Cokriging particle size fractions of the soil
It is often necessary to predict the distribution of mineral particles in soil between size fractions, given observations at sample sites. Because the contents in each fraction necessarily sum to 100%, these values constitute a composition, which we may assume is drawn from a random compositional va...
Saved in:
Published in | European journal of soil science Vol. 58; no. 3; pp. 763 - 774 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.06.2007
Blackwell Publishing Ltd Blackwell Science |
Subjects | |
Online Access | Get full text |
ISSN | 1351-0754 1365-2389 |
DOI | 10.1111/j.1365-2389.2006.00866.x |
Cover
Abstract | It is often necessary to predict the distribution of mineral particles in soil between size fractions, given observations at sample sites. Because the contents in each fraction necessarily sum to 100%, these values constitute a composition, which we may assume is drawn from a random compositional variate. Elements of a D-component composition are subject to non-stochastic constraints; they are constrained to lie on a D- 1 dimensional simplex. This means we cannot treat them as realizations of unbounded random variables such as the multivariate Gaussian. For this reason, there are theoretical reasons not to use ordinary cokriging (or ordinary kriging) to map particle size distributions. Despite this, the compositional constraints on data on particle size fractions are not always accounted for by soil scientists. The additive log-ratio (alr) transform can be used to transform data from a compositional variate into a form that can be treated as a realization of an unbounded random variable. Until now, while soil scientists have made use of the alr transform for the spatial prediction of particle size, there has been concern that the simple back-transform of the optimal estimate of the alr-transformed variables does not yield the optimal estimate of the composition. A numerical approximation to the conditional expectation of the composition has been proposed, but we are not aware of examples of its application and it has not been used in soil science. In this paper, we report two case studies in which we predicted clay, silt and sand contents of the soil at test sites by ordinary cokriging of the alr-transformed data followed by both the direct (biased) back-transform of the estimates and the unbiased back-transform. We also computed estimates by ordinary cokriging of the untransformed data (which ignores the compositional constraints on the variables) for comparison. In one of our case studies, the benefit of using the alr transform was apparent, although there was no consistent advantage in using the unbiased back-transform. In the other case study, there was no consistent advantage in using the alr transform, although the bias of the simple back-transform was apparent. The differences between these case studies could be explained with respect to the distribution on the simplex of the particle size fractions at the two sites. |
---|---|
AbstractList | It is often necessary to predict the distribution of mineral particles in soil between size fractions, given observations at sample sites. Because the contents in each fraction necessarily sum to 100%, these values constitute a composition, which we may assume is drawn from a random compositional variate. Elements of a D-component composition are subject to non-stochastic constraints; they are constrained to lie on a D- 1 dimensional simplex. This means we cannot treat them as realizations of unbounded random variables such as the multivariate Gaussian. For this reason, there are theoretical reasons not to use ordinary cokriging (or ordinary kriging) to map particle size distributions. Despite this, the compositional constraints on data on particle size fractions are not always accounted for by soil scientists. The additive log-ratio (alr) transform can be used to transform data from a compositional variate into a form that can be treated as a realization of an unbounded random variable. Until now, while soil scientists have made use of the alr transform for the spatial prediction of particle size, there has been concern that the simple back-transform of the optimal estimate of the alr-transformed variables does not yield the optimal estimate of the composition. A numerical approximation to the conditional expectation of the composition has been proposed, but we are not aware of examples of its application and it has not been used in soil science. In this paper, we report two case studies in which we predicted clay, silt and sand contents of the soil at test sites by ordinary cokriging of the alr-transformed data followed by both the direct (biased) back-transform of the estimates and the unbiased back-transform. We also computed estimates by ordinary cokriging of the untransformed data (which ignores the compositional constraints on the variables) for comparison. In one of our case studies, the benefit of using the alr transform was apparent, although there was no consistent advantage in using the unbiased back-transform. In the other case study, there was no consistent advantage in using the alr transform, although the bias of the simple back-transform was apparent. The differences between these case studies could be explained with respect to the distribution on the simplex of the particle size fractions at the two sites. It is often necessary to predict the distribution of mineral particles in soil between size fractions, given observations at sample sites. Because the contents in each fraction necessarily sum to 100%, these values constitute a composition, which we may assume is drawn from a random compositional variate. Elements of a D ‐component composition are subject to non‐stochastic constraints; they are constrained to lie on a D – 1 dimensional simplex. This means we cannot treat them as realizations of unbounded random variables such as the multivariate Gaussian. For this reason, there are theoretical reasons not to use ordinary cokriging (or ordinary kriging) to map particle size distributions. Despite this, the compositional constraints on data on particle size fractions are not always accounted for by soil scientists. The additive log‐ratio (alr) transform can be used to transform data from a compositional variate into a form that can be treated as a realization of an unbounded random variable. Until now, while soil scientists have made use of the alr transform for the spatial prediction of particle size, there has been concern that the simple back‐transform of the optimal estimate of the alr‐transformed variables does not yield the optimal estimate of the composition. A numerical approximation to the conditional expectation of the composition has been proposed, but we are not aware of examples of its application and it has not been used in soil science. In this paper, we report two case studies in which we predicted clay, silt and sand contents of the soil at test sites by ordinary cokriging of the alr‐transformed data followed by both the direct (biased) back‐transform of the estimates and the unbiased back‐transform. We also computed estimates by ordinary cokriging of the untransformed data (which ignores the compositional constraints on the variables) for comparison. In one of our case studies, the benefit of using the alr transform was apparent, although there was no consistent advantage in using the unbiased back‐transform. In the other case study, there was no consistent advantage in using the alr transform, although the bias of the simple back‐transform was apparent. The differences between these case studies could be explained with respect to the distribution on the simplex of the particle size fractions at the two sites. Summary It is often necessary to predict the distribution of mineral particles in soil between size fractions, given observations at sample sites. Because the contents in each fraction necessarily sum to 100%, these values constitute a composition, which we may assume is drawn from a random compositional variate. Elements of a D‐component composition are subject to non‐stochastic constraints; they are constrained to lie on a D– 1 dimensional simplex. This means we cannot treat them as realizations of unbounded random variables such as the multivariate Gaussian. For this reason, there are theoretical reasons not to use ordinary cokriging (or ordinary kriging) to map particle size distributions. Despite this, the compositional constraints on data on particle size fractions are not always accounted for by soil scientists. The additive log‐ratio (alr) transform can be used to transform data from a compositional variate into a form that can be treated as a realization of an unbounded random variable. Until now, while soil scientists have made use of the alr transform for the spatial prediction of particle size, there has been concern that the simple back‐transform of the optimal estimate of the alr‐transformed variables does not yield the optimal estimate of the composition. A numerical approximation to the conditional expectation of the composition has been proposed, but we are not aware of examples of its application and it has not been used in soil science. In this paper, we report two case studies in which we predicted clay, silt and sand contents of the soil at test sites by ordinary cokriging of the alr‐transformed data followed by both the direct (biased) back‐transform of the estimates and the unbiased back‐transform. We also computed estimates by ordinary cokriging of the untransformed data (which ignores the compositional constraints on the variables) for comparison. In one of our case studies, the benefit of using the alr transform was apparent, although there was no consistent advantage in using the unbiased back‐transform. In the other case study, there was no consistent advantage in using the alr transform, although the bias of the simple back‐transform was apparent. The differences between these case studies could be explained with respect to the distribution on the simplex of the particle size fractions at the two sites. |
Author | Bishop, T. F. A. Lark, R. M. |
Author_xml | – sequence: 1 fullname: Lark, R.M – sequence: 2 fullname: Bishop, T.F.A |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18756320$$DView record in Pascal Francis |
BookMark | eNqNkc1OGzEUha2KSoW0z9DZlN1M_TtjL0BCgZJSRBcBIXVz5Th26jCMU3tQA0-Pp4Oy6Aa88ZV9vuN7jw_QXhc6i1BBcEXy-rquCKtFSZlUFcW4rjCWdV1t36H93cXeUAtS4kbwD-ggpTXGhBGl9lE5DXfRr3y3KjY69t60tkj-yRYuatP70KUiuKL_nU-Dbz-i9063yX562Sfo5tvZ9XRWXv48_z49uSw1F6ouJWV4oR0VS0UUEUZJZ6nizDqHncFLYZYLQy0nC8tErbVZGmWVoYJqxwVTbIIOR99NDH8ebOrh3idj21Z3Njwk4A3jhMsmC7-8CHUyus1Nd8Yn2ER_r-MjENmImlGcdcejzsSQUrQOjO_1MF8ftW-BYBjShDUMocEQGgxpwr80YZsN5H8GuzdeR49G9K9v7eObOTi7mM9zlfly5H3q7XbH63gHdcMaAbdX53A1-zE7_XV6kc0m6POodzqAXsWcx82c5g_HuGm4pJI9AzGapkU |
CitedBy_id | crossref_primary_10_1016_j_geoderma_2018_03_007 crossref_primary_10_1016_j_scitotenv_2018_03_048 crossref_primary_10_1111_ejss_12761 crossref_primary_10_2136_sssaj2014_05_0215 crossref_primary_10_1016_j_sedgeo_2012_07_009 crossref_primary_10_1016_j_geoderma_2018_08_022 crossref_primary_10_3390_land13111835 crossref_primary_10_1016_j_geoderma_2020_114214 crossref_primary_10_1016_j_geodrs_2016_03_006 crossref_primary_10_2139_ssrn_3928321 crossref_primary_10_5194_soil_7_217_2021 crossref_primary_10_5194_essd_14_4719_2022 crossref_primary_10_1016_j_geodrs_2020_e00295 crossref_primary_10_1016_j_scitotenv_2016_11_078 crossref_primary_10_1016_j_spasta_2016_06_008 crossref_primary_10_1016_j_catena_2016_01_001 crossref_primary_10_1016_j_geoderma_2011_05_007 crossref_primary_10_1071_MF15033 crossref_primary_10_1016_j_gexplo_2016_07_020 