A Companion Guide to the String Method with Swarms of Trajectories: Characterization, Performance, and Pitfalls
The string method with swarms of trajectories (SMwST) is an algorithm that identifies a physically meaningful transition pathwaya one-dimensional curve, embedded within a high-dimensional space of selected collective variables. The SMwST algorithm leans on a series of short, unbiased molecular dyna...
        Saved in:
      
    
          | Published in | Journal of chemical theory and computation Vol. 18; no. 3; pp. 1406 - 1422 | 
|---|---|
| Main Authors | , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          American Chemical Society
    
        08.03.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1549-9618 1549-9626 1549-9626  | 
| DOI | 10.1021/acs.jctc.1c01049 | 
Cover
| Abstract | The string method with swarms of trajectories (SMwST) is an algorithm that identifies a physically meaningful transition pathwaya one-dimensional curve, embedded within a high-dimensional space of selected collective variables. The SMwST algorithm leans on a series of short, unbiased molecular dynamics simulations spawned at different locations of the discretized path, from whence an average dynamic drift is determined to evolve the string toward an optimal pathway. However conceptually simple in both its theoretical formulation and practical implementation, the SMwST algorithm is computationally intensive and requires a careful choice of parameters for optimal cost-effectiveness in applications to challenging problems in chemistry and biology. In this contribution, the SMwST algorithm is presented in a self-contained manner, discussing with a critical eye its theoretical underpinnings, applicability, inherent limitations, and use in the context of path-following free-energy calculations and their possible extension to kinetics modeling. Through multiple simulations of a prototypical polypeptide, combining the search of the transition pathway and the computation of the potential of mean force along it, several practical aspects of the methodology are examined with the objective of optimizing the computational effort, yet without sacrificing accuracy. In light of the results reported here, we propose some general guidelines aimed at improving the efficiency and reliability of the computed pathways and free-energy profiles underlying the conformational transitions at hand. | 
    
