Cokriging particle size fractions of the soil

It is often necessary to predict the distribution of mineral particles in soil between size fractions, given observations at sample sites. Because the contents in each fraction necessarily sum to 100%, these values constitute a composition, which we may assume is drawn from a random compositional va...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of soil science Vol. 58; no. 3; pp. 763 - 774
Main Authors Lark, R.M, Bishop, T.F.A
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.06.2007
Blackwell Publishing Ltd
Blackwell Science
Subjects
Online AccessGet full text
ISSN1351-0754
1365-2389
DOI10.1111/j.1365-2389.2006.00866.x

Cover

Abstract It is often necessary to predict the distribution of mineral particles in soil between size fractions, given observations at sample sites. Because the contents in each fraction necessarily sum to 100%, these values constitute a composition, which we may assume is drawn from a random compositional variate. Elements of a D-component composition are subject to non-stochastic constraints; they are constrained to lie on a D- 1 dimensional simplex. This means we cannot treat them as realizations of unbounded random variables such as the multivariate Gaussian. For this reason, there are theoretical reasons not to use ordinary cokriging (or ordinary kriging) to map particle size distributions. Despite this, the compositional constraints on data on particle size fractions are not always accounted for by soil scientists. The additive log-ratio (alr) transform can be used to transform data from a compositional variate into a form that can be treated as a realization of an unbounded random variable. Until now, while soil scientists have made use of the alr transform for the spatial prediction of particle size, there has been concern that the simple back-transform of the optimal estimate of the alr-transformed variables does not yield the optimal estimate of the composition. A numerical approximation to the conditional expectation of the composition has been proposed, but we are not aware of examples of its application and it has not been used in soil science. In this paper, we report two case studies in which we predicted clay, silt and sand contents of the soil at test sites by ordinary cokriging of the alr-transformed data followed by both the direct (biased) back-transform of the estimates and the unbiased back-transform. We also computed estimates by ordinary cokriging of the untransformed data (which ignores the compositional constraints on the variables) for comparison. In one of our case studies, the benefit of using the alr transform was apparent, although there was no consistent advantage in using the unbiased back-transform. In the other case study, there was no consistent advantage in using the alr transform, although the bias of the simple back-transform was apparent. The differences between these case studies could be explained with respect to the distribution on the simplex of the particle size fractions at the two sites.
AbstractList It is often necessary to predict the distribution of mineral particles in soil between size fractions, given observations at sample sites. Because the contents in each fraction necessarily sum to 100%, these values constitute a composition, which we may assume is drawn from a random compositional variate. Elements of a D-component composition are subject to non-stochastic constraints; they are constrained to lie on a D- 1 dimensional simplex. This means we cannot treat them as realizations of unbounded random variables such as the multivariate Gaussian. For this reason, there are theoretical reasons not to use ordinary cokriging (or ordinary kriging) to map particle size distributions. Despite this, the compositional constraints on data on particle size fractions are not always accounted for by soil scientists. The additive log-ratio (alr) transform can be used to transform data from a compositional variate into a form that can be treated as a realization of an unbounded random variable. Until now, while soil scientists have made use of the alr transform for the spatial prediction of particle size, there has been concern that the simple back-transform of the optimal estimate of the alr-transformed variables does not yield the optimal estimate of the composition. A numerical approximation to the conditional expectation of the composition has been proposed, but we are not aware of examples of its application and it has not been used in soil science. In this paper, we report two case studies in which we predicted clay, silt and sand contents of the soil at test sites by ordinary cokriging of the alr-transformed data followed by both the direct (biased) back-transform of the estimates and the unbiased back-transform. We also computed estimates by ordinary cokriging of the untransformed data (which ignores the compositional constraints on the variables) for comparison. In one of our case studies, the benefit of using the alr transform was apparent, although there was no consistent advantage in using the unbiased back-transform. In the other case study, there was no consistent advantage in using the alr transform, although the bias of the simple back-transform was apparent. The differences between these case studies could be explained with respect to the distribution on the simplex of the particle size fractions at the two sites.
