An intelligent system for mineral identification in thin sections based on a cascade approach
In this study, an intelligent system for mineral identification in thin sections is proposed based on RGB and HSI color spaces and texture features in plane and cross polarized light. The proposed system has two phases for mineral identification. In phase#1, which is the segmentation phase, 12 color...
        Saved in:
      
    
          | Published in | Computers & geosciences Vol. 99; pp. 37 - 49 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.02.2017
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0098-3004 1873-7803  | 
| DOI | 10.1016/j.cageo.2016.10.010 | 
Cover
| Abstract | In this study, an intelligent system for mineral identification in thin sections is proposed based on RGB and HSI color spaces and texture features in plane and cross polarized light. The proposed system has two phases for mineral identification. In phase#1, which is the segmentation phase, 12 color components are extracted for each pixel, and using an incremental clustering algorithm, several mineral clusters including index mineral are produced. Afterwards, in phase#2 which is the identification phase, the produced mineral clusters are identified based on a cascade classification approach. The first level of the cascade includes a set of artificial neural networks (ANNs) corresponding to the number of input minerals which are trained based on color components. In the first level, those minerals exhibiting different colors in plane or cross polarized light are identified. The second level of the cascade includes one ANN which is trained based on texture features in plane and cross polarized light images. In the second level, those minerals which are indistinguishable based on color components in both plane and cross polarized light are identified (are rejected in the first level of the cascade). The final output of the system is the name and number of minerals, boundary and percentage of each mineral in thin section, and eventually the name of probable target rock. The proposed system is able to recognize 23 test igneous minerals with the overall accuracy of 93.81%. The proposed system can be applied in important applications which require a real time segmentation and identification map such as petrography, and NASA Mars Explorations.
•An intelligent system for mineral identification in thin sections is developed.•We create a real time and reliable segmentation and identification map.•Final outputs are the name, number, boundary and percentage of each mineral.•Based on the percentage of minerals, the name of probable target rock can be predicted.•Our system can be used in applications such as NASA Mars explorations. | 
    
|---|---|
| AbstractList | In this study, an intelligent system for mineral identification in thin sections is proposed based on RGB and HSI color spaces and texture features in plane and cross polarized light. The proposed system has two phases for mineral identification. In phase#1, which is the segmentation phase, 12 color components are extracted for each pixel, and using an incremental clustering algorithm, several mineral clusters including index mineral are produced. Afterwards, in phase#2 which is the identification phase, the produced mineral clusters are identified based on a cascade classification approach. The first level of the cascade includes a set of artificial neural networks (ANNs) corresponding to the number of input minerals which are trained based on color components. In the first level, those minerals exhibiting different colors in plane or cross polarized light are identified. The second level of the cascade includes one ANN which is trained based on texture features in plane and cross polarized light images. In the second level, those minerals which are indistinguishable based on color components in both plane and cross polarized light are identified (are rejected in the first level of the cascade). The final output of the system is the name and number of minerals, boundary and percentage of each mineral in thin section, and eventually the name of probable target rock. The proposed system is able to recognize 23 test igneous minerals with the overall accuracy of 93.81%. The proposed system can be applied in important applications which require a real time segmentation and identification map such as petrography, and NASA Mars Explorations. In this study, an intelligent system for mineral identification in thin sections is proposed based on RGB and HSI color spaces and texture features in plane and cross polarized light. The proposed system has two phases for mineral identification. In phase#1, which is the segmentation phase, 12 color components are extracted for each pixel, and using an incremental clustering algorithm, several mineral clusters including index mineral are produced. Afterwards, in phase#2 which is the identification phase, the produced mineral clusters are identified based on a cascade classification approach. The first level of the cascade includes a set of artificial neural networks (ANNs) corresponding to the number of input minerals which are trained based on color components. In the first level, those minerals exhibiting different colors in plane or cross polarized light are identified. The second level of the cascade includes one ANN which is trained based on texture features in plane and cross polarized light images. In the second level, those minerals which are indistinguishable based on color components in both plane and cross polarized light are identified (are rejected in the first level of the cascade). The final output of the system is the name and number of minerals, boundary and percentage of each mineral in thin section, and eventually the name of probable target rock. The proposed system is able to recognize 23 test igneous minerals with the overall accuracy of 93.81%. The proposed system can be applied in important applications which require a real time segmentation and identification map such as petrography, and NASA Mars Explorations. •An intelligent system for mineral identification in thin sections is developed.•We create a real time and reliable segmentation and identification map.•Final outputs are the name, number, boundary and percentage of each mineral.•Based on the percentage of minerals, the name of probable target rock can be predicted.•Our system can be used in applications such as NASA Mars explorations.  | 
    
