Orbital mechanics for engineering students

Orbital Mechanics for Engineering Students, Second Edition, provides an introduction to the basic concepts of space mechanics. These include vector kinematics in three dimensions; Newton's laws of motion and gravitation; relative motion; the vector-based solution of the classical two-body probl...

Full description

Saved in:
Bibliographic Details
Main Author Curtis, Howard D.
Format eBook Book
LanguageEnglish
Published San Diego Butterworth-Heinemann 2010
Elsevier Science & Technology
Edition2
SeriesElsevier Aerospace Engineering Series
Subjects
Online AccessGet full text
ISBN9781856179546
1856179540
9780123747785
0123747783
9780080977478
0080977472
DOI10.1016/C2011-0-69685-1

Cover

Abstract Orbital Mechanics for Engineering Students, Second Edition, provides an introduction to the basic concepts of space mechanics. These include vector kinematics in three dimensions; Newton's laws of motion and gravitation; relative motion; the vector-based solution of the classical two-body problem; derivation of Kepler's equations; orbits in three dimensions; preliminary orbit determination; and orbital maneuvers. The book also covers relative motion and the two-impulse rendezvous problem; interplanetary mission design using patched conics; rigid-body dynamics used to characterize the attitude of a space vehicle; satellite attitude dynamics; and the characteristics and design of multi-stage launch vehicles. Each chapter begins with an outline of key concepts and concludes with problems that are based on the material covered. This text is written for undergraduates who are studying orbital mechanics for the first time and have completed courses in physics, dynamics, and mathematics, including differential equations and applied linear algebra. Graduate students, researchers, and experienced practitioners will also find useful review materials in the book.* NEW: Reorganized and improved discusions of coordinate systems, new discussion on perturbations and quarternions * NEW: Increased coverage of attitude dynamics, including new Matlab algorithms and examples in chapter 10* New examples and homework problems * Highly illustrated and fully supported with downloadable MATLAB algorithms for project and practical work; fully worked examples throughout; extensive homework exercises; Instructor's Manual and lecture slides.
AbstractList Written by Howard Curtis, Professor of Aerospace Engineering at Embry-Riddle University, Orbital Mechanics for Engineering Students is a crucial text for students of aerospace engineering. Now in its 3e, the book has been brought up-to-date with new topics, key terms, homework exercises, and fully worked examples. Highly illustrated and fully supported with downloadable MATLAB algorithms for project and practical work, this book provides all the tools needed to fully understand the subject. New chapter on orbital perturbationsNew and revised examples and homework problemsIncreased coverage of attitude dynamics, including new MATLAB algorithms and examples
Orbital Mechanics for Engineering Students, Second Edition, provides an introduction to the basic concepts of space mechanics. These include vector kinematics in three dimensions; Newton's laws of motion and gravitation; relative motion; the vector-based solution of the classical two-body problem; derivation of Kepler's equations; orbits in three dimensions; preliminary orbit determination; and orbital maneuvers. The book also covers relative motion and the two-impulse rendezvous problem; interplanetary mission design using patched conics; rigid-body dynamics used to characterize the attitude of a space vehicle; satellite attitude dynamics; and the characteristics and design of multi-stage launch vehicles. Each chapter begins with an outline of key concepts and concludes with problems that are based on the material covered. This text is written for undergraduates who are studying orbital mechanics for the first time and have completed courses in physics, dynamics, and mathematics, including differential equations and applied linear algebra. Graduate students, researchers, and experienced practitioners will also find useful review materials in the book.
Orbital Mechanics for Engineering Students, Second Edition, provides an introduction to the basic concepts of space mechanics. These include vector kinematics in three dimensions; Newton's laws of motion and gravitation; relative motion; the vector-based solution of the classical two-body problem; derivation of Kepler's equations; orbits in three dimensions; preliminary orbit determination; and orbital maneuvers. The book also covers relative motion and the two-impulse rendezvous problem; interplanetary mission design using patched conics; rigid-body dynamics used to characterize the attitude of a space vehicle; satellite attitude dynamics; and the characteristics and design of multi-stage launch vehicles. Each chapter begins with an outline of key concepts and concludes with problems that are based on the material covered. This text is written for undergraduates who are studying orbital mechanics for the first time and have completed courses in physics, dynamics, and mathematics, including differential equations and applied linear algebra. Graduate students, researchers, and experienced practitioners will also find useful review materials in the book.* NEW: Reorganized and improved discusions of coordinate systems, new discussion on perturbations and quarternions * NEW: Increased coverage of attitude dynamics, including new Matlab algorithms and examples in chapter 10* New examples and homework problems * Highly illustrated and fully supported with downloadable MATLAB algorithms for project and practical work; fully worked examples throughout; extensive homework exercises; Instructor's Manual and lecture slides.