|---|---|
| AbstractList | The string method with swarms of trajectories (SMwST) is an algorithm that identifies a physically meaningful transition pathway─a one-dimensional curve, embedded within a high-dimensional space of selected collective variables. The SMwST algorithm leans on a series of short, unbiased molecular dynamics simulations spawned at different locations of the discretized path, from whence an average dynamic drift is determined to evolve the string toward an optimal pathway. However conceptually simple in both its theoretical formulation and practical implementation, the SMwST algorithm is computationally intensive and requires a careful choice of parameters for optimal cost-effectiveness in applications to challenging problems in chemistry and biology. In this contribution, the SMwST algorithm is presented in a self-contained manner, discussing with a critical eye its theoretical underpinnings, applicability, inherent limitations, and use in the context of path-following free-energy calculations and their possible extension to kinetics modeling. Through multiple simulations of a prototypical polypeptide, combining the search of the transition pathway and the computation of the potential of mean force along it, several practical aspects of the methodology are examined with the objective of optimizing the computational effort, yet without sacrificing accuracy. In light of the results reported here, we propose some general guidelines aimed at improving the efficiency and reliability of the computed pathways and free-energy profiles underlying the conformational transitions at hand. The string method with swarms of trajectories (SMwST) is an algorithm that identifies a physically meaningful transition pathwaya one-dimensional curve, embedded within a high-dimensional space of selected collective variables. The SMwST algorithm leans on a series of short, unbiased molecular dynamics simulations spawned at different locations of the discretized path, from whence an average dynamic drift is determined to evolve the string toward an optimal pathway. However conceptually simple in both its theoretical formulation and practical implementation, the SMwST algorithm is computationally intensive and requires a careful choice of parameters for optimal cost-effectiveness in applications to challenging problems in chemistry and biology. In this contribution, the SMwST algorithm is presented in a self-contained manner, discussing with a critical eye its theoretical underpinnings, applicability, inherent limitations, and use in the context of path-following free-energy calculations and their possible extension to kinetics modeling. Through multiple simulations of a prototypical polypeptide, combining the search of the transition pathway and the computation of the potential of mean force along it, several practical aspects of the methodology are examined with the objective of optimizing the computational effort, yet without sacrificing accuracy. In light of the results reported here, we propose some general guidelines aimed at improving the efficiency and reliability of the computed pathways and free-energy profiles underlying the conformational transitions at hand. The string method with swarms of trajectories (SMwST) is an algorithm that identifies a physically meaningful transition pathway—a one-dimensional curve, embedded within a high-dimensional space of selected collective variables. The SMwST algorithm leans on a series of short, unbiased molecular dynamics simulations spawned at different locations of the discretized path, from whence an average dynamic drift is determined to evolve the string towards an optimal pathway. However conceptually simple in both its theoretical formulation and practical implementation, the SMwST algorithm is computationally intensive and requires careful choice of its parameters for optimal cost-effectiveness in applications to challenging problems in chemistry and biology. In this contribution, the SMwST algorithm is presented in a self-contained manner, discussing with a critical eye its theoretical underpinnings, applicability, inherent limitations, and use in the context of path-following free-energy calculations and their possible extension to kinetics modeling. Through multiple simulations of a prototypical polypeptide, combining the search of the transition pathway and the computation of the potential of mean force along it, several practical aspects of the methodology are examined with the objective to optimize the computational effort, yet without sacrificing accuracy. In light of the results reported here, we propose some general guidelines aimed at improving the efficiency and reliability of the computed pathways and free-energy profiles underlying the conformational transitions at hand. The string method with swarms of trajectories (SMwST) is an algorithm that identifies a physically meaningful transition pathway─a one-dimensional curve, embedded within a high-dimensional space of selected collective variables. The SMwST algorithm leans on a series of short, unbiased molecular dynamics simulations spawned at different locations of the discretized path, from whence an average dynamic drift is determined to evolve the string toward an optimal pathway. However conceptually simple in both its theoretical formulation and practical implementation, the SMwST algorithm is computationally intensive and requires a careful choice of parameters for optimal cost-effectiveness in applications to challenging problems in chemistry and biology. In this contribution, the SMwST algorithm is presented in a self-contained manner, discussing with a critical eye its theoretical underpinnings, applicability, inherent limitations, and use in the context of path-following free-energy calculations and their possible extension to kinetics modeling. Through multiple simulations of a prototypical polypeptide, combining the search of the transition pathway and the computation of the potential of mean force along it, several practical aspects of the methodology are examined with the objective of optimizing the computational effort, yet without sacrificing accuracy. In light of the results reported here, we propose some general guidelines aimed at improving the efficiency and reliability of the computed pathways and free-energy profiles underlying the conformational transitions at hand.The string method with swarms of trajectories (SMwST) is an algorithm that identifies a physically meaningful transition pathway─a one-dimensional curve, embedded within a high-dimensional space of selected collective variables. The SMwST algorithm leans on a series of short, unbiased molecular dynamics simulations spawned at different locations of the discretized path, from whence an average dynamic drift is determined to evolve the string toward an optimal pathway. However conceptually simple in both its theoretical formulation and practical implementation, the SMwST algorithm is computationally intensive and requires a careful choice of parameters for optimal cost-effectiveness in applications to challenging problems in chemistry and biology. In this contribution, the SMwST algorithm is presented in a self-contained manner, discussing with a critical eye its theoretical underpinnings, applicability, inherent limitations, and use in the context of path-following free-energy calculations and their possible extension to kinetics modeling. Through multiple simulations of a prototypical polypeptide, combining the search of the transition pathway and the computation of the potential of mean force along it, several practical aspects of the methodology are examined with the objective of optimizing the computational effort, yet without sacrificing accuracy. In light of the results reported here, we propose some general guidelines aimed at improving the efficiency and reliability of the computed pathways and free-energy profiles underlying the conformational transitions at hand.  | 
    
| Author | Ogden, Dylan Roux, Benoît Cai, Wensheng Chen, Haochuan Pant, Shashank Moradi, Mahmoud Chipot, Christophe Tajkhorshid, Emad  | 
    
| AuthorAffiliation | Department of Biochemistry and Center for Biophysics and Quantitative Biology Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana−Champaign, Unité Mixte de Recherche no 7019 Department of Biochemistry and Molecular Biology Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology Department of Chemistry and Biochemistry University of Illinois at Urbana−Champaign Université de Lorraine Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition Department of Physics  | 
    
| AuthorAffiliation_xml | – name: Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology – name: Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition – name: Université de Lorraine – name: Department of Biochemistry and Center for Biophysics and Quantitative Biology – name: Department of Physics – name: University of Illinois at Urbana−Champaign – name: Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana−Champaign, Unité Mixte de Recherche no 7019 – name: Department of Chemistry and Biochemistry – name: Department of Biochemistry and Molecular Biology – name: Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA – name: Department of Biochemistry and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA – name: Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China – name: Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche n°7019, Universite de Lorraine, B.P. 70239, 54506 Vandœuvre-lès-Nancy cedex, France – name: Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA – name: Present Address: Loxo Oncology @ Lilly., Louisville, CO 80027, USA – name: @ Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA – name: Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, USA  | 
    
| Author_xml | – sequence: 1 givenname: Haochuan orcidid: 0000-0001-6447-1096 surname: Chen fullname: Chen, Haochuan organization: Université de Lorraine – sequence: 2 givenname: Dylan surname: Ogden fullname: Ogden, Dylan organization: Department of Chemistry and Biochemistry – sequence: 3 givenname: Shashank orcidid: 0000-0002-8222-3616 surname: Pant fullname: Pant, Shashank organization: Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology – sequence: 4 givenname: Wensheng orcidid: 0000-0002-6457-7058 surname: Cai fullname: Cai, Wensheng organization: Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition – sequence: 5 givenname: Emad orcidid: 0000-0001-8434-1010 surname: Tajkhorshid fullname: Tajkhorshid, Emad organization: University of Illinois at Urbana−Champaign – sequence: 6 givenname: Mahmoud orcidid: 0000-0002-0601-402X surname: Moradi fullname: Moradi, Mahmoud organization: Department of Chemistry and Biochemistry – sequence: 7 givenname: Benoît orcidid: 0000-0002-5254-2712 surname: Roux fullname: Roux, Benoît organization: Department of Biochemistry and Molecular Biology – sequence: 8 givenname: Christophe orcidid: 0000-0002-9122-1698 surname: Chipot fullname: Chipot, Christophe email: chipot@illinois.edu organization: University of Illinois at Urbana−Champaign  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35138832$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkd1rFDEUxYNU7Ie--yQBX3zYXfM1mYwPhbLYKlQstD6Hu5lMJ8tOsiYZl_rXN-1uqxYUH8IN3N-5OTn3EO354C1CrymZUcLoezBptjTZzKghlIjmGTqglWimjWRy7_FO1T46TGlJCOeC8Rdon1eUK8XZAQoneB6GNXgXPD4bXWtxDjj3Fl_m6Pw1_mJzH1q8cbnHlxuIQ8Khw1cRltbkEJ1NH_C8hwgm2-h-Qi6DJvjCxi7EAbyxEwy-xRcud7BapZfoeanJvtrVI_Tt9OPV_NP0_OvZ5_nJ-RSEpHkqbQtMlUNb4ISDaZiyXBoieNeoStaUNx2ljAhaQy1ot6BGmlYJtpC06gg_QnQ7d_RruNmUp_U6ugHijaZE34WnS3j6Ljy9C69ojrea9bgYbGuszxF-6QI4_WfHu15fhx9aNcUXYWXAu92AGL6PNmU9uGTsagXehjFpJlktaiVVVdC3T9BlGKMvkRRKsEYQxlSh3vzu6NHKw_4KILeAiSGlaDttXL7fQTHoVv_6K3ki_I94JlvJfefB7V_xW-Gz0RI | 
    
| CitedBy_id | crossref_primary_10_1017_qrd_2022_23 crossref_primary_10_1021_acs_jctc_3c00938 crossref_primary_10_1021_acs_jctc_3c00821 crossref_primary_10_3389_fmolb_2022_954262 crossref_primary_10_1021_acs_jpcb_4c05604 crossref_primary_10_1146_annurev_biophys_062722_093258 crossref_primary_10_1021_acs_jpclett_3c03542 crossref_primary_10_1085_jgp_202313368 crossref_primary_10_1021_acs_jpcb_4c02824 crossref_primary_10_1021_acs_jctc_2c00734 crossref_primary_10_1002_jcc_27504 crossref_primary_10_1016_j_sbi_2023_102608  | 
    
| Cites_doi | 10.1021/jp0777059 10.1021/jacs.6b10744 10.1021/ct900524t 10.1021/acs.jctc.6b00277 10.1126/sciadv.abb9605 10.1021/acs.jpclett.8b01994 10.1021/jp304720m 10.1073/pnas.071034098 10.1073/pnas.100127697 10.1021/acs.jctc.5b00255 10.1021/jp511792a 10.1103/PhysRevLett.72.1124 10.3390/e16010163 10.1021/ct300867e 10.1021/acs.jctc.6b00447 10.1103/PhysRevLett.109.020601 10.1371/journal.pcbi.1002555 10.1063/1.2746330 10.1063/1.5011399 10.1016/S1097-2765(00)80356-1 10.1038/nchem.2785 10.1063/1.4773892 10.1021/jp506633n 10.1073/pnas.1313202110 10.1016/j.cplett.2005.07.084 10.1073/pnas.1015661107 10.1016/j.jmb.2009.10.029 10.1063/1.1738640 10.1038/s41467-019-11405-4 10.1016/j.str.2012.02.018 10.1103/PhysRev.54.554 10.1021/acs.jctc.8b00147 10.1021/acs.jpcb.6b09388 10.1063/1.451695 10.1371/journal.pcbi.1005603 10.1016/j.bpj.2009.06.016 10.1021/acs.jpcb.6b08409 10.1073/pnas.202427399 10.1016/j.str.2005.03.012 10.1016/0009-2614(87)80576-6 10.1146/annurev.physchem.040808.090412 10.1021/ct900689m 10.1016/j.sbi.2014.04.002 10.1063/1.1410978 10.1021/acs.accounts.9b00473 10.1038/ncomms4397 10.1073/pnas.0705830104 10.1021/acs.jpcb.6b10055 10.1063/1.5064856 10.1016/S0006-3495(96)79552-8 10.1063/1.2432340 10.1038/srep35913 10.1021/acs.jctc.8b00563 10.1063/1.2212942 10.1021/jp304805v 10.1063/1.3544209 10.1145/1273440.1250664 10.1073/pnas.1600917113 10.1063/1.2959573 10.1073/pnas.1009313107 10.1063/5.0021603 10.1021/ct5002285 10.1103/PhysRevB.66.052301 10.1073/pnas.1617567114 10.1021/acs.jpca.1c04110 10.1063/1.5079742 10.1002/prot.340170408 10.1063/5.0014475 10.1063/1.3129843 10.1016/j.bpj.2012.03.031 10.1016/j.cpc.2013.12.014 10.1021/acs.jctc.7b00467 10.1038/ncomms9393 10.1021/jp212611k 10.1063/1.4811489 10.1063/1.2711185 10.1063/1.439715 10.1021/acs.jctc.7b00032 10.1146/annurev.physchem.53.082301.113146 10.1007/978-3-540-38448-9 10.1021/acs.jcim.0c00279 10.1063/1.434125 10.1021/ct500874p 10.1021/jp301628r 10.1088/1367-2630/7/1/034 10.1021/acs.jctc.8b01074 10.1063/5.0030931 10.1063/1.5023804 10.1021/ct400606c 10.1142/p579 10.1002/prot.24255 10.1063/1.4828816 10.1016/j.jmb.2017.01.007  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 American Chemical Society Copyright American Chemical Society Mar 8, 2022  | 
    
| Copyright_xml | – notice: 2022 American Chemical Society – notice: Copyright American Chemical Society Mar 8, 2022  | 
    
| DBID | AAYXX CITATION NPM 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1021/acs.jctc.1c01049 | 
    
| DatabaseName | CrossRef PubMed Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional MEDLINE - Academic  | 
    
| DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Chemistry | 
    
| EISSN | 1549-9626 | 
    
| EndPage | 1422 | 
    
| ExternalDocumentID | oai:pubmedcentral.nih.gov:8904302 PMC8904302 35138832 10_1021_acs_jctc_1c01049 d052430492  | 
    
| Genre | Journal Article | 
    
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA093577 – fundername: NIGMS NIH HHS grantid: R15 GM139140 – fundername: NIGMS NIH HHS grantid: R01 GM062342 – fundername: NIGMS NIH HHS grantid: P41 GM104601  | 
    
| GroupedDBID | 4.4 53G 55A 5GY 5VS 7~N AABXI ABFRP ABMVS ABUCX ACGFS ACIWK ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 D0L DU5 EBS ED F5P GGK GNL IH9 J9A JG P2P RNS ROL UI2 VF5 VG9 W1F AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV BAANH CITATION CUPRZ ED~ JG~ NPM 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 5PM ADTOC EJD IHE LG6 UNPAY  | 
    
| ID | FETCH-LOGICAL-a461t-6eda28da21da303ac928e36c043f98567139f1120417a741fb1c6cd842b615f03 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1549-9618 1549-9626  | 
    
| IngestDate | Sun Oct 26 02:52:30 EDT 2025 Tue Sep 30 17:15:40 EDT 2025 Thu Oct 02 12:19:03 EDT 2025 Sun Jun 29 15:57:54 EDT 2025 Mon Jul 21 06:03:19 EDT 2025 Tue Jul 01 02:03:23 EDT 2025 Thu Apr 24 23:01:33 EDT 2025 Thu Mar 10 06:20:16 EST 2022  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Language | English | 
    
| License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-a461t-6eda28da21da303ac928e36c043f98567139f1120417a741fb1c6cd842b615f03 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0001-6447-1096 0000-0002-6457-7058 0000-0001-8434-1010 0000-0002-5254-2712 0000-0002-8222-3616 0000-0002-0601-402X 0000-0002-9122-1698  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/8904302 | 
    
| PMID | 35138832 | 
    
| PQID | 2642940228 | 
    
| PQPubID | 2048741 | 
    
| PageCount | 17 | 
    
| ParticipantIDs | unpaywall_primary_10_1021_acs_jctc_1c01049 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8904302 proquest_miscellaneous_2627478685 proquest_journals_2642940228 pubmed_primary_35138832 crossref_citationtrail_10_1021_acs_jctc_1c01049 crossref_primary_10_1021_acs_jctc_1c01049 acs_journals_10_1021_acs_jctc_1c01049  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-03-08 | 
    
| PublicationDateYYYYMMDD | 2022-03-08 | 
    
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-08 day: 08  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Washington  | 
    