| Author | Izadi, Hossein Sadri, Javad Bayati, Mahdokht  | 
    
| Author_xml | – sequence: 1 givenname: Hossein surname: Izadi fullname: Izadi, Hossein email: hossein.izadi@ut.ac.ir organization: Department of Petroleum Exploration Engineering, Faculty of Mining Engineering, University College of Engineering, University of Tehran, Tehran, Iran – sequence: 2 givenname: Javad surname: Sadri fullname: Sadri, Javad email: j_sadri@encs.concordia.ca organization: Department of Computer Science & Software Engineering, Faculty of Engineering and Computer Science, Concordia University, Montreal, Quebec, Canada H3G 1M8 – sequence: 3 givenname: Mahdokht surname: Bayati fullname: Bayati, Mahdokht email: mahdoxt.bayati@ut.ac.ir organization: Institute of Geophysics, University of Tehran, Tehran, Iran  | 
    
| BookMark | eNqNkUFvFCEUx4mpidvqJ_DC0cusDxgGOHhoGq0mTbzo0ZC3zKNlMzuzAjXpt5fpevLgeoHw3u_3CPwv2cW8zMTYWwFbAWJ4v98GvKdlK9uhVbYg4AXbCGtUZyyoC7YBcLZTAP0rdlnKHgCktHrDflzPPM2Vpind01x5eSqVDjwumR_STBknnsbWSDEFrGlZaV4f2lIorOfCd1ho5K2DPGAJOBLH4zEvGB5es5cRp0Jv_uxX7Punj99uPnd3X2-_3FzfddhrWzvpYg8mOMBhN5pRIg5S9oNROmAU2siIO4gUhzEobWIvtbNKKYcCLGGM6oq9O81t1_58pFL9IZXQHoUzLY_FS9DKOrC9OIsK1wZr45pxFrXGOet6Df-Batdba7RtqDuhIS-lZIo-pPr8tTVjmrwAv2bq9_45U79muhZbps1Vf7nHnA6Yn85YH04WtQh-Jcq-hERzoDHlFqIfl_RP_zdnPr1y | 
    