Author Curtis, Howard D.
Author_xml – sequence: 1
  fullname: Curtis, Howard D.
BackLink https://cir.nii.ac.jp/crid/1130000794199081216$$DView record in CiNii
BookMark eNqN0D1PwzAQBmAjKKItnVkzIBBIAZ_jzxGi8iFV6oJYI8ex29DgQJzC38dp2cHDebhHp3tvgo586y1CZ4BvAAO_zQkGSHHKFZcshQM0wVhiKYWk8hDNlJAgGQehGOUjNIkaE8kzrI7RWGDMpWAAJ2gWwhuOjxIam2N0vezKutdN8m7NWvvahMS1XWL9qvbWdrVfJaHfVtb34RSNnG6Cnf3-U_T6MH_Jn9LF8vE5v1ukmnJMs1SCcqWqsoppphwxlleOa66zCrA2vGKGWWOwtLIE4og2ysXdpNWVdSaLboqu9oN12NjvsG6bPhRfjS3bdhOKmHRIroSgkv3P7q402Mu9_ejaz60NfbFjJobrdFPM73MmGGWERnnxl-Sc0wGe76Gv68LUQwXIhgMLRUEpLIEAz34ASRp__A
ContentType eBook
Book
DBID RYH
DEWEY 629.41129999999998
DOI 10.1016/C2011-0-69685-1
DatabaseName CiNii Complete
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 0080887848
9780080887845
9780080977485
0080977480
Edition 2
3
2nd Edition
Third edition.
ExternalDocumentID 9780080977485
9780080887845
EBC5754524
EBC566644
BB04765995
GroupedDBID -KG
.82
089
20A
38.
A4I
AAAAS
AABBV
AAFUF
AAJKE
AALRI
AAXUO
ABGWT
ABMAC
ABQQC
ACXMD
AGAMA
AJQDY
ALMA_UNASSIGNED_HOLDINGS
AZZ
BBABE
BGHEG
CZZ
HGY
JJU
RYH
SRW
WZG
.5W
.69
AAGAK
AIJWZ
ASVZH
BBQZY
LLQQT
ID FETCH-LOGICAL-a46043-819fb9d3d5a59f2ce6df6a6a3d10ac6d5c5ecc08e8b12f2ac9f7518eadefc36a3
ISBN 9781856179546
1856179540
9780123747785
0123747783
9780080977478
0080977472
IngestDate Fri Aug 29 02:40:35 EDT 2025
Sun Oct 05 03:17:11 EDT 2025
Fri May 30 22:39:12 EDT 2025
Fri May 30 23:07:33 EDT 2025
Thu Jun 26 23:54:17 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2010286309
LCCallNum_Ident TL1050.C87 2010
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a46043-819fb9d3d5a59f2ce6df6a6a3d10ac6d5c5ecc08e8b12f2ac9f7518eadefc36a3
Notes Previous ed.: 2005
Includes bibliographical references (p. [707]-708) and index
Student registration card tipped in
OCLC 700687511
1102473265
PQID EBC566644
PageCount 740
ParticipantIDs askewsholts_vlebooks_9780080977485
askewsholts_vlebooks_9780080887845
proquest_ebookcentral_EBC5754524
proquest_ebookcentral_EBC566644
nii_cinii_1130000794199081216
PublicationCentury 2000
PublicationDate c2010
2009
2013
2009-10-26
2013-10-01
PublicationDateYYYYMMDD 2010-01-01
2009-01-01
2013-01-01
2009-10-26
2013-10-01
PublicationDate_xml – year: 2010
  text: c2010
PublicationDecade 2010
2000
PublicationPlace San Diego
PublicationPlace_xml – name: Amsterdam ; Tokyo
– name: San Diego
PublicationSeriesTitle Elsevier Aerospace Engineering Series
PublicationYear 2010
2009
2013
Publisher Butterworth-Heinemann
Elsevier Science & Technology
Publisher_xml – name: Butterworth-Heinemann
– name: Elsevier Science & Technology
SSID ssj0000424630
ssib010055923
ssj0001141555
Score 2.379274
Snippet Orbital Mechanics for Engineering Students, Second Edition, provides an introduction to the basic concepts of space mechanics. These include vector kinematics...
Written by Howard Curtis, Professor of Aerospace Engineering at Embry-Riddle University, Orbital Mechanics for Engineering Students is a crucial text for...
