Orbital mechanics for engineering students
Orbital Mechanics for Engineering Students, Second Edition, provides an introduction to the basic concepts of space mechanics. These include vector kinematics in three dimensions; Newton's laws of motion and gravitation; relative motion; the vector-based solution of the classical two-body probl...
Saved in:
| Main Author | |
|---|---|
| Format | eBook Book |
| Language | English |
| Published |
San Diego
Butterworth-Heinemann
2010
Elsevier Science & Technology |
| Edition | 2 |
| Series | Elsevier Aerospace Engineering Series |
| Subjects | |
| Online Access | Get full text |
| ISBN | 9781856179546 1856179540 9780123747785 0123747783 9780080977478 0080977472 |
| DOI | 10.1016/C2011-0-69685-1 |
Cover
| Abstract | Orbital Mechanics for Engineering Students, Second Edition, provides an introduction to the basic concepts of space mechanics. These include vector kinematics in three dimensions; Newton's laws of motion and gravitation; relative motion; the vector-based solution of the classical two-body problem; derivation of Kepler's equations; orbits in three dimensions; preliminary orbit determination; and orbital maneuvers. The book also covers relative motion and the two-impulse rendezvous problem; interplanetary mission design using patched conics; rigid-body dynamics used to characterize the attitude of a space vehicle; satellite attitude dynamics; and the characteristics and design of multi-stage launch vehicles. Each chapter begins with an outline of key concepts and concludes with problems that are based on the material covered. This text is written for undergraduates who are studying orbital mechanics for the first time and have completed courses in physics, dynamics, and mathematics, including differential equations and applied linear algebra. Graduate students, researchers, and experienced practitioners will also find useful review materials in the book.* NEW: Reorganized and improved discusions of coordinate systems, new discussion on perturbations and quarternions * NEW: Increased coverage of attitude dynamics, including new Matlab algorithms and examples in chapter 10* New examples and homework problems * Highly illustrated and fully supported with downloadable MATLAB algorithms for project and practical work; fully worked examples throughout; extensive homework exercises; Instructor's Manual and lecture slides. |
|---|---|
| AbstractList | Written by Howard Curtis, Professor of Aerospace Engineering at Embry-Riddle University, Orbital Mechanics for Engineering Students is a crucial text for students of aerospace engineering. Now in its 3e, the book has been brought up-to-date with new topics, key terms, homework exercises, and fully worked examples. Highly illustrated and fully supported with downloadable MATLAB algorithms for project and practical work, this book provides all the tools needed to fully understand the subject.
New chapter on orbital perturbationsNew and revised examples and homework problemsIncreased coverage of attitude dynamics, including new MATLAB algorithms and examples Orbital Mechanics for Engineering Students, Second Edition, provides an introduction to the basic concepts of space mechanics. These include vector kinematics in three dimensions; Newton's laws of motion and gravitation; relative motion; the vector-based solution of the classical two-body problem; derivation of Kepler's equations; orbits in three dimensions; preliminary orbit determination; and orbital maneuvers. The book also covers relative motion and the two-impulse rendezvous problem; interplanetary mission design using patched conics; rigid-body dynamics used to characterize the attitude of a space vehicle; satellite attitude dynamics; and the characteristics and design of multi-stage launch vehicles. Each chapter begins with an outline of key concepts and concludes with problems that are based on the material covered. This text is written for undergraduates who are studying orbital mechanics for the first time and have completed courses in physics, dynamics, and mathematics, including differential equations and applied linear algebra. Graduate students, researchers, and experienced practitioners will also find useful review materials in the book. Orbital Mechanics for Engineering Students, Second Edition, provides an introduction to the basic concepts of space mechanics. These include vector kinematics in three dimensions; Newton's laws of motion and gravitation; relative motion; the vector-based solution of the classical two-body problem; derivation of Kepler's equations; orbits in three dimensions; preliminary orbit determination; and orbital maneuvers. The book also covers relative motion and the two-impulse rendezvous problem; interplanetary mission design using patched conics; rigid-body dynamics used to characterize the attitude of a space vehicle; satellite attitude dynamics; and the characteristics and design of multi-stage launch vehicles. Each chapter begins with an outline of key concepts and concludes with problems that are based on the material covered. This text is written for undergraduates who are studying orbital mechanics for the first time and have completed courses in physics, dynamics, and mathematics, including differential equations and applied linear algebra. Graduate students, researchers, and experienced practitioners will also find useful review materials in the book.* NEW: Reorganized and improved discusions of coordinate systems, new discussion on perturbations and quarternions * NEW: Increased coverage of attitude dynamics, including new Matlab algorithms and examples in chapter 10* New examples and homework problems * Highly illustrated and fully supported with downloadable MATLAB algorithms for project and practical work; fully worked examples throughout; extensive homework exercises; Instructor's Manual and lecture slides. |
| Author | Curtis, Howard D. |
| Author_xml | – sequence: 1 fullname: Curtis, Howard D. |
| BackLink | https://cir.nii.ac.jp/crid/1130000794199081216$$DView record in CiNii |
| BookMark | eNqN0D1PwzAQBmAjKKItnVkzIBBIAZ_jzxGi8iFV6oJYI8ex29DgQJzC38dp2cHDebhHp3tvgo586y1CZ4BvAAO_zQkGSHHKFZcshQM0wVhiKYWk8hDNlJAgGQehGOUjNIkaE8kzrI7RWGDMpWAAJ2gWwhuOjxIam2N0vezKutdN8m7NWvvahMS1XWL9qvbWdrVfJaHfVtb34RSNnG6Cnf3-U_T6MH_Jn9LF8vE5v1ukmnJMs1SCcqWqsoppphwxlleOa66zCrA2vGKGWWOwtLIE4og2ysXdpNWVdSaLboqu9oN12NjvsG6bPhRfjS3bdhOKmHRIroSgkv3P7q402Mu9_ejaz60NfbFjJobrdFPM73MmGGWERnnxl-Sc0wGe76Gv68LUQwXIhgMLRUEpLIEAz34ASRp__A |
| ContentType | eBook Book |
| DBID | RYH |
| DEWEY | 629.41129999999998 |
| DOI | 10.1016/C2011-0-69685-1 |
| DatabaseName | CiNii Complete |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 0080887848 9780080887845 9780080977485 0080977480 |
| Edition | 2 3 2nd Edition Third edition. |
| ExternalDocumentID | 9780080977485 9780080887845 EBC5754524 EBC566644 BB04765995 |
| GroupedDBID | -KG .82 089 20A 38. A4I AAAAS AABBV AAFUF AAJKE AALRI AAXUO ABGWT ABMAC ABQQC ACXMD AGAMA AJQDY ALMA_UNASSIGNED_HOLDINGS AZZ BBABE BGHEG CZZ HGY JJU RYH SRW WZG .5W .69 AAGAK AIJWZ ASVZH BBQZY LLQQT |
| ID | FETCH-LOGICAL-a46043-819fb9d3d5a59f2ce6df6a6a3d10ac6d5c5ecc08e8b12f2ac9f7518eadefc36a3 |
| ISBN | 9781856179546 1856179540 9780123747785 0123747783 9780080977478 0080977472 |
| IngestDate | Fri Aug 29 02:40:35 EDT 2025 Sun Oct 05 03:17:11 EDT 2025 Fri May 30 22:39:12 EDT 2025 Fri May 30 23:07:33 EDT 2025 Thu Jun 26 23:54:17 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| LCCN | 2010286309 |
| LCCallNum_Ident | TL1050.C87 2010 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a46043-819fb9d3d5a59f2ce6df6a6a3d10ac6d5c5ecc08e8b12f2ac9f7518eadefc36a3 |
| Notes | Previous ed.: 2005 Includes bibliographical references (p. [707]-708) and index Student registration card tipped in |
| OCLC | 700687511 1102473265 |
| PQID | EBC566644 |
| PageCount | 740 |
| ParticipantIDs | askewsholts_vlebooks_9780080977485 askewsholts_vlebooks_9780080887845 proquest_ebookcentral_EBC5754524 proquest_ebookcentral_EBC566644 nii_cinii_1130000794199081216 |
| PublicationCentury | 2000 |
| PublicationDate | c2010 2009 2013 2009-10-26 2013-10-01 |
| PublicationDateYYYYMMDD | 2010-01-01 2009-01-01 2013-01-01 2009-10-26 2013-10-01 |
| PublicationDate_xml | – year: 2010 text: c2010 |
| PublicationDecade | 2010 2000 |
| PublicationPlace | San Diego |
| PublicationPlace_xml | – name: Amsterdam ; Tokyo – name: San Diego |
| PublicationSeriesTitle | Elsevier Aerospace Engineering Series |
| PublicationYear | 2010 2009 2013 |
| Publisher | Butterworth-Heinemann Elsevier Science & Technology |
| Publisher_xml | – name: Butterworth-Heinemann – name: Elsevier Science & Technology |
| SSID | ssj0000424630 ssib010055923 ssj0001141555 |
| Score | 2.379274 |
| Snippet | Orbital Mechanics for Engineering Students, Second Edition, provides an introduction to the basic concepts of space mechanics. These include vector kinematics... Written by Howard Curtis, Professor of Aerospace Engineering at Embry-Riddle University, Orbital Mechanics for Engineering Students is a crucial text for... |
| SourceID | askewsholts proquest nii |
| SourceType | Aggregation Database Publisher |
| SubjectTerms | Orbital mechanics |
| TableOfContents | 9.11 Quaternions -- Problems -- List of Key Terms -- CHAPTER 10 Satellite attitude dynamics -- 10.1 Introduction -- 10.2 Torque-free motion -- 10.3 Stability of torque-free motion -- 10.4 Dual-spin spacecraft -- 10.5 Nutation damper -- 10.6 Coning maneuver -- 10.7 Attitude control thrusters -- 10.8 Yo-yo despin mechanism -- 10.8.1 Radial release -- 10.9 Gyroscopic attitude control -- 10.10 Gravity gradient stabilization -- Problems -- List of Key Terms -- CHAPTER 11 Rocket vehicle dynamics -- 11.1 Introduction -- 11.2 Equations of motion -- 11.3 The thrust equation -- 11.4 Rocket performance -- 11.5 Restricted staging in field-free space -- 11.6 Optimal staging -- 11.6.1 Lagrange multiplier -- Problems -- List of Key Terms -- Appendix A Physical data -- Appendix B A road map -- Appendix C Numerical intergration of the n-body equations of motion -- Appendix D MATLAB® algorithms -- Appendix E Gravitational potential energy of a sphere -- References -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- Y -- Z 5.2 Gibbs method of orbit determination from three position vectors -- 5.3 Lambert's problem -- 5.4 Sidereal time -- 5.5 Topocentric coordinate system -- 5.6 Topocentric equatorial coordinate system -- 5.7 Topocentric horizon coordinate system -- 5.8 Orbit determination from angle and range measurements -- 5.9 Angles only preliminary orbit determination -- 5.10 Gauss method of preliminary orbit determination -- Problems -- List of Key Terms -- CHAPTER 6 Orbital maneuvers -- 6.1 Introduction -- 6.2 Impulsive maneuvers -- 6.3 Hohmann transfer -- 6.4 Bi-elliptic Hohmann transfer -- 6.5 Phasing maneuvers -- 6.6 Non-Hohmann transfers with a common apse line -- 6.7 Apse line rotation -- 6.8 Chase maneuvers -- 6.9 Plane change maneuvers -- 6.10 Nonimpulsive orbital maneuvers -- Problems -- List of Key Terms -- CHAPTER 7 Relative motion and rendezvous -- 7.1 Introduction -- 7.2 Relative motion in orbit -- 7.3 Linearization of the equations of relative motion in orbit -- 7.4 Clohessy-Wiltshire equations -- 7.5 Two-impulse rendezvous maneuvers -- 7.6 Relative motion in close-proximity circular orbits -- Problems -- List of Key Terms -- CHAPTER 8 Interplanetary trajectories -- 8.1 Introduction -- 8.2 Interplanetary Hohmann transfers -- 8.3 Rendezvous Opportunities -- 8.4 Sphere of influence -- 8.5 Method of patched conics -- 8.6 Planetary departure -- 8.7 Sensitivity analysis -- 8.8 Planetary rendezvous -- 8.9 Planetary flyby -- 8.10 Planetary ephemeris -- 8.11 Non-Hohmann interplanetary trajectories -- Problems -- List of Key Terms -- CHAPTER 9 Rigid-body dynamics -- 9.1 Introduction -- 9.2 Kinematics -- 9.3 Equations of translational motion -- 9.4 Equations of rotational motion -- 9.5 Moments of inertia -- 9.5.1 Parallel axis theorem -- 9.6 Euler's equations -- 9.7 Kinetic energy -- 9.8 The spinning top -- 9.9 Euler angles -- 9.10 Yaw, pitch and roll angles Front Cover -- Orbital Mechanics for Engineering Students -- Copyright Page -- Contents -- Preface -- Acknowledgments -- CHAPTER 1 Dynamics of point masses -- 1.1 Introduction -- 1.2 Vectors -- 1.3 Kinematics -- 1.4 Mass, force and Newton's law of gravitation -- 1.5 Newton's law of motion -- 1.6 Time derivatives of moving vectors -- 1.7 Relative motion -- 1.8 Numerical integration -- 1.8.1 Runge-Kutta methods -- 1.8.2 Heun's Predictor-Corrector method -- 1.8.3 Runge-Kutta with variable step size -- Problems -- List of Key Terms -- CHAPTER 2 The two-body problem -- 2.1 Introduction -- 2.2 Equations of motion in an inertial frame -- 2.3 Equations of relative motion -- 2.4 Angular momentum and the orbit formulas -- 2.5 The energy law -- 2.6 Circular orbits (e = 0) -- 2.7 Elliptical orbits (0 < -- e < -- 1) -- 2.8 Parabolic trajectories (e = 1) -- 2.9 Hyperbolic trajectories (e > -- 1) -- 2.10 Perifocal frame -- 2.11 The lagrange coefficients -- 2.12 Restricted three-body problem -- 2.12.1 Lagrange points -- 2.12.2 Jacobi constant -- Problems -- List of Key Terms -- CHAPTER 3 Orbital position as a function of time -- 3.1 Introduction -- 3.2 Time since periapsis -- 3.3 Circular orbits (e = 0) -- 3.4 Elliptical orbits (e < -- 1) -- 3.5 Parabolic trajectories (e = 1) -- 3.6 Hyperbolic trajectories (e < -- 1) -- 3.7 Universal variables -- Problems -- List of Key Terms -- CHAPTER 4 Orbits in three dimensions -- 4.1 Introduction -- 4.2 Geocentric right ascension-declination frame -- 4.3 State vector and the geocentric equatorial frame -- 4.4 Orbital elements and the state vector -- 4.5 Coordinate transformation -- 4.6 Transformation between geocentric equatorial and perifocal frames -- 4.7 Effects of the Earth's oblateness -- 4.8 Ground tracks -- Problems -- List of Key Terms -- CHAPTER 5 Preliminary orbit determination -- 5.1 Introduction Front Cover -- Orbital Mechanics for Engineering Students -- Copyright -- Dedication -- Contents -- Preface -- Chapter 1 - Dynamics of Point Masses -- 1.1 Introduction -- 1.2 Vectors -- 1.3 Kinematics -- 1.4 Mass, force, and Newton's law of gravitation -- 1.5 Newton's law of motion -- 1.6 Time derivatives of moving vectors -- 1.7 Relative motion -- 1.8 Numerical integration -- Problems -- Chapter 2 - The Two-Body Problem -- 2.1 Introduction -- 2.2 Equations of motion in an inertial frame -- 2.3 Equations of relative motion -- 2.4 Angular momentum and the orbit formulas -- 2.5 The energy law -- 2.6 Circular orbits (e=0) -- 2.7 Elliptical orbits (0< -- e< -- 1) -- 2.8 Parabolic trajectories (e=1) -- 2.9 Hyperbolic trajectories (e 1) -- 2.10 Perifocal frame -- 2.11 The Lagrange coefficients -- 2.12 Restricted three-body problem -- Problems -- Chapter 3 - Orbital Position as a Function of Time -- 3.1 Introduction -- 3.2 Time since periapsis -- 3.3 Circular orbits (e=0) -- 3.4 Elliptical orbits (e< -- 1) -- 3.5 Parabolic trajectories (e=1) -- 3.6 Hyperbolic trajectories (e 1) -- 3.7 Universal variables -- Problems -- Chapter 4 - Orbits in Three Dimensions -- 4.1 Introduction -- 4.2 Geocentric right ascension-declination frame -- 4.3 State vector and the geocentric equatorial frame -- 4.4 Orbital elements and the state vector -- 4.5 Coordinate transformation -- 4.6 Transformation between geocentric equatorial and perifocal frames -- 4.7 Effects of the earth's oblateness -- 4.8 Ground tracks -- Chapter 5 - Preliminary Orbit Determination -- 5.1 Introduction -- 5.2 Gibbs method of orbit determination from three position vectors -- 5.3 Lambert's problem -- 5.4 Sidereal time -- 5.5 Topocentric coordinate system -- 5.6 Topocentric equatorial coordinate system -- 5.7 Topocentric horizon coordinate system 10.10 Gravity-gradient stabilization -- Problems -- Chapter 11 - Rocket Vehicle Dynamics -- 11.1 Introduction -- 11.2 Equations of motion -- 11.3 The thrust equation -- 11.4 Rocket performance -- 11.5 Restricted staging in field-free space -- 11.6 Optimal staging -- Chapter 12 - Introduction to Orbital Perturbations -- 12.1 Introduction -- 12.2 Cowell's method -- 12.3 Encke's method -- 12.4 Atmospheric drag -- 12.5 Gravitational perturbations -- 12.6 Variation of parameters -- 12.7 Gauss variational equations -- 12.8 Method of averaging -- 12.9 Solar radiation pressure -- 12.10 Lunar gravity -- 12.11 Solar gravity -- Appendix A - Physical Data -- Appendix B - A Road Map -- Appendix C - Numerical Integration of the n-Body Equations of Motion -- Appendix E - Gravitational Potential of a Sphere -- Appendix F - Computing the Difference Between Nearly Equal Numbers -- References and Further Reading -- Index -- Appendix D - MATLAB Scripts 5.8 Orbit determination from angle and range measurements -- 5.9 Angles-only preliminary orbit determination -- 5.10 Gauss method of preliminary orbit determination -- Problems -- Chapter 6 - Orbital Maneuvers -- 6.1 Introduction -- 6.2 Impulsive maneuvers -- 6.3 Hohmann transfer -- 6.4 Bi-elliptic Hohmann transfer -- 6.5 Phasing maneuvers -- 6.6 Non-Hohmann transfers with a common apse line -- 6.7 Apse line rotation -- 6.8 Chase maneuvers -- 6.9 Plane change maneuvers -- 6.10 Nonimpulsive orbital maneuvers -- Problems -- Chapter 7 - Relative Motion and Rendezvous -- 7.1 Introduction -- 7.2 Relative motion in orbit -- 7.3 Linearization of the equations of relative motion in orbit -- 7.4 Clohessy-Wiltshire equations -- 7.5 Two-impulse rendezvous maneuvers -- 7.6 Relative motion in close-proximity circular orbits -- Problems -- Chapter 8 - Interplanetary Trajectories -- 8.1 Introduction -- 8.2 Interplanetary Hohmann transfers -- 8.3 Rendezvous opportunities -- 8.4 Sphere of influence -- 8.5 Method of patched conics -- 8.6 Planetary departure -- 8.7 Sensitivity analysis -- 8.8 Planetary rendezvous -- 8.9 Planetary flyby -- 8.10 Planetary ephemeris -- 8.11 Non-Hohmann interplanetary trajectories -- PROBLEMS -- Chapter 9 - Rigid Body Dynamics -- 9.1 Introduction -- 9.2 Kinematics -- 9.3 Equations of translational motion -- 9.4 Equations of rotational motion -- 9.5 Moments of inertia -- 9.6 Euler's equations -- 9.7 Kinetic energy -- 9.8 The spinning top -- 9.9 Euler angles -- 9.10 Yaw, pitch, and roll angles -- 9.11 Quaternions -- Problems -- Chapter 10 - Satellite Attitude Dynamics -- 10.1 Introduction -- 10.2 Torque-free motion -- 10.3 Stability of torque-free motion -- 10.4 Dual-spin spacecraft -- 10.5 Nutation damper -- 10.6 Coning maneuver -- 10.7 Attitude control thrusters -- 10.8 Yo-yo despin mechanism -- 10.9 Gyroscopic attitude control |
| Title | Orbital mechanics for engineering students |
| URI | https://cir.nii.ac.jp/crid/1130000794199081216 https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=566644 https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=5754524 https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9780080887845 https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9780080977485&uid=none |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbYPbGnFqi6BUqEOIFM48RxkusujxUSnGi1PUV-SquWVOoGDv31nXEeG3aLULlYieXYyozl-WzPfEPICVeOMetSikyblEeGUyVNTmOpQ5ulzjqftO_2Tsy-8pt5Ml_lNfDRJZU613_-GVfyFq1CHegVo2T_Q7Ndp1ABz6BfKEHDUK6B3-61avKsKUz2cfZgMXAXiZY9c_eKW9DTxrY0TbULNKZd9obGO8qeXZz3N_zeb6y_4a8TWHsHQjqz0O2DLMtnu0IwwYBL8qQ-29tYI-vt-rQ-HKVIjpNQtjIHnZPeZBLyVCAh2YAM0tRnp7_-3h1g4Z2piEMflt-M13JodeO3XEpMfFkbb0RGcvkD1nFY46slGPZysdgwh97G378jQ4z7eE-2bLlDRj2exl1y2sg76OQdgLyDnryDVt575NvV5f10RpskE1Ryga4HAImcyk1sEpnkLtJWGCekkLFhodTCJDqBaR5mNlMscpHUucOrKnQ0dzqGdh_IsPxV2o8kyBRnygjHhbRcO5FDR5HOnIoiq8Ncjslx76eLp5_-QnxZIAsUIHdY7zOevNII8XoGjQ5BYIVeYMnwShKwXs4ZYAtAbEyMyVErysJ_37j6FpeTKQB4AMFjErzcIsXM8_zTK4Psk-3V_Dwgw-r3oz0EiFapz36q_AX_izJy |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Orbital+mechanics+for+engineering+students&rft.au=Curtis%2C+Howard+D.&rft.date=2010-01-01&rft.pub=Butterworth-Heinemann&rft.isbn=9781856179546&rft_id=info:doi/10.1016%2FC2011-0-69685-1&rft.externalDocID=BB04765995 |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97800808%2F9780080887845.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97800809%2F9780080977485.jpg |