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3540477 crossref_primary_10_1109_ACCESS_2020_2968515 crossref_primary_10_3390_app132312600 crossref_primary_10_1007_s00603_022_03003_6 crossref_primary_10_4236_ojapps_2024_146103 crossref_primary_10_1016_j_cageo_2021_105016 crossref_primary_10_1016_j_cageo_2024_105532 crossref_primary_10_1016_j_cageo_2021_105018 crossref_primary_10_1007_s11760_024_03192_3 crossref_primary_10_1016_j_cageo_2023_105414 crossref_primary_10_1088_1755_1315_1189_1_012026 crossref_primary_10_1016_j_mineng_2021_107020 crossref_primary_10_3390_app13137853 crossref_primary_10_3390_min11121354 crossref_primary_10_2118_219769_PA crossref_primary_10_1021_acs_energyfuels_4c04094 crossref_primary_10_3233_JIFS_221987 crossref_primary_10_3390_min12010060 crossref_primary_10_1007_s00603_025_04442_7 crossref_primary_10_1016_j_oregeorev_2023_105651 crossref_primary_10_3390_en15249480 crossref_primary_10_1016_j_petrol_2019_106382 crossref_primary_10_2110_jsr_2022_096 crossref_primary_10_1007_s10347_024_00694_x crossref_primary_10_1007_s40031_024_01003_4 crossref_primary_10_1051_matecconf_202440307012 crossref_primary_10_55708_js0308002 crossref_primary_10_1016_j_cageo_2024_105664 crossref_primary_10_1007_s12652_021_03474_5 crossref_primary_10_1016_j_cageo_2021_104952 crossref_primary_10_1007_s13369_024_09771_3 crossref_primary_10_1016_j_petrol_2021_108898 crossref_primary_10_3390_min14121291 crossref_primary_10_1007_s12145_020_00505_1 crossref_primary_10_1007_s12145_023_00981_1 crossref_primary_10_3390_fractalfract8010049 crossref_primary_10_1051_e3sconf_202020006007 crossref_primary_10_1007_s11334_021_00400_y crossref_primary_10_1088_1742_6596_887_1_012089 crossref_primary_10_1007_s00521_023_09141_4 crossref_primary_10_1007_s00138_022_01324_8 crossref_primary_10_1016_j_cageo_2019_104403 crossref_primary_10_1016_j_apgeochem_2020_104727 crossref_primary_10_1016_j_jrmge_2022_05_009 crossref_primary_10_1016_j_mineng_2018_11_005 crossref_primary_10_1007_s10489_021_02530_z crossref_primary_10_1016_j_marpetgeo_2020_104518 crossref_primary_10_17780_ksujes_1285080 crossref_primary_10_3390_jsan11030050 crossref_primary_10_1016_j_engappai_2023_106191 crossref_primary_10_1016_j_cageo_2021_104735 crossref_primary_10_1016_j_engappai_2019_103466 crossref_primary_10_3390_s22031138 crossref_primary_10_1016_j_marpetgeo_2020_104687 crossref_primary_10_3390_min11050506 crossref_primary_10_3390_min14030275 crossref_primary_10_1007_s11053_023_10271_8 crossref_primary_10_1016_j_sedgeo_2020_105790 crossref_primary_10_1007_s10921_017_0431_7 crossref_primary_10_3799_dqkx_2020_360 crossref_primary_10_1016_j_mineng_2023_108433 crossref_primary_10_1155_2020_7462524 crossref_primary_10_1016_j_petrol_2020_108178 crossref_primary_10_3390_rs16132276 crossref_primary_10_1016_j_cageo_2021_104922 crossref_primary_10_2118_199062_PA crossref_primary_10_1007_s00006_022_01237_9 crossref_primary_10_1007_s00603_023_03235_0  | 
    
| Cites_doi | 10.1016/j.cageo.2015.04.008 10.1016/0012-8252(76)90052-0 10.1016/j.cageo.2004.11.016 10.1016/S0098-3004(00)00153-9 10.1007/BF00994660 10.1130/0091-7613(1979)7<331:CANOVR>2.0.CO;2 10.1016/j.cageo.2012.01.001 10.1109/ICIP.2003.1247129 10.1016/j.cageo.2004.05.002 10.1016/j.cageo.2013.07.015 10.1007/PL00013273 10.1016/j.jsg.2005.12.010 10.1109/TSMC.1973.4309314 10.1023/A:1009744630224 10.1023/A:1007652114878 10.1613/jair.63 10.1016/j.ijrmms.2009.09.004 10.1016/S0098-3004(96)00074-X 10.1007/s10596-009-9154-x 10.1016/j.cageo.2009.04.009 10.1016/S0098-3004(97)85443-X  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2016 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2016 Elsevier Ltd | 
    
| DBID | AAYXX CITATION 7TG 7UA C1K F1W H96 KL. L.G 7SC 8FD FR3 H8D JQ2 KR7 L7M L~C L~D 7TN 7S9 L.6  | 
    
| DOI | 10.1016/j.cageo.2016.10.010 | 
    
| DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Computer and Information Systems Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Oceanic Abstracts AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Oceanic Abstracts AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geology | 
    
| EISSN | 1873-7803 | 
    
| EndPage | 49 | 
    
| ExternalDocumentID | 10_1016_j_cageo_2016_10_010 S0098300416305702  | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMA HVGLF HZ~ IHE IMUCA J1W KOM LG9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SEP SES SEW SPC SPCBC SSE SSV SSZ T5K TN5 WUQ ZCA ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7TG 7UA C1K F1W H96 KL. L.G 7SC 8FD FR3 H8D JQ2 KR7 L7M L~C L~D 7TN 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-a458t-29f407c90a6bd7d2aa62246735caf1572fab0fef6dc357f425983339a108eaff3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0098-3004 | 
    
