Orbital mechanics for engineering students
Orbital Mechanics for Engineering Students, Second Edition, provides an introduction to the basic concepts of space mechanics. These include vector kinematics in three dimensions; Newton's laws of motion and gravitation; relative motion; the vector-based solution of the classical two-body probl...
Saved in:
| Main Author | |
|---|---|
| Format | eBook Book |
| Language | English |
| Published |
San Diego
Butterworth-Heinemann
2010
Elsevier Science & Technology |
| Edition | 2 |
| Series | Elsevier Aerospace Engineering Series |
| Subjects | |
| Online Access | Get full text |
| ISBN | 9781856179546 1856179540 9780123747785 0123747783 9780080977478 0080977472 |
| DOI | 10.1016/C2011-0-69685-1 |
Cover
Table of Contents:
- 9.11 Quaternions -- Problems -- List of Key Terms -- CHAPTER 10 Satellite attitude dynamics -- 10.1 Introduction -- 10.2 Torque-free motion -- 10.3 Stability of torque-free motion -- 10.4 Dual-spin spacecraft -- 10.5 Nutation damper -- 10.6 Coning maneuver -- 10.7 Attitude control thrusters -- 10.8 Yo-yo despin mechanism -- 10.8.1 Radial release -- 10.9 Gyroscopic attitude control -- 10.10 Gravity gradient stabilization -- Problems -- List of Key Terms -- CHAPTER 11 Rocket vehicle dynamics -- 11.1 Introduction -- 11.2 Equations of motion -- 11.3 The thrust equation -- 11.4 Rocket performance -- 11.5 Restricted staging in field-free space -- 11.6 Optimal staging -- 11.6.1 Lagrange multiplier -- Problems -- List of Key Terms -- Appendix A Physical data -- Appendix B A road map -- Appendix C Numerical intergration of the n-body equations of motion -- Appendix D MATLAB® algorithms -- Appendix E Gravitational potential energy of a sphere -- References -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- Y -- Z
- 5.2 Gibbs method of orbit determination from three position vectors -- 5.3 Lambert's problem -- 5.4 Sidereal time -- 5.5 Topocentric coordinate system -- 5.6 Topocentric equatorial coordinate system -- 5.7 Topocentric horizon coordinate system -- 5.8 Orbit determination from angle and range measurements -- 5.9 Angles only preliminary orbit determination -- 5.10 Gauss method of preliminary orbit determination -- Problems -- List of Key Terms -- CHAPTER 6 Orbital maneuvers -- 6.1 Introduction -- 6.2 Impulsive maneuvers -- 6.3 Hohmann transfer -- 6.4 Bi-elliptic Hohmann transfer -- 6.5 Phasing maneuvers -- 6.6 Non-Hohmann transfers with a common apse line -- 6.7 Apse line rotation -- 6.8 Chase maneuvers -- 6.9 Plane change maneuvers -- 6.10 Nonimpulsive orbital maneuvers -- Problems -- List of Key Terms -- CHAPTER 7 Relative motion and rendezvous -- 7.1 Introduction -- 7.2 Relative motion in orbit -- 7.3 Linearization of the equations of relative motion in orbit -- 7.4 Clohessy-Wiltshire equations -- 7.5 Two-impulse rendezvous maneuvers -- 7.6 Relative motion in close-proximity circular orbits -- Problems -- List of Key Terms -- CHAPTER 8 Interplanetary trajectories -- 8.1 Introduction -- 8.2 Interplanetary Hohmann transfers -- 8.3 Rendezvous Opportunities -- 8.4 Sphere of influence -- 8.5 Method of patched conics -- 8.6 Planetary departure -- 8.7 Sensitivity analysis -- 8.8 Planetary rendezvous -- 8.9 Planetary flyby -- 8.10 Planetary ephemeris -- 8.11 Non-Hohmann interplanetary trajectories -- Problems -- List of Key Terms -- CHAPTER 9 Rigid-body dynamics -- 9.1 Introduction -- 9.2 Kinematics -- 9.3 Equations of translational motion -- 9.4 Equations of rotational motion -- 9.5 Moments of inertia -- 9.5.1 Parallel axis theorem -- 9.6 Euler's equations -- 9.7 Kinetic energy -- 9.8 The spinning top -- 9.9 Euler angles -- 9.10 Yaw, pitch and roll angles
- Front Cover -- Orbital Mechanics for Engineering Students -- Copyright Page -- Contents -- Preface -- Acknowledgments -- CHAPTER 1 Dynamics of point masses -- 1.1 Introduction -- 1.2 Vectors -- 1.3 Kinematics -- 1.4 Mass, force and Newton's law of gravitation -- 1.5 Newton's law of motion -- 1.6 Time derivatives of moving vectors -- 1.7 Relative motion -- 1.8 Numerical integration -- 1.8.1 Runge-Kutta methods -- 1.8.2 Heun's Predictor-Corrector method -- 1.8.3 Runge-Kutta with variable step size -- Problems -- List of Key Terms -- CHAPTER 2 The two-body problem -- 2.1 Introduction -- 2.2 Equations of motion in an inertial frame -- 2.3 Equations of relative motion -- 2.4 Angular momentum and the orbit formulas -- 2.5 The energy law -- 2.6 Circular orbits (e = 0) -- 2.7 Elliptical orbits (0 < -- e < -- 1) -- 2.8 Parabolic trajectories (e = 1) -- 2.9 Hyperbolic trajectories (e > -- 1) -- 2.10 Perifocal frame -- 2.11 The lagrange coefficients -- 2.12 Restricted three-body problem -- 2.12.1 Lagrange points -- 2.12.2 Jacobi constant -- Problems -- List of Key Terms -- CHAPTER 3 Orbital position as a function of time -- 3.1 Introduction -- 3.2 Time since periapsis -- 3.3 Circular orbits (e = 0) -- 3.4 Elliptical orbits (e < -- 1) -- 3.5 Parabolic trajectories (e = 1) -- 3.6 Hyperbolic trajectories (e < -- 1) -- 3.7 Universal variables -- Problems -- List of Key Terms -- CHAPTER 4 Orbits in three dimensions -- 4.1 Introduction -- 4.2 Geocentric right ascension-declination frame -- 4.3 State vector and the geocentric equatorial frame -- 4.4 Orbital elements and the state vector -- 4.5 Coordinate transformation -- 4.6 Transformation between geocentric equatorial and perifocal frames -- 4.7 Effects of the Earth's oblateness -- 4.8 Ground tracks -- Problems -- List of Key Terms -- CHAPTER 5 Preliminary orbit determination -- 5.1 Introduction
- Front Cover -- Orbital Mechanics for Engineering Students -- Copyright -- Dedication -- Contents -- Preface -- Chapter 1 - Dynamics of Point Masses -- 1.1 Introduction -- 1.2 Vectors -- 1.3 Kinematics -- 1.4 Mass, force, and Newton's law of gravitation -- 1.5 Newton's law of motion -- 1.6 Time derivatives of moving vectors -- 1.7 Relative motion -- 1.8 Numerical integration -- Problems -- Chapter 2 - The Two-Body Problem -- 2.1 Introduction -- 2.2 Equations of motion in an inertial frame -- 2.3 Equations of relative motion -- 2.4 Angular momentum and the orbit formulas -- 2.5 The energy law -- 2.6 Circular orbits (e=0) -- 2.7 Elliptical orbits (0< -- e< -- 1) -- 2.8 Parabolic trajectories (e=1) -- 2.9 Hyperbolic trajectories (e 1) -- 2.10 Perifocal frame -- 2.11 The Lagrange coefficients -- 2.12 Restricted three-body problem -- Problems -- Chapter 3 - Orbital Position as a Function of Time -- 3.1 Introduction -- 3.2 Time since periapsis -- 3.3 Circular orbits (e=0) -- 3.4 Elliptical orbits (e< -- 1) -- 3.5 Parabolic trajectories (e=1) -- 3.6 Hyperbolic trajectories (e 1) -- 3.7 Universal variables -- Problems -- Chapter 4 - Orbits in Three Dimensions -- 4.1 Introduction -- 4.2 Geocentric right ascension-declination frame -- 4.3 State vector and the geocentric equatorial frame -- 4.4 Orbital elements and the state vector -- 4.5 Coordinate transformation -- 4.6 Transformation between geocentric equatorial and perifocal frames -- 4.7 Effects of the earth's oblateness -- 4.8 Ground tracks -- Chapter 5 - Preliminary Orbit Determination -- 5.1 Introduction -- 5.2 Gibbs method of orbit determination from three position vectors -- 5.3 Lambert's problem -- 5.4 Sidereal time -- 5.5 Topocentric coordinate system -- 5.6 Topocentric equatorial coordinate system -- 5.7 Topocentric horizon coordinate system
- 10.10 Gravity-gradient stabilization -- Problems -- Chapter 11 - Rocket Vehicle Dynamics -- 11.1 Introduction -- 11.2 Equations of motion -- 11.3 The thrust equation -- 11.4 Rocket performance -- 11.5 Restricted staging in field-free space -- 11.6 Optimal staging -- Chapter 12 - Introduction to Orbital Perturbations -- 12.1 Introduction -- 12.2 Cowell's method -- 12.3 Encke's method -- 12.4 Atmospheric drag -- 12.5 Gravitational perturbations -- 12.6 Variation of parameters -- 12.7 Gauss variational equations -- 12.8 Method of averaging -- 12.9 Solar radiation pressure -- 12.10 Lunar gravity -- 12.11 Solar gravity -- Appendix A - Physical Data -- Appendix B - A Road Map -- Appendix C - Numerical Integration of the n-Body Equations of Motion -- Appendix E - Gravitational Potential of a Sphere -- Appendix F - Computing the Difference Between Nearly Equal Numbers -- References and Further Reading -- Index -- Appendix D - MATLAB Scripts
- 5.8 Orbit determination from angle and range measurements -- 5.9 Angles-only preliminary orbit determination -- 5.10 Gauss method of preliminary orbit determination -- Problems -- Chapter 6 - Orbital Maneuvers -- 6.1 Introduction -- 6.2 Impulsive maneuvers -- 6.3 Hohmann transfer -- 6.4 Bi-elliptic Hohmann transfer -- 6.5 Phasing maneuvers -- 6.6 Non-Hohmann transfers with a common apse line -- 6.7 Apse line rotation -- 6.8 Chase maneuvers -- 6.9 Plane change maneuvers -- 6.10 Nonimpulsive orbital maneuvers -- Problems -- Chapter 7 - Relative Motion and Rendezvous -- 7.1 Introduction -- 7.2 Relative motion in orbit -- 7.3 Linearization of the equations of relative motion in orbit -- 7.4 Clohessy-Wiltshire equations -- 7.5 Two-impulse rendezvous maneuvers -- 7.6 Relative motion in close-proximity circular orbits -- Problems -- Chapter 8 - Interplanetary Trajectories -- 8.1 Introduction -- 8.2 Interplanetary Hohmann transfers -- 8.3 Rendezvous opportunities -- 8.4 Sphere of influence -- 8.5 Method of patched conics -- 8.6 Planetary departure -- 8.7 Sensitivity analysis -- 8.8 Planetary rendezvous -- 8.9 Planetary flyby -- 8.10 Planetary ephemeris -- 8.11 Non-Hohmann interplanetary trajectories -- PROBLEMS -- Chapter 9 - Rigid Body Dynamics -- 9.1 Introduction -- 9.2 Kinematics -- 9.3 Equations of translational motion -- 9.4 Equations of rotational motion -- 9.5 Moments of inertia -- 9.6 Euler's equations -- 9.7 Kinetic energy -- 9.8 The spinning top -- 9.9 Euler angles -- 9.10 Yaw, pitch, and roll angles -- 9.11 Quaternions -- Problems -- Chapter 10 - Satellite Attitude Dynamics -- 10.1 Introduction -- 10.2 Torque-free motion -- 10.3 Stability of torque-free motion -- 10.4 Dual-spin spacecraft -- 10.5 Nutation damper -- 10.6 Coning maneuver -- 10.7 Attitude control thrusters -- 10.8 Yo-yo despin mechanism -- 10.9 Gyroscopic attitude control