A Companion Guide to the String Method with Swarms of Trajectories: Characterization, Performance, and Pitfalls

The string method with swarms of trajectories (SMwST) is an algorithm that identifies a physically meaningful transition pathwaya one-dimensional curve, embedded within a high-dimensional space of selected collective variables. The SMwST algorithm leans on a series of short, unbiased molecular dyna...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical theory and computation Vol. 18; no. 3; pp. 1406 - 1422
Main Authors Chen, Haochuan, Ogden, Dylan, Pant, Shashank, Cai, Wensheng, Tajkhorshid, Emad, Moradi, Mahmoud, Roux, Benoît, Chipot, Christophe
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 08.03.2022
Subjects
Online AccessGet full text
ISSN1549-9618
1549-9626
1549-9626
DOI10.1021/acs.jctc.1c01049

Cover

Abstract The string method with swarms of trajectories (SMwST) is an algorithm that identifies a physically meaningful transition pathwaya one-dimensional curve, embedded within a high-dimensional space of selected collective variables. The SMwST algorithm leans on a series of short, unbiased molecular dynamics simulations spawned at different locations of the discretized path, from whence an average dynamic drift is determined to evolve the string toward an optimal pathway. However conceptually simple in both its theoretical formulation and practical implementation, the SMwST algorithm is computationally intensive and requires a careful choice of parameters for optimal cost-effectiveness in applications to challenging problems in chemistry and biology. In this contribution, the SMwST algorithm is presented in a self-contained manner, discussing with a critical eye its theoretical underpinnings, applicability, inherent limitations, and use in the context of path-following free-energy calculations and their possible extension to kinetics modeling. Through multiple simulations of a prototypical polypeptide, combining the search of the transition pathway and the computation of the potential of mean force along it, several practical aspects of the methodology are examined with the objective of optimizing the computational effort, yet without sacrificing accuracy. In light of the results reported here, we propose some general guidelines aimed at improving the efficiency and reliability of the computed pathways and free-energy profiles underlying the conformational transitions at hand.
AbstractList The string method with swarms of trajectories (SMwST) is an algorithm that identifies a physically meaningful transition pathway─a one-dimensional curve, embedded within a high-dimensional space of selected collective variables. The SMwST algorithm leans on a series of short, unbiased molecular dynamics simulations spawned at different locations of the discretized path, from whence an average dynamic drift is determined to evolve the string toward an optimal pathway. However conceptually simple in both its theoretical formulation and practical implementation, the SMwST algorithm is computationally intensive and requires a careful choice of parameters for optimal cost-effectiveness in applications to challenging problems in chemistry and biology. In this contribution, the SMwST algorithm is presented in a self-contained manner, discussing with a critical eye its theoretical underpinnings, applicability, inherent limitations, and use in the context of path-following free-energy calculations and their possible extension to kinetics modeling. Through multiple simulations of a prototypical polypeptide, combining the search of the transition pathway and the computation of the potential of mean force along it, several practical aspects of the methodology are examined with the objective of optimizing the computational effort, yet without sacrificing accuracy. In light of the results reported here, we propose some general guidelines aimed at improving the efficiency and reliability of the computed pathways and free-energy profiles underlying the conformational transitions at hand.
The string method with swarms of trajectories (SMwST) is an algorithm that identifies a physically meaningful transition pathwaya one-dimensional curve, embedded within a high-dimensional space of selected collective variables. The SMwST algorithm leans on a series of short, unbiased molecular dynamics simulations spawned at different locations of the discretized path, from whence an average dynamic drift is determined to evolve the string toward an optimal pathway. However conceptually simple in both its theoretical formulation and practical implementation, the SMwST algorithm is computationally intensive and requires a careful choice of parameters for optimal cost-effectiveness in applications to challenging problems in chemistry and biology. In this contribution, the SMwST algorithm is presented in a self-contained manner, discussing with a critical eye its theoretical underpinnings, applicability, inherent limitations, and use in the context of path-following free-energy calculations and their possible extension to kinetics modeling. Through multiple simulations of a prototypical polypeptide, combining the search of the transition pathway and the computation of the potential of mean force along it, several practical aspects of the methodology are examined with the objective of optimizing the computational effort, yet without sacrificing accuracy. In light of the results reported here, we propose some general guidelines aimed at improving the efficiency and reliability of the computed pathways and free-energy profiles underlying the conformational transitions at hand.
The string method with swarms of trajectories (SMwST) is an algorithm that identifies a physically meaningful transition pathway—a one-dimensional curve, embedded within a high-dimensional space of selected collective variables. The SMwST algorithm leans on a series of short, unbiased molecular dynamics simulations spawned at different locations of the discretized path, from whence an average dynamic drift is determined to evolve the string towards an optimal pathway. However conceptually simple in both its theoretical formulation and practical implementation, the SMwST algorithm is computationally intensive and requires careful choice of its parameters for optimal cost-effectiveness in applications to challenging problems in chemistry and biology. In this contribution, the SMwST algorithm is presented in a self-contained manner, discussing with a critical eye its theoretical underpinnings, applicability, inherent limitations, and use in the context of path-following free-energy calculations and their possible extension to kinetics modeling. Through multiple simulations of a prototypical polypeptide, combining the search of the transition pathway and the computation of the potential of mean force along it, several practical aspects of the methodology are examined with the objective to optimize the computational effort, yet without sacrificing accuracy. In light of the results reported here, we propose some general guidelines aimed at improving the efficiency and reliability of the computed pathways and free-energy profiles underlying the conformational transitions at hand.
The string method with swarms of trajectories (SMwST) is an algorithm that identifies a physically meaningful transition pathway─a one-dimensional curve, embedded within a high-dimensional space of selected collective variables. The SMwST algorithm leans on a series of short, unbiased molecular dynamics simulations spawned at different locations of the discretized path, from whence an average dynamic drift is determined to evolve the string toward an optimal pathway. However conceptually simple in both its theoretical formulation and practical implementation, the SMwST algorithm is computationally intensive and requires a careful choice of parameters for optimal cost-effectiveness in applications to challenging problems in chemistry and biology. In this contribution, the SMwST algorithm is presented in a self-contained manner, discussing with a critical eye its theoretical underpinnings, applicability, inherent limitations, and use in the context of path-following free-energy calculations and their possible extension to kinetics modeling. Through multiple simulations of a prototypical polypeptide, combining the search of the transition pathway and the computation of the potential of mean force along it, several practical aspects of the methodology are examined with the objective of optimizing the computational effort, yet without sacrificing accuracy. In light of the results reported here, we propose some general guidelines aimed at improving the efficiency and reliability of the computed pathways and free-energy profiles underlying the conformational transitions at hand.The string method with swarms of trajectories (SMwST) is an algorithm that identifies a physically meaningful transition pathway─a one-dimensional curve, embedded within a high-dimensional space of selected collective variables. The SMwST algorithm leans on a series of short, unbiased molecular dynamics simulations spawned at different locations of the discretized path, from whence an average dynamic drift is determined to evolve the string toward an optimal pathway. However conceptually simple in both its theoretical formulation and practical implementation, the SMwST algorithm is computationally intensive and requires a careful choice of parameters for optimal cost-effectiveness in applications to challenging problems in chemistry and biology. In this contribution, the SMwST algorithm is presented in a self-contained manner, discussing with a critical eye its theoretical underpinnings, applicability, inherent limitations, and use in the context of path-following free-energy calculations and their possible extension to kinetics modeling. Through multiple simulations of a prototypical polypeptide, combining the search of the transition pathway and the computation of the potential of mean force along it, several practical aspects of the methodology are examined with the objective of optimizing the computational effort, yet without sacrificing accuracy. In light of the results reported here, we propose some general guidelines aimed at improving the efficiency and reliability of the computed pathways and free-energy profiles underlying the conformational transitions at hand.
Author Ogden, Dylan
Roux, Benoît
Cai, Wensheng
Chen, Haochuan
Pant, Shashank
Moradi, Mahmoud
Chipot, Christophe
Tajkhorshid, Emad
AuthorAffiliation Department of Biochemistry and Center for Biophysics and Quantitative Biology
Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana−Champaign, Unité Mixte de Recherche no 7019
Department of Biochemistry and Molecular Biology
Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
Department of Chemistry and Biochemistry
University of Illinois at Urbana−Champaign
Université de Lorraine
Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition
Department of Physics
AuthorAffiliation_xml – name: Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
– name: Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition
– name: Université de Lorraine
– name: Department of Biochemistry and Center for Biophysics and Quantitative Biology
– name: Department of Physics
– name: University of Illinois at Urbana−Champaign
– name: Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana−Champaign, Unité Mixte de Recherche no 7019
– name: Department of Chemistry and Biochemistry
– name: Department of Biochemistry and Molecular Biology
– name: Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA
– name: Department of Biochemistry and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
– name: Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
– name: Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche n°7019, Universite de Lorraine, B.P. 70239, 54506 Vandœuvre-lès-Nancy cedex, France
– name: Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
– name: Present Address: Loxo Oncology @ Lilly., Louisville, CO 80027, USA
– name: @ Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
– name: Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, USA
Author_xml – sequence: 1
  givenname: Haochuan
  orcidid: 0000-0001-6447-1096
  surname: Chen
  fullname: Chen, Haochuan
  organization: Université de Lorraine
– sequence: 2
  givenname: Dylan
  surname: Ogden
  fullname: Ogden, Dylan
  organization: Department of Chemistry and Biochemistry
– sequence: 3
  givenname: Shashank
  orcidid: 0000-0002-8222-3616
  surname: Pant
  fullname: Pant, Shashank
  organization: Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
– sequence: 4
  givenname: Wensheng
  orcidid: 0000-0002-6457-7058
  surname: Cai
  fullname: Cai, Wensheng
  organization: Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition
– sequence: 5
  givenname: Emad
  orcidid: 0000-0001-8434-1010
  surname: Tajkhorshid
  fullname: Tajkhorshid, Emad
  organization: University of Illinois at Urbana−Champaign
– sequence: 6
  givenname: Mahmoud
  orcidid: 0000-0002-0601-402X
  surname: Moradi
  fullname: Moradi, Mahmoud
  organization: Department of Chemistry and Biochemistry
– sequence: 7
  givenname: Benoît
  orcidid: 0000-0002-5254-2712
  surname: Roux
  fullname: Roux, Benoît
  organization: Department of Biochemistry and Molecular Biology
– sequence: 8
  givenname: Christophe
  orcidid: 0000-0002-9122-1698
  surname: Chipot
  fullname: Chipot, Christophe
  email: chipot@illinois.edu
  organization: University of Illinois at Urbana−Champaign
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35138832$$D View this record in MEDLINE/PubMed
BookMark eNqNkd1rFDEUxYNU7Ie--yQBX3zYXfM1mYwPhbLYKlQstD6Hu5lMJ8tOsiYZl_rXN-1uqxYUH8IN3N-5OTn3EO354C1CrymZUcLoezBptjTZzKghlIjmGTqglWimjWRy7_FO1T46TGlJCOeC8Rdon1eUK8XZAQoneB6GNXgXPD4bXWtxDjj3Fl_m6Pw1_mJzH1q8cbnHlxuIQ8Khw1cRltbkEJ1NH_C8hwgm2-h-Qi6DJvjCxi7EAbyxEwy-xRcud7BapZfoeanJvtrVI_Tt9OPV_NP0_OvZ5_nJ-RSEpHkqbQtMlUNb4ISDaZiyXBoieNeoStaUNx2ljAhaQy1ot6BGmlYJtpC06gg_QnQ7d_RruNmUp_U6ugHijaZE34WnS3j6Ljy9C69ojrea9bgYbGuszxF-6QI4_WfHu15fhx9aNcUXYWXAu92AGL6PNmU9uGTsagXehjFpJlktaiVVVdC3T9BlGKMvkRRKsEYQxlSh3vzu6NHKw_4KILeAiSGlaDttXL7fQTHoVv_6K3ki_I94JlvJfefB7V_xW-Gz0RI
CitedBy_id crossref_primary_10_1017_qrd_2022_23
crossref_primary_10_1021_acs_jctc_3c00938
crossref_primary_10_1021_acs_jctc_3c00821
crossref_primary_10_3389_fmolb_2022_954262
crossref_primary_10_1021_acs_jpcb_4c05604
crossref_primary_10_1146_annurev_biophys_062722_093258
crossref_primary_10_1021_acs_jpclett_3c03542
crossref_primary_10_1085_jgp_202313368
crossref_primary_10_1021_acs_jpcb_4c02824
crossref_primary_10_1021_acs_jctc_2c00734
crossref_primary_10_1002_jcc_27504
crossref_primary_10_1016_j_sbi_2023_102608
Cites_doi 10.1021/jp0777059
10.1021/jacs.6b10744
10.1021/ct900524t
10.1021/acs.jctc.6b00277
10.1126/sciadv.abb9605
10.1021/acs.jpclett.8b01994
10.1021/jp304720m
10.1073/pnas.071034098
10.1073/pnas.100127697
10.1021/acs.jctc.5b00255
10.1021/jp511792a
10.1103/PhysRevLett.72.1124
10.3390/e16010163
10.1021/ct300867e
10.1021/acs.jctc.6b00447
10.1103/PhysRevLett.109.020601
10.1371/journal.pcbi.1002555
10.1063/1.2746330
10.1063/1.5011399
10.1016/S1097-2765(00)80356-1
10.1038/nchem.2785
10.1063/1.4773892
10.1021/jp506633n
10.1073/pnas.1313202110
10.1016/j.cplett.2005.07.084
10.1073/pnas.1015661107
10.1016/j.jmb.2009.10.029
10.1063/1.1738640
10.1038/s41467-019-11405-4
10.1016/j.str.2012.02.018
10.1103/PhysRev.54.554
10.1021/acs.jctc.8b00147
10.1021/acs.jpcb.6b09388
10.1063/1.451695
10.1371/journal.pcbi.1005603
10.1016/j.bpj.2009.06.016
10.1021/acs.jpcb.6b08409
10.1073/pnas.202427399
10.1016/j.str.2005.03.012
10.1016/0009-2614(87)80576-6
10.1146/annurev.physchem.040808.090412
10.1021/ct900689m
10.1016/j.sbi.2014.04.002
10.1063/1.1410978
10.1021/acs.accounts.9b00473
10.1038/ncomms4397
10.1073/pnas.0705830104
10.1021/acs.jpcb.6b10055
10.1063/1.5064856
10.1016/S0006-3495(96)79552-8
10.1063/1.2432340
10.1038/srep35913
10.1021/acs.jctc.8b00563
10.1063/1.2212942
10.1021/jp304805v
10.1063/1.3544209
10.1145/1273440.1250664
10.1073/pnas.1600917113
10.1063/1.2959573
10.1073/pnas.1009313107
10.1063/5.0021603
10.1021/ct5002285
10.1103/PhysRevB.66.052301
10.1073/pnas.1617567114
10.1021/acs.jpca.1c04110
10.1063/1.5079742
10.1002/prot.340170408
10.1063/5.0014475
10.1063/1.3129843
10.1016/j.bpj.2012.03.031
10.1016/j.cpc.2013.12.014
10.1021/acs.jctc.7b00467
10.1038/ncomms9393
10.1021/jp212611k
10.1063/1.4811489
10.1063/1.2711185
10.1063/1.439715
10.1021/acs.jctc.7b00032
10.1146/annurev.physchem.53.082301.113146
10.1007/978-3-540-38448-9
10.1021/acs.jcim.0c00279
10.1063/1.434125
10.1021/ct500874p
10.1021/jp301628r
10.1088/1367-2630/7/1/034
10.1021/acs.jctc.8b01074
10.1063/5.0030931
10.1063/1.5023804
10.1021/ct400606c
10.1142/p579
10.1002/prot.24255
10.1063/1.4828816
10.1016/j.jmb.2017.01.007
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright American Chemical Society Mar 8, 2022
Copyright_xml – notice: 2022 American Chemical Society
– notice: Copyright American Chemical Society Mar 8, 2022
DBID AAYXX
CITATION
NPM
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
5PM
ADTOC
UNPAY
DOI 10.1021/acs.jctc.1c01049
DatabaseName CrossRef
PubMed
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed

Materials Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1549-9626
EndPage 1422
ExternalDocumentID oai:pubmedcentral.nih.gov:8904302
PMC8904302
35138832
10_1021_acs_jctc_1c01049
d052430492
Genre Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA093577
– fundername: NIGMS NIH HHS
  grantid: R15 GM139140
– fundername: NIGMS NIH HHS
  grantid: R01 GM062342
– fundername: NIGMS NIH HHS
  grantid: P41 GM104601
GroupedDBID 4.4
53G
55A
5GY
5VS
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFS
ACIWK
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
D0L
DU5
EBS
ED
F5P
GGK
GNL
IH9
J9A
JG
P2P
RNS
ROL
UI2
VF5
VG9
W1F
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
BAANH
CITATION
CUPRZ
ED~
JG~
NPM
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
5PM
ADTOC
EJD
IHE
LG6
UNPAY
ID FETCH-LOGICAL-a461t-6eda28da21da303ac928e36c043f98567139f1120417a741fb1c6cd842b615f03
IEDL.DBID UNPAY
ISSN 1549-9618
1549-9626
IngestDate Sun Oct 26 02:52:30 EDT 2025
Tue Sep 30 17:15:40 EDT 2025
Thu Oct 02 12:19:03 EDT 2025
Sun Jun 29 15:57:54 EDT 2025
Mon Jul 21 06:03:19 EDT 2025
Tue Jul 01 02:03:23 EDT 2025
Thu Apr 24 23:01:33 EDT 2025
Thu Mar 10 06:20:16 EST 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a461t-6eda28da21da303ac928e36c043f98567139f1120417a741fb1c6cd842b615f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6447-1096
0000-0002-6457-7058
0000-0001-8434-1010
0000-0002-5254-2712
0000-0002-8222-3616
0000-0002-0601-402X
0000-0002-9122-1698
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/8904302
PMID 35138832
PQID 2642940228
PQPubID 2048741
PageCount 17
ParticipantIDs unpaywall_primary_10_1021_acs_jctc_1c01049
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8904302
proquest_miscellaneous_2627478685
proquest_journals_2642940228
pubmed_primary_35138832
crossref_citationtrail_10_1021_acs_jctc_1c01049
crossref_primary_10_1021_acs_jctc_1c01049
acs_journals_10_1021_acs_jctc_1c01049
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-08
PublicationDateYYYYMMDD 2022-03-08
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-08
  day: 08
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Journal of chemical theory and computation
PublicationTitleAlternate J. Chem. Theory Comput
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref3/cit3
ref81/cit81
ref16/cit16
ref52/cit52
ref23/cit23
ref2/cit2
ref77/cit77
ref71/cit71
ref20/cit20
ref48/cit48
ref74/cit74
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref13/cit13
ref61/cit61
ref67/cit67
ref38/cit38
ref90/cit90
ref64/cit64
ref54/cit54
ref6/cit6
ref18/cit18
ref65/cit65
ref97/cit97
ref11/cit11
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref43/cit43
ref80/cit80
ref28/cit28
ref91/cit91
ref55/cit55
ref12/cit12
ref66/cit66
ref22/cit22
Chipot C. (ref5/cit5) 2007
ref33/cit33
ref87/cit87
ref44/cit44
ref70/cit70
ref9/cit9
ref27/cit27
ref63/cit63
ref56/cit56
ref92/cit92
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
Chipot C. (ref69/cit69) 2007
ref53/cit53
ref21/cit21
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref79/cit79
ref72/cit72
Bowman G. R. (ref25/cit25) 2013; 797
ref57/cit57
ref51/cit51
ref40/cit40
ref68/cit68
ref94/cit94
ref26/cit26
ref73/cit73
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
Lelièvre T. (ref14/cit14) 2010
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref7/cit7
References_xml – ident: ref4/cit4
  doi: 10.1021/jp0777059
– ident: ref55/cit55
  doi: 10.1021/jacs.6b10744
– ident: ref17/cit17
  doi: 10.1021/ct900524t
– ident: ref13/cit13
  doi: 10.1021/acs.jctc.6b00277
– ident: ref54/cit54
  doi: 10.1126/sciadv.abb9605
– ident: ref22/cit22
  doi: 10.1021/acs.jpclett.8b01994
– ident: ref65/cit65
  doi: 10.1021/jp304720m
– ident: ref74/cit74
  doi: 10.1073/pnas.071034098
– ident: ref24/cit24
  doi: 10.1073/pnas.100127697
– ident: ref85/cit85
  doi: 10.1021/acs.jctc.5b00255
– ident: ref43/cit43
  doi: 10.1021/jp511792a
– ident: ref79/cit79
  doi: 10.1103/PhysRevLett.72.1124
– ident: ref15/cit15
  doi: 10.3390/e16010163
– ident: ref73/cit73
  doi: 10.1021/ct300867e
– ident: ref88/cit88
  doi: 10.1021/acs.jctc.6b00447
– ident: ref71/cit71
  doi: 10.1103/PhysRevLett.109.020601
– ident: ref92/cit92
– ident: ref49/cit49
  doi: 10.1371/journal.pcbi.1002555
– ident: ref90/cit90
  doi: 10.1063/1.2746330
– ident: ref30/cit30
  doi: 10.1063/1.5011399
– ident: ref62/cit62
  doi: 10.1016/S1097-2765(00)80356-1
– ident: ref35/cit35
  doi: 10.1038/nchem.2785
– ident: ref95/cit95
  doi: 10.1063/1.4773892
– ident: ref7/cit7
  doi: 10.1021/jp506633n
– ident: ref26/cit26
  doi: 10.1073/pnas.1313202110
– ident: ref40/cit40
  doi: 10.1016/j.cplett.2005.07.084
– ident: ref75/cit75
  doi: 10.1073/pnas.1015661107
– ident: ref45/cit45
  doi: 10.1016/j.jmb.2009.10.029
– ident: ref10/cit10
  doi: 10.1063/1.1738640
– ident: ref19/cit19
  doi: 10.1038/s41467-019-11405-4
– ident: ref47/cit47
  doi: 10.1016/j.str.2012.02.018
– ident: ref39/cit39
  doi: 10.1103/PhysRev.54.554
– ident: ref67/cit67
  doi: 10.1021/acs.jctc.8b00147
– ident: ref11/cit11
  doi: 10.1021/acs.jpcb.6b09388
– ident: ref77/cit77
  doi: 10.1063/1.451695
– volume: 797
  volume-title: An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation
  year: 2013
  ident: ref25/cit25
– ident: ref58/cit58
  doi: 10.1073/pnas.1313202110
– ident: ref61/cit61
  doi: 10.1371/journal.pcbi.1005603
– ident: ref42/cit42
  doi: 10.1016/j.bpj.2009.06.016
– ident: ref44/cit44
  doi: 10.1021/acs.jpcb.6b08409
– ident: ref8/cit8
  doi: 10.1073/pnas.202427399
– ident: ref63/cit63
  doi: 10.1016/j.str.2005.03.012
– ident: ref78/cit78
  doi: 10.1016/0009-2614(87)80576-6
– ident: ref38/cit38
  doi: 10.1146/annurev.physchem.040808.090412
– ident: ref82/cit82
  doi: 10.1021/ct900689m
– ident: ref32/cit32
  doi: 10.1016/j.sbi.2014.04.002
– ident: ref6/cit6
  doi: 10.1063/1.1410978
– ident: ref23/cit23
  doi: 10.1021/acs.accounts.9b00473
– ident: ref64/cit64
  doi: 10.1038/ncomms4397
– ident: ref41/cit41
  doi: 10.1073/pnas.0705830104
– ident: ref89/cit89
  doi: 10.1021/acs.jpcb.6b10055
– ident: ref20/cit20
  doi: 10.1063/1.5064856
– ident: ref12/cit12
  doi: 10.1016/S0006-3495(96)79552-8
– ident: ref70/cit70
  doi: 10.1063/1.2432340
– ident: ref31/cit31
  doi: 10.1038/srep35913
– ident: ref76/cit76
  doi: 10.1021/acs.jctc.8b00563
– ident: ref3/cit3
  doi: 10.1063/1.2212942
– ident: ref48/cit48
  doi: 10.1021/jp304805v
– ident: ref46/cit46
  doi: 10.1063/1.3544209
– ident: ref1/cit1
  doi: 10.1145/1273440.1250664
– ident: ref28/cit28
  doi: 10.1073/pnas.1600917113
– ident: ref96/cit96
  doi: 10.1063/1.2959573
– ident: ref52/cit52
  doi: 10.1073/pnas.1009313107
– ident: ref68/cit68
  doi: 10.1063/5.0021603
– ident: ref59/cit59
  doi: 10.1021/ct5002285
– ident: ref2/cit2
  doi: 10.1103/PhysRevB.66.052301
– ident: ref53/cit53
  doi: 10.1073/pnas.1617567114
– ident: ref91/cit91
  doi: 10.1021/acs.jpca.1c04110
– ident: ref83/cit83
  doi: 10.1063/1.5079742
– ident: ref33/cit33
  doi: 10.1002/prot.340170408
– ident: ref84/cit84
  doi: 10.1063/5.0014475
– ident: ref94/cit94
  doi: 10.1063/1.3129843
– ident: ref50/cit50
  doi: 10.1016/j.bpj.2012.03.031
– ident: ref16/cit16
  doi: 10.1016/j.cpc.2013.12.014
– ident: ref57/cit57
  doi: 10.1021/acs.jctc.7b00467
– ident: ref60/cit60
  doi: 10.1038/ncomms9393
– ident: ref80/cit80
  doi: 10.1021/jp212611k
– ident: ref27/cit27
  doi: 10.1063/1.4811489
– ident: ref87/cit87
  doi: 10.1063/1.2711185
– ident: ref93/cit93
  doi: 10.1063/1.439715
– ident: ref97/cit97
  doi: 10.1021/acs.jctc.7b00032
– ident: ref37/cit37
  doi: 10.1146/annurev.physchem.53.082301.113146
– volume-title: Free Energy Calculations. Theory and Applications in Chemistry and Biology
  year: 2007
  ident: ref5/cit5
  doi: 10.1007/978-3-540-38448-9
– ident: ref86/cit86
  doi: 10.1021/acs.jcim.0c00279
– ident: ref9/cit9
  doi: 10.1063/1.434125
– ident: ref18/cit18
  doi: 10.1021/ct500874p
– ident: ref66/cit66
  doi: 10.1021/jp301628r
– ident: ref72/cit72
  doi: 10.1088/1367-2630/7/1/034
– ident: ref34/cit34
  doi: 10.1021/acs.jctc.8b01074
– ident: ref21/cit21
  doi: 10.1063/5.0030931
– volume-title: Free Energy Calculations: Theory and Applications in Chemistry and Biology
  year: 2007
  ident: ref69/cit69
  doi: 10.1007/978-3-540-38448-9
– ident: ref29/cit29
  doi: 10.1063/1.5023804
– ident: ref81/cit81
  doi: 10.1021/ct400606c
– volume-title: Free Energy Computations: A Mathematical Perspective
  year: 2010
  ident: ref14/cit14
  doi: 10.1142/p579
– ident: ref51/cit51
  doi: 10.1002/prot.24255
– ident: ref36/cit36
  doi: 10.1063/1.4828816
– ident: ref56/cit56
  doi: 10.1016/j.jmb.2017.01.007
SSID ssj0033423
Score 2.4479456
Snippet The string method with swarms of trajectories (SMwST) is an algorithm that identifies a physically meaningful transition pathwaya one-dimensional curve,...
The string method with swarms of trajectories (SMwST) is an algorithm that identifies a physically meaningful transition pathway─a one-dimensional curve,...
The string method with swarms of trajectories (SMwST) is an algorithm that identifies a physically meaningful transition pathway—a one-dimensional curve,...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1406
SubjectTerms Algorithms
Free energy
Molecular dynamics
Optimization
Polypeptides
Statistical Mechanics
Strings
Trajectories
SummonAdditionalLinks – databaseName: American Chemical Society Journals
  dbid: ACS
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHMqllHf6QEaCA6jZxnYeNrfVilIhFVVaKvUWOY6tblmSqklUwa9nJslm2S4qPeTiRxLbY89nj-cbQt6pxOQAPIWfmUz7oZLWhyTrRyqwWSIcYAR0FD75Fh-fhV_Po_MlTc5tCz5nh9pUo0tTmxEzuHdQD8kjHicJXt8bT6aLVVcgk13LjRoi4ySTvUnyX29ARWSqVUW0hi7XL0luNsWV_nWj5_O_NNDRky6UUdUSF-LFkx-jps5G5vc6reM9GrdNtnogSsed5DwlD2zxjGxOFvHfnpNyTLvFAkaOfmlmuaV1SQEv0mmNh4H0pA0-TfEkl05v9PXPipaOgvK7bC0BsAX_RCcDH3Tn7nlAT5eeCgdUFzk9ndUOWlu9IGdHn79Pjv0-PIOvw5jVfmxzzSU8LNegCLVRXFoRmyAUTskohu2vcgDngpAlGoCLy5iJTS5DngGMcoF4STaKsrCvCXXc2Qg9VYKMh9YJrSPL8izgBlYkJYRH3kNPpf30qtLWcs5Z2iZC96V993nkcDGmqek5zjHUxvyOGh-GGlcdv8cdZfcWYrL8FQCUXIXIIuSRt0M2DBUaXnRhywbL4N5fxjLyyKtOqoaPiYgJCcuqR5IVeRsKIP_3ak4xu2h5wKVCwjao-XGQzP-2YeeePblLHnN09MDbdnKPbNTXjd0H-FVnb9p59wdm1yuX
  priority: 102
  providerName: American Chemical Society
Title A Companion Guide to the String Method with Swarms of Trajectories: Characterization, Performance, and Pitfalls
URI http://dx.doi.org/10.1021/acs.jctc.1c01049
https://www.ncbi.nlm.nih.gov/pubmed/35138832
https://www.proquest.com/docview/2642940228
https://www.proquest.com/docview/2627478685
https://pubmed.ncbi.nlm.nih.gov/PMC8904302
https://www.ncbi.nlm.nih.gov/pmc/articles/8904302
UnpaywallVersion submittedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1549-9626
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033423
  issn: 1549-9626
  databaseCode: ACS
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7C5pBe-n44SYMK7aEl9tryY6XelqVpKCQs3S6kp0WSJbrprr3ENqH99R35lW4DKTkYjB7Yw4w0n6SZTwBv-UilCDxDVyop3Igz7WKRdmPuazkKDWIEmyh8dp6czqMvF_HFDgRdLkwdtK_k0stWay9b_qhjKzdrNezixIaMW5oqnHV3kxjh9wB25-fT8feaFzWybJP1nl77TrujSXRlQ6EK71KVyguUXYVw65BUse2QbqHM28GSe1W2Eb-uxWr1lyc6eQRfOxmaAJSfXlVKT_3-h97xXkI-hoctLiXjpuoJ7OjsKexNuuvgnkE-Js3cgYokn6tlqkmZE4SPZFbavUFyVt9FTezGLpldi6t1QXJD0Bde1gcDuCL_SCY9PXST_XlMpjeJC8dEZCmZLkuDQhfPYX7y6dvk1G1va3BFlASlm-hUUIZPkAr0i0JxynSYKBTEcBYnuBrmBtGdHwUjgTjGyEAlKmURlYiqjB--gEGWZ_oVEEONjm3iii9ppE0oRKyDVPpU4QTFw9CBd6i4RTvaikV9kE6DRV2ICl60CnZg2Kl2oVrKc3vzxuqOHu_7HpuG7uOOtoedtdz8CuJLyiNLKuTAm74aVWXPYUSm88q2sVsBLGGxAy8b4-o_FsZByHCWdWC0ZXZ9A0sHvl2DBlTTgrc248CH3kD_K8P-fRofwANqkz9sBB47hEF5VenXCMlKeYRLksnsqB2KfwDK4Tgh
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VclguvB-BAkaCA6jZxnGStbmtVpQFulXFtlJvkePYYtttUjWJKvj1jPNalqICh1z8ih9jz2eP5zPAazFSKQJP5iYqkW4guHYxSLuh8HQyYgYxgnUUnu1H06Pg83F4vAG084XBShRYUlEb8VfsAnTHhp2oUg2pslsIcQNuhlFA7X5rPJl3iy-zhHY1RWpgiScpby2TfyrB6iNVrOujKyDz6l3JQZWdy--Xcrn8RRHt3oGvfRPq-yenw6pMhurHb-yO_9XGu3C7haVk3MjRPdjQ2X0YTLrX4B5APibN0oHjSD5Wi1STMieIHsm8tEeDZFY_RU3suS6ZX8qLs4LkhqAqPKntArghf08mPTt04_y5TQ5WfgvbRGYpOViUBhtdPISj3Q-Hk6nbPtbgyiCipRvpVPocP5pKVItSCZ9rFikvYEbwMMLNsDAI7jwcM4kwxiRURSrlgZ8gqDIeewSbWZ7pJ0CMb3Ro_Va8xA-0YVKGmqaJ5ytcnwRjDrzBnorbyVbEtR3dp3EdiN0Xt93nwE43tLFqGc_twxvLa3K87XOcN2wf16Td6qRlVRWEl74ILKeQA6_6aBwqa4aRmc4rm8aeBPCIhw48boSr_xkLKeO4yDowWhO7PoFlA1-PyRbfalZwLix9G-Z81wvoX9vw9B978iUMpoezvXjv0_6XZ3DLty4g9h4e34LN8qLSzxGYlcmLeir-BB9NM_k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIlEuvKGBAkaCA6jZJnGStblVC0t5tFppKeotchxb3bJkV02iCn49M3mVpajAIRe_4sfY89nj-QzwXA51hsCTu6lOlRtKYVwMMm4kPZMOuUWMQI7C-wfx3mH44Sg6WoOo84XBShRYUlEb8WlWLzPbMgz4OxR-oks98DVtI-QVuBrFONMJEY2m3QLMidSupkkNiXzSF6118k8lkE7SxapOugA0L96X3Kjypfp-pubzX5TR-CZ86ZtR30H5OqjKdKB__Mbw-N_tvAU3WnjKdht5ug1rJr8DG6PuVbi7sNhlzRKC48neVbPMsHLBEEWyaUlHhGy_fpKa0fkum56p028FW1iGKvGktg_gxvw1G_Us0Y0T6DabnPsvbDOVZ2wyKy02vLgHh-O3n0d7bvtog6vC2C_d2GQqEPj5mUL1qLQMhOGx9kJupYhi3BRLiyDPC_2hQjhjU1_HOhNhkCK4sh6_D-v5IjebwGxgTUT-K14ahMZypSLjZ6kXaFynJOcOvMCeStpJVyS1PT3wkzoQuy9pu8-BnW54E90yn9MDHPNLcrzscywb1o9L0m51EnNeFYSZgQyJW8iBZ300DhWZY1RuFhWloRMBEYvIgQeNgPU_45HPBS62DgxXRK9PQKzgqzH57LhmBxeSaNww56teSP_ahof_2JNP4drkzTj59P7g4yO4HpAnCF3HE1uwXp5W5jHiszJ9Us_Gn-1zNnw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7C5pBe-n64TYsK7aEl9tryY6XelqVpKCQsTRfSk5FkiWy6ay-xTWh_fUd-pdtASg4Gowf2MCPNJ2nmE8A7PlEZAs_QlUoKN-JMu1ik3Zj7Wk5CgxjBJgofnyRHi-jrWXy2A0GfC9ME7Su59PLV2suX501s5Watxn2c2JhxS1OFs-5uEiP8HsHu4mQ-_dHwokaWbbLZ0-veaX80ia5sLFTpXahKeYGyqxBuHZIqtx3SDZR5M1hyr8434teVWK3-8kSHD-BbL0MbgPLTqyvpqd__0DveSciHcL_DpWTaVj2CHZ0_hr1Zfx3cEyimpJ07UJHkS73MNKkKgvCRnFZ2b5AcN3dRE7uxS06vxOW6JIUh6AsvmoMBXJF_IrOBHrrN_jwg8-vEhQMi8ozMl5VBocunsDj8_H125Ha3NbgiSoLKTXQmKMMnyAT6RaE4ZTpMFApiOIsTXA1zg-jOj4KJQBxjZKASlbGISkRVxg-fwSgvcv0CiKFGxzZxxZc00iYUItZBJn2qcILiYejAe1Rc2o22Mm0O0mmQNoWo4LRTsAPjXrWp6ijP7c0bq1t6fBh6bFq6j1va7vfWcv0riC8pjyypkANvh2pUlT2HEbkuatvGbgWwhMUOPG-Na_hYGAchw1nWgcmW2Q0NLB34dg0aUEML3tmMAx8HA_2vDC_v0vgV3KM2-cNG4LF9GFWXtX6NkKySb7pB-Ad_4Dcp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Companion+Guide+to+the+String+Method+with+Swarms+of+Trajectories%3A+Characterization%2C+Performance%2C+and+Pitfalls&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Chen%2C+Haochuan&rft.au=Ogden%2C+Dylan&rft.au=Pant%2C+Shashank&rft.au=Cai%2C+Wensheng&rft.date=2022-03-08&rft.eissn=1549-9626&rft.volume=18&rft.issue=3&rft.spage=1406&rft_id=info:doi/10.1021%2Facs.jctc.1c01049&rft_id=info%3Apmid%2F35138832&rft.externalDocID=35138832
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon