Interpretation of Compound Activity Predictions from Complex Machine Learning Models Using Local Approximations and Shapley Values

In qualitative or quantitative studies of structure–activity relationships (SARs), machine learning (ML) models are trained to recognize structural patterns that differentiate between active and inactive compounds. Understanding model decisions is challenging but of critical importance to guide comp...

Full description

Saved in:
Bibliographic Details
Published inJournal of medicinal chemistry Vol. 63; no. 16; pp. 8761 - 8777
Main Authors Rodríguez-Pérez, Raquel, Bajorath, Jürgen
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 27.08.2020
Subjects
Online AccessGet full text
ISSN0022-2623
1520-4804
1520-4804
DOI10.1021/acs.jmedchem.9b01101

Cover

Abstract In qualitative or quantitative studies of structure–activity relationships (SARs), machine learning (ML) models are trained to recognize structural patterns that differentiate between active and inactive compounds. Understanding model decisions is challenging but of critical importance to guide compound design. Moreover, the interpretation of ML results provides an additional level of model validation based on expert knowledge. A number of complex ML approaches, especially deep learning (DL) architectures, have distinctive black-box character. Herein, a locally interpretable explanatory method termed Shapley additive explanations (SHAP) is introduced for rationalizing activity predictions of any ML algorithm, regardless of its complexity. Models resulting from random forest (RF), nonlinear support vector machine (SVM), and deep neural network (DNN) learning are interpreted, and structural patterns determining the predicted probability of activity are identified and mapped onto test compounds. The results indicate that SHAP has high potential for rationalizing predictions of complex ML models.
AbstractList In qualitative or quantitative studies of structure-activity relationships (SARs), machine learning (ML) models are trained to recognize structural patterns that differentiate between active and inactive compounds. Understanding model decisions is challenging but of critical importance to guide compound design. Moreover, the interpretation of ML results provides an additional level of model validation based on expert knowledge. A number of complex ML approaches, especially deep learning (DL) architectures, have distinctive black-box character. Herein, a locally interpretable explanatory method termed Shapley additive explanations (SHAP) is introduced for rationalizing activity predictions of any ML algorithm, regardless of its complexity. Models resulting from random forest (RF), nonlinear support vector machine (SVM), and deep neural network (DNN) learning are interpreted, and structural patterns determining the predicted probability of activity are identified and mapped onto test compounds. The results indicate that SHAP has high potential for rationalizing predictions of complex ML models.In qualitative or quantitative studies of structure-activity relationships (SARs), machine learning (ML) models are trained to recognize structural patterns that differentiate between active and inactive compounds. Understanding model decisions is challenging but of critical importance to guide compound design. Moreover, the interpretation of ML results provides an additional level of model validation based on expert knowledge. A number of complex ML approaches, especially deep learning (DL) architectures, have distinctive black-box character. Herein, a locally interpretable explanatory method termed Shapley additive explanations (SHAP) is introduced for rationalizing activity predictions of any ML algorithm, regardless of its complexity. Models resulting from random forest (RF), nonlinear support vector machine (SVM), and deep neural network (DNN) learning are interpreted, and structural patterns determining the predicted probability of activity are identified and mapped onto test compounds. The results indicate that SHAP has high potential for rationalizing predictions of complex ML models.
In qualitative or quantitative studies of structure–activity relationships (SARs), machine learning (ML) models are trained to recognize structural patterns that differentiate between active and inactive compounds. Understanding model decisions is challenging but of critical importance to guide compound design. Moreover, the interpretation of ML results provides an additional level of model validation based on expert knowledge. A number of complex ML approaches, especially deep learning (DL) architectures, have distinctive black-box character. Herein, a locally interpretable explanatory method termed Shapley additive explanations (SHAP) is introduced for rationalizing activity predictions of any ML algorithm, regardless of its complexity. Models resulting from random forest (RF), nonlinear support vector machine (SVM), and deep neural network (DNN) learning are interpreted, and structural patterns determining the predicted probability of activity are identified and mapped onto test compounds. The results indicate that SHAP has high potential for rationalizing predictions of complex ML models.
Author Rodríguez-Pérez, Raquel
Bajorath, Jürgen
AuthorAffiliation Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry
Department of Medicinal Chemistry
Boehringer Ingelheim Pharma GmbH & Co. KG
AuthorAffiliation_xml – name: Boehringer Ingelheim Pharma GmbH & Co. KG
– name: Department of Medicinal Chemistry
– name: Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry
Author_xml – sequence: 1
  givenname: Raquel
  surname: Rodríguez-Pérez
  fullname: Rodríguez-Pérez, Raquel
  organization: Boehringer Ingelheim Pharma GmbH & Co. KG
– sequence: 2
  givenname: Jürgen
  orcidid: 0000-0002-0557-5714
  surname: Bajorath
  fullname: Bajorath, Jürgen
  email: bajorath@bit.uni-bonn.de
  organization: Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31512867$$D View this record in MEDLINE/PubMed
BookMark eNqFkUGP0zAQhS20iO0u_AOEfOTSMrYTN-FWVQus1BVILFwt25lQrxI72AnaXvnluJv2wgFOljXvex6_d0UufPBIyGsGKwacvdM2rR56bOwe-1VtgDFgz8iClRyWRQXFBVkAcL7kkotLcpXSAwAIxsULcilYyXgl1wvy-9aPGIeIox5d8DS0dBv6IUy-oRs7ul9uPNAvERtnj_NE2xj6J0mHj_RO273zSHeoo3f-B70LDXaJfkvHyy5Y3dHNMMTw6Ho98zobf93rjB_od91NmF6S563uEr46ndfk_sPN_fbTcvf54-12s1vqQsK4bE0BoinrSqA1-ZNo1saglaW0NTdQQlutJUDRCl0KNLpGKbVuWlMjN7IW1-TtbJvX-ZmfHVXvksWu0x7DlBTnVV2uhayP0jcn6WRywmqIef14UOfYsuD9LLAxpBSxVdbNAY5Ru04xUMeOVO5InTtSp44yXPwFn_3_g8GMPU3DFH0O69_IH0Q_rRA
CitedBy_id crossref_primary_10_1002_int_23088
crossref_primary_10_1007_s11030_024_11061_x
crossref_primary_10_1016_j_acra_2024_11_019
crossref_primary_10_1080_17470919_2023_2242094
crossref_primary_10_1039_D2DD00068G
crossref_primary_10_4155_fmc_2023_0074
crossref_primary_10_1016_j_ajic_2021_11_012
crossref_primary_10_1016_j_scitotenv_2024_176575
crossref_primary_10_1016_j_leukres_2021_106639
crossref_primary_10_1016_j_hbpd_2022_11_005
crossref_primary_10_1063_5_0226151
crossref_primary_10_2214_AJR_24_31717
crossref_primary_10_1016_j_aiig_2023_09_002
crossref_primary_10_1021_acs_jcim_1c01163
crossref_primary_10_1002_biot_202400212
crossref_primary_10_1039_D5TC00305A
crossref_primary_10_3892_ol_2024_14553
crossref_primary_10_1016_j_clnu_2021_11_006
crossref_primary_10_1007_s13748_022_00291_5
crossref_primary_10_1186_s12864_025_11434_y
crossref_primary_10_1109_TCBB_2022_3190266
crossref_primary_10_1186_s40644_025_00855_3
crossref_primary_10_1039_D4MD00107A
crossref_primary_10_1109_JSTARS_2022_3164140
crossref_primary_10_3389_fendo_2020_00643
crossref_primary_10_1371_journal_pone_0273831
crossref_primary_10_1016_j_ceramint_2022_06_156
crossref_primary_10_3390_ijms241915009
crossref_primary_10_1016_j_cpcardiol_2024_102456
crossref_primary_10_2340_1651_226X_2025_42982
crossref_primary_10_3389_fneur_2021_761092
crossref_primary_10_2196_67256
crossref_primary_10_3389_fnut_2023_1060398
crossref_primary_10_1002_pds_5756
crossref_primary_10_1016_j_crad_2023_10_011
crossref_primary_10_1016_j_ins_2023_119094
crossref_primary_10_1038_s41598_021_01099_4
crossref_primary_10_1016_j_ces_2024_119955
crossref_primary_10_1021_acs_jcim_2c00297
crossref_primary_10_1007_s11030_024_10809_9
crossref_primary_10_1186_s12880_023_01089_0
crossref_primary_10_3389_fcvm_2022_1042996
crossref_primary_10_1016_j_solener_2023_05_050
crossref_primary_10_3390_s24196203
crossref_primary_10_3390_toxics12110803
crossref_primary_10_1021_acs_jcim_3c00473
crossref_primary_10_3389_fped_2025_1519002
crossref_primary_10_4155_fmc_2022_0122
crossref_primary_10_1016_j_buildenv_2025_112875
crossref_primary_10_12677_acm_2025_152503
crossref_primary_10_1016_j_rineng_2025_104307
crossref_primary_10_3389_fbinf_2022_885983
crossref_primary_10_1016_j_compbiomed_2022_106379
crossref_primary_10_1002_minf_202200210
crossref_primary_10_1002_wcms_1568
crossref_primary_10_1002_env_2772
crossref_primary_10_1016_j_scitotenv_2022_159348
crossref_primary_10_1002_wcms_1681
crossref_primary_10_1016_j_ailsci_2024_100121
crossref_primary_10_1016_j_ailsci_2022_100048
crossref_primary_10_1007_s10994_023_06369_y
crossref_primary_10_1007_s41870_024_02326_7
crossref_primary_10_1016_j_crad_2023_09_016
crossref_primary_10_1186_s13321_020_00479_8
crossref_primary_10_1016_j_xcrp_2023_101630
crossref_primary_10_4155_fdd_2021_0003
crossref_primary_10_1016_j_ijmedinf_2022_104930
crossref_primary_10_1021_acs_jcim_3c00465
crossref_primary_10_2147_JMDH_S448004
crossref_primary_10_1038_s41467_024_49979_3
crossref_primary_10_1016_j_xcrp_2024_102110
crossref_primary_10_1016_j_compbiolchem_2024_108324
crossref_primary_10_1016_j_isci_2022_105043
crossref_primary_10_1016_j_drudis_2020_12_003
crossref_primary_10_1021_acs_jcim_9b01188
crossref_primary_10_2215_CJN_0000000000000099
crossref_primary_10_1016_j_molliq_2024_126707
crossref_primary_10_1016_j_jconrel_2023_07_040
crossref_primary_10_1007_s11517_022_02569_1
crossref_primary_10_1177_17562848251321915
crossref_primary_10_1002_cam4_6540
crossref_primary_10_1088_2632_072X_ad1c68
crossref_primary_10_1016_j_ces_2025_121419
crossref_primary_10_1097_CORR_0000000000002276
crossref_primary_10_1186_s13321_022_00583_x
crossref_primary_10_1002_cam4_4934
crossref_primary_10_1021_acs_jctc_2c01235
crossref_primary_10_3389_fmed_2022_1043412
crossref_primary_10_1186_s13244_024_01874_7
crossref_primary_10_1039_D4DD00257A
crossref_primary_10_1007_s11096_025_01899_y
crossref_primary_10_1007_s00330_021_08271_4
crossref_primary_10_1007_s10072_022_06351_x
crossref_primary_10_1093_bib_bbad187
crossref_primary_10_1016_j_psychres_2021_114258
crossref_primary_10_1007_s11030_021_10239_x
crossref_primary_10_1016_j_jmat_2024_07_006
crossref_primary_10_1186_s13321_021_00519_x
crossref_primary_10_1002_adma_202415031
crossref_primary_10_1186_s13059_024_03225_7
crossref_primary_10_1038_s41598_024_71892_4
crossref_primary_10_1039_D4NP00009A
crossref_primary_10_3934_DSFE_2024019
crossref_primary_10_4018_IJISP_303667
crossref_primary_10_1097_JS9_0000000000001082
crossref_primary_10_1021_jacs_1c05055
crossref_primary_10_1186_s12879_025_10450_3
crossref_primary_10_1007_s00521_024_10127_z
crossref_primary_10_1038_s41598_022_10344_3
crossref_primary_10_1186_s12890_025_03480_9
crossref_primary_10_1007_s10822_020_00314_0
crossref_primary_10_1016_j_diii_2024_01_004
crossref_primary_10_1371_journal_pone_0303632
crossref_primary_10_1038_s42256_020_00236_4
crossref_primary_10_1245_s10434_024_16701_y
crossref_primary_10_1007_s11606_023_08065_y
crossref_primary_10_3389_fmed_2025_1521660
crossref_primary_10_3390_app12136681
crossref_primary_10_3389_fmedt_2025_1485244
crossref_primary_10_1016_j_diii_2024_01_008
crossref_primary_10_1016_j_cjche_2025_02_001
crossref_primary_10_1021_acs_jpcc_4c08108
crossref_primary_10_1111_ssqu_13459
crossref_primary_10_2139_ssrn_4178392
crossref_primary_10_3390_systems10040108
crossref_primary_10_1016_j_watres_2023_120470
crossref_primary_10_1080_17460441_2022_1985108
crossref_primary_10_1016_j_heliyon_2023_e22458
crossref_primary_10_3389_fdgth_2023_1193467
crossref_primary_10_1016_j_aquaeng_2023_102372
crossref_primary_10_1039_D2DD00084A
crossref_primary_10_1021_acs_jcim_2c01091
crossref_primary_10_1038_s41598_023_45282_1
crossref_primary_10_1021_acs_jcim_0c01223
crossref_primary_10_1021_acs_jcim_0c01344
crossref_primary_10_1038_s41598_023_34650_6
crossref_primary_10_1021_acsomega_2c03812
crossref_primary_10_1016_j_ijbiomac_2024_136325
crossref_primary_10_1021_acsestwater_3c00290
crossref_primary_10_1371_journal_pone_0277257
crossref_primary_10_1016_j_ces_2023_118619
crossref_primary_10_1016_j_chempr_2024_02_004
crossref_primary_10_1016_j_toxlet_2024_02_012
crossref_primary_10_1002_minf_202200190
crossref_primary_10_1016_j_cub_2022_10_038
crossref_primary_10_1039_D2DD00136E
crossref_primary_10_1186_s12885_024_12303_9
crossref_primary_10_1080_10643389_2024_2320753
crossref_primary_10_1038_s41467_024_49372_0
crossref_primary_10_1021_acs_jpca_4c06701
crossref_primary_10_1038_s41598_021_93771_y
crossref_primary_10_1057_s41599_022_01106_7
crossref_primary_10_1016_j_foodchem_2023_138082
crossref_primary_10_3390_brainsci13040557
crossref_primary_10_1155_2022_6548800
crossref_primary_10_1007_s00432_024_05680_y
crossref_primary_10_1007_s11426_024_2072_4
crossref_primary_10_1007_s10822_023_00528_y
crossref_primary_10_1016_j_compenvurbsys_2024_102238
crossref_primary_10_1007_s10822_020_00361_7
crossref_primary_10_1039_D2RA05102H
crossref_primary_10_1093_comnet_cnad030
crossref_primary_10_1016_j_tips_2023_04_002
crossref_primary_10_2196_35373
crossref_primary_10_1146_annurev_pharmtox_051921_023255
crossref_primary_10_1111_cbdd_14262
crossref_primary_10_1016_j_jmgm_2025_109016
crossref_primary_10_3389_fbioe_2021_662749
crossref_primary_10_3390_ijgi13100365
crossref_primary_10_1186_s13054_024_05245_y
crossref_primary_10_3389_fpubh_2024_1453650
crossref_primary_10_3390_jpm12101739
crossref_primary_10_3390_app142311025
crossref_primary_10_1002_minf_202300022
crossref_primary_10_1007_s11063_023_11309_x
crossref_primary_10_1016_j_ergon_2025_103699
crossref_primary_10_1016_j_eiar_2025_107895
crossref_primary_10_1021_acschemneuro_3c00840
crossref_primary_10_1016_j_clwat_2024_100041
crossref_primary_10_1016_j_compenvurbsys_2024_102133
crossref_primary_10_1016_j_patter_2022_100628
crossref_primary_10_1038_s42004_024_01393_y
crossref_primary_10_1248_cpb_c23_00039
crossref_primary_10_1088_1741_2552_acf734
crossref_primary_10_1111_cas_16276
crossref_primary_10_1186_s12859_022_04760_5
crossref_primary_10_1016_j_acra_2024_08_024
crossref_primary_10_1016_j_scitotenv_2023_166623
crossref_primary_10_1016_j_acra_2024_10_039
crossref_primary_10_1080_17460441_2021_1918098
crossref_primary_10_1021_acs_jcim_2c01564
crossref_primary_10_1007_s11030_022_10555_w
crossref_primary_10_3390_cryst12040556
crossref_primary_10_1016_j_xcrp_2021_100573
crossref_primary_10_1186_s13321_024_00820_5
crossref_primary_10_1002_cmdc_202400169
crossref_primary_10_1038_s41598_023_27858_z
crossref_primary_10_1186_s13321_022_00673_w
crossref_primary_10_4155_fmc_2020_0259
crossref_primary_10_1016_j_asoc_2023_110997
crossref_primary_10_2478_acss_2020_0016
crossref_primary_10_1016_j_ress_2025_110845
crossref_primary_10_1038_s41524_025_01552_2
crossref_primary_10_1016_j_dche_2024_100143
crossref_primary_10_3389_fonc_2022_848726
crossref_primary_10_1038_s41598_024_73733_w
crossref_primary_10_1186_s12859_022_04663_5
crossref_primary_10_1016_j_rineng_2024_103071
crossref_primary_10_1016_j_jacc_2024_02_040
crossref_primary_10_3389_fcvm_2024_1454642
crossref_primary_10_1139_cjce_2023_0446
crossref_primary_10_1016_j_catena_2024_107848
crossref_primary_10_1007_s10143_021_01665_4
crossref_primary_10_1016_j_fuel_2025_134699
crossref_primary_10_2147_CLEP_S404580
crossref_primary_10_1016_j_indcrop_2024_118281
crossref_primary_10_1038_s41551_023_01034_0
crossref_primary_10_1124_pharmrev_122_000715
crossref_primary_10_1111_nyas_15113
crossref_primary_10_1021_acs_jcim_4c00126
crossref_primary_10_1021_acs_jcim_4c00366
crossref_primary_10_1007_s00330_022_08887_0
crossref_primary_10_1038_s41524_024_01282_x
crossref_primary_10_1186_s13040_024_00378_w
crossref_primary_10_1246_bcsj_20200220
crossref_primary_10_1371_journal_pone_0284315
crossref_primary_10_1039_D2RA07007C
crossref_primary_10_1016_j_ailsci_2021_100009
crossref_primary_10_1021_acs_jcim_1c01263
crossref_primary_10_1021_acsomega_4c07994
crossref_primary_10_1177_14759217231184579
crossref_primary_10_1177_15330338231219352
crossref_primary_10_1080_10962247_2022_2035851
crossref_primary_10_1007_s11030_023_10649_z
crossref_primary_10_1021_acs_jmedchem_1c01789
crossref_primary_10_1007_s10409_024_24155_x
crossref_primary_10_3390_electronics14020272
crossref_primary_10_1039_D4EM00173G
crossref_primary_10_1002_cmdc_202200434
crossref_primary_10_1016_j_acra_2024_11_037
Cites_doi 10.1021/jm4004285
10.1016/j.drudis.2014.02.004
10.1021/ci400737s
10.1038/nrd941
10.1021/acs.jcim.7b00088
10.1016/j.drudis.2014.10.012
10.1007/s10822-015-9860-5
10.1021/acs.jcim.5b00229
10.4155/fmc.11.23
10.1021/ci5005509
10.1021/acsomega.8b01682
10.1021/acsomega.9b00298
10.1021/jm901137j
10.1021/jm049228d
10.1021/acs.jmedchem.6b00906
10.1021/acsomega.7b01079
10.1080/10629360290002073
10.1080/17460441.2016.1201262
10.1039/C8SC00148K
10.1021/ci200528d
10.1007/s10822-007-9162-7
10.1021/jm00095a016
10.1093/nar/gkr777
10.1021/acs.jcim.8b00712
10.1016/0005-2795(75)90109-9
10.1021/acsomega.8b00462
10.1016/j.drudis.2018.05.010
10.1002/minf.201100136
10.1021/ci500410g
10.1186/s13321-014-0047-1
10.1021/acs.jcim.7b00146
10.1021/ci0601315
10.1007/s10822-008-9240-5
10.1145/2939672.2939778
10.1186/s13321-017-0232-0
10.1007/978-1-4757-3264-1
10.1038/s41551-018-0304-0
10.1007/BF01769885
10.1023/A:1010933404324
10.1007/978-0-387-84858-7
10.1002/minf.201100059
10.1021/acs.jcim.7b00087
10.1016/j.neunet.2005.07.009
10.1021/ci200409x
10.1021/acs.jcim.5b00175
10.1007/s11095-016-2029-7
10.1021/acs.jcim.5b00559
10.1021/acs.jcim.7b00274
10.1109/MSP.2012.2205597
10.1021/ci500747n
10.1109/ICPR.2010.764
10.1080/01621459.1973.10481460
10.1021/ci100050t
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acs.jmedchem.9b01101
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Pharmacy, Therapeutics, & Pharmacology
EISSN 1520-4804
EndPage 8777
ExternalDocumentID 31512867
10_1021_acs_jmedchem_9b01101
f9777061
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
55A
5GY
5RE
5VS
7~N
AABXI
ABFLS
ABMVS
ABOCM
ABPTK
ABUCX
ACGFS
ACJ
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
F5P
GNL
IH2
IH9
IHE
JG
JG~
K2
L7B
LG6
P2P
ROL
TN5
UI2
VF5
VG9
W1F
WH7
X
XFK
YZZ
ZY4
---
-~X
4.4
6P2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
YQT
ABTAH
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7X8
ID FETCH-LOGICAL-a460t-fb403d5983ecb520eb7bbec656c92b050f876004f3a53eba9e66aadfb9e2b693
IEDL.DBID ACS
ISSN 0022-2623
1520-4804
IngestDate Fri Jul 11 01:00:56 EDT 2025
Wed Feb 19 02:30:32 EST 2025
Tue Jul 01 00:43:01 EDT 2025
Thu Apr 24 23:11:34 EDT 2025
Thu Oct 01 03:29:57 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License http://pubs.acs.org/page/policy/authorchoice_termsofuse.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a460t-fb403d5983ecb520eb7bbec656c92b050f876004f3a53eba9e66aadfb9e2b693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0557-5714
OpenAccessLink https://zenodo.org/record/3553762
PMID 31512867
PQID 2289573699
PQPubID 23479
PageCount 17
ParticipantIDs proquest_miscellaneous_2289573699
pubmed_primary_31512867
crossref_citationtrail_10_1021_acs_jmedchem_9b01101
crossref_primary_10_1021_acs_jmedchem_9b01101
acs_journals_10_1021_acs_jmedchem_9b01101
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-27
PublicationDateYYYYMMDD 2020-08-27
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-27
  day: 27
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of medicinal chemistry
PublicationTitleAlternate J. Med. Chem
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref16/cit16
Shapley L. S. (ref43/cit43) 1953
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref37/cit37
ref20/cit20
ref48/cit48
Krizhevsky A. (ref22/cit22) 2015; 25
ref10/cit10
Vapnik V. N. (ref17/cit17) 2000
ref53/cit53
ref19/cit19
ref42/cit42
Kenny P. W. (ref50/cit50) 2004
ref46/cit46
ref49/cit49
ref13/cit13
Lundberg S. M. (ref41/cit41) 2017
ref61/cit61
ref24/cit24
ref38/cit38
ref64/cit64
ref54/cit54
Nielsen M. A. (ref21/cit21) 2015
ref6/cit6
ref36/cit36
ref18/cit18
Bishop C. M. (ref60/cit60) 2006
ref65/cit65
Iooss B. (ref35/cit35) 2016
ref11/cit11
ref25/cit25
ref29/cit29
Boser B. E. (ref56/cit56) 1992
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref28/cit28
ref40/cit40
ref68/cit68
Hastie T. (ref34/cit34) 2009
ref26/cit26
ref55/cit55
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
Osborne M. J. (ref67/cit67) 1994
ref66/cit66
ref58/cit58
ref33/cit33
ref4/cit4
ref30/cit30
Pedregosa F. (ref59/cit59) 2011; 12
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref5/cit5
  doi: 10.1021/jm4004285
– start-page: 307
  volume-title: Contributions to the Theory of Games
  year: 1953
  ident: ref43/cit43
– ident: ref19/cit19
  doi: 10.1016/j.drudis.2014.02.004
– ident: ref6/cit6
  doi: 10.1021/ci400737s
– ident: ref8/cit8
  doi: 10.1038/nrd941
– ident: ref58/cit58
  doi: 10.1021/acs.jcim.7b00088
– ident: ref55/cit55
– ident: ref3/cit3
  doi: 10.1016/j.drudis.2014.10.012
– ident: ref20/cit20
  doi: 10.1007/s10822-015-9860-5
– ident: ref47/cit47
– ident: ref61/cit61
– ident: ref69/cit69
– ident: ref39/cit39
  doi: 10.1021/acs.jcim.5b00229
– ident: ref40/cit40
  doi: 10.4155/fmc.11.23
– ident: ref45/cit45
  doi: 10.1021/ci5005509
– volume-title: A Course in Game Theory
  year: 1994
  ident: ref67/cit67
– ident: ref31/cit31
  doi: 10.1021/acsomega.8b01682
– ident: ref52/cit52
  doi: 10.1021/acsomega.9b00298
– volume-title: Advances in Neural Information Processing Systems 30
  year: 2017
  ident: ref41/cit41
– ident: ref46/cit46
  doi: 10.1021/jm901137j
– ident: ref7/cit7