| PublicationTitle | Journal of chemical theory and computation | 
    
| PublicationTitleAlternate | J. Chem. Theory Comput | 
    
| PublicationYear | 2022 | 
    
| Publisher | American Chemical Society | 
    
| Publisher_xml | – name: American Chemical Society | 
    
| References | ref45/cit45 ref3/cit3 ref81/cit81 ref16/cit16 ref52/cit52 ref23/cit23 ref2/cit2 ref77/cit77 ref71/cit71 ref20/cit20 ref48/cit48 ref74/cit74 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref13/cit13 ref61/cit61 ref67/cit67 ref38/cit38 ref90/cit90 ref64/cit64 ref54/cit54 ref6/cit6 ref18/cit18 ref65/cit65 ref97/cit97 ref11/cit11 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref43/cit43 ref80/cit80 ref28/cit28 ref91/cit91 ref55/cit55 ref12/cit12 ref66/cit66 ref22/cit22 Chipot C. (ref5/cit5) 2007 ref33/cit33 ref87/cit87 ref44/cit44 ref70/cit70 ref9/cit9 ref27/cit27 ref63/cit63 ref56/cit56 ref92/cit92 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 Chipot C. (ref69/cit69) 2007 ref53/cit53 ref21/cit21 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref79/cit79 ref72/cit72 Bowman G. R. (ref25/cit25) 2013; 797 ref57/cit57 ref51/cit51 ref40/cit40 ref68/cit68 ref94/cit94 ref26/cit26 ref73/cit73 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 Lelièvre T. (ref14/cit14) 2010 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref1/cit1 ref7/cit7  | 
    