| IngestDate | Sun Sep 28 00:16:29 EDT 2025 Sun Sep 28 04:00:30 EDT 2025 Thu Oct 02 04:43:37 EDT 2025 Tue Oct 07 09:36:17 EDT 2025 Thu Apr 24 22:54:14 EDT 2025 Wed Oct 01 05:51:18 EDT 2025 Fri Feb 23 02:34:01 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Cascade classification Texture and color features Thin sections Intelligent mineral identification  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-a458t-29f407c90a6bd7d2aa62246735caf1572fab0fef6dc357f425983339a108eaff3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PQID | 1859488758 | 
    
| PQPubID | 23462 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | proquest_miscellaneous_2053890841 proquest_miscellaneous_1933957905 proquest_miscellaneous_1879989450 proquest_miscellaneous_1859488758 crossref_citationtrail_10_1016_j_cageo_2016_10_010 crossref_primary_10_1016_j_cageo_2016_10_010 elsevier_sciencedirect_doi_10_1016_j_cageo_2016_10_010  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | February 2017 2017-02-00 20170201  | 
    
| PublicationDateYYYYMMDD | 2017-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2017 text: February 2017  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Computers & geosciences | 
    
| PublicationYear | 2017 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Fueten (bib6) 1997; 23 Haykin, S., 1999. Neural Networks A Comprehensive Introduction. Baykan, Yılmaz (bib2) 2010; 36 Murthy (bib20) 1998; 2 Haralick, Shanmugam, Dinstein (bib10) 1973; 6 Gonzalez, Woods, Eddins (bib8) 2004 Hagan, Demuth, Beale (bib9) 1996 MŁynarczuk (bib19) 2010; 47 Autio, J., Luukkanen, S., Rantanen, L., Visa, A., 1999. The classification and characterisation of rock using texture analysis by co-occurrence matrices and the hough transform. In: Proceedings of the International Symposium on Imaging Applications in Geology, pp. 5–8. Lepisto, L., Kunttu, I., Autio, J., Visa, A., 2003. Classification of Non-homogeneous textures images combining classifiers. In: Proceedings of IEEE International Conference on Image Processing (ICIP 2003), 1, 981–984, Barcelona, Spain Streckeisen (bib25) 1979; 7 Yesiloglu-Gultekin, Keceli, Sezer, Can, Gokceoglu, Bayhan (bib27) 2012; 46 Brodley, Utgoff (bib3) 1995; 19 Marschallinger (bib16) 1997; 23 Zhou, Starkey, Mansinha (bib28) 2004; 30 Singh, Singh, Tiwary, Sarkar (bib23) 2010; 14 Izadi, Sadri, Mehran (bib13) 2015; 81 Murthy, Kasif, Salzberg (bib21) 1994 Marmo, Amodio, Tagliaferri, Ferreri, Longo (bib15) 2005; 31 Thompson, Fueten, Bockus (bib26) 2001; 27 Dunlop (bib5) 2006 Hofmann, Marschallinger, Unterwurzacher, Zobl (bib12) 2013; 106 Marschallinger, Hofmann (bib17) 2010 Młynarczuk, Górszczyk, Ślipek (bib18) 2013; 60 Gama, Brazdil (bib7) 2000; 41 Streckeisen (bib24) 1976; 12 Choudhury, Meere, Mulchrone (bib4) 2006; 28 Ross, Fueten, Yashkir (bib22) 2001; 13 Choudhury (10.1016/j.cageo.2016.10.010_bib4) 2006; 28 Ross (10.1016/j.cageo.2016.10.010_bib22) 2001; 13 Hofmann (10.1016/j.cageo.2016.10.010_bib12) 2013; 106 Thompson (10.1016/j.cageo.2016.10.010_bib26) 2001; 27 Brodley (10.1016/j.cageo.2016.10.010_bib3) 1995; 19 Murthy (10.1016/j.cageo.2016.10.010_bib21) 1994 Gama (10.1016/j.cageo.2016.10.010_bib7) 2000; 41 Singh (10.1016/j.cageo.2016.10.010_bib23) 2010; 14 Młynarczuk (10.1016/j.cageo.2016.10.010_bib18) 2013; 60 Marmo (10.1016/j.cageo.2016.10.010_bib15) 2005; 31 Streckeisen (10.1016/j.cageo.2016.10.010_bib25) 1979; 7 Hagan (10.1016/j.cageo.2016.10.010_bib9) 1996 Marschallinger (10.1016/j.cageo.2016.10.010_bib17) 2010 Streckeisen (10.1016/j.cageo.2016.10.010_bib24) 1976; 12 Gonzalez (10.1016/j.cageo.2016.10.010_bib8) 2004 10.1016/j.cageo.2016.10.010_bib11 10.1016/j.cageo.2016.10.010_bib14 Zhou (10.1016/j.cageo.2016.10.010_bib28) 2004; 30 Marschallinger (10.1016/j.cageo.2016.10.010_bib16) 1997; 23 10.1016/j.cageo.2016.10.010_bib1 Dunlop (10.1016/j.cageo.2016.10.010_bib5) 2006 Yesiloglu-Gultekin (10.1016/j.cageo.2016.10.010_bib27) 2012; 46 Baykan (10.1016/j.cageo.2016.10.010_bib2) 2010; 36 MŁynarczuk (10.1016/j.cageo.2016.10.010_bib19) 2010; 47 Fueten (10.1016/j.cageo.2016.10.010_bib6) 1997; 23 Izadi (10.1016/j.cageo.2016.10.010_bib13) 2015; 81 Haralick (10.1016/j.cageo.2016.10.010_bib10) 1973; 6 Murthy (10.1016/j.cageo.2016.10.010_bib20) 1998; 2  | 
    