crossref_primary_10_1016_j_geoderma_2015_08_013 crossref_primary_10_1007_s12665_016_6163_7 crossref_primary_10_1007_s12665_011_1317_0 crossref_primary_10_1016_j_geodrs_2021_e00358 crossref_primary_10_1007_s11442_023_2142_6 crossref_primary_10_1016_j_geoderma_2014_07_002 crossref_primary_10_1214_19_AOAS1289 crossref_primary_10_1007_s11004_013_9512_z crossref_primary_10_1016_j_geodrs_2016_11_003 crossref_primary_10_1016_j_scitotenv_2017_04_033 crossref_primary_10_1016_j_catena_2022_106756 crossref_primary_10_2136_sssaj2013_07_0307 crossref_primary_10_1007_s11004_018_9769_3 crossref_primary_10_1016_j_catena_2020_104514 crossref_primary_10_1155_2014_145824 crossref_primary_10_1346_CCMN_2017_064074 crossref_primary_10_1016_j_geoderma_2018_09_052 crossref_primary_10_5194_hess_15_3895_2011 crossref_primary_10_1071_SR20284 crossref_primary_10_5194_nhess_16_2421_2016 crossref_primary_10_1007_s13593_012_0085_x crossref_primary_10_1016_j_geoderma_2009_06_018 crossref_primary_10_1016_j_still_2012_05_009 crossref_primary_10_1016_j_catena_2019_104149 crossref_primary_10_5467_JKESS_2014_35_1_69 crossref_primary_10_1016_j_jhydrol_2014_06_016 crossref_primary_10_1590_0370_44672015690041 crossref_primary_10_1016_j_geoderma_2023_116418 crossref_primary_10_1016_j_catena_2022_106024 crossref_primary_10_2139_ssrn_4143185 crossref_primary_10_1016_j_still_2019_06_006 crossref_primary_10_1016_j_geoderma_2018_01_020 crossref_primary_10_1016_j_geoderma_2017_03_015 crossref_primary_10_3390_app11020714 crossref_primary_10_1016_j_geoderma_2019_02_036 crossref_primary_10_1016_j_geoderma_2025_117178 crossref_primary_10_3390_rs16050785 crossref_primary_10_1016_S1002_0160_17_60425_9 crossref_primary_10_1016_j_geoderma_2015_07_006 crossref_primary_10_1111_stan_12078 crossref_primary_10_5194_essd_16_2941_2024 crossref_primary_10_1016_j_geoderma_2018_10_038 crossref_primary_10_1016_j_csr_2014_05_004 crossref_primary_10_1016_j_geoderma_2023_116405 crossref_primary_10_1016_j_jhydrol_2017_01_029 crossref_primary_10_1016_j_geoderma_2020_114808 crossref_primary_10_1016_j_catena_2023_107643 |
Cites_doi | 10.1016/j.geoderma.2005.08.009 10.1007/BF02083570 10.1007/978-3-642-57338-5_8 10.1097/01.ss.0000080335.10341.23 10.1093/oso/9780195171662.001.0001 10.1046/j.1365-2389.2003.00506.x 10.1007/978-94-009-4109-0 10.1016/S0016-7061(03)00065-X 10.1097/00010694-200202000-00006 10.1016/0016-7061(92)90097-Q 10.1007/978-1-4615-5001-3 10.1016/S0016-7061(97)00021-9 10.1007/BF00891269 10.1016/S0016-7061(01)00074-X 10.1111/j.1365-2389.1975.tb01942.x 10.1023/A:1009968907612 |
ContentType | Journal Article |
Copyright | 2006 British Society of Soil Science 2007 INIST-CNRS |
Copyright_xml | – notice: 2006 British Society of Soil Science – notice: 2007 INIST-CNRS |
DBID | FBQ BSCLL AAYXX CITATION IQODW 7S9 L.6 |
DOI | 10.1111/j.1365-2389.2006.00866.x |
DatabaseName | AGRIS Istex CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1365-2389 |
EndPage | 774 |
ExternalDocumentID | 18756320 10_1111_j_1365_2389_2006_00866_x EJSS866 ark_67375_WNG_NHKHDZDJ_1 US201300774828 |
Genre | article |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29G 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYJJ AAZKR ABCQN ABCUV ABEML ABJNI ABOGM ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AHBTC AHEFC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 FBQ FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OIG OVD P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TWZ UB1 VH1 W8V W99 WBKPD WIH WIK WOHZO WQJ WUPDE WXSBR WYISQ XG1 XOL Y6R ZZTAW ~02 ~IA ~KM ~WT AAMMB AEFGJ AEYWJ AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE BSCLL AAYXX CITATION IQODW 7S9 L.6 |
ID | FETCH-LOGICAL-a4596-8230baf25d91915c98fe2943eff0fc0d5cdbc2e41be356aacdc9e9c252af45393 |
IEDL.DBID | DR2 |
ISSN | 1351-0754 |
IngestDate | Fri Jul 11 16:32:05 EDT 2025 Mon Jul 21 09:12:55 EDT 2025 Thu Apr 24 22:57:53 EDT 2025 Wed Oct 01 04:56:09 EDT 2025 Thu Sep 25 07:35:25 EDT 2025 Sun Sep 21 06:30:38 EDT 2025 Thu Apr 03 09:45:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Soil science Earth science |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a4596-8230baf25d91915c98fe2943eff0fc0d5cdbc2e41be356aacdc9e9c252af45393 |
Notes | http://dx.doi.org/10.1111/j.1365-2389.2006.00866.x istex:02A6DDBD7AB15E75F94448F3434041546E5EB519 ArticleID:EJSS866 ark:/67375/WNG-NHKHDZDJ-1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 47341487 |
PQPubID | 24069 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_47341487 pascalfrancis_primary_18756320 crossref_citationtrail_10_1111_j_1365_2389_2006_00866_x crossref_primary_10_1111_j_1365_2389_2006_00866_x wiley_primary_10_1111_j_1365_2389_2006_00866_x_EJSS866 istex_primary_ark_67375_WNG_NHKHDZDJ_1 fao_agris_US201300774828 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2007 |
PublicationDateYYYYMMDD | 2007-06-01 |
PublicationDate_xml | – month: 06 year: 2007 text: June 2007 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
PublicationTitle | European journal of soil science |
PublicationYear | 2007 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd Blackwell Science |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd – name: Blackwell Science |
References | Odeh, I.O.A., Todd, A.J. & Triantafilis, J. 2003. Spatial prediction of soil particle-size fractions as compositional data. Soil Science, 168, 501-515. Krzanowski, W.J. 1988. Principles of Multivariate Analysis. Oxford University Press, Oxford. Shatar, T.M. & McBratney, A.B. 1999. Empirical modelling of relationships between sorghum yield and soil properties. Precision Agriculture, 1, 249-276. Lark, R.M. 2003. Two robust estimators of the cross-variogram for multivariate geostatistical analysis of soil properties. European Journal of Soil Science, 54, 187-201. Pawlowsky, V., Olea, R. & Davis, J.C. 1995. Estimation of regionalized compositions: a comparison of three methods. Mathematical Geology, 27, 105-127. Pawlowsky-Glahn, V. & Olea, R.A. 2004. Geostatistical Analysis of Compositional Data. Oxford University Press, New York. Webster, R. & Oliver, M.A. 1990. Statistical Methods in Soil and Land Resource Survey. Oxford University Press, Oxford. De Gruitjer, J.J., Walvoort, D.J.J. & Van Gaans, P.F.M. 1997. Continuous soil maps - a fuzzy set approach to bridge the gap between aggregation levels of process and distribution models. Geoderma, 77, 169-195. Webster, R. & Oliver, M.A. 2001. Geostatistics for Environmental Scientists. John Wiley & Sons, Chichester. Isbell, R.F. 1996. The Australian Soil Classification. CSIRO, Melbourne. Lark, R.M., Bellamy, P.H. & Rawlins, B.G. 2006. Spatio-temporal variability of some metal concentrations in the soil of eastern England, and implications for soil monitoring. Geoderma, 133, 363-379. Bishop, T.F.A. & McBratney, A.B. 2001. A comparison of prediction methods for the creation of field-extent soil property maps. Geoderma, 103, 151-162. Healy, M.J.R. 1986. Matrices for Statistics. Oxford University Press, Oxford. Abramowitz, M. & Stegun, I.A. 1964. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York. Lark, R.M. & Papritz, A. 2003. Fitting a linear model of coregionalization for soil properties using simulated annealing. Geoderma, 115, 245-260. Olea, R.A. 1999. Geostatistics for Engineers and Earth Scientists. Kluwer Academic Publishers, Dordrecht. Aitchison, J.. 1992. On criteria for measures of compositional difference. Mathematical Geology, 24, 365-379. McBratney, A.B., De Gruitjer, J.J. & Brus, D.J., 1992. Spacial prediction and mapping of continuous soil classes. Geoderma, 54, 39-64. Aitchison, J.. 1986. The Statistical Analysis of Compositional Data. Chapman and Hall, London. Chang K.-L. 2002. Optimal estimation of the granulometric composition of soils. Soil Science, 167, 135-146. Webster, R. & Cuanalo de la C., H.E.. 1975. Soil transect correlograms of north Oxfordshire and their interpretation. Journal of Soil Science, 26, 176-194. 1997; 77 1990 2001 1995; 27 2002; 167 1964 1986 1996 1975; 26 1992; 24 2004 2003 1999; 1 2003; 115 1992; 54 2003; 168 2001; 103 2003; 54 2006; 133 1988 1999 Abramowitz M. (e_1_2_6_2_1) 1964 Pawlowsky‐Glahn V. (e_1_2_6_19_1) 2004 e_1_2_6_21_1 e_1_2_6_20_1 Krzanowski W.J (e_1_2_6_11_1) 1988 Isbell R.F (e_1_2_6_10_1) 1996 e_1_2_6_8_1 Healy M.J.R (e_1_2_6_9_1) 1986 Webster R. (e_1_2_6_22_1) 1990 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 Webster R. (e_1_2_6_23_1) 2001 e_1_2_6_6_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_3_1 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 |
References_xml | – reference: Webster, R. & Oliver, M.A. 2001. Geostatistics for Environmental Scientists. John Wiley & Sons, Chichester. – reference: Lark, R.M. 2003. Two robust estimators of the cross-variogram for multivariate geostatistical analysis of soil properties. European Journal of Soil Science, 54, 187-201. – reference: Pawlowsky-Glahn, V. & Olea, R.A. 2004. Geostatistical Analysis of Compositional Data. Oxford University Press, New York. – reference: Webster, R. & Cuanalo de la C., H.E.. 1975. Soil transect correlograms of north Oxfordshire and their interpretation. Journal of Soil Science, 26, 176-194. – reference: De Gruitjer, J.J., Walvoort, D.J.J. & Van Gaans, P.F.M. 1997. Continuous soil maps - a fuzzy set approach to bridge the gap between aggregation levels of process and distribution models. Geoderma, 77, 169-195. – reference: McBratney, A.B., De Gruitjer, J.J. & Brus, D.J., 1992. Spacial prediction and mapping of continuous soil classes. Geoderma, 54, 39-64. – reference: Isbell, R.F. 1996. The Australian Soil Classification. CSIRO, Melbourne. – reference: Webster, R. & Oliver, M.A. 1990. Statistical Methods in Soil and Land Resource Survey. Oxford University Press, Oxford. – reference: Lark, R.M., Bellamy, P.H. & Rawlins, B.G. 2006. Spatio-temporal variability of some metal concentrations in the soil of eastern England, and implications for soil monitoring. Geoderma, 133, 363-379. – reference: Aitchison, J.. 1986. The Statistical Analysis of Compositional Data. Chapman and Hall, London. – reference: Krzanowski, W.J. 1988. Principles of Multivariate Analysis. Oxford University Press, Oxford. – reference: Bishop, T.F.A. & McBratney, A.B. 2001. A comparison of prediction methods for the creation of field-extent soil property maps. Geoderma, 103, 151-162. – reference: Healy, M.J.R. 1986. Matrices for Statistics. Oxford University Press, Oxford. – reference: Olea, R.A. 1999. Geostatistics for Engineers and Earth Scientists. Kluwer Academic Publishers, Dordrecht. – reference: Lark, R.M. & Papritz, A. 2003. Fitting a linear model of coregionalization for soil properties using simulated annealing. Geoderma, 115, 245-260. – reference: Odeh, I.O.A., Todd, A.J. & Triantafilis, J. 2003. Spatial prediction of soil particle-size fractions as compositional data. Soil Science, 168, 501-515. – reference: Pawlowsky, V., Olea, R. & Davis, J.C. 1995. Estimation of regionalized compositions: a comparison of three methods. Mathematical Geology, 27, 105-127. – reference: Abramowitz, M. & Stegun, I.A. 1964. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York. – reference: Aitchison, J.. 1992. On criteria for measures of compositional difference. Mathematical Geology, 24, 365-379. – reference: Chang K.-L. 2002. Optimal estimation of the granulometric composition of soils. Soil Science, 167, 135-146. – reference: Shatar, T.M. & McBratney, A.B. 1999. Empirical modelling of relationships between sorghum yield and soil properties. Precision Agriculture, 1, 249-276. – volume: 26 start-page: 176 year: 1975 end-page: 194 article-title: Soil transect correlograms of north Oxfordshire and their interpretation publication-title: Journal of Soil Science – year: 1986 – volume: 133 start-page: 363 year: 2006 end-page: 379 article-title: Spatio‐temporal variability of some metal concentrations in the soil of eastern England, and implications for soil monitoring publication-title: Geoderma – year: 1964 – volume: 24 start-page: 365 year: 1992 end-page: 379 article-title: On criteria for measures of compositional difference publication-title: Mathematical Geology – volume: 115 start-page: 245 year: 2003 end-page: 260 article-title: Fitting a linear model of coregionalization for soil properties using simulated annealing publication-title: Geoderma – volume: 167 start-page: 135 year: 2002 end-page: 146 article-title: Optimal estimation of the granulometric composition of soils publication-title: Soil Science – volume: 1 start-page: 249 year: 1999 end-page: 276 article-title: Empirical modelling of relationships between sorghum yield and soil properties publication-title: Precision Agriculture – year: 1988 – year: 2001 – year: 2004 – year: 1996 – volume: 54 start-page: 187 year: 2003 end-page: 201 article-title: Two robust estimators of the cross‐variogram for multivariate geostatistical analysis of soil properties publication-title: European Journal of Soil Science – volume: 168 start-page: 501 year: 2003 end-page: 515 article-title: Spatial prediction of soil particle‐size fractions as compositional data publication-title: Soil Science – volume: 103 start-page: 151 year: 2001 end-page: 162 article-title: A comparison of prediction methods for the creation of field‐extent soil property maps publication-title: Geoderma – volume: 77 start-page: 169 year: 1997 end-page: 195 article-title: Continuous soil maps — a fuzzy set approach to bridge the gap between aggregation levels of process and distribution models publication-title: Geoderma – volume: 54 start-page: 39 year: 1992 end-page: 64 article-title: Spacial prediction and mapping of continuous soil classes publication-title: Geoderma – year: 1990 – volume: 27 start-page: 105 year: 1995 end-page: 127 article-title: Estimation of regionalized compositions: a comparison of three methods publication-title: Mathematical Geology – start-page: 98 year: 2003 end-page: 113 – year: 1999 – volume-title: Principles of Multivariate Analysis year: 1988 ident: e_1_2_6_11_1 – ident: e_1_2_6_14_1 doi: 10.1016/j.geoderma.2005.08.009 – ident: e_1_2_6_18_1 doi: 10.1007/BF02083570 – ident: e_1_2_6_6_1 doi: 10.1007/978-3-642-57338-5_8 – volume-title: Geostatistics for Environmental Scientists year: 2001 ident: e_1_2_6_23_1 – volume-title: The Australian Soil Classification year: 1996 ident: e_1_2_6_10_1 – volume-title: Matrices for Statistics year: 1986 ident: e_1_2_6_9_1 – ident: e_1_2_6_16_1 doi: 10.1097/01.ss.0000080335.10341.23 – volume-title: Geostatistical Analysis of Compositional Data year: 2004 ident: e_1_2_6_19_1 doi: 10.1093/oso/9780195171662.001.0001 – ident: e_1_2_6_12_1 doi: 10.1046/j.1365-2389.2003.00506.x – ident: e_1_2_6_3_1 doi: 10.1007/978-94-009-4109-0 – ident: e_1_2_6_13_1 doi: 10.1016/S0016-7061(03)00065-X – ident: e_1_2_6_7_1 doi: 10.1097/00010694-200202000-00006 – ident: e_1_2_6_15_1 doi: 10.1016/0016-7061(92)90097-Q – volume-title: Statistical Methods in Soil and Land Resource Survey year: 1990 ident: e_1_2_6_22_1 – volume-title: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables year: 1964 ident: e_1_2_6_2_1 – ident: e_1_2_6_17_1 doi: 10.1007/978-1-4615-5001-3 – ident: e_1_2_6_8_1 doi: 10.1016/S0016-7061(97)00021-9 – ident: e_1_2_6_4_1 doi: 10.1007/BF00891269 – ident: e_1_2_6_5_1 doi: 10.1016/S0016-7061(01)00074-X – ident: e_1_2_6_21_1 doi: 10.1111/j.1365-2389.1975.tb01942.x – ident: e_1_2_6_20_1 doi: 10.1023/A:1009968907612 |
SSID | ssj0013199 |
Score | 2.1179411 |
Snippet | It is often necessary to predict the distribution of mineral particles in soil between size fractions, given observations at sample sites. Because the contents... Summary It is often necessary to predict the distribution of mineral particles in soil between size fractions, given observations at sample sites. Because the... |
SourceID | proquest pascalfrancis crossref wiley istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 763 |
SubjectTerms | Agronomy. Soil science and plant productions Biological and medical sciences case studies clay Earth sciences Earth, ocean, space Exact sciences and technology Fundamental and applied biological sciences. Psychology kriging mineral soils particle size particle size distribution prediction sandy soils scientists silt soil analysis Soil science Soils Surficial geology |
Title | Cokriging particle size fractions of the soil |
URI | https://api.istex.fr/ark:/67375/WNG-NHKHDZDJ-1/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2389.2006.00866.x https://www.proquest.com/docview/47341487 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1351-0754 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1365-2389 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013199 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5RTvTQFtqK0BZyqHrzKg_biY-I12oRe2C7KurFsh0boUUbtNmVEL--4zwWgjigilukxEk8nsl8k_k8A_DT5jZKXaZJIZQjFC8iuYoyUvCYG8PyzFG_d_hizIdTOrpiVy3_ye-FaepDrH-4ecuov9fewJWu-kZeM7TQ43Y5hZzzgceTccrqjO1l8phQaFpJ-n50BL0k7ZN6XrxRz1O9c6pE_OpFf-_5k6pCEbqm90UPnD6FuLWPOv0Is252DTVlNlgt9cA8PCv8-DbT_wQfWigbHja6tw0bdr4D7w-vF205D_sZyFE5qztvXYd3rY6G1c2DDd2i2VBRhaULEYOGVXlz-wWmpye_j4akbdBAFGWCE5-k08olrBAY9jEjcmcTQVPrXORMVDBTaJNYGmuLK6KUKYywwiQsUY6yVKRfYXNezu0uhIVOU456Ya3GADXXWmCcmQmuNZ7IuQ0g6xZDmrZ6uW-icSufRDEoEOkF4ntrerYeCkTeBxCvR941FTxeMWYX11sqlFglp5PEp3cjBMoYngbwq1aC9b3UYubJcRmTf8Zncjw8Hx7_PR7JOID9npY8PhxDRJ4mUQAHndpItGmfqFFzW64qSTPEFhhJBsBrFXj1e8uT0WSCR3v_O_AbbHWEyCj-DpvLxcr-QNS11Pu1Pf0Dt-Ua3A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB619ND20HdF2gI5VL1llYftxEfEAukCe-iyKurFsh0boV1t0GZXQvz6jvNYSMUBVdwiJc5jPJP5xjOeD-C7yUyY2FQFBZc2IHhRkMkwDQoWMa1pllri9g6fjVk-JaMLetHSAbm9ME1_iM2Cm7OM-n_tDNwtSPetvC7RQpfbJRUyxgYIKF-4dJ2z0uGv-C6l0JBJOka6AP0k6Zf1PHinnq96bmWJCNYJ_8ZVUMoKhWgb9osePL0PcmsvdfQW5t33NcUps8F6pQb69p_Wj08kgHfwpkWz_n6jfu_hmVl8gNf7l8u2o4f5CMFBOavJty7961ZN_erq1vh22eypqPzS-ghD_aq8mn-C6dHh-UEetBwNgSSUs8Dl6ZS0MS04Rn5U88yamJPEWBtaHRZUF0rHhkTKJJRJqQvNDdcxjaUlNOHJZ9halAuzDX6hkoShahijMEbNlOIYaqacKYUnMmY8SLvZELptYO54NObiXiCDAhFOII5e0xXsoUDEjQfRZuR108TjEWO2ccKFRIlVYjqJXYY3RKyMEaoHP2ot2NxLLmeuPi6l4vf4WIzzk3z4ZzgSkQe7PTW5ezhGiSyJQw_2Or0RaNYuVyMXplxXgqQILzCY9IDVOvDo9xaHo8kEj77878A9eJmfn52K05_jk6_wqquPDKNvsLVars0OgrCV2q2N6y93GB74 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED-2Dsb2sO9R76P1w9ibgj8k2XosTbMs3cJYFlb2IiRZKiUlDnECpX_9Tv5I67GHMvZmsGVbpzvf7-c73QF8sLmNUpdpUgjlCMWLSK6ijBQ85sawPHPU7x3-OuXjOZ2csbM2_8nvhWnqQ-x-uHnLqL_X3sBXhesbeZ2hhR63iynknA8QTz6gHMmWB0jfk5uIQtNL0jekI-gmaT-r56936rmq-06VCGC97K98AqWqUIauaX7RQ6e3MW7tpEZPYdFNr8lNWQy2Gz0w139Ufvw_838GT1osGx41yvcc7tnlC3h8dL5u63nYl0COy0Xdeus8XLVKGlYX1zZ062ZHRRWWLkQQGlblxeUrmI9OfhyPSduhgSjKBCc-SqeVS1ghkPcxI3JnE0FT61zkTFQwU2iTWBprmzKulCmMsMIkLFGOslSkr2FvWS7tPoSFTlOOimGtRoaaay2QaGaCa40ncm4DyLrFkKYtX-67aFzKWzQGBSK9QHxzTZ-uhwKRVwHEu5GrpoTHHcbs43pLhRKr5HyW-PhuhEgZ-WkAH2sl2N1LrRc-Oy5j8uf0k5yOT8fDX8OJjAM46GnJzcORI_I0iQI47NRGolH7SI1a2nJbSZohuEAqGQCvVeDO7y1PJrMZHr3514GH8PDbcCS_fJ6evoVHXXJkFL-Dvc16a98jAtvog9q0fgPpUx2n |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cokriging+particle+size+fractions+of+the+soil&rft.jtitle=European+journal+of+soil+science&rft.au=Lark%2C+R.+M.&rft.au=Bishop%2C+T.+F.+A.&rft.date=2007-06-01&rft.issn=1351-0754&rft.eissn=1365-2389&rft.volume=58&rft.issue=3&rft.spage=763&rft.epage=774&rft_id=info:doi/10.1111%2Fj.1365-2389.2006.00866.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1365_2389_2006_00866_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1351-0754&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1351-0754&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1351-0754&client=summon |