| References_xml | – ident: ref4/cit4 doi: 10.1021/jp0777059 – ident: ref55/cit55 doi: 10.1021/jacs.6b10744 – ident: ref17/cit17 doi: 10.1021/ct900524t – ident: ref13/cit13 doi: 10.1021/acs.jctc.6b00277 – ident: ref54/cit54 doi: 10.1126/sciadv.abb9605 – ident: ref22/cit22 doi: 10.1021/acs.jpclett.8b01994 – ident: ref65/cit65 doi: 10.1021/jp304720m – ident: ref74/cit74 doi: 10.1073/pnas.071034098 – ident: ref24/cit24 doi: 10.1073/pnas.100127697 – ident: ref85/cit85 doi: 10.1021/acs.jctc.5b00255 – ident: ref43/cit43 doi: 10.1021/jp511792a – ident: ref79/cit79 doi: 10.1103/PhysRevLett.72.1124 – ident: ref15/cit15 doi: 10.3390/e16010163 – ident: ref73/cit73 doi: 10.1021/ct300867e – ident: ref88/cit88 doi: 10.1021/acs.jctc.6b00447 – ident: ref71/cit71 doi: 10.1103/PhysRevLett.109.020601 – ident: ref92/cit92 – ident: ref49/cit49 doi: 10.1371/journal.pcbi.1002555 – ident: ref90/cit90 doi: 10.1063/1.2746330 – ident: ref30/cit30 doi: 10.1063/1.5011399 – ident: ref62/cit62 doi: 10.1016/S1097-2765(00)80356-1 – ident: ref35/cit35 doi: 10.1038/nchem.2785 – ident: ref95/cit95 doi: 10.1063/1.4773892 – ident: ref7/cit7 doi: 10.1021/jp506633n – ident: ref26/cit26 doi: 10.1073/pnas.1313202110 – ident: ref40/cit40 doi: 10.1016/j.cplett.2005.07.084 – ident: ref75/cit75 doi: 10.1073/pnas.1015661107 – ident: ref45/cit45 doi: 10.1016/j.jmb.2009.10.029 – ident: ref10/cit10 doi: 10.1063/1.1738640 – ident: ref19/cit19 doi: 10.1038/s41467-019-11405-4 – ident: ref47/cit47 doi: 10.1016/j.str.2012.02.018 – ident: ref39/cit39 doi: 10.1103/PhysRev.54.554 – ident: ref67/cit67 doi: 10.1021/acs.jctc.8b00147 – ident: ref11/cit11 doi: 10.1021/acs.jpcb.6b09388 – ident: ref77/cit77 doi: 10.1063/1.451695 – volume: 797 volume-title: An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation year: 2013 ident: ref25/cit25 – ident: ref58/cit58 doi: 10.1073/pnas.1313202110 – ident: ref61/cit61 doi: 10.1371/journal.pcbi.1005603 – ident: ref42/cit42 doi: 10.1016/j.bpj.2009.06.016 – ident: ref44/cit44 doi: 10.1021/acs.jpcb.6b08409 – ident: ref8/cit8 doi: 10.1073/pnas.202427399 – ident: ref63/cit63 doi: 10.1016/j.str.2005.03.012 – ident: ref78/cit78 doi: 10.1016/0009-2614(87)80576-6 – ident: ref38/cit38 doi: 10.1146/annurev.physchem.040808.090412 – ident: ref82/cit82 doi: 10.1021/ct900689m – ident: ref32/cit32 doi: 10.1016/j.sbi.2014.04.002 – ident: ref6/cit6 doi: 10.1063/1.1410978 – ident: ref23/cit23 doi: 10.1021/acs.accounts.9b00473 – ident: ref64/cit64 doi: 10.1038/ncomms4397 – ident: ref41/cit41 doi: 10.1073/pnas.0705830104 – ident: ref89/cit89 doi: 10.1021/acs.jpcb.6b10055 – ident: ref20/cit20 doi: 10.1063/1.5064856 – ident: ref12/cit12 doi: 10.1016/S0006-3495(96)79552-8 – ident: ref70/cit70 doi: 10.1063/1.2432340 – ident: ref31/cit31 doi: 10.1038/srep35913 – ident: ref76/cit76 doi: 10.1021/acs.jctc.8b00563 – ident: ref3/cit3 doi: 10.1063/1.2212942 – ident: ref48/cit48 doi: 10.1021/jp304805v – ident: ref46/cit46 doi: 10.1063/1.3544209 – ident: ref1/cit1 doi: 10.1145/1273440.1250664 – ident: ref28/cit28 doi: 10.1073/pnas.1600917113 – ident: ref96/cit96 doi: 10.1063/1.2959573 – ident: ref52/cit52 doi: 10.1073/pnas.1009313107 – ident: ref68/cit68 doi: 10.1063/5.0021603 – ident: ref59/cit59 doi: 10.1021/ct5002285 – ident: ref2/cit2 doi: 10.1103/PhysRevB.66.052301 – ident: ref53/cit53 doi: 10.1073/pnas.1617567114 – ident: ref91/cit91 doi: 10.1021/acs.jpca.1c04110 – ident: ref83/cit83 doi: 10.1063/1.5079742 – ident: ref33/cit33 doi: 10.1002/prot.340170408 – ident: ref84/cit84 doi: 10.1063/5.0014475 – ident: ref94/cit94 doi: 10.1063/1.3129843 – ident: ref50/cit50 doi: 10.1016/j.bpj.2012.03.031 – ident: ref16/cit16 doi: 10.1016/j.cpc.2013.12.014 – ident: ref57/cit57 doi: 10.1021/acs.jctc.7b00467 – ident: ref60/cit60 doi: 10.1038/ncomms9393 – ident: ref80/cit80 doi: 10.1021/jp212611k – ident: ref27/cit27 doi: 10.1063/1.4811489 – ident: ref87/cit87 doi: 10.1063/1.2711185 – ident: ref93/cit93 doi: 10.1063/1.439715 – ident: ref97/cit97 doi: 10.1021/acs.jctc.7b00032 – ident: ref37/cit37 doi: 10.1146/annurev.physchem.53.082301.113146 – volume-title: Free Energy Calculations. Theory and Applications in Chemistry and Biology year: 2007 ident: ref5/cit5 doi: 10.1007/978-3-540-38448-9 – ident: ref86/cit86 doi: 10.1021/acs.jcim.0c00279 – ident: ref9/cit9 doi: 10.1063/1.434125 – ident: ref18/cit18 doi: 10.1021/ct500874p – ident: ref66/cit66 doi: 10.1021/jp301628r – ident: ref72/cit72 doi: 10.1088/1367-2630/7/1/034 – ident: ref34/cit34 doi: 10.1021/acs.jctc.8b01074 – ident: ref21/cit21 doi: 10.1063/5.0030931 – volume-title: Free Energy Calculations: Theory and Applications in Chemistry and Biology year: 2007 ident: ref69/cit69 doi: 10.1007/978-3-540-38448-9 – ident: ref29/cit29 doi: 10.1063/1.5023804 – ident: ref81/cit81 doi: 10.1021/ct400606c – volume-title: Free Energy Computations: A Mathematical Perspective year: 2010 ident: ref14/cit14 doi: 10.1142/p579 – ident: ref51/cit51 doi: 10.1002/prot.24255 – ident: ref36/cit36 doi: 10.1063/1.4828816 – ident: ref56/cit56 doi: 10.1016/j.jmb.2017.01.007  | 
    
| SSID | ssj0033423 | 
    
| Score | 2.4479456 | 
    
| Snippet | The string method with swarms of trajectories (SMwST) is an algorithm that identifies a physically meaningful transition pathwaya one-dimensional curve,... The string method with swarms of trajectories (SMwST) is an algorithm that identifies a physically meaningful transition pathway─a one-dimensional curve,... The string method with swarms of trajectories (SMwST) is an algorithm that identifies a physically meaningful transition pathway—a one-dimensional curve,...  | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref acs  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 1406 | 
    
| SubjectTerms | Algorithms Free energy Molecular dynamics Optimization Polypeptides Statistical Mechanics Strings Trajectories  | 
    