| References_xml | – volume: 41 start-page: 315 year: 2000 end-page: 343 ident: bib7 article-title: Cascade generalization publication-title: Mach. Learn. – volume: 28 start-page: 363 year: 2006 end-page: 375 ident: bib4 article-title: Automated grain boundary detection by CASRG publication-title: J. Struct. Geol. – volume: 2 start-page: 345 year: 1998 end-page: 389 ident: bib20 article-title: Automatic construction of decision trees from data: a multi-disciplinary survey publication-title: Data Min. Knowl. Discov. – volume: 36 start-page: 91 year: 2010 end-page: 97 ident: bib2 article-title: Mineral identification using color spaces and artificial neural networks publication-title: Comput. Geosci. – volume: 106 start-page: 73 year: 2013 end-page: 82 ident: bib12 article-title: Marble provenance designation with object based image analysis: state-of-the-art rock fabric characterization from petrographic micrographs publication-title: Austrian J. Earth Sci. – volume: 6 start-page: 610 year: 1973 end-page: 621 ident: bib10 article-title: Textural features for image classification publication-title: IEEE Trans. Syst. Man Cybern. – volume: 81 start-page: 38 year: 2015 end-page: 52 ident: bib13 article-title: A new intelligent method for minerals segmentation in thin sections based on a novel incremental color clustering publication-title: Comput. Geosci. – volume: 7 start-page: 331 year: 1979 end-page: 335 ident: bib25 article-title: Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites, and melilitic rocks: recommendations and suggestions of the IUGS subcommission on the systematics of igneous rocks publication-title: Geology – volume: 23 start-page: 119 year: 1997 end-page: 126 ident: bib16 article-title: Automatic mineral classification in the macroscopic scale publication-title: Comput. Geosci. – volume: 13 start-page: 61 year: 2001 end-page: 69 ident: bib22 article-title: Automatic mineral identification using genetic programming publication-title: Mach. Vis. Appl. – volume: 14 start-page: 301 year: 2010 end-page: 310 ident: bib23 article-title: Textural identification of basaltic rock mass using image processing and neural network publication-title: Comput. Geosci. – year: 2006 ident: bib5 publication-title: Automatic Rock Detection and Classification in Natural Scenes (Doctoral dissertation) – start-page: 2 year: 1996 end-page: 14 ident: bib9 publication-title: Neural Network Design – volume: 23 start-page: 203 year: 1997 end-page: 208 ident: bib6 article-title: A computer-controlled rotating polarizer stage for the petrographic microscope publication-title: Comput. Geosci. – reference: Autio, J., Luukkanen, S., Rantanen, L., Visa, A., 1999. The classification and characterisation of rock using texture analysis by co-occurrence matrices and the hough transform. In: Proceedings of the International Symposium on Imaging Applications in Geology, pp. 5–8. – start-page: 1526 year: 2010 end-page: 1532 ident: bib17 article-title: The application of object based image analysis to petrographic micrographs publication-title: Microsc.: Sci. Technol. Appl. Educ. – volume: 60 start-page: 126 year: 2013 end-page: 133 ident: bib18 article-title: The application of pattern recognition in the automatic classification of microscopic rock images publication-title: Comput. Geosci. – reference: Haykin, S., 1999. Neural Networks A Comprehensive Introduction. – volume: 31 start-page: 649 year: 2005 end-page: 659 ident: bib15 article-title: Textural identification of carbonate rocks by image processing and neural network: methodology proposal and examples publication-title: Comput. Geosci. – year: 1994 ident: bib21 article-title: A system for induction of oblique decision trees publication-title: J. Artif. Intell. Res. – volume: 19 start-page: 45 year: 1995 end-page: 77 ident: bib3 article-title: Multivariate decision trees publication-title: Mach. Learn. – volume: 27 start-page: 1081 year: 2001 end-page: 1089 ident: bib26 article-title: Mineral identification using artificial neural networks and the rotating polarizer stage publication-title: Comput. Geosci. – reference: Lepisto, L., Kunttu, I., Autio, J., Visa, A., 2003. Classification of Non-homogeneous textures images combining classifiers. In: Proceedings of IEEE International Conference on Image Processing (ICIP 2003), 1, 981–984, Barcelona, Spain – volume: 47 start-page: 138 year: 2010 end-page: 149 ident: bib19 article-title: Description and classification of rock surfaces by means of laser profilometry and mathematical morphology publication-title: Int. J. Rock. Mech. Min. Sci. – year: 2004 ident: bib8 publication-title: Digital Image Processing Using MATLAB – volume: 30 start-page: 817 year: 2004 end-page: 831 ident: bib28 article-title: Segmentation of petrographic images by integrating edge detection and region growing publication-title: Comput. Geosci. – volume: 12 start-page: 1 year: 1976 end-page: 33 ident: bib24 article-title: To each plutonic rock its proper name publication-title: Earth Sci. Rev. – volume: 46 start-page: 310 year: 2012 end-page: 316 ident: bib27 article-title: A computer program (TSecSoft) to determine mineral percentages using photographs obtained from thin sections publication-title: Comput. Geosci. – year: 2006 ident: 10.1016/j.cageo.2016.10.010_bib5 – volume: 81 start-page: 38 year: 2015 ident: 10.1016/j.cageo.2016.10.010_bib13 article-title: A new intelligent method for minerals segmentation in thin sections based on a novel incremental color clustering publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2015.04.008 – volume: 12 start-page: 1 issue: 1 year: 1976 ident: 10.1016/j.cageo.2016.10.010_bib24 article-title: To each plutonic rock its proper name publication-title: Earth Sci. Rev. doi: 10.1016/0012-8252(76)90052-0 – volume: 31 start-page: 649 issue: 5 year: 2005 ident: 10.1016/j.cageo.2016.10.010_bib15 article-title: Textural identification of carbonate rocks by image processing and neural network: methodology proposal and examples publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2004.11.016 – volume: 27 start-page: 1081 issue: 9 year: 2001 ident: 10.1016/j.cageo.2016.10.010_bib26 article-title: Mineral identification using artificial neural networks and the rotating polarizer stage publication-title: Comput. Geosci. doi: 10.1016/S0098-3004(00)00153-9 – volume: 19 start-page: 45 issue: 1 year: 1995 ident: 10.1016/j.cageo.2016.10.010_bib3 article-title: Multivariate decision trees publication-title: Mach. Learn. doi: 10.1007/BF00994660 – volume: 7 start-page: 331 issue: 7 year: 1979 ident: 10.1016/j.cageo.2016.10.010_bib25 article-title: Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites, and melilitic rocks: recommendations and suggestions of the IUGS subcommission on the systematics of igneous rocks publication-title: Geology doi: 10.1130/0091-7613(1979)7<331:CANOVR>2.0.CO;2 – ident: 10.1016/j.cageo.2016.10.010_bib11 – volume: 46 start-page: 310 year: 2012 ident: 10.1016/j.cageo.2016.10.010_bib27 article-title: A computer program (TSecSoft) to determine mineral percentages using photographs obtained from thin sections publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2012.01.001 – volume: 106 start-page: 73 issue: 2 year: 2013 ident: 10.1016/j.cageo.2016.10.010_bib12 article-title: Marble provenance designation with object based image analysis: state-of-the-art rock fabric characterization from petrographic micrographs publication-title: Austrian J. Earth Sci. – ident: 10.1016/j.cageo.2016.10.010_bib14 doi: 10.1109/ICIP.2003.1247129 – year: 2004 ident: 10.1016/j.cageo.2016.10.010_bib8 – start-page: 1526 year: 2010 ident: 10.1016/j.cageo.2016.10.010_bib17 article-title: The application of object based image analysis to petrographic micrographs publication-title: Microsc.: Sci. Technol. Appl. Educ. – volume: 30 start-page: 817 issue: 8 year: 2004 ident: 10.1016/j.cageo.2016.10.010_bib28 article-title: Segmentation of petrographic images by integrating edge detection and region growing publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2004.05.002 – volume: 60 start-page: 126 year: 2013 ident: 10.1016/j.cageo.2016.10.010_bib18 article-title: The application of pattern recognition in the automatic classification of microscopic rock images publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2013.07.015 – volume: 13 start-page: 61 issue: 2 year: 2001 ident: 10.1016/j.cageo.2016.10.010_bib22 article-title: Automatic mineral identification using genetic programming publication-title: Mach. Vis. Appl. doi: 10.1007/PL00013273 – volume: 28 start-page: 363 issue: 3 year: 2006 ident: 10.1016/j.cageo.2016.10.010_bib4 article-title: Automated grain boundary detection by CASRG publication-title: J. Struct. Geol. doi: 10.1016/j.jsg.2005.12.010 – volume: 6 start-page: 610 year: 1973 ident: 10.1016/j.cageo.2016.10.010_bib10 article-title: Textural features for image classification publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1973.4309314 – volume: 2 start-page: 345 issue: 4 year: 1998 ident: 10.1016/j.cageo.2016.10.010_bib20 article-title: Automatic construction of decision trees from data: a multi-disciplinary survey publication-title: Data Min. Knowl. Discov. doi: 10.1023/A:1009744630224 – ident: 10.1016/j.cageo.2016.10.010_bib1 – volume: 41 start-page: 315 issue: 3 year: 2000 ident: 10.1016/j.cageo.2016.10.010_bib7 article-title: Cascade generalization publication-title: Mach. Learn. doi: 10.1023/A:1007652114878 – year: 1994 ident: 10.1016/j.cageo.2016.10.010_bib21 article-title: A system for induction of oblique decision trees publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.63 – volume: 47 start-page: 138 issue: 1 year: 2010 ident: 10.1016/j.cageo.2016.10.010_bib19 article-title: Description and classification of rock surfaces by means of laser profilometry and mathematical morphology publication-title: Int. J. Rock. Mech. Min. Sci. doi: 10.1016/j.ijrmms.2009.09.004 – volume: 23 start-page: 119 issue: 1 year: 1997 ident: 10.1016/j.cageo.2016.10.010_bib16 article-title: Automatic mineral classification in the macroscopic scale publication-title: Comput. Geosci. doi: 10.1016/S0098-3004(96)00074-X – start-page: 2 year: 1996 ident: 10.1016/j.cageo.2016.10.010_bib9 – volume: 14 start-page: 301 issue: 2 year: 2010 ident: 10.1016/j.cageo.2016.10.010_bib23 article-title: Textural identification of basaltic rock mass using image processing and neural network publication-title: Comput. Geosci. doi: 10.1007/s10596-009-9154-x – volume: 36 start-page: 91 issue: 1 year: 2010 ident: 10.1016/j.cageo.2016.10.010_bib2 article-title: Mineral identification using color spaces and artificial neural networks publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2009.04.009 – volume: 23 start-page: 203 issue: 2 year: 1997 ident: 10.1016/j.cageo.2016.10.010_bib6 article-title: A computer-controlled rotating polarizer stage for the petrographic microscope publication-title: Comput. Geosci. doi: 10.1016/S0098-3004(97)85443-X  | 
    
| SSID | ssj0002285 | 
    
| Score | 2.495222 | 
    
| Snippet | In this study, an intelligent system for mineral identification in thin sections is proposed based on RGB and HSI color spaces and texture features in plane... | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 37 | 
    
| SubjectTerms | algorithms artificial intelligence Artificial neural networks Cascade classification Cascades Color computers Intelligent mineral identification Minerals neural networks Planes Polarized light Surface layer Texture Texture and color features Thin sections  | 
    
| Title | An intelligent system for mineral identification in thin sections based on a cascade approach | 
    
| URI | https://dx.doi.org/10.1016/j.cageo.2016.10.010 https://www.proquest.com/docview/1859488758 https://www.proquest.com/docview/1879989450 https://www.proquest.com/docview/1933957905 https://www.proquest.com/docview/2053890841  | 
    
| Volume | 99 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-7803 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002285 issn: 0098-3004 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-7803 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002285 issn: 0098-3004 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-7803 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002285 issn: 0098-3004 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-7803 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002285 issn: 0098-3004 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-7803 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002285 issn: 0098-3004 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS-UwEA6iCHuRdVV0f0gEj1bbNEmT40PUtyt6UvAiZZo0WHGr7KuHvfi3O5O2irL7Dl4KTSelnUkmE_LNN4ztSgtOFBUkkJoqkUK4xFQyS5S3yngpK11TvvPZuZ5eyl9X6mqBHY65MASrHHx_79Ojtx5aDgZtHjw0DeX4WhP5ojSO2SISSkpZUBWD_adXmIcQRo28mSQ9Mg9FjJfDOUsZgJneJ4gXpdH-e3V656fj4nP8ma0MUSOf9B-2yhbq9gtbPolVef-usetJy5sXbs2O9_TMHONR_ruJtNK88QMsKFoCpXl3g5dZRGK1M06rmef4BLiDGYHm-Ug3vs4uj48uDqfJUDchAalMlwgbcJvmbAq68oUXAJpo44pcOQiZKkSAKg110N7lqgg4a1GReW4hS00NIeQbbLG9b-tNxkEr68AoXVsgJjaQHuPLrJLaZcFLu8XEqK_SDaTiVNvirhzRY7dlVHJJSqZGVPIW23vp9NBzaswX16MhyjdDo0SvP7_jzmi2EicNnYRAW98_zkoMUix6LtwrzZMpLLHTq3nvsXk850zV_2UEujljUyOzrx_9kW_sE96JHvr2nS12fx7rHxgLddV2HOzbbGny83R6_gwTpAjW | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqIkQvFR9FXT6N1CNpE8d27GNVsSyw7amVekHWxI5FKsiu2PTQC7-dGW_SClT2wCUHZxzFY_t5LL95ZuxAWvCiqiGD3NSZFMJnppZFpoJVJkhZ64bynU_P9OxCfr5Ul1vsZMyFIVrlgP1rTE9oPZQcDd48WrYt5fhak_SiNI7ZigQlH0glKtqBHf6643kIYdQonEnmo_RQInl5nLSUAljoQ-J4UR7t_cvTX0CdVp_pY7Y7hI38eP1nT9hW0z1lDz-ma3lvnrGvxx1vb8U1e77WZ-YYkPIfbdKV5m0YeEGpK9Ca99_wsUpUrG7FaTkLHN8A97Ai1jwf9cb32MX0w_nJLBsuTshAKtNnwkbcp3mbg65DFQSAJt24qlQeYqEqEaHOYxN18KWqIk5b9GRZWihy00CM5XO23S26Zp9x0Mp6MEo3FkiKDWTAALOopfZFDNJOmBj95fygKk6XW3x3I33syiUnO3IyFaKTJ-z9baXlWlRjs7keO8L9MTYcwv7miu_GbnM4a-goBLpmcb1yGKVYhC7cLG2yqSzJ06tN37FlOujM1b9tBOKcsbmRxYv_bchb9mh2fjp3809nX16yHUGhRWKOv2Lb_c_r5jUGRn39Jg383xxECm8 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+intelligent+system+for+mineral+identification+in+thin+sections+based+on+a+cascade+approach&rft.jtitle=Computers+%26+geosciences&rft.au=Izadi%2C+Hossein&rft.au=Sadri%2C+Javad&rft.au=Bayati%2C+Mahdokht&rft.date=2017-02-01&rft.issn=0098-3004&rft.volume=99&rft.spage=37&rft.epage=49&rft_id=info:doi/10.1016%2Fj.cageo.2016.10.010&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3004&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3004&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3004&client=summon |