SourceID askewsholts
proquest
nii
SourceType Aggregation Database
Publisher
SubjectTerms Orbital mechanics
TableOfContents 9.11 Quaternions -- Problems -- List of Key Terms -- CHAPTER 10 Satellite attitude dynamics -- 10.1 Introduction -- 10.2 Torque-free motion -- 10.3 Stability of torque-free motion -- 10.4 Dual-spin spacecraft -- 10.5 Nutation damper -- 10.6 Coning maneuver -- 10.7 Attitude control thrusters -- 10.8 Yo-yo despin mechanism -- 10.8.1 Radial release -- 10.9 Gyroscopic attitude control -- 10.10 Gravity gradient stabilization -- Problems -- List of Key Terms -- CHAPTER 11 Rocket vehicle dynamics -- 11.1 Introduction -- 11.2 Equations of motion -- 11.3 The thrust equation -- 11.4 Rocket performance -- 11.5 Restricted staging in field-free space -- 11.6 Optimal staging -- 11.6.1 Lagrange multiplier -- Problems -- List of Key Terms -- Appendix A Physical data -- Appendix B A road map -- Appendix C Numerical intergration of the n-body equations of motion -- Appendix D MATLAB® algorithms -- Appendix E Gravitational potential energy of a sphere -- References -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- Y -- Z
5.2 Gibbs method of orbit determination from three position vectors -- 5.3 Lambert's problem -- 5.4 Sidereal time -- 5.5 Topocentric coordinate system -- 5.6 Topocentric equatorial coordinate system -- 5.7 Topocentric horizon coordinate system -- 5.8 Orbit determination from angle and range measurements -- 5.9 Angles only preliminary orbit determination -- 5.10 Gauss method of preliminary orbit determination -- Problems -- List of Key Terms -- CHAPTER 6 Orbital maneuvers -- 6.1 Introduction -- 6.2 Impulsive maneuvers -- 6.3 Hohmann transfer -- 6.4 Bi-elliptic Hohmann transfer -- 6.5 Phasing maneuvers -- 6.6 Non-Hohmann transfers with a common apse line -- 6.7 Apse line rotation -- 6.8 Chase maneuvers -- 6.9 Plane change maneuvers -- 6.10 Nonimpulsive orbital maneuvers -- Problems -- List of Key Terms -- CHAPTER 7 Relative motion and rendezvous -- 7.1 Introduction -- 7.2 Relative motion in orbit -- 7.3 Linearization of the equations of relative motion in orbit -- 7.4 Clohessy-Wiltshire equations -- 7.5 Two-impulse rendezvous maneuvers -- 7.6 Relative motion in close-proximity circular orbits -- Problems -- List of Key Terms -- CHAPTER 8 Interplanetary trajectories -- 8.1 Introduction -- 8.2 Interplanetary Hohmann transfers -- 8.3 Rendezvous Opportunities -- 8.4 Sphere of influence -- 8.5 Method of patched conics -- 8.6 Planetary departure -- 8.7 Sensitivity analysis -- 8.8 Planetary rendezvous -- 8.9 Planetary flyby -- 8.10 Planetary ephemeris -- 8.11 Non-Hohmann interplanetary trajectories -- Problems -- List of Key Terms -- CHAPTER 9 Rigid-body dynamics -- 9.1 Introduction -- 9.2 Kinematics -- 9.3 Equations of translational motion -- 9.4 Equations of rotational motion -- 9.5 Moments of inertia -- 9.5.1 Parallel axis theorem -- 9.6 Euler's equations -- 9.7 Kinetic energy -- 9.8 The spinning top -- 9.9 Euler angles -- 9.10 Yaw, pitch and roll angles
Front Cover -- Orbital Mechanics for Engineering Students -- Copyright Page -- Contents -- Preface -- Acknowledgments -- CHAPTER 1 Dynamics of point masses -- 1.1 Introduction -- 1.2 Vectors -- 1.3 Kinematics -- 1.4 Mass, force and Newton's law of gravitation -- 1.5 Newton's law of motion -- 1.6 Time derivatives of moving vectors -- 1.7 Relative motion -- 1.8 Numerical integration -- 1.8.1 Runge-Kutta methods -- 1.8.2 Heun's Predictor-Corrector method -- 1.8.3 Runge-Kutta with variable step size -- Problems -- List of Key Terms -- CHAPTER 2 The two-body problem -- 2.1 Introduction -- 2.2 Equations of motion in an inertial frame -- 2.3 Equations of relative motion -- 2.4 Angular momentum and the orbit formulas -- 2.5 The energy law -- 2.6 Circular orbits (e = 0) -- 2.7 Elliptical orbits (0 &lt -- e &lt -- 1) -- 2.8 Parabolic trajectories (e = 1) -- 2.9 Hyperbolic trajectories (e &gt -- 1) -- 2.10 Perifocal frame -- 2.11 The lagrange coefficients -- 2.12 Restricted three-body problem -- 2.12.1 Lagrange points -- 2.12.2 Jacobi constant -- Problems -- List of Key Terms -- CHAPTER 3 Orbital position as a function of time -- 3.1 Introduction -- 3.2 Time since periapsis -- 3.3 Circular orbits (e = 0) -- 3.4 Elliptical orbits (e &lt -- 1) -- 3.5 Parabolic trajectories (e = 1) -- 3.6 Hyperbolic trajectories (e &lt -- 1) -- 3.7 Universal variables -- Problems -- List of Key Terms -- CHAPTER 4 Orbits in three dimensions -- 4.1 Introduction -- 4.2 Geocentric right ascension-declination frame -- 4.3 State vector and the geocentric equatorial frame -- 4.4 Orbital elements and the state vector -- 4.5 Coordinate transformation -- 4.6 Transformation between geocentric equatorial and perifocal frames -- 4.7 Effects of the Earth's oblateness -- 4.8 Ground tracks -- Problems -- List of Key Terms -- CHAPTER 5 Preliminary orbit determination -- 5.1 Introduction
Front Cover -- Orbital Mechanics for Engineering Students -- Copyright -- Dedication -- Contents -- Preface -- Chapter 1 - Dynamics of Point Masses -- 1.1 Introduction -- 1.2 Vectors -- 1.3 Kinematics -- 1.4 Mass, force, and Newton's law of gravitation -- 1.5 Newton's law of motion -- 1.6 Time derivatives of moving vectors -- 1.7 Relative motion -- 1.8 Numerical integration -- Problems -- Chapter 2 - The Two-Body Problem -- 2.1 Introduction -- 2.2 Equations of motion in an inertial frame -- 2.3 Equations of relative motion -- 2.4 Angular momentum and the orbit formulas -- 2.5 The energy law -- 2.6 Circular orbits (e=0) -- 2.7 Elliptical orbits (0&lt -- e&lt -- 1) -- 2.8 Parabolic trajectories (e=1) -- 2.9 Hyperbolic trajectories (e 1) -- 2.10 Perifocal frame -- 2.11 The Lagrange coefficients -- 2.12 Restricted three-body problem -- Problems -- Chapter 3 - Orbital Position as a Function of Time -- 3.1 Introduction -- 3.2 Time since periapsis -- 3.3 Circular orbits (e=0) -- 3.4 Elliptical orbits (e&lt -- 1) -- 3.5 Parabolic trajectories (e=1) -- 3.6 Hyperbolic trajectories (e 1) -- 3.7 Universal variables -- Problems -- Chapter 4 - Orbits in Three Dimensions -- 4.1 Introduction -- 4.2 Geocentric right ascension-declination frame -- 4.3 State vector and the geocentric equatorial frame -- 4.4 Orbital elements and the state vector -- 4.5 Coordinate transformation -- 4.6 Transformation between geocentric equatorial and perifocal frames -- 4.7 Effects of the earth's oblateness -- 4.8 Ground tracks -- Chapter 5 - Preliminary Orbit Determination -- 5.1 Introduction -- 5.2 Gibbs method of orbit determination from three position vectors -- 5.3 Lambert's problem -- 5.4 Sidereal time -- 5.5 Topocentric coordinate system -- 5.6 Topocentric equatorial coordinate system -- 5.7 Topocentric horizon coordinate system
10.10 Gravity-gradient stabilization -- Problems -- Chapter 11 - Rocket Vehicle Dynamics -- 11.1 Introduction -- 11.2 Equations of motion -- 11.3 The thrust equation -- 11.4 Rocket performance -- 11.5 Restricted staging in field-free space -- 11.6 Optimal staging -- Chapter 12 - Introduction to Orbital Perturbations -- 12.1 Introduction -- 12.2 Cowell's method -- 12.3 Encke's method -- 12.4 Atmospheric drag -- 12.5 Gravitational perturbations -- 12.6 Variation of parameters -- 12.7 Gauss variational equations -- 12.8 Method of averaging -- 12.9 Solar radiation pressure -- 12.10 Lunar gravity -- 12.11 Solar gravity -- Appendix A - Physical Data -- Appendix B - A Road Map -- Appendix C - Numerical Integration of the n-Body Equations of Motion -- Appendix E - Gravitational Potential of a Sphere -- Appendix F - Computing the Difference Between Nearly Equal Numbers -- References and Further Reading -- Index -- Appendix D - MATLAB Scripts