It is often necessary to predict the distribution of mineral particles in soil between size fractions, given observations at sample sites. Because the contents in each fraction necessarily sum to 100%, these values constitute a composition, which we may assume is drawn from a random compositional variate. Elements of a D ‐component composition are subject to non‐stochastic constraints; they are constrained to lie on a D – 1 dimensional simplex. This means we cannot treat them as realizations of unbounded random variables such as the multivariate Gaussian. For this reason, there are theoretical reasons not to use ordinary cokriging (or ordinary kriging) to map particle size distributions. Despite this, the compositional constraints on data on particle size fractions are not always accounted for by soil scientists. The additive log‐ratio (alr) transform can be used to transform data from a compositional variate into a form that can be treated as a realization of an unbounded random variable. Until now, while soil scientists have made use of the alr transform for the spatial prediction of particle size, there has been concern that the simple back‐transform of the optimal estimate of the alr‐transformed variables does not yield the optimal estimate of the composition. A numerical approximation to the conditional expectation of the composition has been proposed, but we are not aware of examples of its application and it has not been used in soil science. In this paper, we report two case studies in which we predicted clay, silt and sand contents of the soil at test sites by ordinary cokriging of the alr‐transformed data followed by both the direct (biased) back‐transform of the estimates and the unbiased back‐transform. We also computed estimates by ordinary cokriging of the untransformed data (which ignores the compositional constraints on the variables) for comparison. In one of our case studies, the benefit of using the alr transform was apparent, although there was no consistent advantage in using the unbiased back‐transform. In the other case study, there was no consistent advantage in using the alr transform, although the bias of the simple back‐transform was apparent. The differences between these case studies could be explained with respect to the distribution on the simplex of the particle size fractions at the two sites.
Summary It is often necessary to predict the distribution of mineral particles in soil between size fractions, given observations at sample sites. Because the contents in each fraction necessarily sum to 100%, these values constitute a composition, which we may assume is drawn from a random compositional variate. Elements of a D‐component composition are subject to non‐stochastic constraints; they are constrained to lie on a D– 1 dimensional simplex. This means we cannot treat them as realizations of unbounded random variables such as the multivariate Gaussian. For this reason, there are theoretical reasons not to use ordinary cokriging (or ordinary kriging) to map particle size distributions. Despite this, the compositional constraints on data on particle size fractions are not always accounted for by soil scientists. The additive log‐ratio (alr) transform can be used to transform data from a compositional variate into a form that can be treated as a realization of an unbounded random variable. Until now, while soil scientists have made use of the alr transform for the spatial prediction of particle size, there has been concern that the simple back‐transform of the optimal estimate of the alr‐transformed variables does not yield the optimal estimate of the composition. A numerical approximation to the conditional expectation of the composition has been proposed, but we are not aware of examples of its application and it has not been used in soil science. In this paper, we report two case studies in which we predicted clay, silt and sand contents of the soil at test sites by ordinary cokriging of the alr‐transformed data followed by both the direct (biased) back‐transform of the estimates and the unbiased back‐transform. We also computed estimates by ordinary cokriging of the untransformed data (which ignores the compositional constraints on the variables) for comparison. In one of our case studies, the benefit of using the alr transform was apparent, although there was no consistent advantage in using the unbiased back‐transform. In the other case study, there was no consistent advantage in using the alr transform, although the bias of the simple back‐transform was apparent. The differences between these case studies could be explained with respect to the distribution on the simplex of the particle size fractions at the two sites.
Author Bishop, T. F. A.
Lark, R. M.
Author_xml – sequence: 1
  fullname: Lark, R.M
– sequence: 2
  fullname: Bishop, T.F.A
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18756320$$DView record in Pascal Francis
BookMark eNqNkc1OGzEUha2KSoW0z9DZlN1M_TtjL0BCgZJSRBcBIXVz5Th26jCMU3tQA0-Pp4Oy6Aa88ZV9vuN7jw_QXhc6i1BBcEXy-rquCKtFSZlUFcW4rjCWdV1t36H93cXeUAtS4kbwD-ggpTXGhBGl9lE5DXfRr3y3KjY69t60tkj-yRYuatP70KUiuKL_nU-Dbz-i9063yX562Sfo5tvZ9XRWXv48_z49uSw1F6ouJWV4oR0VS0UUEUZJZ6nizDqHncFLYZYLQy0nC8tErbVZGmWVoYJqxwVTbIIOR99NDH8ebOrh3idj21Z3Njwk4A3jhMsmC7-8CHUyus1Nd8Yn2ER_r-MjENmImlGcdcejzsSQUrQOjO_1MF8ftW-BYBjShDUMocEQGgxpwr80YZsN5H8GuzdeR49G9K9v7eObOTi7mM9zlfly5H3q7XbH63gHdcMaAbdX53A1-zE7_XV6kc0m6POodzqAXsWcx82c5g_HuGm4pJI9AzGapkU
CitedBy_id crossref_primary_10_1016_j_geoderma_2018_03_007
crossref_primary_10_1016_j_scitotenv_2018_03_048
crossref_primary_10_1111_ejss_12761
crossref_primary_10_2136_sssaj2014_05_0215
crossref_primary_10_1016_j_sedgeo_2012_07_009
crossref_primary_10_1016_j_geoderma_2018_08_022
crossref_primary_10_3390_land13111835
crossref_primary_10_1016_j_geoderma_2020_114214
crossref_primary_10_1016_j_geodrs_2016_03_006
crossref_primary_10_2139_ssrn_3928321
crossref_primary_10_5194_soil_7_217_2021
crossref_primary_10_5194_essd_14_4719_2022
crossref_primary_10_1016_j_geodrs_2020_e00295
crossref_primary_10_1016_j_scitotenv_2016_11_078
crossref_primary_10_1016_j_spasta_2016_06_008
crossref_primary_10_1016_j_catena_2016_01_001
crossref_primary_10_1016_j_geoderma_2011_05_007
crossref_primary_10_1071_MF15033
crossref_primary_10_1016_j_gexplo_2016_07_020
crossref_primary_10_1016_j_geoderma_2015_08_013
crossref_primary_10_1007_s12665_016_6163_7
crossref_primary_10_1007_s12665_011_1317_0
crossref_primary_10_1016_j_geodrs_2021_e00358
crossref_primary_10_1007_s11442_023_2142_6
crossref_primary_10_1016_j_geoderma_2014_07_002
crossref_primary_10_1214_19_AOAS1289
crossref_primary_10_1007_s11004_013_9512_z
crossref_primary_10_1016_j_geodrs_2016_11_003
crossref_primary_10_1016_j_scitotenv_2017_04_033
crossref_primary_10_1016_j_catena_2022_106756
crossref_primary_10_2136_sssaj2013_07_0307
crossref_primary_10_1007_s11004_018_9769_3
crossref_primary_10_1016_j_catena_2020_104514
crossref_primary_10_1155_2014_145824
crossref_primary_10_1346_CCMN_2017_064074
crossref_primary_10_1016_j_geoderma_2018_09_052
crossref_primary_10_5194_hess_15_3895_2011
crossref_primary_10_1071_SR20284
crossref_primary_10_5194_nhess_16_2421_2016
crossref_primary_10_1007_s13593_012_0085_x
crossref_primary_10_1016_j_geoderma_2009_06_018
crossref_primary_10_1016_j_still_2012_05_009
crossref_primary_10_1016_j_catena_2019_104149
crossref_primary_10_5467_JKESS_2014_35_1_69
crossref_primary_10_1016_j_jhydrol_2014_06_016
crossref_primary_10_1590_0370_44672015690041
crossref_primary_10_1016_j_geoderma_2023_116418
crossref_primary_10_1016_j_catena_2022_106024
crossref_primary_10_2139_ssrn_4143185
crossref_primary_10_1016_j_still_2019_06_006
crossref_primary_10_1016_j_geoderma_2018_01_020
crossref_primary_10_1016_j_geoderma_2017_03_015
crossref_primary_10_3390_app11020714
crossref_primary_10_1016_j_geoderma_2019_02_036
crossref_primary_10_1016_j_geoderma_2025_117178
crossref_primary_10_3390_rs16050785
crossref_primary_10_1016_S1002_0160_17_60425_9
crossref_primary_10_1016_j_geoderma_2015_07_006
crossref_primary_10_1111_stan_12078
crossref_primary_10_5194_essd_16_2941_2024
crossref_primary_10_1016_j_geoderma_2018_10_038
crossref_primary_10_1016_j_csr_2014_05_004
crossref_primary_10_1016_j_geoderma_2023_116405
crossref_primary_10_1016_j_jhydrol_2017_01_029
crossref_primary_10_1016_j_geoderma_2020_114808
crossref_primary_10_1016_j_catena_2023_107643
Cites_doi 10.1016/j.geoderma.2005.08.009
10.1007/BF02083570
10.1007/978-3-642-57338-5_8
10.1097/01.ss.0000080335.10341.23
10.1093/oso/9780195171662.001.0001
10.1046/j.1365-2389.2003.00506.x
10.1007/978-94-009-4109-0
10.1016/S0016-7061(03)00065-X
10.1097/00010694-200202000-00006
10.1016/0016-7061(92)90097-Q
10.1007/978-1-4615-5001-3
10.1016/S0016-7061(97)00021-9
10.1007/BF00891269
10.1016/S0016-7061(01)00074-X
10.1111/j.1365-2389.1975.tb01942.x
10.1023/A:1009968907612
ContentType Journal Article
Copyright 2006 British Society of Soil Science
2007 INIST-CNRS
Copyright_xml – notice: 2006 British Society of Soil Science
– notice: 2007 INIST-CNRS
DBID FBQ
BSCLL
AAYXX
CITATION
IQODW
7S9
L.6
DOI 10.1111/j.1365-2389.2006.00866.x
DatabaseName AGRIS
Istex
CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
AGRICOLA

Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1365-2389
EndPage 774
ExternalDocumentID 18756320
10_1111_j_1365_2389_2006_00866_x
EJSS866
ark_67375_WNG_NHKHDZDJ_1
US201300774828
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYJJ
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABOGM
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AHBTC
AHEFC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
FBQ
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TWZ
UB1
VH1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WUPDE
WXSBR
WYISQ
XG1
XOL
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AEFGJ
AEYWJ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
BSCLL
AAYXX
CITATION
IQODW
7S9
L.6
ID FETCH-LOGICAL-a4596-8230baf25d91915c98fe2943eff0fc0d5cdbc2e41be356aacdc9e9c252af45393
IEDL.DBID DR2
ISSN 1351-0754
IngestDate Fri Jul 11 16:32:05 EDT 2025
Mon Jul 21 09:12:55 EDT 2025
Thu Apr 24 22:57:53 EDT 2025
Wed Oct 01 04:56:09 EDT 2025
Thu Sep 25 07:35:25 EDT 2025
Sun Sep 21 06:30:38 EDT 2025
Thu Apr 03 09:45:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Soil science
Earth science
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4596-8230baf25d91915c98fe2943eff0fc0d5cdbc2e41be356aacdc9e9c252af45393
Notes http://dx.doi.org/10.1111/j.1365-2389.2006.00866.x
istex:02A6DDBD7AB15E75F94448F3434041546E5EB519
ArticleID:EJSS866
ark:/67375/WNG-NHKHDZDJ-1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 47341487
PQPubID 24069
PageCount 12
ParticipantIDs proquest_miscellaneous_47341487
pascalfrancis_primary_18756320
crossref_citationtrail_10_1111_j_1365_2389_2006_00866_x
crossref_primary_10_1111_j_1365_2389_2006_00866_x
wiley_primary_10_1111_j_1365_2389_2006_00866_x_EJSS866
istex_primary_ark_67375_WNG_NHKHDZDJ_1
fao_agris_US201300774828
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2007
PublicationDateYYYYMMDD 2007-06-01
PublicationDate_xml – month: 06
  year: 2007
  text: June 2007
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle European journal of soil science
PublicationYear 2007
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Blackwell Science
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
– name: Blackwell Science
References Odeh, I.O.A., Todd, A.J. & Triantafilis, J. 2003. Spatial prediction of soil particle-size fractions as compositional data. Soil Science, 168, 501-515.
Krzanowski, W.J. 1988. Principles of Multivariate Analysis. Oxford University Press, Oxford.
Shatar, T.M. & McBratney, A.B. 1999. Empirical modelling of relationships between sorghum yield and soil properties. Precision Agriculture, 1, 249-276.
Lark, R.M. 2003. Two robust estimators of the cross-variogram for multivariate geostatistical analysis of soil properties. European Journal of Soil Science, 54, 187-201.
Pawlowsky, V., Olea, R. & Davis, J.C. 1995. Estimation of regionalized compositions: a comparison of three methods. Mathematical Geology, 27, 105-127.
Pawlowsky-Glahn, V. & Olea, R.A. 2004. Geostatistical Analysis of Compositional Data. Oxford University Press, New York.
Webster, R. & Oliver, M.A. 1990. Statistical Methods in Soil and Land Resource Survey. Oxford University Press, Oxford.
De Gruitjer, J.J., Walvoort, D.J.J. & Van Gaans, P.F.M. 1997. Continuous soil maps - a fuzzy set approach to bridge the gap between aggregation levels of process and distribution models. Geoderma, 77, 169-195.
Webster, R. & Oliver, M.A. 2001. Geostatistics for Environmental Scientists. John Wiley & Sons, Chichester.
Isbell, R.F. 1996. The Australian Soil Classification. CSIRO, Melbourne.
Lark, R.M., Bellamy, P.H. & Rawlins, B.G. 2006. Spatio-temporal variability of some metal concentrations in the soil of eastern England, and implications for soil monitoring. Geoderma, 133, 363-379.
Bishop, T.F.A. & McBratney, A.B. 2001. A comparison of prediction methods for the creation of field-extent soil property maps. Geoderma, 103, 151-162.
Healy, M.J.R. 1986. Matrices for Statistics. Oxford University Press, Oxford.
Abramowitz, M. & Stegun, I.A. 1964. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York.
Lark, R.M. & Papritz, A. 2003. Fitting a linear model of coregionalization for soil properties using simulated annealing. Geoderma, 115, 245-260.
Olea, R.A. 1999. Geostatistics for Engineers and Earth Scientists. Kluwer Academic Publishers, Dordrecht.
Aitchison, J.. 1992. On criteria for measures of compositional difference. Mathematical Geology, 24, 365-379.
McBratney, A.B., De Gruitjer, J.J. & Brus, D.J., 1992. Spacial prediction and mapping of continuous soil classes. Geoderma, 54, 39-64.
Aitchison, J.. 1986. The Statistical Analysis of Compositional Data. Chapman and Hall, London.
Chang K.-L. 2002. Optimal estimation of the granulometric composition of soils. Soil Science, 167, 135-146.
Webster, R. & Cuanalo de la C., H.E.. 1975. Soil transect correlograms of north Oxfordshire and their interpretation. Journal of Soil Science, 26, 176-194.
1997; 77
1990
2001
1995; 27
2002; 167
1964
1986
1996
1975; 26
1992; 24
2004
2003
1999; 1
2003; 115
1992; 54
2003; 168
2001; 103
2003; 54
2006; 133
1988
1999
Abramowitz M. (e_1_2_6_2_1) 1964
Pawlowsky‐Glahn V. (e_1_2_6_19_1) 2004
e_1_2_6_21_1
e_1_2_6_20_1
Krzanowski W.J (e_1_2_6_11_1) 1988
Isbell R.F (e_1_2_6_10_1) 1996
e_1_2_6_8_1
Healy M.J.R (e_1_2_6_9_1) 1986
Webster R. (e_1_2_6_22_1) 1990
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
Webster R. (e_1_2_6_23_1) 2001
e_1_2_6_6_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_3_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
References_xml – reference: Webster, R. & Oliver, M.A. 2001. Geostatistics for Environmental Scientists. John Wiley & Sons, Chichester.
– reference: Lark, R.M. 2003. Two robust estimators of the cross-variogram for multivariate geostatistical analysis of soil properties. European Journal of Soil Science, 54, 187-201.
– reference: Pawlowsky-Glahn, V. & Olea, R.A. 2004. Geostatistical Analysis of Compositional Data. Oxford University Press, New York.
– reference: Webster, R. & Cuanalo de la C., H.E.. 1975. Soil transect correlograms of north Oxfordshire and their interpretation. Journal of Soil Science, 26, 176-194.
– reference: De Gruitjer, J.J., Walvoort, D.J.J. & Van Gaans, P.F.M. 1997. Continuous soil maps - a fuzzy set approach to bridge the gap between aggregation levels of process and distribution models. Geoderma, 77, 169-195.
– reference: McBratney, A.B., De Gruitjer, J.J. & Brus, D.J., 1992. Spacial prediction and mapping of continuous soil classes. Geoderma, 54, 39-64.
– reference: Isbell, R.F. 1996. The Australian Soil Classification. CSIRO, Melbourne.
– reference: Webster, R. & Oliver, M.A. 1990. Statistical Methods in Soil and Land Resource Survey. Oxford University Press, Oxford.
– reference: Lark, R.M., Bellamy, P.H. & Rawlins, B.G. 2006. Spatio-temporal variability of some metal concentrations in the soil of eastern England, and implications for soil monitoring. Geoderma, 133, 363-379.
– reference: Aitchison, J.. 1986. The Statistical Analysis of Compositional Data. Chapman and Hall, London.
– reference: Krzanowski, W.J. 1988. Principles of Multivariate Analysis. Oxford University Press, Oxford.
– reference: Bishop, T.F.A. & McBratney, A.B. 2001. A comparison of prediction methods for the creation of field-extent soil property maps. Geoderma, 103, 151-162.
– reference: Healy, M.J.R. 1986. Matrices for Statistics. Oxford University Press, Oxford.
– reference: Olea, R.A. 1999. Geostatistics for Engineers and Earth Scientists. Kluwer Academic Publishers, Dordrecht.
– reference: Lark, R.M. & Papritz, A. 2003. Fitting a linear model of coregionalization for soil properties using simulated annealing. Geoderma, 115, 245-260.
– reference: Odeh, I.O.A., Todd, A.J. & Triantafilis, J. 2003. Spatial prediction of soil particle-size fractions as compositional data. Soil Science, 168, 501-515.
– reference: Pawlowsky, V., Olea, R. & Davis, J.C. 1995. Estimation of regionalized compositions: a comparison of three methods. Mathematical Geology, 27, 105-127.
– reference: Abramowitz, M. & Stegun, I.A. 1964. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York.
– reference: Aitchison, J.. 1992. On criteria for measures of compositional difference. Mathematical Geology, 24, 365-379.
– reference: Chang K.-L. 2002. Optimal estimation of the granulometric composition of soils. Soil Science, 167, 135-146.
– reference: Shatar, T.M. & McBratney, A.B. 1999. Empirical modelling of relationships between sorghum yield and soil properties. Precision Agriculture, 1, 249-276.
– volume: 26
  start-page: 176
  year: 1975
  end-page: 194
  article-title: Soil transect correlograms of north Oxfordshire and their interpretation
  publication-title: Journal of Soil Science
– year: 1986
– volume: 133
  start-page: 363
  year: 2006
  end-page: 379
  article-title: Spatio‐temporal variability of some metal concentrations in the soil of eastern England, and implications for soil monitoring
  publication-title: Geoderma
– year: 1964
– volume: 24
  start-page: 365
  year: 1992
  end-page: 379
  article-title: On criteria for measures of compositional difference
  publication-title: Mathematical Geology
– volume: 115
  start-page: 245
  year: 2003
  end-page: 260
  article-title: Fitting a linear model of coregionalization for soil properties using simulated annealing
  publication-title: Geoderma
– volume: 167
  start-page: 135
  year: 2002
  end-page: 146
  article-title: Optimal estimation of the granulometric composition of soils
  publication-title: Soil Science
– volume: 1
  start-page: 249
  year: 1999
  end-page: 276
  article-title: Empirical modelling of relationships between sorghum yield and soil properties
  publication-title: Precision Agriculture
– year: 1988
– year: 2001
– year: 2004
– year: 1996
– volume: 54
  start-page: 187
  year: 2003
  end-page: 201
  article-title: Two robust estimators of the cross‐variogram for multivariate geostatistical analysis of soil properties
  publication-title: European Journal of Soil Science
– volume: 168
  start-page: 501
  year: 2003
  end-page: 515
  article-title: Spatial prediction of soil particle‐size fractions as compositional data
  publication-title: Soil Science
– volume: 103
  start-page: 151
  year: 2001
  end-page: 162
  article-title: A comparison of prediction methods for the creation of field‐extent soil property maps
  publication-title: Geoderma
– volume: 77
  start-page: 169
  year: 1997
  end-page: 195
  article-title: Continuous soil maps — a fuzzy set approach to bridge the gap between aggregation levels of process and distribution models
  publication-title: Geoderma
– volume: 54
  start-page: 39
  year: 1992
  end-page: 64
  article-title: Spacial prediction and mapping of continuous soil classes
  publication-title: Geoderma
– year: 1990
– volume: 27
  start-page: 105
  year: 1995
  end-page: 127
  article-title: Estimation of regionalized compositions: a comparison of three methods
  publication-title: Mathematical Geology
– start-page: 98
  year: 2003
  end-page: 113
– year: 1999
– volume-title: Principles of Multivariate Analysis
  year: 1988
  ident: e_1_2_6_11_1
– ident: e_1_2_6_14_1
  doi: 10.1016/j.geoderma.2005.08.009
– ident: e_1_2_6_18_1
  doi: 10.1007/BF02083570
– ident: e_1_2_6_6_1
  doi: 10.1007/978-3-642-57338-5_8
– volume-title: Geostatistics for Environmental Scientists
  year: 2001
  ident: e_1_2_6_23_1
– volume-title: The Australian Soil Classification
  year: 1996
  ident: e_1_2_6_10_1
– volume-title: Matrices for Statistics
  year: 1986
  ident: e_1_2_6_9_1
– ident: e_1_2_6_16_1
  doi: 10.1097/01.ss.0000080335.10341.23
– volume-title: Geostatistical Analysis of Compositional Data
  year: 2004
  ident: e_1_2_6_19_1
  doi: 10.1093/oso/9780195171662.001.0001
– ident: e_1_2_6_12_1
  doi: 10.1046/j.1365-2389.2003.00506.x
– ident: e_1_2_6_3_1
  doi: 10.1007/978-94-009-4109-0
– ident: e_1_2_6_13_1
  doi: 10.1016/S0016-7061(03)00065-X
– ident: e_1_2_6_7_1
  doi: 10.1097/00010694-200202000-00006
– ident: e_1_2_6_15_1
  doi: 10.1016/0016-7061(92)90097-Q
– volume-title: Statistical Methods in Soil and Land Resource Survey
  year: 1990
  ident: e_1_2_6_22_1
– volume-title: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
  year: 1964
  ident: e_1_2_6_2_1
– ident: e_1_2_6_17_1
  doi: 10.1007/978-1-4615-5001-3
– ident: e_1_2_6_8_1
  doi: 10.1016/S0016-7061(97)00021-9
– ident: e_1_2_6_4_1
  doi: 10.1007/BF00891269
– ident: e_1_2_6_5_1
  doi: 10.1016/S0016-7061(01)00074-X
– ident: e_1_2_6_21_1
  doi: 10.1111/j.1365-2389.1975.tb01942.x
– ident: e_1_2_6_20_1
  doi: 10.1023/A:1009968907612
SSID ssj0013199
Score 2.1179411
Snippet It is often necessary to predict the distribution of mineral particles in soil between size fractions, given observations at sample sites. Because the contents...
Summary It is often necessary to predict the distribution of mineral particles in soil between size fractions, given observations at sample sites. Because the...
SourceID proquest
pascalfrancis
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 763
SubjectTerms Agronomy. Soil science and plant productions
Biological and medical sciences
case studies
clay
Earth sciences
Earth, ocean, space
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
kriging
mineral soils
particle size
particle size distribution
prediction
sandy soils
scientists
silt
soil analysis
Soil science
Soils
Surficial geology
Title Cokriging particle size fractions of the soil
URI https://api.istex.fr/ark:/67375/WNG-NHKHDZDJ-1/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2389.2006.00866.x
https://www.proquest.com/docview/47341487
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1351-0754
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1365-2389
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013199
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5RTvTQFtqK0BZyqHrzKg_biY-I12oRe2C7KurFsh0boUUbtNmVEL--4zwWgjigilukxEk8nsl8k_k8A_DT5jZKXaZJIZQjFC8iuYoyUvCYG8PyzFG_d_hizIdTOrpiVy3_ye-FaepDrH-4ecuov9fewJWu-kZeM7TQ43Y5hZzzgceTccrqjO1l8phQaFpJ-n50BL0k7ZN6XrxRz1O9c6pE_OpFf-_5k6pCEbqm90UPnD6FuLWPOv0Is252DTVlNlgt9cA8PCv8-DbT_wQfWigbHja6tw0bdr4D7w-vF205D_sZyFE5qztvXYd3rY6G1c2DDd2i2VBRhaULEYOGVXlz-wWmpye_j4akbdBAFGWCE5-k08olrBAY9jEjcmcTQVPrXORMVDBTaJNYGmuLK6KUKYywwiQsUY6yVKRfYXNezu0uhIVOU456Ya3GADXXWmCcmQmuNZ7IuQ0g6xZDmrZ6uW-icSufRDEoEOkF4ntrerYeCkTeBxCvR941FTxeMWYX11sqlFglp5PEp3cjBMoYngbwq1aC9b3UYubJcRmTf8Zncjw8Hx7_PR7JOID9npY8PhxDRJ4mUQAHndpItGmfqFFzW64qSTPEFhhJBsBrFXj1e8uT0WSCR3v_O_AbbHWEyCj-DpvLxcr-QNS11Pu1Pf0Dt-Ua3A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB619ND20HdF2gI5VL1llYftxEfEAukCe-iyKurFsh0boV1t0GZXQvz6jvNYSMUBVdwiJc5jPJP5xjOeD-C7yUyY2FQFBZc2IHhRkMkwDQoWMa1pllri9g6fjVk-JaMLetHSAbm9ME1_iM2Cm7OM-n_tDNwtSPetvC7RQpfbJRUyxgYIKF-4dJ2z0uGv-C6l0JBJOka6AP0k6Zf1PHinnq96bmWJCNYJ_8ZVUMoKhWgb9osePL0PcmsvdfQW5t33NcUps8F6pQb69p_Wj08kgHfwpkWz_n6jfu_hmVl8gNf7l8u2o4f5CMFBOavJty7961ZN_erq1vh22eypqPzS-ghD_aq8mn-C6dHh-UEetBwNgSSUs8Dl6ZS0MS04Rn5U88yamJPEWBtaHRZUF0rHhkTKJJRJqQvNDdcxjaUlNOHJZ9halAuzDX6hkoShahijMEbNlOIYaqacKYUnMmY8SLvZELptYO54NObiXiCDAhFOII5e0xXsoUDEjQfRZuR108TjEWO2ccKFRIlVYjqJXYY3RKyMEaoHP2ot2NxLLmeuPi6l4vf4WIzzk3z4ZzgSkQe7PTW5ezhGiSyJQw_2Or0RaNYuVyMXplxXgqQILzCY9IDVOvDo9xaHo8kEj77878A9eJmfn52K05_jk6_wqquPDKNvsLVars0OgrCV2q2N6y93GB74
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED-2Dsb2sO9R76P1w9ibgj8k2XosTbMs3cJYFlb2IiRZKiUlDnECpX_9Tv5I67GHMvZmsGVbpzvf7-c73QF8sLmNUpdpUgjlCMWLSK6ijBQ85sawPHPU7x3-OuXjOZ2csbM2_8nvhWnqQ-x-uHnLqL_X3sBXhesbeZ2hhR63iynknA8QTz6gHMmWB0jfk5uIQtNL0jekI-gmaT-r56936rmq-06VCGC97K98AqWqUIauaX7RQ6e3MW7tpEZPYdFNr8lNWQy2Gz0w139Ufvw_838GT1osGx41yvcc7tnlC3h8dL5u63nYl0COy0Xdeus8XLVKGlYX1zZ062ZHRRWWLkQQGlblxeUrmI9OfhyPSduhgSjKBCc-SqeVS1ghkPcxI3JnE0FT61zkTFQwU2iTWBprmzKulCmMsMIkLFGOslSkr2FvWS7tPoSFTlOOimGtRoaaay2QaGaCa40ncm4DyLrFkKYtX-67aFzKWzQGBSK9QHxzTZ-uhwKRVwHEu5GrpoTHHcbs43pLhRKr5HyW-PhuhEgZ-WkAH2sl2N1LrRc-Oy5j8uf0k5yOT8fDX8OJjAM46GnJzcORI_I0iQI47NRGolH7SI1a2nJbSZohuEAqGQCvVeDO7y1PJrMZHr3514GH8PDbcCS_fJ6evoVHXXJkFL-Dvc16a98jAtvog9q0fgPpUx2n
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cokriging+particle+size+fractions+of+the+soil&rft.jtitle=European+journal+of+soil+science&rft.au=Lark%2C+R.+M.&rft.au=Bishop%2C+T.+F.+A.&rft.date=2007-06-01&rft.issn=1351-0754&rft.eissn=1365-2389&rft.volume=58&rft.issue=3&rft.spage=763&rft.epage=774&rft_id=info:doi/10.1111%2Fj.1365-2389.2006.00866.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1365_2389_2006_00866_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1351-0754&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1351-0754&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1351-0754&client=summon