  doi: 10.1021/jm049228d
– start-page: 1
  volume-title: Handbook of Uncertainty Quantification
  year: 2016
  ident: ref35/cit35
– ident: ref49/cit49
  doi: 10.1021/acs.jmedchem.6b00906
– ident: ref33/cit33
  doi: 10.1021/acsomega.7b01079
– ident: ref37/cit37
  doi: 10.1080/10629360290002073
– ident: ref24/cit24
  doi: 10.1080/17460441.2016.1201262
– ident: ref62/cit62
– volume: 25
  start-page: 1097
  year: 2015
  ident: ref22/cit22
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref28/cit28
  doi: 10.1039/C8SC00148K
– ident: ref51/cit51
  doi: 10.1021/ci200528d
– ident: ref11/cit11
  doi: 10.1007/s10822-007-9162-7
– ident: ref36/cit36
  doi: 10.1021/jm00095a016
– ident: ref44/cit44
  doi: 10.1093/nar/gkr777
– ident: ref12/cit12
  doi: 10.1021/acs.jcim.8b00712
– ident: ref65/cit65
  doi: 10.1016/0005-2795(75)90109-9
– ident: ref2/cit2
  doi: 10.1021/acsomega.8b00462
– ident: ref4/cit4
  doi: 10.1016/j.drudis.2018.05.010
– start-page: 271
  volume-title: Cheminformatics in Drug Discovery
  year: 2004
  ident: ref50/cit50
– ident: ref38/cit38
  doi: 10.1002/minf.201100136
– ident: ref15/cit15
  doi: 10.1021/ci500410g
– ident: ref63/cit63
  doi: 10.1186/s13321-014-0047-1
– ident: ref29/cit29
  doi: 10.1021/acs.jcim.7b00146
– ident: ref9/cit9
  doi: 10.1021/ci0601315
– ident: ref10/cit10
  doi: 10.1007/s10822-008-9240-5
– ident: ref42/cit42
  doi: 10.1145/2939672.2939778
– ident: ref54/cit54
– ident: ref27/cit27
  doi: 10.1186/s13321-017-0232-0
– volume-title: The Nature of Statistical Learning Theory
  year: 2000
  ident: ref17/cit17
  doi: 10.1007/978-1-4757-3264-1
– ident: ref32/cit32
  doi: 10.1038/s41551-018-0304-0
– ident: ref68/cit68
  doi: 10.1007/BF01769885
– ident: ref16/cit16
  doi: 10.1023/A:1010933404324
– volume-title: The Elements of Statistical Learning
  year: 2009
  ident: ref34/cit34
  doi: 10.1007/978-0-387-84858-7
– ident: ref14/cit14
  doi: 10.1002/minf.201100059
– ident: ref30/cit30
  doi: 10.1021/acs.jcim.7b00087
– ident: ref57/cit57
  doi: 10.1016/j.neunet.2005.07.009
– ident: ref1/cit1
  doi: 10.1021/ci200409x
– ident: ref18/cit18
  doi: 10.1021/acs.jcim.5b00175
– ident: ref25/cit25
  doi: 10.1007/s11095-016-2029-7
– ident: ref48/cit48
  doi: 10.1021/acs.jcim.5b00559
– ident: ref13/cit13
  doi: 10.1021/acs.jcim.7b00274
– ident: ref23/cit23
  doi: 10.1109/MSP.2012.2205597
– volume-title: Neural Networks and Deep Learning
  year: 2015
  ident: ref21/cit21
– ident: ref26/cit26
  doi: 10.1021/ci500747n
– ident: ref64/cit64
  doi: 10.1109/ICPR.2010.764
– start-page: 144
  volume-title: Proceedings of the 5th Annual Workshop on Computational Learning Theory; Pittsburgh, Pennsylvania, 1992
  year: 1992
  ident: ref56/cit56
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref59/cit59
  publication-title: J. Mach. Learn. Res.
– ident: ref66/cit66
  doi: 10.1080/01621459.1973.10481460
– volume-title: Pattern Recognition and Machine Learning
  year: 2006
  ident: ref60/cit60
– ident: ref53/cit53
  doi: 10.1021/ci100050t
SSID ssj0003123
Score 2.7032137
Snippet In qualitative or quantitative studies of structure–activity relationships (SARs), machine learning (ML) models are trained to recognize structural patterns...
In qualitative or quantitative studies of structure-activity relationships (SARs), machine learning (ML) models are trained to recognize structural patterns...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8761
SubjectTerms Deep Learning - statistics & numerical data
Organic Chemicals - chemistry
Support Vector Machine - statistics & numerical data
Title Interpretation of Compound Activity Predictions from Complex Machine Learning Models Using Local Approximations and Shapley Values
URI http://dx.doi.org/10.1021/acs.jmedchem.9b01101
https://www.ncbi.nlm.nih.gov/pubmed/31512867
https://www.proquest.com/docview/2289573699
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swELYmeBgvgzE2Ctt0kyYkJFISO3bqx6oaQtPYKlEm3iLbcdZBaRFpJcojf_nu8qMVmxDsNbIt2T77-5y7-46xz5n1MeK-CjpOqSB2kQhM4pNAmkhY6TMbacodPvmujs_ir-fyfPlQ_NuDz6ND44r2BQUrDv1VW1vCK3ztrHKFUENUqHe6uHlFxEWjDs4R15tUuUdGIUByxUNAeoRllmhztM5-NDk7VZDJZXs2tW1396-E4zMnssFe1cQTupWlvGYv_HiTvew19d422V6_UrGeH8BgmZRVHMAe9Jf61vM37P5hoCJMcqBbheozQddV1Sigf0MeoNKogVJYyiYjfwsnZfSmh1rY9RdQNbZRAWXsAnwjaIUuCZ3f_q6yKgswOPDp0GD3Ofw0I1y4LTY4-jLoHQd1KYfAxCqcBrmNQ5FJ3RHeWclDbxOL1oNk0mluQxnmHfIQxrkwUnhrtFfKmCy32nOrtHjLVsaTsd9mEGVIQnONTE0ksca2ymgrVRabKCe5-hbbx4VO65NYpKWTnUdp-bFe_bRe_RYTzdanrpZEp8ocoyd6BYte15UkyBPtPzVWleKWkkPGjP1kVqQcX7syEUrrFntXmdtiREFUrKOSnf-Yzy5b4_Q7IMTLL3nPVqY3M_8BOdPUfiwPyh_ivhXf
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED9K99C97KP7yj5vMAqDOrMtS44eQ1jJtqQEmpW-GcmW121ZMuoEmj3uL9-dbCd0UEpfhXRIp5PupLv7HcC7wrqE9L4KerlSQZJHIjCpSwNpImGlK2ykOXd4fKyGX5PPZ_JsB2SbC0OTqIhS5Z34W3SB6AO3_eCYxXP3q6stqy169NyRKlFcsaE_ONlcwCKKRQsSHpN6bzPmrqHCeimvruqla4xNr3SO7sPpZro-1uRnd7W03fzPf0iOt17PA7jXmKHYr-XmIey4-T7sDdrqb_twMKkxrdeHON2maFWHeICTLdr1-hH8vRq2iIsS-Y7hak3Yz-vaFDi5YH-QF3HkhBbfZeYucexjOR02MK_fkGuzzSr0kQw4YkWLfYY9v_xe51hWaIjwybmh4Ws8NTPi32OYHn2cDoZBU9ghMLRby6C0SSgKqXvC5VbGobOpJVki0zLXsQ1lWPbYX5iUwkjhrNFOKWOK0moXW6XFE9idL-buGWBUkElaarLbRJpo6quMtlIViYlKBq_vwHtidNacyyrzLvc4ynxjw_2s4X4HRCsBWd4ApHOdjtkNo4LNqN81QMgN_d-2wpXRlrJ7xszdYlVlMb19ZSqU1h14WkvdhqJgw6yn0ue3WM8b2BtOx6Ns9On4ywu4G_NHQUjXYvoSdpcXK_eKrKmlfe3Pzj8FiB5B
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelg20v--g-mm7rrjAKgzqzLEuOHkPW0PWLQLNR9mIkW263pUmpE2j2uL98d7KdtoNS1lchHZJ80p18d78fYx9y62K0-yroZEoFccZFYBKXBNJwYaXLLddUO3xwqHa-xrvH8vga1RdOokRJpQ_i06k-z4saYYB_ovaflLd46s7a2pLpwofPA_RJOLE2dHtHi0tY8Eg0QOERmvimau4WKWSbsvKmbbrF4fSGp_-UfV9M2eeb_GrPprad_f4HzfFea3rGntTuKHQr_XnOltx4hT3qNSxwK2xzUGFbz7dgeFWqVW7BJgyuUK_nL9ifm-mLMCmA7hpibYJuVnFUwOCC4kJe1YEKW3yXkbuEA5_T6aCGez0B4mgbleAzGmCfDC50Cf788kdVa1mCQcFHpwaHz-GbGeEevmTD_vawtxPUBA-BiVU4DQobhyKXuiNcZmUUOptY1Cl0MTMd2VCGRYfihnEhjBTOGu2UMiYvrHaRVVq8YsvjyditMuA5uqaFRv9NJLHGvspoK1UeG14QiH2LfcSNTuvzWaY-9B7x1DfWu5_Wu99iotGCNKuB0omvY3THqGAx6rwCCrmj_0ajYCl-UgrTmLGbzMo0wjewTITSusVeV5q3kCjIQeuoZO0_1vOePRx87qf7Xw733rDHEf0vCPF2TN6y5enFzL1Dp2pq1_3x-Qv29CC7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpretation+of+Compound+Activity+Predictions+from+Complex+Machine+Learning+Models+Using+Local+Approximations+and+Shapley+Values&rft.jtitle=Journal+of+medicinal+chemistry&rft.au=Rodr%C3%ADguez-P%C3%A9rez%2C+Raquel&rft.au=Bajorath%2C+J%C3%BCrgen&rft.date=2020-08-27&rft.eissn=1520-4804&rft.volume=63&rft.issue=16&rft.spage=8761&rft_id=info:doi/10.1021%2Facs.jmedchem.9b01101&rft_id=info%3Apmid%2F31512867&rft.externalDocID=31512867
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2623&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2623&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2623&client=summon