5.8 Orbit determination from angle and range measurements -- 5.9 Angles-only preliminary orbit determination -- 5.10 Gauss method of preliminary orbit determination -- Problems -- Chapter 6 - Orbital Maneuvers -- 6.1 Introduction -- 6.2 Impulsive maneuvers -- 6.3 Hohmann transfer -- 6.4 Bi-elliptic Hohmann transfer -- 6.5 Phasing maneuvers -- 6.6 Non-Hohmann transfers with a common apse line -- 6.7 Apse line rotation -- 6.8 Chase maneuvers -- 6.9 Plane change maneuvers -- 6.10 Nonimpulsive orbital maneuvers -- Problems -- Chapter 7 - Relative Motion and Rendezvous -- 7.1 Introduction -- 7.2 Relative motion in orbit -- 7.3 Linearization of the equations of relative motion in orbit -- 7.4 Clohessy-Wiltshire equations -- 7.5 Two-impulse rendezvous maneuvers -- 7.6 Relative motion in close-proximity circular orbits -- Problems -- Chapter 8 - Interplanetary Trajectories -- 8.1 Introduction -- 8.2 Interplanetary Hohmann transfers -- 8.3 Rendezvous opportunities -- 8.4 Sphere of influence -- 8.5 Method of patched conics -- 8.6 Planetary departure -- 8.7 Sensitivity analysis -- 8.8 Planetary rendezvous -- 8.9 Planetary flyby -- 8.10 Planetary ephemeris -- 8.11 Non-Hohmann interplanetary trajectories -- PROBLEMS -- Chapter 9 - Rigid Body Dynamics -- 9.1 Introduction -- 9.2 Kinematics -- 9.3 Equations of translational motion -- 9.4 Equations of rotational motion -- 9.5 Moments of inertia -- 9.6 Euler's equations -- 9.7 Kinetic energy -- 9.8 The spinning top -- 9.9 Euler angles -- 9.10 Yaw, pitch, and roll angles -- 9.11 Quaternions -- Problems -- Chapter 10 - Satellite Attitude Dynamics -- 10.1 Introduction -- 10.2 Torque-free motion -- 10.3 Stability of torque-free motion -- 10.4 Dual-spin spacecraft -- 10.5 Nutation damper -- 10.6 Coning maneuver -- 10.7 Attitude control thrusters -- 10.8 Yo-yo despin mechanism -- 10.9 Gyroscopic attitude control
Title Orbital mechanics for engineering students
URI https://cir.nii.ac.jp/crid/1130000794199081216
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=566644
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=5754524
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9780080887845
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9780080977485&uid=none
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbYPbGnFqi6BUqEOIFM48RxkusujxUSnGi1PUV-SquWVOoGDv31nXEeG3aLULlYieXYyozl-WzPfEPICVeOMetSikyblEeGUyVNTmOpQ5ulzjqftO_2Tsy-8pt5Ml_lNfDRJZU613_-GVfyFq1CHegVo2T_Q7Ndp1ABz6BfKEHDUK6B3-61avKsKUz2cfZgMXAXiZY9c_eKW9DTxrY0TbULNKZd9obGO8qeXZz3N_zeb6y_4a8TWHsHQjqz0O2DLMtnu0IwwYBL8qQ-29tYI-vt-rQ-HKVIjpNQtjIHnZPeZBLyVCAh2YAM0tRnp7_-3h1g4Z2piEMflt-M13JodeO3XEpMfFkbb0RGcvkD1nFY46slGPZysdgwh97G378jQ4z7eE-2bLlDRj2exl1y2sg76OQdgLyDnryDVt575NvV5f10RpskE1Ryga4HAImcyk1sEpnkLtJWGCekkLFhodTCJDqBaR5mNlMscpHUucOrKnQ0dzqGdh_IsPxV2o8kyBRnygjHhbRcO5FDR5HOnIoiq8Ncjslx76eLp5_-QnxZIAsUIHdY7zOevNII8XoGjQ5BYIVeYMnwShKwXs4ZYAtAbEyMyVErysJ_37j6FpeTKQB4AMFjErzcIsXM8_zTK4Psk-3V_Dwgw-r3oz0EiFapz36q_AX_izJy
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Orbital+mechanics+for+engineering+students&rft.au=Curtis%2C+Howard+D.&rft.date=2010-01-01&rft.pub=Butterworth-Heinemann&rft.isbn=9781856179546&rft_id=info:doi/10.1016%2FC2011-0-69685-1&rft.externalDocID=BB04765995
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97800808%2F9780080887845.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97800809%2F9780080977485.jpg