An intelligent system for mineral identification in thin sections based on a cascade approach

In this study, an intelligent system for mineral identification in thin sections is proposed based on RGB and HSI color spaces and texture features in plane and cross polarized light. The proposed system has two phases for mineral identification. In phase#1, which is the segmentation phase, 12 color...

Full description

Saved in:
Bibliographic Details
Published inComputers & geosciences Vol. 99; pp. 37 - 49
Main Authors Izadi, Hossein, Sadri, Javad, Bayati, Mahdokht
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2017
Subjects
Online AccessGet full text
ISSN0098-3004
1873-7803
DOI10.1016/j.cageo.2016.10.010

Cover

Abstract In this study, an intelligent system for mineral identification in thin sections is proposed based on RGB and HSI color spaces and texture features in plane and cross polarized light. The proposed system has two phases for mineral identification. In phase#1, which is the segmentation phase, 12 color components are extracted for each pixel, and using an incremental clustering algorithm, several mineral clusters including index mineral are produced. Afterwards, in phase#2 which is the identification phase, the produced mineral clusters are identified based on a cascade classification approach. The first level of the cascade includes a set of artificial neural networks (ANNs) corresponding to the number of input minerals which are trained based on color components. In the first level, those minerals exhibiting different colors in plane or cross polarized light are identified. The second level of the cascade includes one ANN which is trained based on texture features in plane and cross polarized light images. In the second level, those minerals which are indistinguishable based on color components in both plane and cross polarized light are identified (are rejected in the first level of the cascade). The final output of the system is the name and number of minerals, boundary and percentage of each mineral in thin section, and eventually the name of probable target rock. The proposed system is able to recognize 23 test igneous minerals with the overall accuracy of 93.81%. The proposed system can be applied in important applications which require a real time segmentation and identification map such as petrography, and NASA Mars Explorations. •An intelligent system for mineral identification in thin sections is developed.•We create a real time and reliable segmentation and identification map.•Final outputs are the name, number, boundary and percentage of each mineral.•Based on the percentage of minerals, the name of probable target rock can be predicted.•Our system can be used in applications such as NASA Mars explorations.
AbstractList In this study, an intelligent system for mineral identification in thin sections is proposed based on RGB and HSI color spaces and texture features in plane and cross polarized light. The proposed system has two phases for mineral identification. In phase#1, which is the segmentation phase, 12 color components are extracted for each pixel, and using an incremental clustering algorithm, several mineral clusters including index mineral are produced. Afterwards, in phase#2 which is the identification phase, the produced mineral clusters are identified based on a cascade classification approach. The first level of the cascade includes a set of artificial neural networks (ANNs) corresponding to the number of input minerals which are trained based on color components. In the first level, those minerals exhibiting different colors in plane or cross polarized light are identified. The second level of the cascade includes one ANN which is trained based on texture features in plane and cross polarized light images. In the second level, those minerals which are indistinguishable based on color components in both plane and cross polarized light are identified (are rejected in the first level of the cascade). The final output of the system is the name and number of minerals, boundary and percentage of each mineral in thin section, and eventually the name of probable target rock. The proposed system is able to recognize 23 test igneous minerals with the overall accuracy of 93.81%. The proposed system can be applied in important applications which require a real time segmentation and identification map such as petrography, and NASA Mars Explorations.
In this study, an intelligent system for mineral identification in thin sections is proposed based on RGB and HSI color spaces and texture features in plane and cross polarized light. The proposed system has two phases for mineral identification. In phase#1, which is the segmentation phase, 12 color components are extracted for each pixel, and using an incremental clustering algorithm, several mineral clusters including index mineral are produced. Afterwards, in phase#2 which is the identification phase, the produced mineral clusters are identified based on a cascade classification approach. The first level of the cascade includes a set of artificial neural networks (ANNs) corresponding to the number of input minerals which are trained based on color components. In the first level, those minerals exhibiting different colors in plane or cross polarized light are identified. The second level of the cascade includes one ANN which is trained based on texture features in plane and cross polarized light images. In the second level, those minerals which are indistinguishable based on color components in both plane and cross polarized light are identified (are rejected in the first level of the cascade). The final output of the system is the name and number of minerals, boundary and percentage of each mineral in thin section, and eventually the name of probable target rock. The proposed system is able to recognize 23 test igneous minerals with the overall accuracy of 93.81%. The proposed system can be applied in important applications which require a real time segmentation and identification map such as petrography, and NASA Mars Explorations. •An intelligent system for mineral identification in thin sections is developed.•We create a real time and reliable segmentation and identification map.•Final outputs are the name, number, boundary and percentage of each mineral.•Based on the percentage of minerals, the name of probable target rock can be predicted.•Our system can be used in applications such as NASA Mars explorations.
Author Izadi, Hossein
Sadri, Javad
Bayati, Mahdokht
Author_xml – sequence: 1
  givenname: Hossein
  surname: Izadi
  fullname: Izadi, Hossein
  email: hossein.izadi@ut.ac.ir
  organization: Department of Petroleum Exploration Engineering, Faculty of Mining Engineering, University College of Engineering, University of Tehran, Tehran, Iran
– sequence: 2
  givenname: Javad
  surname: Sadri
  fullname: Sadri, Javad
  email: j_sadri@encs.concordia.ca
  organization: Department of Computer Science & Software Engineering, Faculty of Engineering and Computer Science, Concordia University, Montreal, Quebec, Canada H3G 1M8
– sequence: 3
  givenname: Mahdokht
  surname: Bayati
  fullname: Bayati, Mahdokht
  email: mahdoxt.bayati@ut.ac.ir
  organization: Institute of Geophysics, University of Tehran, Tehran, Iran
BookMark eNqNkUFvFCEUx4mpidvqJ_DC0cusDxgGOHhoGq0mTbzo0ZC3zKNlMzuzAjXpt5fpevLgeoHw3u_3CPwv2cW8zMTYWwFbAWJ4v98GvKdlK9uhVbYg4AXbCGtUZyyoC7YBcLZTAP0rdlnKHgCktHrDflzPPM2Vpind01x5eSqVDjwumR_STBknnsbWSDEFrGlZaV4f2lIorOfCd1ho5K2DPGAJOBLH4zEvGB5es5cRp0Jv_uxX7Punj99uPnd3X2-_3FzfddhrWzvpYg8mOMBhN5pRIg5S9oNROmAU2siIO4gUhzEobWIvtbNKKYcCLGGM6oq9O81t1_58pFL9IZXQHoUzLY_FS9DKOrC9OIsK1wZr45pxFrXGOet6Df-Batdba7RtqDuhIS-lZIo-pPr8tTVjmrwAv2bq9_45U79muhZbps1Vf7nHnA6Yn85YH04WtQh-Jcq-hERzoDHlFqIfl_RP_zdnPr1y
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3540477
crossref_primary_10_1109_ACCESS_2020_2968515
crossref_primary_10_3390_app132312600
crossref_primary_10_1007_s00603_022_03003_6
crossref_primary_10_4236_ojapps_2024_146103
crossref_primary_10_1016_j_cageo_2021_105016
crossref_primary_10_1016_j_cageo_2024_105532
crossref_primary_10_1016_j_cageo_2021_105018
crossref_primary_10_1007_s11760_024_03192_3
crossref_primary_10_1016_j_cageo_2023_105414
crossref_primary_10_1088_1755_1315_1189_1_012026
crossref_primary_10_1016_j_mineng_2021_107020
crossref_primary_10_3390_app13137853
crossref_primary_10_3390_min11121354
crossref_primary_10_2118_219769_PA
crossref_primary_10_1021_acs_energyfuels_4c04094
crossref_primary_10_3233_JIFS_221987
crossref_primary_10_3390_min12010060
crossref_primary_10_1007_s00603_025_04442_7
crossref_primary_10_1016_j_oregeorev_2023_105651
crossref_primary_10_3390_en15249480
crossref_primary_10_1016_j_petrol_2019_106382
crossref_primary_10_2110_jsr_2022_096
crossref_primary_10_1007_s10347_024_00694_x
crossref_primary_10_1007_s40031_024_01003_4
crossref_primary_10_1051_matecconf_202440307012
crossref_primary_10_55708_js0308002
crossref_primary_10_1016_j_cageo_2024_105664
crossref_primary_10_1007_s12652_021_03474_5
crossref_primary_10_1016_j_cageo_2021_104952
crossref_primary_10_1007_s13369_024_09771_3
crossref_primary_10_1016_j_petrol_2021_108898
crossref_primary_10_3390_min14121291
crossref_primary_10_1007_s12145_020_00505_1
crossref_primary_10_1007_s12145_023_00981_1
crossref_primary_10_3390_fractalfract8010049
crossref_primary_10_1051_e3sconf_202020006007
crossref_primary_10_1007_s11334_021_00400_y
crossref_primary_10_1088_1742_6596_887_1_012089
crossref_primary_10_1007_s00521_023_09141_4
crossref_primary_10_1007_s00138_022_01324_8
crossref_primary_10_1016_j_cageo_2019_104403
crossref_primary_10_1016_j_apgeochem_2020_104727
crossref_primary_10_1016_j_jrmge_2022_05_009
crossref_primary_10_1016_j_mineng_2018_11_005
crossref_primary_10_1007_s10489_021_02530_z
crossref_primary_10_1016_j_marpetgeo_2020_104518
crossref_primary_10_17780_ksujes_1285080
crossref_primary_10_3390_jsan11030050
crossref_primary_10_1016_j_engappai_2023_106191
crossref_primary_10_1016_j_cageo_2021_104735
crossref_primary_10_1016_j_engappai_2019_103466
crossref_primary_10_3390_s22031138
crossref_primary_10_1016_j_marpetgeo_2020_104687
crossref_primary_10_3390_min11050506
crossref_primary_10_3390_min14030275
crossref_primary_10_1007_s11053_023_10271_8
crossref_primary_10_1016_j_sedgeo_2020_105790
crossref_primary_10_1007_s10921_017_0431_7
crossref_primary_10_3799_dqkx_2020_360
crossref_primary_10_1016_j_mineng_2023_108433
crossref_primary_10_1155_2020_7462524
crossref_primary_10_1016_j_petrol_2020_108178
crossref_primary_10_3390_rs16132276
crossref_primary_10_1016_j_cageo_2021_104922
crossref_primary_10_2118_199062_PA
crossref_primary_10_1007_s00006_022_01237_9
crossref_primary_10_1007_s00603_023_03235_0
Cites_doi 10.1016/j.cageo.2015.04.008
10.1016/0012-8252(76)90052-0
10.1016/j.cageo.2004.11.016
10.1016/S0098-3004(00)00153-9
10.1007/BF00994660
10.1130/0091-7613(1979)7<331:CANOVR>2.0.CO;2
10.1016/j.cageo.2012.01.001
10.1109/ICIP.2003.1247129
10.1016/j.cageo.2004.05.002
10.1016/j.cageo.2013.07.015
10.1007/PL00013273
10.1016/j.jsg.2005.12.010
10.1109/TSMC.1973.4309314
10.1023/A:1009744630224
10.1023/A:1007652114878
10.1613/jair.63
10.1016/j.ijrmms.2009.09.004
10.1016/S0098-3004(96)00074-X
10.1007/s10596-009-9154-x
10.1016/j.cageo.2009.04.009
10.1016/S0098-3004(97)85443-X
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
7TG
7UA
C1K
F1W
H96
KL.
L.G
7SC
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
7TN
7S9
L.6
DOI 10.1016/j.cageo.2016.10.010
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Oceanic Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Oceanic Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1873-7803
EndPage 49
ExternalDocumentID 10_1016_j_cageo_2016_10_010
S0098300416305702
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
TN5
WUQ
ZCA
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7TG
7UA
C1K
F1W
H96
KL.
L.G
7SC
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
7TN
7S9
L.6
ID FETCH-LOGICAL-a458t-29f407c90a6bd7d2aa62246735caf1572fab0fef6dc357f425983339a108eaff3
IEDL.DBID .~1
ISSN 0098-3004
IngestDate Sun Sep 28 00:16:29 EDT 2025
Sun Sep 28 04:00:30 EDT 2025
Thu Oct 02 04:43:37 EDT 2025
Tue Oct 07 09:36:17 EDT 2025
Thu Apr 24 22:54:14 EDT 2025
Wed Oct 01 05:51:18 EDT 2025
Fri Feb 23 02:34:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cascade classification
Texture and color features
Thin sections
Intelligent mineral identification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a458t-29f407c90a6bd7d2aa62246735caf1572fab0fef6dc357f425983339a108eaff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1859488758
PQPubID 23462
PageCount 13
ParticipantIDs proquest_miscellaneous_2053890841
proquest_miscellaneous_1933957905
proquest_miscellaneous_1879989450
proquest_miscellaneous_1859488758
crossref_citationtrail_10_1016_j_cageo_2016_10_010
crossref_primary_10_1016_j_cageo_2016_10_010
elsevier_sciencedirect_doi_10_1016_j_cageo_2016_10_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2017
2017-02-00
20170201
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 02
  year: 2017
  text: February 2017
PublicationDecade 2010
PublicationTitle Computers & geosciences
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Fueten (bib6) 1997; 23
Haykin, S., 1999. Neural Networks A Comprehensive Introduction.
Baykan, Yılmaz (bib2) 2010; 36
Murthy (bib20) 1998; 2
Haralick, Shanmugam, Dinstein (bib10) 1973; 6
Gonzalez, Woods, Eddins (bib8) 2004
Hagan, Demuth, Beale (bib9) 1996
MŁynarczuk (bib19) 2010; 47
Autio, J., Luukkanen, S., Rantanen, L., Visa, A., 1999. The classification and characterisation of rock using texture analysis by co-occurrence matrices and the hough transform. In: Proceedings of the International Symposium on Imaging Applications in Geology, pp. 5–8.
Lepisto, L., Kunttu, I., Autio, J., Visa, A., 2003. Classification of Non-homogeneous textures images combining classifiers. In: Proceedings of IEEE International Conference on Image Processing (ICIP 2003), 1, 981–984, Barcelona, Spain
Streckeisen (bib25) 1979; 7
Yesiloglu-Gultekin, Keceli, Sezer, Can, Gokceoglu, Bayhan (bib27) 2012; 46
Brodley, Utgoff (bib3) 1995; 19
Marschallinger (bib16) 1997; 23
Zhou, Starkey, Mansinha (bib28) 2004; 30
Singh, Singh, Tiwary, Sarkar (bib23) 2010; 14
Izadi, Sadri, Mehran (bib13) 2015; 81
Murthy, Kasif, Salzberg (bib21) 1994
Marmo, Amodio, Tagliaferri, Ferreri, Longo (bib15) 2005; 31
Thompson, Fueten, Bockus (bib26) 2001; 27
Dunlop (bib5) 2006
Hofmann, Marschallinger, Unterwurzacher, Zobl (bib12) 2013; 106
Marschallinger, Hofmann (bib17) 2010
Młynarczuk, Górszczyk, Ślipek (bib18) 2013; 60
Gama, Brazdil (bib7) 2000; 41
Streckeisen (bib24) 1976; 12
Choudhury, Meere, Mulchrone (bib4) 2006; 28
Ross, Fueten, Yashkir (bib22) 2001; 13
Choudhury (10.1016/j.cageo.2016.10.010_bib4) 2006; 28
Ross (10.1016/j.cageo.2016.10.010_bib22) 2001; 13
Hofmann (10.1016/j.cageo.2016.10.010_bib12) 2013; 106
Thompson (10.1016/j.cageo.2016.10.010_bib26) 2001; 27
Brodley (10.1016/j.cageo.2016.10.010_bib3) 1995; 19
Murthy (10.1016/j.cageo.2016.10.010_bib21) 1994
Gama (10.1016/j.cageo.2016.10.010_bib7) 2000; 41
Singh (10.1016/j.cageo.2016.10.010_bib23) 2010; 14
Młynarczuk (10.1016/j.cageo.2016.10.010_bib18) 2013; 60
Marmo (10.1016/j.cageo.2016.10.010_bib15) 2005; 31
Streckeisen (10.1016/j.cageo.2016.10.010_bib25) 1979; 7
Hagan (10.1016/j.cageo.2016.10.010_bib9) 1996
Marschallinger (10.1016/j.cageo.2016.10.010_bib17) 2010
Streckeisen (10.1016/j.cageo.2016.10.010_bib24) 1976; 12
Gonzalez (10.1016/j.cageo.2016.10.010_bib8) 2004
10.1016/j.cageo.2016.10.010_bib11
10.1016/j.cageo.2016.10.010_bib14
Zhou (10.1016/j.cageo.2016.10.010_bib28) 2004; 30
Marschallinger (10.1016/j.cageo.2016.10.010_bib16) 1997; 23
10.1016/j.cageo.2016.10.010_bib1
Dunlop (10.1016/j.cageo.2016.10.010_bib5) 2006
Yesiloglu-Gultekin (10.1016/j.cageo.2016.10.010_bib27) 2012; 46
Baykan (10.1016/j.cageo.2016.10.010_bib2) 2010; 36
MŁynarczuk (10.1016/j.cageo.2016.10.010_bib19) 2010; 47
Fueten (10.1016/j.cageo.2016.10.010_bib6) 1997; 23
Izadi (10.1016/j.cageo.2016.10.010_bib13) 2015; 81
Haralick (10.1016/j.cageo.2016.10.010_bib10) 1973; 6
Murthy (10.1016/j.cageo.2016.10.010_bib20) 1998; 2
References_xml – volume: 41
  start-page: 315
  year: 2000
  end-page: 343
  ident: bib7
  article-title: Cascade generalization
  publication-title: Mach. Learn.
– volume: 28
  start-page: 363
  year: 2006
  end-page: 375
  ident: bib4
  article-title: Automated grain boundary detection by CASRG
  publication-title: J. Struct. Geol.
– volume: 2
  start-page: 345
  year: 1998
  end-page: 389
  ident: bib20
  article-title: Automatic construction of decision trees from data: a multi-disciplinary survey
  publication-title: Data Min. Knowl. Discov.
– volume: 36
  start-page: 91
  year: 2010
  end-page: 97
  ident: bib2
  article-title: Mineral identification using color spaces and artificial neural networks
  publication-title: Comput. Geosci.
– volume: 106
  start-page: 73
  year: 2013
  end-page: 82
  ident: bib12
  article-title: Marble provenance designation with object based image analysis: state-of-the-art rock fabric characterization from petrographic micrographs
  publication-title: Austrian J. Earth Sci.
– volume: 6
  start-page: 610
  year: 1973
  end-page: 621
  ident: bib10
  article-title: Textural features for image classification
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 81
  start-page: 38
  year: 2015
  end-page: 52
  ident: bib13
  article-title: A new intelligent method for minerals segmentation in thin sections based on a novel incremental color clustering
  publication-title: Comput. Geosci.
– volume: 7
  start-page: 331
  year: 1979
  end-page: 335
  ident: bib25
  article-title: Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites, and melilitic rocks: recommendations and suggestions of the IUGS subcommission on the systematics of igneous rocks
  publication-title: Geology
– volume: 23
  start-page: 119
  year: 1997
  end-page: 126
  ident: bib16
  article-title: Automatic mineral classification in the macroscopic scale
  publication-title: Comput. Geosci.
– volume: 13
  start-page: 61
  year: 2001
  end-page: 69
  ident: bib22
  article-title: Automatic mineral identification using genetic programming
  publication-title: Mach. Vis. Appl.
– volume: 14
  start-page: 301
  year: 2010
  end-page: 310
  ident: bib23
  article-title: Textural identification of basaltic rock mass using image processing and neural network
  publication-title: Comput. Geosci.
– year: 2006
  ident: bib5
  publication-title: Automatic Rock Detection and Classification in Natural Scenes (Doctoral dissertation)
– start-page: 2
  year: 1996
  end-page: 14
  ident: bib9
  publication-title: Neural Network Design
– volume: 23
  start-page: 203
  year: 1997
  end-page: 208
  ident: bib6
  article-title: A computer-controlled rotating polarizer stage for the petrographic microscope
  publication-title: Comput. Geosci.
– reference: Autio, J., Luukkanen, S., Rantanen, L., Visa, A., 1999. The classification and characterisation of rock using texture analysis by co-occurrence matrices and the hough transform. In: Proceedings of the International Symposium on Imaging Applications in Geology, pp. 5–8.
– start-page: 1526
  year: 2010
  end-page: 1532
  ident: bib17
  article-title: The application of object based image analysis to petrographic micrographs
  publication-title: Microsc.: Sci. Technol. Appl. Educ.
– volume: 60
  start-page: 126
  year: 2013
  end-page: 133
  ident: bib18
  article-title: The application of pattern recognition in the automatic classification of microscopic rock images
  publication-title: Comput. Geosci.
– reference: Haykin, S., 1999. Neural Networks A Comprehensive Introduction.
– volume: 31
  start-page: 649
  year: 2005
  end-page: 659
  ident: bib15
  article-title: Textural identification of carbonate rocks by image processing and neural network: methodology proposal and examples
  publication-title: Comput. Geosci.
– year: 1994
  ident: bib21
  article-title: A system for induction of oblique decision trees
  publication-title: J. Artif. Intell. Res.
– volume: 19
  start-page: 45
  year: 1995
  end-page: 77
  ident: bib3
  article-title: Multivariate decision trees
  publication-title: Mach. Learn.
– volume: 27
  start-page: 1081
  year: 2001
  end-page: 1089
  ident: bib26
  article-title: Mineral identification using artificial neural networks and the rotating polarizer stage
  publication-title: Comput. Geosci.
– reference: Lepisto, L., Kunttu, I., Autio, J., Visa, A., 2003. Classification of Non-homogeneous textures images combining classifiers. In: Proceedings of IEEE International Conference on Image Processing (ICIP 2003), 1, 981–984, Barcelona, Spain
– volume: 47
  start-page: 138
  year: 2010
  end-page: 149
  ident: bib19
  article-title: Description and classification of rock surfaces by means of laser profilometry and mathematical morphology
  publication-title: Int. J. Rock. Mech. Min. Sci.
– year: 2004
  ident: bib8
  publication-title: Digital Image Processing Using MATLAB
– volume: 30
  start-page: 817
  year: 2004
  end-page: 831
  ident: bib28
  article-title: Segmentation of petrographic images by integrating edge detection and region growing
  publication-title: Comput. Geosci.
– volume: 12
  start-page: 1
  year: 1976
  end-page: 33
  ident: bib24
  article-title: To each plutonic rock its proper name
  publication-title: Earth Sci. Rev.
– volume: 46
  start-page: 310
  year: 2012
  end-page: 316
  ident: bib27
  article-title: A computer program (TSecSoft) to determine mineral percentages using photographs obtained from thin sections
  publication-title: Comput. Geosci.
– year: 2006
  ident: 10.1016/j.cageo.2016.10.010_bib5
– volume: 81
  start-page: 38
  year: 2015
  ident: 10.1016/j.cageo.2016.10.010_bib13
  article-title: A new intelligent method for minerals segmentation in thin sections based on a novel incremental color clustering
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2015.04.008
– volume: 12
  start-page: 1
  issue: 1
  year: 1976
  ident: 10.1016/j.cageo.2016.10.010_bib24
  article-title: To each plutonic rock its proper name
  publication-title: Earth Sci. Rev.
  doi: 10.1016/0012-8252(76)90052-0
– volume: 31
  start-page: 649
  issue: 5
  year: 2005
  ident: 10.1016/j.cageo.2016.10.010_bib15
  article-title: Textural identification of carbonate rocks by image processing and neural network: methodology proposal and examples
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2004.11.016
– volume: 27
  start-page: 1081
  issue: 9
  year: 2001
  ident: 10.1016/j.cageo.2016.10.010_bib26
  article-title: Mineral identification using artificial neural networks and the rotating polarizer stage
  publication-title: Comput. Geosci.
  doi: 10.1016/S0098-3004(00)00153-9
– volume: 19
  start-page: 45
  issue: 1
  year: 1995
  ident: 10.1016/j.cageo.2016.10.010_bib3
  article-title: Multivariate decision trees
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994660
– volume: 7
  start-page: 331
  issue: 7
  year: 1979
  ident: 10.1016/j.cageo.2016.10.010_bib25
  article-title: Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites, and melilitic rocks: recommendations and suggestions of the IUGS subcommission on the systematics of igneous rocks
  publication-title: Geology
  doi: 10.1130/0091-7613(1979)7<331:CANOVR>2.0.CO;2
– ident: 10.1016/j.cageo.2016.10.010_bib11
– volume: 46
  start-page: 310
  year: 2012
  ident: 10.1016/j.cageo.2016.10.010_bib27
  article-title: A computer program (TSecSoft) to determine mineral percentages using photographs obtained from thin sections
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2012.01.001
– volume: 106
  start-page: 73
  issue: 2
  year: 2013
  ident: 10.1016/j.cageo.2016.10.010_bib12
  article-title: Marble provenance designation with object based image analysis: state-of-the-art rock fabric characterization from petrographic micrographs
  publication-title: Austrian J. Earth Sci.
– ident: 10.1016/j.cageo.2016.10.010_bib14
  doi: 10.1109/ICIP.2003.1247129
– year: 2004
  ident: 10.1016/j.cageo.2016.10.010_bib8
– start-page: 1526
  year: 2010
  ident: 10.1016/j.cageo.2016.10.010_bib17
  article-title: The application of object based image analysis to petrographic micrographs
  publication-title: Microsc.: Sci. Technol. Appl. Educ.
– volume: 30
  start-page: 817
  issue: 8
  year: 2004
  ident: 10.1016/j.cageo.2016.10.010_bib28
  article-title: Segmentation of petrographic images by integrating edge detection and region growing
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2004.05.002
– volume: 60
  start-page: 126
  year: 2013
  ident: 10.1016/j.cageo.2016.10.010_bib18
  article-title: The application of pattern recognition in the automatic classification of microscopic rock images
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2013.07.015
– volume: 13
  start-page: 61
  issue: 2
  year: 2001
  ident: 10.1016/j.cageo.2016.10.010_bib22
  article-title: Automatic mineral identification using genetic programming
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/PL00013273
– volume: 28
  start-page: 363
  issue: 3
  year: 2006
  ident: 10.1016/j.cageo.2016.10.010_bib4
  article-title: Automated grain boundary detection by CASRG
  publication-title: J. Struct. Geol.
  doi: 10.1016/j.jsg.2005.12.010
– volume: 6
  start-page: 610
  year: 1973
  ident: 10.1016/j.cageo.2016.10.010_bib10
  article-title: Textural features for image classification
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1973.4309314
– volume: 2
  start-page: 345
  issue: 4
  year: 1998
  ident: 10.1016/j.cageo.2016.10.010_bib20
  article-title: Automatic construction of decision trees from data: a multi-disciplinary survey
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/A:1009744630224
– ident: 10.1016/j.cageo.2016.10.010_bib1
– volume: 41
  start-page: 315
  issue: 3
  year: 2000
  ident: 10.1016/j.cageo.2016.10.010_bib7
  article-title: Cascade generalization
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007652114878
– year: 1994
  ident: 10.1016/j.cageo.2016.10.010_bib21
  article-title: A system for induction of oblique decision trees
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.63
– volume: 47
  start-page: 138
  issue: 1
  year: 2010
  ident: 10.1016/j.cageo.2016.10.010_bib19
  article-title: Description and classification of rock surfaces by means of laser profilometry and mathematical morphology
  publication-title: Int. J. Rock. Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2009.09.004
– volume: 23
  start-page: 119
  issue: 1
  year: 1997
  ident: 10.1016/j.cageo.2016.10.010_bib16
  article-title: Automatic mineral classification in the macroscopic scale
  publication-title: Comput. Geosci.
  doi: 10.1016/S0098-3004(96)00074-X
– start-page: 2
  year: 1996
  ident: 10.1016/j.cageo.2016.10.010_bib9
– volume: 14
  start-page: 301
  issue: 2
  year: 2010
  ident: 10.1016/j.cageo.2016.10.010_bib23
  article-title: Textural identification of basaltic rock mass using image processing and neural network
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-009-9154-x
– volume: 36
  start-page: 91
  issue: 1
  year: 2010
  ident: 10.1016/j.cageo.2016.10.010_bib2
  article-title: Mineral identification using color spaces and artificial neural networks
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2009.04.009
– volume: 23
  start-page: 203
  issue: 2
  year: 1997
  ident: 10.1016/j.cageo.2016.10.010_bib6
  article-title: A computer-controlled rotating polarizer stage for the petrographic microscope
  publication-title: Comput. Geosci.
  doi: 10.1016/S0098-3004(97)85443-X
SSID ssj0002285
Score 2.495222
Snippet In this study, an intelligent system for mineral identification in thin sections is proposed based on RGB and HSI color spaces and texture features in plane...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 37
SubjectTerms algorithms
artificial intelligence
Artificial neural networks
Cascade classification
Cascades
Color
computers
Intelligent mineral identification
Minerals
neural networks
Planes
Polarized light
Surface layer
Texture
Texture and color features
Thin sections
Title An intelligent system for mineral identification in thin sections based on a cascade approach
URI https://dx.doi.org/10.1016/j.cageo.2016.10.010
https://www.proquest.com/docview/1859488758
https://www.proquest.com/docview/1879989450
https://www.proquest.com/docview/1933957905
https://www.proquest.com/docview/2053890841
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-7803
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002285
  issn: 0098-3004
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-7803
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002285
  issn: 0098-3004
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-7803
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002285
  issn: 0098-3004
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-7803
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002285
  issn: 0098-3004
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-7803
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002285
  issn: 0098-3004
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS-UwEA6iCHuRdVV0f0gEj1bbNEmT40PUtyt6UvAiZZo0WHGr7KuHvfi3O5O2irL7Dl4KTSelnUkmE_LNN4ztSgtOFBUkkJoqkUK4xFQyS5S3yngpK11TvvPZuZ5eyl9X6mqBHY65MASrHHx_79Ojtx5aDgZtHjw0DeX4WhP5ojSO2SISSkpZUBWD_adXmIcQRo28mSQ9Mg9FjJfDOUsZgJneJ4gXpdH-e3V656fj4nP8ma0MUSOf9B-2yhbq9gtbPolVef-usetJy5sXbs2O9_TMHONR_ruJtNK88QMsKFoCpXl3g5dZRGK1M06rmef4BLiDGYHm-Ug3vs4uj48uDqfJUDchAalMlwgbcJvmbAq68oUXAJpo44pcOQiZKkSAKg110N7lqgg4a1GReW4hS00NIeQbbLG9b-tNxkEr68AoXVsgJjaQHuPLrJLaZcFLu8XEqK_SDaTiVNvirhzRY7dlVHJJSqZGVPIW23vp9NBzaswX16MhyjdDo0SvP7_jzmi2EicNnYRAW98_zkoMUix6LtwrzZMpLLHTq3nvsXk850zV_2UEujljUyOzrx_9kW_sE96JHvr2nS12fx7rHxgLddV2HOzbbGny83R6_gwTpAjW
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqIkQvFR9FXT6N1CNpE8d27GNVsSyw7amVekHWxI5FKsiu2PTQC7-dGW_SClT2wCUHZxzFY_t5LL95ZuxAWvCiqiGD3NSZFMJnppZFpoJVJkhZ64bynU_P9OxCfr5Ul1vsZMyFIVrlgP1rTE9oPZQcDd48WrYt5fhak_SiNI7ZigQlH0glKtqBHf6643kIYdQonEnmo_RQInl5nLSUAljoQ-J4UR7t_cvTX0CdVp_pY7Y7hI38eP1nT9hW0z1lDz-ma3lvnrGvxx1vb8U1e77WZ-YYkPIfbdKV5m0YeEGpK9Ca99_wsUpUrG7FaTkLHN8A97Ai1jwf9cb32MX0w_nJLBsuTshAKtNnwkbcp3mbg65DFQSAJt24qlQeYqEqEaHOYxN18KWqIk5b9GRZWihy00CM5XO23S26Zp9x0Mp6MEo3FkiKDWTAALOopfZFDNJOmBj95fygKk6XW3x3I33syiUnO3IyFaKTJ-z9baXlWlRjs7keO8L9MTYcwv7miu_GbnM4a-goBLpmcb1yGKVYhC7cLG2yqSzJ06tN37FlOujM1b9tBOKcsbmRxYv_bchb9mh2fjp3809nX16yHUGhRWKOv2Lb_c_r5jUGRn39Jg383xxECm8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+intelligent+system+for+mineral+identification+in+thin+sections+based+on+a+cascade+approach&rft.jtitle=Computers+%26+geosciences&rft.au=Izadi%2C+Hossein&rft.au=Sadri%2C+Javad&rft.au=Bayati%2C+Mahdokht&rft.date=2017-02-01&rft.issn=0098-3004&rft.volume=99&rft.spage=37&rft.epage=49&rft_id=info:doi/10.1016%2Fj.cageo.2016.10.010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3004&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3004&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3004&client=summon