| SummonAdditionalLinks | – databaseName: American Chemical Society Journals dbid: ACS link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHMqllHf6QEaCA6jZxnYeNrfVilIhFVVaKvUWOY6tblmSqklUwa9nJslm2S4qPeTiRxLbY89nj-cbQt6pxOQAPIWfmUz7oZLWhyTrRyqwWSIcYAR0FD75Fh-fhV_Po_MlTc5tCz5nh9pUo0tTmxEzuHdQD8kjHicJXt8bT6aLVVcgk13LjRoi4ySTvUnyX29ARWSqVUW0hi7XL0luNsWV_nWj5_O_NNDRky6UUdUSF-LFkx-jps5G5vc6reM9GrdNtnogSsed5DwlD2zxjGxOFvHfnpNyTLvFAkaOfmlmuaV1SQEv0mmNh4H0pA0-TfEkl05v9PXPipaOgvK7bC0BsAX_RCcDH3Tn7nlAT5eeCgdUFzk9ndUOWlu9IGdHn79Pjv0-PIOvw5jVfmxzzSU8LNegCLVRXFoRmyAUTskohu2vcgDngpAlGoCLy5iJTS5DngGMcoF4STaKsrCvCXXc2Qg9VYKMh9YJrSPL8izgBlYkJYRH3kNPpf30qtLWcs5Z2iZC96V993nkcDGmqek5zjHUxvyOGh-GGlcdv8cdZfcWYrL8FQCUXIXIIuSRt0M2DBUaXnRhywbL4N5fxjLyyKtOqoaPiYgJCcuqR5IVeRsKIP_3ak4xu2h5wKVCwjao-XGQzP-2YeeePblLHnN09MDbdnKPbNTXjd0H-FVnb9p59wdm1yuX priority: 102 providerName: American Chemical Society  | 
    
| Title | A Companion Guide to the String Method with Swarms of Trajectories: Characterization, Performance, and Pitfalls | 
    
| URI | http://dx.doi.org/10.1021/acs.jctc.1c01049 https://www.ncbi.nlm.nih.gov/pubmed/35138832 https://www.proquest.com/docview/2642940228 https://www.proquest.com/docview/2627478685 https://pubmed.ncbi.nlm.nih.gov/PMC8904302 https://www.ncbi.nlm.nih.gov/pmc/articles/8904302  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 18 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1549-9626 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033423 issn: 1549-9626 databaseCode: ACS dateStart: 20050101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7C5pBe-n44SYMK7aEl9tryY6XelqVpKCQs3S6kp0WSJbrprr3ENqH99R35lW4DKTkYjB7Yw4w0n6SZTwBv-UilCDxDVyop3Igz7WKRdmPuazkKDWIEmyh8dp6czqMvF_HFDgRdLkwdtK_k0stWay9b_qhjKzdrNezixIaMW5oqnHV3kxjh9wB25-fT8feaFzWybJP1nl77TrujSXRlQ6EK71KVyguUXYVw65BUse2QbqHM28GSe1W2Eb-uxWr1lyc6eQRfOxmaAJSfXlVKT_3-h97xXkI-hoctLiXjpuoJ7OjsKexNuuvgnkE-Js3cgYokn6tlqkmZE4SPZFbavUFyVt9FTezGLpldi6t1QXJD0Bde1gcDuCL_SCY9PXST_XlMpjeJC8dEZCmZLkuDQhfPYX7y6dvk1G1va3BFlASlm-hUUIZPkAr0i0JxynSYKBTEcBYnuBrmBtGdHwUjgTjGyEAlKmURlYiqjB--gEGWZ_oVEEONjm3iii9ppE0oRKyDVPpU4QTFw9CBd6i4RTvaikV9kE6DRV2ICl60CnZg2Kl2oVrKc3vzxuqOHu_7HpuG7uOOtoedtdz8CuJLyiNLKuTAm74aVWXPYUSm88q2sVsBLGGxAy8b4-o_FsZByHCWdWC0ZXZ9A0sHvl2DBlTTgrc248CH3kD_K8P-fRofwANqkz9sBB47hEF5VenXCMlKeYRLksnsqB2KfwDK4Tgh | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VclguvB-BAkaCA6jZxnGStbmtVpQFulXFtlJvkePYYtttUjWJKvj1jPNalqICh1z8ih9jz2eP5zPAazFSKQJP5iYqkW4guHYxSLuh8HQyYgYxgnUUnu1H06Pg83F4vAG084XBShRYUlEb8VfsAnTHhp2oUg2pslsIcQNuhlFA7X5rPJl3iy-zhHY1RWpgiScpby2TfyrB6iNVrOujKyDz6l3JQZWdy--Xcrn8RRHt3oGvfRPq-yenw6pMhurHb-yO_9XGu3C7haVk3MjRPdjQ2X0YTLrX4B5APibN0oHjSD5Wi1STMieIHsm8tEeDZFY_RU3suS6ZX8qLs4LkhqAqPKntArghf08mPTt04_y5TQ5WfgvbRGYpOViUBhtdPISj3Q-Hk6nbPtbgyiCipRvpVPocP5pKVItSCZ9rFikvYEbwMMLNsDAI7jwcM4kwxiRURSrlgZ8gqDIeewSbWZ7pJ0CMb3Ro_Va8xA-0YVKGmqaJ5ytcnwRjDrzBnorbyVbEtR3dp3EdiN0Xt93nwE43tLFqGc_twxvLa3K87XOcN2wf16Td6qRlVRWEl74ILKeQA6_6aBwqa4aRmc4rm8aeBPCIhw48boSr_xkLKeO4yDowWhO7PoFlA1-PyRbfalZwLix9G-Z81wvoX9vw9B978iUMpoezvXjv0_6XZ3DLty4g9h4e34LN8qLSzxGYlcmLeir-BB9NM_k | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIlEuvKGBAkaCA6jZJnGStblVC0t5tFppKeotchxb3bJkV02iCn49M3mVpajAIRe_4sfY89nj-QzwXA51hsCTu6lOlRtKYVwMMm4kPZMOuUWMQI7C-wfx3mH44Sg6WoOo84XBShRYUlEb8WlWLzPbMgz4OxR-oks98DVtI-QVuBrFONMJEY2m3QLMidSupkkNiXzSF6118k8lkE7SxapOugA0L96X3Kjypfp-pubzX5TR-CZ86ZtR30H5OqjKdKB__Mbw-N_tvAU3WnjKdht5ug1rJr8DG6PuVbi7sNhlzRKC48neVbPMsHLBEEWyaUlHhGy_fpKa0fkum56p028FW1iGKvGktg_gxvw1G_Us0Y0T6DabnPsvbDOVZ2wyKy02vLgHh-O3n0d7bvtog6vC2C_d2GQqEPj5mUL1qLQMhOGx9kJupYhi3BRLiyDPC_2hQjhjU1_HOhNhkCK4sh6_D-v5IjebwGxgTUT-K14ahMZypSLjZ6kXaFynJOcOvMCeStpJVyS1PT3wkzoQuy9pu8-BnW54E90yn9MDHPNLcrzscywb1o9L0m51EnNeFYSZgQyJW8iBZ300DhWZY1RuFhWloRMBEYvIgQeNgPU_45HPBS62DgxXRK9PQKzgqzH57LhmBxeSaNww56teSP_ahof_2JNP4drkzTj59P7g4yO4HpAnCF3HE1uwXp5W5jHiszJ9Us_Gn-1zNnw | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7C5pBe-n64TYsK7aEl9tryY6XelqVpKCQsTRfSk5FkiWy6ay-xTWh_fUd-pdtASg4Gowf2MCPNJ2nmE8A7PlEZAs_QlUoKN-JMu1ik3Zj7Wk5CgxjBJgofnyRHi-jrWXy2A0GfC9ME7Su59PLV2suX501s5Watxn2c2JhxS1OFs-5uEiP8HsHu4mQ-_dHwokaWbbLZ0-veaX80ia5sLFTpXahKeYGyqxBuHZIqtx3SDZR5M1hyr8434teVWK3-8kSHD-BbL0MbgPLTqyvpqd__0DveSciHcL_DpWTaVj2CHZ0_hr1Zfx3cEyimpJ07UJHkS73MNKkKgvCRnFZ2b5AcN3dRE7uxS06vxOW6JIUh6AsvmoMBXJF_IrOBHrrN_jwg8-vEhQMi8ozMl5VBocunsDj8_H125Ha3NbgiSoLKTXQmKMMnyAT6RaE4ZTpMFApiOIsTXA1zg-jOj4KJQBxjZKASlbGISkRVxg-fwSgvcv0CiKFGxzZxxZc00iYUItZBJn2qcILiYejAe1Rc2o22Mm0O0mmQNoWo4LRTsAPjXrWp6ijP7c0bq1t6fBh6bFq6j1va7vfWcv0riC8pjyypkANvh2pUlT2HEbkuatvGbgWwhMUOPG-Na_hYGAchw1nWgcmW2Q0NLB34dg0aUEML3tmMAx8HA_2vDC_v0vgV3KM2-cNG4LF9GFWXtX6NkKySb7pB-Ad_4Dcp | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Companion+Guide+to+the+String+Method+with+Swarms+of+Trajectories%3A+Characterization%2C+Performance%2C+and+Pitfalls&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Chen%2C+Haochuan&rft.au=Ogden%2C+Dylan&rft.au=Pant%2C+Shashank&rft.au=Cai%2C+Wensheng&rft.date=2022-03-08&rft.eissn=1549-9626&rft.volume=18&rft.issue=3&rft.spage=1406&rft_id=info:doi/10.1021%2Facs.jctc.1c01049&rft_id=info%3Apmid%2F35138832&rft.externalDocID=35138832 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon |