c00729 crossref_primary_10_1002_aenm_202301899 crossref_primary_10_1016_j_progpolymsci_2021_101453 crossref_primary_10_1039_D3YA00137G crossref_primary_10_1039_C9CS00883G crossref_primary_10_1039_C9TA08798B crossref_primary_10_1016_j_cclet_2019_06_013 crossref_primary_10_1002_adma_202106937 crossref_primary_10_1016_j_electacta_2019_134825 crossref_primary_10_1021_acs_energyfuels_1c00643 crossref_primary_10_1039_D0TA03774E crossref_primary_10_1016_j_jechem_2022_09_030 crossref_primary_10_1016_j_est_2023_107687 crossref_primary_10_1016_j_electacta_2021_138526 crossref_primary_10_1016_j_mattod_2022_01_015 crossref_primary_10_1016_j_jechem_2020_09_030 crossref_primary_10_1039_D0SC06651F crossref_primary_10_1039_D1MA00121C crossref_primary_10_1002_adfm_202403222 crossref_primary_10_1002_smll_202308499 crossref_primary_10_1039_D1TA03533A crossref_primary_10_1016_j_cej_2024_150667 crossref_primary_10_1021_acsami_0c09730 crossref_primary_10_1002_ange_202423531 crossref_primary_10_1002_smll_202402213 crossref_primary_10_1021_acsenergylett_1c02723 crossref_primary_10_1016_j_matt_2020_08_011 crossref_primary_10_1017_jfm_2021_907 crossref_primary_10_1021_acsaem_0c00055 crossref_primary_10_1002_eng2_12339 crossref_primary_10_1016_j_cej_2024_153002 crossref_primary_10_1002_aenm_202201025 crossref_primary_10_1039_D1TA02796D crossref_primary_10_1002_adfm_202007255 crossref_primary_10_1038_s41467_023_44161_7 crossref_primary_10_1002_smll_202103617 crossref_primary_10_1016_j_cej_2023_144477 crossref_primary_10_1038_s41467_021_26814_7 crossref_primary_10_1002_anie_201907759 crossref_primary_10_1016_j_est_2024_113508 crossref_primary_10_1021_acsenergylett_2c02042 crossref_primary_10_1016_j_ensm_2022_09_006 crossref_primary_10_1021_acsnano_0c05636 crossref_primary_10_1016_j_chempr_2018_12_002 crossref_primary_10_1021_acsami_1c16263 crossref_primary_10_1021_jacs_0c09649 crossref_primary_10_1021_acsami_2c18783 crossref_primary_10_1002_aenm_202002390 crossref_primary_10_1021_acs_energyfuels_4c01042 crossref_primary_10_1016_j_pmatsci_2022_100996 crossref_primary_10_1039_D1NR05681F crossref_primary_10_1016_j_ensm_2019_09_020 crossref_primary_10_1038_s41570_022_00384_8 crossref_primary_10_1016_j_cej_2021_130939 crossref_primary_10_1016_j_gee_2019_05_003 crossref_primary_10_1073_pnas_2311732121 crossref_primary_10_1002_eem2_12393 crossref_primary_10_1016_j_jechem_2022_10_026 crossref_primary_10_2139_ssrn_3991432 crossref_primary_10_1021_acs_nanolett_0c01501 crossref_primary_10_1021_acsami_2c07551 crossref_primary_10_1021_jacs_4c08766 crossref_primary_10_1038_s41560_023_01252_5 crossref_primary_10_3390_polym14235327 crossref_primary_10_1016_j_gee_2021_04_011 crossref_primary_10_1039_C9TA09523C crossref_primary_10_3389_fchem_2019_00421 crossref_primary_10_1039_D4SE01640H crossref_primary_10_1039_C9EE00596J crossref_primary_10_1039_C9TA00143C crossref_primary_10_1039_C9TA00862D crossref_primary_10_1002_adfm_202310801 crossref_primary_10_1016_j_cej_2023_141509 crossref_primary_10_1016_j_cej_2019_04_068 crossref_primary_10_5796_electrochemistry_20_00085 crossref_primary_10_1016_j_ensm_2023_102900 crossref_primary_10_1002_adfm_201910138 crossref_primary_10_1002_aenm_202403845 crossref_primary_10_1002_ange_202308724 crossref_primary_10_1016_j_electacta_2020_137702 crossref_primary_10_1039_D1TA00408E crossref_primary_10_1002_adma_202402626 crossref_primary_10_1016_j_jpowsour_2020_228812 crossref_primary_10_1039_C9TA11311H crossref_primary_10_1007_s12274_022_5227_0 crossref_primary_10_1016_j_ceramint_2023_06_026 crossref_primary_10_1016_j_ensm_2023_02_037 crossref_primary_10_1016_j_jpowsour_2021_229744 crossref_primary_10_1016_j_nanoen_2021_106808 crossref_primary_10_1002_celc_202101596 crossref_primary_10_1002_aenm_202103187 crossref_primary_10_1016_j_ensm_2025_104023 crossref_primary_10_1016_j_ensm_2025_104020 crossref_primary_10_1016_j_giant_2020_100027 crossref_primary_10_1002_ange_201907759 crossref_primary_10_1149_1945_7111_ac47ea crossref_primary_10_3390_coatings12020289 crossref_primary_10_1016_j_cej_2021_133442 crossref_primary_10_1021_acsami_4c13335 crossref_primary_10_1021_acs_macromol_0c00475 crossref_primary_10_1002_adfm_202203652 crossref_primary_10_1021_jacs_0c10258 crossref_primary_10_1021_acsami_0c14050 crossref_primary_10_1016_j_joule_2018_11_001 crossref_primary_10_1007_s10338_024_00579_0 crossref_primary_10_1021_acsami_1c23781 crossref_primary_10_1016_j_cej_2024_149188 crossref_primary_10_1002_anie_202308724 crossref_primary_10_1016_j_joule_2021_03_024 crossref_primary_10_1063_5_0008206 crossref_primary_10_1021_acsenergylett_0c00031 crossref_primary_10_1021_acsapm_3c00538 crossref_primary_10_1002_smll_202404437 crossref_primary_10_1021_acsami_2c17084 crossref_primary_10_1021_jacs_8b08963 crossref_primary_10_1016_j_jechem_2021_06_026 crossref_primary_10_1039_D1QM00185J crossref_primary_10_1088_1674_1056_28_7_078202 crossref_primary_10_1039_D4NR00842A crossref_primary_10_1021_acsami_1c13186 crossref_primary_10_1039_D3EE02372A crossref_primary_10_1039_D3NA00248A crossref_primary_10_1002_batt_202200262 crossref_primary_10_1002_ange_202407304 crossref_primary_10_1016_j_isci_2021_102578 crossref_primary_10_1039_D3TA04883G crossref_primary_10_1016_j_cej_2025_160157 crossref_primary_10_1016_j_ensm_2021_01_007 crossref_primary_10_1016_j_apsusc_2021_152239 crossref_primary_10_1016_j_cej_2023_143222 crossref_primary_10_1002_advs_202000237 crossref_primary_10_1016_j_jpowsour_2020_229203 crossref_primary_10_1039_C9TA07165B crossref_primary_10_1039_D3TA05925A crossref_primary_10_1002_adma_202205194 crossref_primary_10_1039_D0TA05372D crossref_primary_10_1016_j_jallcom_2019_03_281 crossref_primary_10_1021_acs_chemrev_0c01184 crossref_primary_10_1007_s12274_022_4116_x crossref_primary_10_1016_j_cej_2023_142937 crossref_primary_10_1038_s41560_021_00910_w crossref_primary_10_1016_j_jmst_2024_09_003 crossref_primary_10_1016_j_mattod_2020_06_011 crossref_primary_10_1002_adfm_202311301 crossref_primary_10_1002_ange_202111199 crossref_primary_10_1016_j_nanoen_2021_106353 crossref_primary_10_1039_D3YA00470H crossref_primary_10_1016_j_ijengsci_2024_104137 crossref_primary_10_1007_s41918_020_00076_1 crossref_primary_10_1016_j_ensm_2019_04_043 crossref_primary_10_1021_acsami_1c21263 crossref_primary_10_1021_acs_jpcc_0c11194 crossref_primary_10_1016_j_mtener_2023_101444 crossref_primary_10_1021_acssuschemeng_0c05153 crossref_primary_10_1021_acsaem_3c02350 crossref_primary_10_1002_adfm_202104930 crossref_primary_10_1002_adma_202108400 crossref_primary_10_1016_j_ensm_2023_103084 crossref_primary_10_1002_smtd_202401021 crossref_primary_10_1039_C9CS00636B crossref_primary_10_1039_D3EE01724A crossref_primary_10_1021_acsnano_1c05497 crossref_primary_10_1002_ente_202000700 crossref_primary_10_1007_s12598_023_02319_8 crossref_primary_10_1002_advs_201901120 crossref_primary_10_1177_09506608251318467 crossref_primary_10_1002_anie_202403432 crossref_primary_10_1039_D1EE01404H crossref_primary_10_1002_ange_202408611 crossref_primary_10_1021_acsaem_0c01175 crossref_primary_10_1016_j_jechem_2021_03_018 crossref_primary_10_1002_adfm_201907579 crossref_primary_10_1002_ange_201814563 crossref_primary_10_1039_C9TA09146G crossref_primary_10_1002_ange_202214386 crossref_primary_10_1016_j_cej_2022_141015 crossref_primary_10_1039_D4EE03542A crossref_primary_10_1039_C9SE01046G crossref_primary_10_1002_smll_202303266 crossref_primary_10_1039_C9TA03395E crossref_primary_10_1002_smll_202200131 crossref_primary_10_1007_s12274_023_5478_4 crossref_primary_10_1016_j_ifacol_2023_12_065 crossref_primary_10_1016_j_jechem_2023_04_047 crossref_primary_10_1002_anie_202111199 crossref_primary_10_1002_smll_202201349 crossref_primary_10_1039_C9TA13384D crossref_primary_10_1002_adfm_202102128 crossref_primary_10_1002_adfm_202305098 crossref_primary_10_1016_j_jpowsour_2019_227632 crossref_primary_10_1002_anie_202407304 crossref_primary_10_1021_acsaem_2c01617 crossref_primary_10_1039_D0EE01897J crossref_primary_10_1016_j_est_2024_112110 crossref_primary_10_1016_j_ensm_2023_04_004 crossref_primary_10_1002_cssc_202401139 crossref_primary_10_1002_adma_202308684 crossref_primary_10_1021_acsami_1c06289 crossref_primary_10_1016_j_ensm_2020_08_025 crossref_primary_10_1016_j_mtener_2021_100897 crossref_primary_10_1039_D2NR01097F crossref_primary_10_1039_D4NR02780A crossref_primary_10_1021_acsmaterialslett_1c00276 crossref_primary_10_1002_adma_202002550 crossref_primary_10_1002_smll_202000769 crossref_primary_10_1002_eom2_12503 crossref_primary_10_1002_adfm_202316838 crossref_primary_10_3390_batteries9060299 crossref_primary_10_1016_j_xcrp_2021_100324 crossref_primary_10_1002_smtd_201800551 crossref_primary_10_1039_D2NR04158H crossref_primary_10_1016_j_ensm_2021_06_026 crossref_primary_10_1088_1361_6528_ac3fe2 crossref_primary_10_1002_ange_202300823 crossref_primary_10_1002_adfm_202410158 crossref_primary_10_1007_s12274_020_2923_5 crossref_primary_10_1016_j_jpowsour_2025_236801 crossref_primary_10_1038_s41578_021_00345_5 crossref_primary_10_1016_j_apsusc_2021_150899 crossref_primary_10_1016_j_scib_2022_11_026 crossref_primary_10_1039_D1TA09481E crossref_primary_10_1016_j_jpowsour_2022_231928 crossref_primary_10_1002_cssc_202400738 crossref_primary_10_1021_acssuschemeng_0c08338 crossref_primary_10_1002_aenm_202401289 crossref_primary_10_1002_aenm_202405767 crossref_primary_10_1002_mame_202100923 crossref_primary_10_1039_D1EE00110H crossref_primary_10_1039_D2TA04974K crossref_primary_10_1016_j_jechem_2022_01_019 crossref_primary_10_1016_j_xcrp_2023_101328 crossref_primary_10_1016_j_jechem_2020_08_044 crossref_primary_10_1016_j_nanoen_2020_105500 crossref_primary_10_1039_D1CC02932K crossref_primary_10_1002_adma_202211679 crossref_primary_10_1021_acsami_2c13256 crossref_primary_10_1021_jacs_2c06757 crossref_primary_10_1039_D0EE03181J crossref_primary_10_1002_adma_202311529 crossref_primary_10_1002_batt_202200232 crossref_primary_10_3390_batteries8100141 crossref_primary_10_1021_acsaem_2c01873 crossref_primary_10_1016_j_jcis_2023_03_168 crossref_primary_10_1039_D3TA05619H crossref_primary_10_1039_D0TA03929B crossref_primary_10_1039_D1EE00767J crossref_primary_10_1039_D4TA05386A crossref_primary_10_1002_adfm_202423115 crossref_primary_10_1002_eom2_12283 crossref_primary_10_1002_aenm_202103972 crossref_primary_10_1002_celc_202400278 crossref_primary_10_1016_j_nanoen_2021_105907 crossref_primary_10_1007_s11581_023_05044_5 crossref_primary_10_1039_D0EE03005H crossref_primary_10_1016_j_ensm_2024_103460 crossref_primary_10_1021_acsaem_3c02937 crossref_primary_10_1021_acsenergylett_1c02224 crossref_primary_10_1002_adma_202200782 crossref_primary_10_1002_adfm_201905078 crossref_primary_10_1016_j_est_2024_112144 crossref_primary_10_1021_acsaem_1c04106 crossref_primary_10_1038_s41565_019_0427_9 crossref_primary_10_1016_j_ensm_2023_102868 crossref_primary_10_1021_acsenergylett_4c00376 crossref_primary_10_1016_j_isci_2020_101089 crossref_primary_10_1021_acsami_1c02951 crossref_primary_10_1016_j_cej_2019_123645 crossref_primary_10_1021_acsami_1c20480 |
Cites_doi | 10.1002/aenm.201702097 10.1038/nmat4041 10.1021/jacs.6b13314 10.1002/adma.201504723 10.1038/ncomms7362 10.1007/s12274-017-1596-1 10.1007/978-3-319-26073-0 10.1038/srep14458 10.1038/nmat4777 10.1002/adma.201605531 10.1002/adma.201604460 10.1002/anie.201710806 10.1021/nl503125u 10.1149/1.1850854 10.1073/pnas.1708224114 10.1016/j.joule.2017.08.009 10.1016/j.chempr.2017.12.003 10.1038/nnano.2014.152 10.1126/sciadv.1600320 10.1021/acs.chemrev.7b00115 10.1002/adma.201701169 10.1021/jacs.7b06437 10.1016/j.jpowsour.2013.01.051 10.1038/ncomms8436 10.1109/JPROC.2012.2190170 10.1038/nenergy.2017.12 10.1038/nmat4834 10.1149/1.1391968 10.1038/nmat3191 10.1038/nmat3602 10.1039/C3EE40795K 10.1002/adma.201603755 10.1021/jacs.7b10864 10.1038/nenergy.2016.132 10.1038/ncomms7152 10.1073/pnas.1806878115 10.1038/ncomms10101 10.1021/ja502133j 10.1021/acs.nanolett.6b04755 10.1021/acsenergylett.6b00456 10.1038/nenergy.2016.128 10.1038/nnano.2017.16 10.1002/aenm.201701482 10.1021/j150553a013 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/jacs.8b06047 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 11744 |
ExternalDocumentID | 30152228 10_1021_jacs_8b06047 a95053832 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 NPM 7X8 AAYWT 7S9 L.6 |
ID | FETCH-LOGICAL-a462t-8b916aaa465afd6ea4657b09f3bc85187eba5b7f9eb7ff434ab701ac7d700de3 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Fri Sep 05 03:55:53 EDT 2025 Fri Sep 05 10:14:19 EDT 2025 Thu Apr 03 06:57:27 EDT 2025 Tue Jul 01 03:21:34 EDT 2025 Thu Apr 24 23:07:01 EDT 2025 Thu Aug 27 13:42:20 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 37 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a462t-8b916aaa465afd6ea4657b09f3bc85187eba5b7f9eb7ff434ab701ac7d700de3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6103-6352 0000-0002-6425-5550 0000-0003-2260-9960 0000-0001-8930-2125 0000-0002-0972-1715 0000-0002-5432-3046 |
PMID | 30152228 |
PQID | 2095523927 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2237531002 proquest_miscellaneous_2095523927 pubmed_primary_30152228 crossref_primary_10_1021_jacs_8b06047 crossref_citationtrail_10_1021_jacs_8b06047 acs_journals_10_1021_jacs_8b06047 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-19 |
PublicationDateYYYYMMDD | 2018-09-19 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 Plieth W. (ref40/cit40) 2008 ref3/cit3 ref27/cit27 ref18/cit18 Popov K. I. (ref42/cit42) 2016 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 Bard A. J. (ref44/cit44) 2000 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref46/cit46 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – volume-title: Electrochemical Methods: Fundamentals and Applications year: 2000 ident: ref44/cit44 – ident: ref46/cit46 doi: 10.1002/aenm.201702097 – ident: ref15/cit15 doi: 10.1038/nmat4041 – ident: ref27/cit27 doi: 10.1021/jacs.6b13314 – ident: ref36/cit36 doi: 10.1002/adma.201504723 – ident: ref13/cit13 doi: 10.1038/ncomms7362 – ident: ref37/cit37 doi: 10.1007/s12274-017-1596-1 – volume-title: Morphology of Electrochemically and Chemically Deposited Metals year: 2016 ident: ref42/cit42 doi: 10.1007/978-3-319-26073-0 – ident: ref30/cit30 doi: 10.1038/srep14458 – ident: ref8/cit8 doi: 10.1038/nmat4777 – ident: ref29/cit29 doi: 10.1002/adma.201605531 – ident: ref22/cit22 doi: 10.1002/adma.201604460 – ident: ref28/cit28 doi: 10.1002/anie.201710806 – ident: ref24/cit24 doi: 10.1021/nl503125u – ident: ref34/cit34 doi: 10.1149/1.1850854 – ident: ref38/cit38 doi: 10.1073/pnas.1708224114 – ident: ref14/cit14 doi: 10.1016/j.joule.2017.08.009 – ident: ref12/cit12 doi: 10.1016/j.chempr.2017.12.003 – ident: ref23/cit23 doi: 10.1038/nnano.2014.152 – ident: ref33/cit33 doi: 10.1126/sciadv.1600320 – ident: ref10/cit10 doi: 10.1021/acs.chemrev.7b00115 – ident: ref9/cit9 doi: 10.1002/adma.201701169 – ident: ref32/cit32 doi: 10.1021/jacs.7b06437 – ident: ref41/cit41 doi: 10.1016/j.jpowsour.2013.01.051 – ident: ref17/cit17 doi: 10.1038/ncomms8436 – ident: ref7/cit7 doi: 10.1109/JPROC.2012.2190170 – ident: ref16/cit16 doi: 10.1038/nenergy.2017.12 – ident: ref3/cit3 doi: 10.1038/nmat4834 – volume-title: Electrochemistry for Materials Science year: 2008 ident: ref40/cit40 – ident: ref45/cit45 doi: 10.1149/1.1391968 – ident: ref4/cit4 doi: 10.1038/nmat3191 – ident: ref19/cit19 doi: 10.1038/nmat3602 – ident: ref1/cit1 doi: 10.1039/C3EE40795K – ident: ref25/cit25 doi: 10.1002/adma.201603755 – ident: ref11/cit11 doi: 10.1021/jacs.7b10864 – ident: ref5/cit5 doi: 10.1038/nenergy.2016.132 – ident: ref18/cit18 doi: 10.1038/ncomms7152 – ident: ref39/cit39 doi: 10.1073/pnas.1806878115 – ident: ref20/cit20 doi: 10.1038/ncomms10101 – ident: ref21/cit21 doi: 10.1021/ja502133j – ident: ref35/cit35 doi: 10.1021/acs.nanolett.6b04755 – ident: ref26/cit26 doi: 10.1021/acsenergylett.6b00456 – ident: ref6/cit6 doi: 10.1038/nenergy.2016.128 – ident: ref2/cit2 doi: 10.1038/nnano.2017.16 – ident: ref31/cit31 doi: 10.1002/aenm.201701482 – ident: ref43/cit43 doi: 10.1021/j150553a013 |
SSID | ssj0004281 |
Score | 2.6785 |
Snippet | The electrodeposition of lithium metal is a key process in next-generation, high energy density storage devices. However, the high reactivity of the lithium... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11735 |
SubjectTerms | anodes coatings dielectric properties energy energy density lithium mechanical properties polymers |
Title | Effects of Polymer Coatings on Electrodeposited Lithium Metal |
URI | http://dx.doi.org/10.1021/jacs.8b06047 https://www.ncbi.nlm.nih.gov/pubmed/30152228 https://www.proquest.com/docview/2095523927 https://www.proquest.com/docview/2237531002 |
Volume | 140 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1520-5126 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004281 issn: 0002-7863 databaseCode: ACS dateStart: 18790101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT4MwFG50PuiL98u8hSX6ZFhGobQ8LmRzMWpMnMneSFtKXNzADHjQX-8ply3OTH0h0BxCb9DvcL5-B6ErSbDgLJSmFB4xHeIxkwPuN7neWOJy5ViyIMg-uoMX525ERguC7HIEH2t9IJm2mdAiL3QdbWCXWdrJ6vrPi_2PmFk1zKXMtSuC-_LdegGS6fcFaAWqLFaX_g66rffolKSSt3aeibb8_CnZ-EfFd9F2BTCNbjkj9tCaivfRpl_ndTtAlWBxaiSR8ZRMPqZqZvgJ1_RnKIuNXpkYJ1QFn0uFxv04ex3nU-NBAVA_RMN-b-gPzCqJgskdF2cmEwAAOYcLwqPQVfqEio4X2UIC2mJUCU4EjTwFh8ixHS5ox-KShrTTCZV9hBpxEqsTZHAAG8J1ScSo7QhicXB2IstTMKLClp7VRC1ocVC9A2lQhLcxuBe6tOqHJrqpOz-QlQi5zoUxWWF9Pbd-L8U3Vti16nEMoDN1yIPHKsnTAGuFPQwY8DcbbIPPpqVom-i4nATzp8Hnj-h_ZKf_aNsZ2gI0VZBJLO8cNbJZri4AsWTispiuX6Q35Lo |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4oHvDi-4HPkujJlNDHdtujIRBUICZiwq3Z3W4jEVpDy0F_vbNLgUiC4dK0m2n32e43nZlvAO4EsTnzI2EKHhDTJYFvMsT9JlOBJR6TriW0g2zPa7-7zwMyKILVVSwMNiLDJ2XaiL9kF1A0QVjoc8X1QrdhR5OgKCTUeFuGQdq-NUe71Pecws999W61D4ns7z60BlzqTaa1D71F87RvyWdtmvOa-Flhbty4_QewV8BN43G2Pg5hSyZHUG7Ms7wdQ0FfnBlpbLymo--xnBiNlClnaCxLjOYsTU4ktXeXjIzOMP8YTsdGVyJsP4F-q9lvtM0ipYLJXM_OTZ8jHGQMLwiLI0-qE8rrQexwgdjLp5IzwmkcSDzEruMyTusWEzSi9XoknVMoJWkiz8FgCD2455HYp47LicVQ9YmtQOL8ckcEVgWq2OOweCOyUBu7bVQ2VGkxDhV4mM9BKApKcpUZY7RG-n4h_TWj4lgjV51PZ4iDqQwgLJHpNAttxbdnIyL8T8Z2UINTxLQVOJuthUVt-DEk6o_ZxQZ9u4Vyu9_thJ2n3ssl7CLO0m4mVnAFpXwyldeIZXJ-o1fwL9KL7SU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZT8JAEJ4gJuqL94FnSfTJlNBju-2jQYgHEqKY8NbsbreRCC2h5UF_vbOlxUiC0Zem3U7bvffbzsw3AJeCmJy5gdAF94huE8_VGeJ-nSnHEodJ2xCZgWzHuXu1H_qkXwKj8IXBTCT4piRT4qtRPQ7CnGFAUQXhDZcrvhe6AqtEsb8pNNR4-XaFNF2jQLzUdazc1n3xabUWieTnWrQEYGYLTWsLnudZzOxL3mvTlNfE5wJ747_KsA2bOezUbmb9ZAdKMtqF9UYR7W0PchrjRItDrRsPP0ZyojVipoyiMS3SmrNwOYHMrLxkoLUH6dtgOtKeJML3fei1mr3GnZ6HVtCZ7Zip7nKEhYzhBWFh4Eh1QnndCy0uEIO5VHJGOA09iYfQtmzGad1ggga0Xg-kdQDlKI7kEWgMIQh3HBK61LI5MRhugULDk9jO3BKeUYEqltjPR0biZ0pvEzcdKjWvhwpcF-3gi5yaXEXIGC6RvppLj2eUHEvkqkWT-liZShHCIhlPE99UvHsmIsPfZEwLd3KKoLYCh7P-MP8aTopE_Tk7_kPZLmCte9vy2_edxxPYQLiVWZsY3imU08lUniGkSfl51om_AIZV758 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Polymer+Coatings+on+Electrodeposited+Lithium+Metal&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Lopez%2C+Jeffrey&rft.au=Pei%2C+Allen&rft.au=Oh%2C+Jin+Young&rft.au=Wang%2C+Ging-Ji+Nathan&rft.date=2018-09-19&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=140&rft.issue=37&rft.spage=11735&rft.epage=11744&rft_id=info:doi/10.1021%2Fjacs.8b06047&rft.externalDocID=a95053832 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |