Improving hydrological simulation in the Upper Mississippi River Basin through enhanced freeze-thaw cycle representation

•Freeze-thaw cycle representation is often simplified in watershed modeling.•A physically based method outperforms the empirical approach for the freeze-thaw cycle.•Modeled hydrologic variables are sensitive to different schemes.•Streamflow simulation is much improved with the physically based repre...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydrology (Amsterdam) Vol. 571; pp. 605 - 618
Main Authors Qi, Junyu, Zhang, Xuesong, Wang, Qianfeng
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2019
Subjects
Online AccessGet full text
ISSN0022-1694
1879-2707
DOI10.1016/j.jhydrol.2019.02.020

Cover

Abstract •Freeze-thaw cycle representation is often simplified in watershed modeling.•A physically based method outperforms the empirical approach for the freeze-thaw cycle.•Modeled hydrologic variables are sensitive to different schemes.•Streamflow simulation is much improved with the physically based representation. Freeze-thaw cycles are important processes relevant to terrestrial hydrological cycling. However, the representation of freeze-thaw cycles has been often simplified in large scale watershed models. The Soil and Water Assessment Tool (SWAT), which has been widely used to understand and assess hydrologic budgets and water resources management, employs a simplified empirical approach to estimate soil temperature and determine the freezing and thawing status of soils. Here, we compared the performance of a physically-based soil temperature module and the built-in empirical approach in SWAT against field measurements at surface and 5, 10, 20, 50, and 100 cm depths at six stations of the U.S. Climate Reference Network (USCRN) within the Upper Mississippi River Basin (UMRB). In general, SWAT consistently underestimated winter soil temperatures and overestimated frozen days at all soil depths, while the modified version of SWAT (equipped with the physically-based soil temperature model; referred to as TSWAT) pronouncedly reduced the bias in estimated winter soil temperatures and frozen days compared with SWAT. Model performance assessment is conducted with three statistical coefficients, i.e., Bias (°C), the coefficient of determination (R2), and Nash-Sutcliffe coefficient (NS). Statistical analyses show that TSWAT accurately simulated surface and soil temperatures at the five depths with R2 and NS values greater than 0.82 at most sites, and Bias values were generally within the range of −1 to 1 °C during winter and ranged between −2.09 and 2.58 °C in non-winter seasons. The differences in freeze-thaw cycle representation between SWAT and TSWAT translate into noticeable discrepancies in simulated key hydrologic variables, such as surface runoff, percolation, and baseflow. Compared against long-term observed streamflow (1980–2015), TSWAT outperformed SWAT in capturing variations in monthly streamflow in both winter and non-winter seasons. These results and analyses highlight the value of improving freeze-thaw cycle representation for enhanced hydrologic modeling in large watersheds that are subject to freeze-thaw cycles.
AbstractList •Freeze-thaw cycle representation is often simplified in watershed modeling.•A physically based method outperforms the empirical approach for the freeze-thaw cycle.•Modeled hydrologic variables are sensitive to different schemes.•Streamflow simulation is much improved with the physically based representation. Freeze-thaw cycles are important processes relevant to terrestrial hydrological cycling. However, the representation of freeze-thaw cycles has been often simplified in large scale watershed models. The Soil and Water Assessment Tool (SWAT), which has been widely used to understand and assess hydrologic budgets and water resources management, employs a simplified empirical approach to estimate soil temperature and determine the freezing and thawing status of soils. Here, we compared the performance of a physically-based soil temperature module and the built-in empirical approach in SWAT against field measurements at surface and 5, 10, 20, 50, and 100 cm depths at six stations of the U.S. Climate Reference Network (USCRN) within the Upper Mississippi River Basin (UMRB). In general, SWAT consistently underestimated winter soil temperatures and overestimated frozen days at all soil depths, while the modified version of SWAT (equipped with the physically-based soil temperature model; referred to as TSWAT) pronouncedly reduced the bias in estimated winter soil temperatures and frozen days compared with SWAT. Model performance assessment is conducted with three statistical coefficients, i.e., Bias (°C), the coefficient of determination (R2), and Nash-Sutcliffe coefficient (NS). Statistical analyses show that TSWAT accurately simulated surface and soil temperatures at the five depths with R2 and NS values greater than 0.82 at most sites, and Bias values were generally within the range of −1 to 1 °C during winter and ranged between −2.09 and 2.58 °C in non-winter seasons. The differences in freeze-thaw cycle representation between SWAT and TSWAT translate into noticeable discrepancies in simulated key hydrologic variables, such as surface runoff, percolation, and baseflow. Compared against long-term observed streamflow (1980–2015), TSWAT outperformed SWAT in capturing variations in monthly streamflow in both winter and non-winter seasons. These results and analyses highlight the value of improving freeze-thaw cycle representation for enhanced hydrologic modeling in large watersheds that are subject to freeze-thaw cycles.
Freeze-thaw cycles are important processes relevant to terrestrial hydrological cycling. However, the representation of freeze-thaw cycles has been often simplified in large scale watershed models. The Soil and Water Assessment Tool (SWAT), which has been widely used to understand and assess hydrologic budgets and water resources management, employs a simplified empirical approach to estimate soil temperature and determine the freezing and thawing status of soils. Here, we compared the performance of a physically-based soil temperature module and the built-in empirical approach in SWAT against field measurements at surface and 5, 10, 20, 50, and 100 cm depths at six stations of the U.S. Climate Reference Network (USCRN) within the Upper Mississippi River Basin (UMRB). In general, SWAT consistently underestimated winter soil temperatures and overestimated frozen days at all soil depths, while the modified version of SWAT (equipped with the physically-based soil temperature model; referred to as TSWAT) pronouncedly reduced the bias in estimated winter soil temperatures and frozen days compared with SWAT. Model performance assessment is conducted with three statistical coefficients, i.e., Bias (°C), the coefficient of determination (R2), and Nash-Sutcliffe coefficient (NS). Statistical analyses show that TSWAT accurately simulated surface and soil temperatures at the five depths with R2 and NS values greater than 0.82 at most sites, and Bias values were generally within the range of −1 to 1 °C during winter and ranged between −2.09 and 2.58 °C in non-winter seasons. The differences in freeze-thaw cycle representation between SWAT and TSWAT translate into noticeable discrepancies in simulated key hydrologic variables, such as surface runoff, percolation, and baseflow. Compared against long-term observed streamflow (1980–2015), TSWAT outperformed SWAT in capturing variations in monthly streamflow in both winter and non-winter seasons. These results and analyses highlight the value of improving freeze-thaw cycle representation for enhanced hydrologic modeling in large watersheds that are subject to freeze-thaw cycles.
Author Zhang, Xuesong
Wang, Qianfeng
Qi, Junyu
Author_xml – sequence: 1
  givenname: Junyu
  orcidid: 0000-0001-5316-4226
  surname: Qi
  fullname: Qi, Junyu
  organization: Earth System Science Interdisciplinary Center, University of Maryland, College Park, 5825 University Research Ct, College Park, MD 20740, USA
– sequence: 2
  givenname: Xuesong
  orcidid: 0000-0003-4711-7751
  surname: Zhang
  fullname: Zhang, Xuesong
  email: xzhang14@umd.edu, Xuesong.zhang@pnnl.gov
  organization: Earth System Science Interdisciplinary Center, University of Maryland, College Park, 5825 University Research Ct, College Park, MD 20740, USA
– sequence: 3
  givenname: Qianfeng
  orcidid: 0000-0002-8460-6821
  surname: Wang
  fullname: Wang, Qianfeng
  organization: College of Environment and Resources, Fuzhou University, Fuzhou, Fujian 350116, China
BookMark eNqFkF1LwzAYhYNMcE5_gpBLbzqT9CMtXoiKH4OJIO46ZOnbNaNLatJN5683Xb3yxnAgEM454TynaGSsAYQuKJlSQrOr9XRd70tnmykjtJgSFkSO0JjmvIgYJ3yExoQwFtGsSE7QqfdrEk4cJ2P0Ndu0zu60WeGhw660kg32erNtZKetwdrgrga8aFtw-EV736ttNX7Tu_ByJ_3B4ex2VWMwtTQKSlw5gG-Iulp-YrVXDWAHrQMPpjvUnqHjSjYezn_vCVo8PrzfP0fz16fZ_e08kkmadxFNJSUKslRWKkxZyjxTkMQpLYpSlRQKwqslI5LlnBdSJVmaUxJ8RUkrHisST9Dl0BtmfmzBd2KjvYKmkQbs1gvGYp7GPKM8WNPBqpz13kElWqc30u0FJaInLdbil7ToSQvCgvovrv_klB5Gdk7q5t_0zZCGQGGnwQmvNPQMtQPVidLqfxp-AP2-ovI
CitedBy_id crossref_primary_10_1016_j_ejrh_2022_101137
crossref_primary_10_1016_j_jhydrol_2023_129772
crossref_primary_10_1016_j_jhydrol_2021_126983
crossref_primary_10_3389_feart_2022_875145
crossref_primary_10_1016_j_jhydrol_2023_129312
crossref_primary_10_1007_s12665_023_11153_1
crossref_primary_10_3390_w13040422
crossref_primary_10_3390_su141710804
crossref_primary_10_1007_s11368_020_02632_0
crossref_primary_10_3390_w11050960
crossref_primary_10_3390_w12030878
crossref_primary_10_1016_j_wace_2022_100412
crossref_primary_10_1029_2024WR037218
crossref_primary_10_1080_20964471_2022_2148331
crossref_primary_10_3390_w14142185
crossref_primary_10_1016_j_advwatres_2019_103380
crossref_primary_10_1016_j_jhydrol_2021_126891
crossref_primary_10_1016_j_catena_2020_104767
crossref_primary_10_1080_00380768_2024_2328201
crossref_primary_10_1016_j_jenvman_2024_123104
crossref_primary_10_1021_acs_est_1c02692
crossref_primary_10_1016_j_ejrh_2023_101521
crossref_primary_10_3390_su15075907
crossref_primary_10_1186_s13021_020_00148_1
crossref_primary_10_1016_j_watres_2020_116355
crossref_primary_10_1016_j_scitotenv_2020_137562
crossref_primary_10_1029_2024WR038318
crossref_primary_10_3390_agriculture13112102
crossref_primary_10_1016_j_jhydrol_2022_128978
crossref_primary_10_1016_j_agwat_2022_107680
Cites_doi 10.1016/j.earscirev.2016.10.004
10.1007/BF01182847
10.1086/mre.20.2.42629465
10.2136/sssaj1966.03615995003000040011x
10.1016/j.jhydrol.2011.02.019
10.1016/j.jhydrol.2014.09.023
10.1007/s11269-016-1466-8
10.13031/2013.23637
10.1016/j.jenvman.2012.10.028
10.1016/S0022-1694(02)00287-1
10.3189/S0022143000002781
10.1016/j.jhydrol.2016.03.034
10.1029/1999JD900337
10.1016/j.jhydrol.2016.05.003
10.13031/2013.23153
10.1111/j.1752-1688.1998.tb05961.x
10.1139/x93-313
10.1002/hyp.11073
10.5194/hess-22-3789-2018
10.1021/es5049557
10.1029/WR009i005p01314
10.1016/j.envsoft.2018.08.024
10.1029/2004GL019475
10.1029/97JD03630
10.1016/j.jhydrol.2018.06.024
10.1002/(SICI)1099-1085(199909)13:12/13<1843::AID-HYP879>3.0.CO;2-G
10.1016/j.jhydrol.2009.06.046
10.1023/A:1013039830323
10.1016/j.agee.2014.06.028
10.1111/j.1752-1688.2004.tb04460.x
10.1029/2004RG000157
10.1029/2011JD016048
10.1016/S0022-1694(02)00029-X
10.1016/j.envsoft.2017.03.007
10.21236/ADA044002
10.1175/1525-7541(2003)4<334:EOFSOS>2.0.CO;2
10.1016/S0022-1694(97)00028-0
10.1016/S0022-1694(99)00139-0
10.1002/joc.3370110202
10.1016/j.jhydrol.2009.09.021
10.13031/2013.34903
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2019.02.020
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
EndPage 618
ExternalDocumentID 10_1016_j_jhydrol_2019_02_020
S0022169419301775
GeographicLocations United States
Mississippi River
GeographicLocations_xml – name: Mississippi River
– name: United States
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-a458t-15a10ce65afc270ba86ce435199dcd1e907fb20a28779ac46581070b9d1f73c03
IEDL.DBID .~1
ISSN 0022-1694
IngestDate Sun Sep 28 11:56:13 EDT 2025
Thu Apr 24 23:02:34 EDT 2025
Wed Oct 01 05:16:33 EDT 2025
Fri Feb 23 02:33:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords SWAT
Streamflow
Soil temperature
Freeze-thaw cycles
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a458t-15a10ce65afc270ba86ce435199dcd1e907fb20a28779ac46581070b9d1f73c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5316-4226
0000-0003-4711-7751
0000-0002-8460-6821
PQID 2237537617
PQPubID 24069
PageCount 14
ParticipantIDs proquest_miscellaneous_2237537617
crossref_primary_10_1016_j_jhydrol_2019_02_020
crossref_citationtrail_10_1016_j_jhydrol_2019_02_020
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2019_02_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2019
2019-04-00
20190401
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: April 2019
PublicationDecade 2010
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cary (b0020) 1966; 30
Jonas, Marty, Magnusson (b0080) 2009; 378
Yuan, Locke, Bingner, Rebich (b0225) 2013; 115
Harlan (b0050) 1973; 9
Zhao, Gray, Male (b0240) 1997; 200
Williams, P.J., Smith, M.W., 1991. The frozen earth.
Cheng (b0025) 2014; 519
Bélanger, J.A., 2009. Modelling soil temperature on the boreal plain with an emphasis on the rapid cooling period. Master Thesis Thesis, Lakehead University.
Iwata (b0065) 2011; 401
Moriasi (b0110) 2007; 50
Hayashi, van der Kamp, Schmidt (b0055) 2003; 270
Neitsch, Williams, Arnold, Kiniry (b0115) 2011
Wellen, Kamran-Disfani, Arhonditsis (b0195) 2015; 49
Zhang, Li, Qi, Xing, Meng (b0230) 2017; 31
Sturm, Holmgren, König, Morris (b0180) 1997; 43
Zheng (b0245) 2018; 563
Mitchell (b0105) 2004; 109
Arnold, Muttiah, Srinivasan, Allen (b0005) 2000; 227
Qi (b0145) 2018; 109
Qi (b0135) 2016; 30
Qi (b0130) 2017; 93
Riseborough, D., 1990. Soil latent heat as a filter of the climate signal in permafrost. Proceedings of the Fifth Canadian Permafrost Conference, Collect. Nordicana. Citeseer, pp. 199–205.
Solomon (b0165) 2007
Steppuhn, H., 1981. Snow and agriculture. Handbook of snow, principles, processes, management and use. Pergamon, Toronto, pp. 60–126.
Verseghy (b0185) 1991; 11
Srinivasan, Zhang, Arnold (b0170) 2010; 53
Xia, Y., et al., 2012. Continental‐scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS‐2): 1. Intercomparison and application of model products. J. Geophys. Res.: Atmos., 117(D3).
Cherkauer, Lettenmaier (b0030) 1999; 104
Slater, Pitman, Desborough (b0160) 1998; 103
Groffman (b0045) 2001; 56
Li, Fang (b0090) 2016; 163
Wu, Tanaka (b0210) 2005; 20
Fontaine, Cruickshank, Arnold, Hotchkiss (b0035) 2002; 262
Shanley, Chalmers (b0155) 1999; 13
Woo, Arain, Mollinga, Yi (b0205) 2004; 31
Yin, Arp (b0220) 1993; 23
Jha, Gassman, Secchi, Gu, Arnold (b0070) 2004; 40
Wang, Hu, Li (b0190) 2009; 375
Ouyang, Liu, Wu (b0120) 2016; 537
Hillel (b0060) 1980
Johansen, O., 1975. Thermal conductivity of soils. Ph.D. Thesis, Trondheim, Norway (CRREL Draft Translation 637, 1977) ADA 044002.
Arnold, Srinivasan, Muttiah, Williams (b0010) 1998; 34
Qi, Li, Bourque, Xing, Fan-Rui (b0125) 2018; 22
Qi (b0140) 2016; 538
Li (b0085) 2014; 196
Gassman, Reyes, Green, Arnold (b0040) 2007; 50
Meng, Bourque, Jewett, Daugharty, Arp (b0100) 1995; 82
Zhang (b0235) 2005; 43
Luo (b0095) 2003; 4
Zhao (10.1016/j.jhydrol.2019.02.020_b0240) 1997; 200
Wellen (10.1016/j.jhydrol.2019.02.020_b0195) 2015; 49
Jonas (10.1016/j.jhydrol.2019.02.020_b0080) 2009; 378
Fontaine (10.1016/j.jhydrol.2019.02.020_b0035) 2002; 262
Arnold (10.1016/j.jhydrol.2019.02.020_b0005) 2000; 227
Zheng (10.1016/j.jhydrol.2019.02.020_b0245) 2018; 563
Arnold (10.1016/j.jhydrol.2019.02.020_b0010) 1998; 34
Gassman (10.1016/j.jhydrol.2019.02.020_b0040) 2007; 50
10.1016/j.jhydrol.2019.02.020_b0200
Zhang (10.1016/j.jhydrol.2019.02.020_b0230) 2017; 31
Qi (10.1016/j.jhydrol.2019.02.020_b0125) 2018; 22
Qi (10.1016/j.jhydrol.2019.02.020_b0145) 2018; 109
Li (10.1016/j.jhydrol.2019.02.020_b0085) 2014; 196
Srinivasan (10.1016/j.jhydrol.2019.02.020_b0170) 2010; 53
Yuan (10.1016/j.jhydrol.2019.02.020_b0225) 2013; 115
Qi (10.1016/j.jhydrol.2019.02.020_b0135) 2016; 30
Harlan (10.1016/j.jhydrol.2019.02.020_b0050) 1973; 9
Zhang (10.1016/j.jhydrol.2019.02.020_b0235) 2005; 43
Li (10.1016/j.jhydrol.2019.02.020_b0090) 2016; 163
Qi (10.1016/j.jhydrol.2019.02.020_b0140) 2016; 538
10.1016/j.jhydrol.2019.02.020_b0215
10.1016/j.jhydrol.2019.02.020_b0015
10.1016/j.jhydrol.2019.02.020_b0175
Qi (10.1016/j.jhydrol.2019.02.020_b0130) 2017; 93
Ouyang (10.1016/j.jhydrol.2019.02.020_b0120) 2016; 537
Moriasi (10.1016/j.jhydrol.2019.02.020_b0110) 2007; 50
Neitsch (10.1016/j.jhydrol.2019.02.020_b0115) 2011
Shanley (10.1016/j.jhydrol.2019.02.020_b0155) 1999; 13
Yin (10.1016/j.jhydrol.2019.02.020_b0220) 1993; 23
Groffman (10.1016/j.jhydrol.2019.02.020_b0045) 2001; 56
Hayashi (10.1016/j.jhydrol.2019.02.020_b0055) 2003; 270
Verseghy (10.1016/j.jhydrol.2019.02.020_b0185) 1991; 11
Iwata (10.1016/j.jhydrol.2019.02.020_b0065) 2011; 401
Sturm (10.1016/j.jhydrol.2019.02.020_b0180) 1997; 43
Slater (10.1016/j.jhydrol.2019.02.020_b0160) 1998; 103
Luo (10.1016/j.jhydrol.2019.02.020_b0095) 2003; 4
Cary (10.1016/j.jhydrol.2019.02.020_b0020) 1966; 30
Woo (10.1016/j.jhydrol.2019.02.020_b0205) 2004; 31
Hillel (10.1016/j.jhydrol.2019.02.020_b0060) 1980
Cherkauer (10.1016/j.jhydrol.2019.02.020_b0030) 1999; 104
Cheng (10.1016/j.jhydrol.2019.02.020_b0025) 2014; 519
Solomon (10.1016/j.jhydrol.2019.02.020_b0165) 2007
Meng (10.1016/j.jhydrol.2019.02.020_b0100) 1995; 82
Wang (10.1016/j.jhydrol.2019.02.020_b0190) 2009; 375
Wu (10.1016/j.jhydrol.2019.02.020_b0210) 2005; 20
Jha (10.1016/j.jhydrol.2019.02.020_b0070) 2004; 40
10.1016/j.jhydrol.2019.02.020_b0075
Mitchell (10.1016/j.jhydrol.2019.02.020_b0105) 2004; 109
10.1016/j.jhydrol.2019.02.020_b0150
References_xml – volume: 56
  start-page: 135
  year: 2001
  end-page: 150
  ident: b0045
  article-title: Colder soils in a warmer world: a snow manipulation study in a northern hardwood forest ecosystem
  publication-title: Biogeochemistry
– volume: 93
  start-page: 146
  year: 2017
  end-page: 160
  ident: b0130
  article-title: Modifying SWAT with an energy balance module to simulate snowmelt for maritime regions
  publication-title: Environ. Modell. Software
– volume: 50
  start-page: 1211
  year: 2007
  end-page: 1250
  ident: b0040
  article-title: The soil and water assessment tool: historical development, applications, and future research directions
  publication-title: Trans. ASABE
– volume: 196
  start-page: 114
  year: 2014
  end-page: 124
  ident: b0085
  article-title: An approach for assessing impact of land use and biophysical conditions across landscape on recharge rate and nitrogen loading of groundwater
  publication-title: Agric. Ecosyst. Environ.
– volume: 13
  start-page: 1843
  year: 1999
  end-page: 1857
  ident: b0155
  article-title: The effect of frozen soil on snowmelt runoff at Sleepers River, Vermont
  publication-title: Hydrol. Process.
– volume: 378
  start-page: 161
  year: 2009
  end-page: 167
  ident: b0080
  article-title: Estimating the snow water equivalent from snow depth measurements in the Swiss Alps
  publication-title: J. Hydrol.
– reference: Steppuhn, H., 1981. Snow and agriculture. Handbook of snow, principles, processes, management and use. Pergamon, Toronto, pp. 60–126.
– volume: 9
  start-page: 1314
  year: 1973
  end-page: 1323
  ident: b0050
  article-title: Analysis of coupled heat-fluid transport in partially frozen soil
  publication-title: Water Resour. Res.
– volume: 49
  start-page: 3278
  year: 2015
  end-page: 3290
  ident: b0195
  article-title: Evaluation of the current state of distributed watershed nutrient water quality modeling
  publication-title: Environ. Sci. Technol.
– volume: 53
  start-page: 1533
  year: 2010
  end-page: 1546
  ident: b0170
  article-title: SWAT ungauged: hydrological budget and crop yield predictions in the Upper Mississippi River Basin
  publication-title: Trans. ASABE
– year: 1980
  ident: b0060
  article-title: Fundamentals of Soil Physics
– volume: 82
  start-page: 363
  year: 1995
  end-page: 374
  ident: b0100
  article-title: The Nashwaak experimental watershed project: analysing effects of clearcutting on soil temperature, soil moisture, snowpack, snowmelt and stream flow
  publication-title: Water Air Soil Pollut.
– year: 2007
  ident: b0165
  article-title: Climate Change 2007-The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC, 4
– volume: 200
  start-page: 345
  year: 1997
  end-page: 363
  ident: b0240
  article-title: Numerical analysis of simultaneous heat and mass transfer during infiltration into frozen ground
  publication-title: J. Hydrol.
– volume: 563
  start-page: 382
  year: 2018
  end-page: 394
  ident: b0245
  article-title: Impact of soil freeze-thaw mechanism on the runoff dynamics of two Tibetan rivers
  publication-title: J. Hydrol.
– volume: 270
  start-page: 214
  year: 2003
  end-page: 229
  ident: b0055
  article-title: Focused infiltration of snowmelt water in partially frozen soil under small depressions
  publication-title: J. Hydrol.
– volume: 22
  start-page: 3789
  year: 2018
  end-page: 3806
  ident: b0125
  article-title: Developing a decision support tool for assessing land use change and BMPs in ungauged watersheds based on decision rules provided by SWAT simulation
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 109
  year: 2004
  ident: b0105
  article-title: The multi-institution North American Land Data Assimilation System (NLDAS): utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system
  publication-title: J. Geophys. Res.: Atmos.
– volume: 31
  start-page: 916
  year: 2017
  end-page: 924
  ident: b0230
  article-title: Assessing impacts of riparian buffer zones on sediment and nutrient loadings into streams at watershed scale using an integrated REMM-SWAT model
  publication-title: Hydrol. Process.
– volume: 163
  start-page: 94
  year: 2016
  end-page: 117
  ident: b0090
  article-title: Impacts of climate change on water erosion: a review
  publication-title: Earth Sci. Rev.
– volume: 401
  start-page: 165
  year: 2011
  end-page: 176
  ident: b0065
  article-title: Influence of rain, air temperature, and snow cover on subsequent spring-snowmelt infiltration into thin frozen soil layer in northern Japan
  publication-title: J. Hydrol.
– volume: 40
  start-page: 811
  year: 2004
  end-page: 825
  ident: b0070
  article-title: Effect of watershed subdivision on swat flow, sediment, and nutrient predictions
  publication-title: JAWRA J. Am. Water Resour. Assoc.
– volume: 4
  start-page: 334
  year: 2003
  end-page: 351
  ident: b0095
  article-title: Effects of frozen soil on soil temperature, spring infiltration, and runoff: results from the PILPS 2 (d) experiment at Valdai, Russia
  publication-title: J. Hydrometeorol.
– reference: Johansen, O., 1975. Thermal conductivity of soils. Ph.D. Thesis, Trondheim, Norway (CRREL Draft Translation 637, 1977) ADA 044002.
– volume: 31
  year: 2004
  ident: b0205
  article-title: A two-directional freeze and thaw algorithm for hydrologic and land surface modelling
  publication-title: Geophys. Res. Lett.
– volume: 50
  start-page: 885
  year: 2007
  end-page: 900
  ident: b0110
  article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations
  publication-title: Trans. ASABE
– reference: Xia, Y., et al., 2012. Continental‐scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS‐2): 1. Intercomparison and application of model products. J. Geophys. Res.: Atmos., 117(D3).
– volume: 115
  start-page: 14
  year: 2013
  end-page: 20
  ident: b0225
  article-title: Phosphorus losses from agricultural watersheds in the Mississippi Delta
  publication-title: J. Environ. Manage.
– volume: 227
  start-page: 21
  year: 2000
  end-page: 40
  ident: b0005
  article-title: Regional estimation of base flow and groundwater recharge in the Upper Mississippi river basin
  publication-title: J. Hydrol.
– volume: 537
  start-page: 96
  year: 2016
  end-page: 105
  ident: b0120
  article-title: Satellite-based estimation of watershed groundwater storage dynamics in a freeze–thaw area under intensive agricultural development
  publication-title: J. Hydrol.
– volume: 30
  start-page: 5021
  year: 2016
  end-page: 5037
  ident: b0135
  article-title: Assessing an enhanced version of SWAT on water quantity and quality simulation in regions with seasonal snow cover
  publication-title: Water Resour. Manage.
– volume: 23
  start-page: 2521
  year: 1993
  end-page: 2536
  ident: b0220
  article-title: Predicting forest soil temperatures from monthly air temperature and precipitation records
  publication-title: Can. J. For. Res.
– volume: 43
  start-page: 26
  year: 1997
  end-page: 41
  ident: b0180
  article-title: The thermal conductivity of seasonal snow
  publication-title: J. Glaciol.
– volume: 519
  start-page: 1466
  year: 2014
  end-page: 1473
  ident: b0025
  article-title: In situ measured and simulated seasonal freeze–thaw cycle: a 2-year comparative study between layered and homogeneous field soil profiles
  publication-title: J. Hydrol.
– volume: 11
  start-page: 111
  year: 1991
  end-page: 133
  ident: b0185
  article-title: CLASS—a Canadian land surface scheme for GCMs. I. Soil model
  publication-title: Int. J. Climatol.
– volume: 538
  start-page: 863
  year: 2016
  end-page: 877
  ident: b0140
  article-title: A new soil-temperature module for SWAT application in regions with seasonal snow cover
  publication-title: J. Hydrol.
– volume: 262
  start-page: 209
  year: 2002
  end-page: 223
  ident: b0035
  article-title: Development of a snowfall–snowmelt routine for mountainous terrain for the soil water assessment tool (SWAT)
  publication-title: J. Hydrol.
– year: 2011
  ident: b0115
  article-title: Soil and Water Assessment Tool Theoretical Documentation Version 2009
– reference: Williams, P.J., Smith, M.W., 1991. The frozen earth.
– reference: Bélanger, J.A., 2009. Modelling soil temperature on the boreal plain with an emphasis on the rapid cooling period. Master Thesis Thesis, Lakehead University.
– volume: 109
  start-page: 329
  year: 2018
  end-page: 341
  ident: b0145
  article-title: Assessing the performance of a physically-based soil moisture module integrated within the Soil and Water Assessment Tool
  publication-title: Environ. Modell. Software
– volume: 30
  start-page: 428
  year: 1966
  end-page: 433
  ident: b0020
  article-title: Soil moisture transport due to thermal gradients: practical aspects 1
  publication-title: Soil Sci. Soc. Am. J.
– reference: Riseborough, D., 1990. Soil latent heat as a filter of the climate signal in permafrost. Proceedings of the Fifth Canadian Permafrost Conference, Collect. Nordicana. Citeseer, pp. 199–205.
– volume: 103
  start-page: 11303
  year: 1998
  end-page: 11312
  ident: b0160
  article-title: Simulation of freeze-thaw cycles in a general circulation model land surface scheme
  publication-title: J. Geophys. Res.: Atmos.
– volume: 43
  year: 2005
  ident: b0235
  article-title: Influence of the seasonal snow cover on the ground thermal regime: an overview
  publication-title: Rev. Geophys.
– volume: 34
  start-page: 73
  year: 1998
  end-page: 89
  ident: b0010
  article-title: Large area hydrologic modeling and assessment part I: Model development
  publication-title: JAWRA J. Am. Water Resour. Assoc.
– volume: 375
  start-page: 438
  year: 2009
  end-page: 449
  ident: b0190
  article-title: The influence of freeze–thaw cycles of active soil layer on surface runoff in a permafrost watershed
  publication-title: J. Hydrol.
– volume: 104
  start-page: 19599
  year: 1999
  end-page: 19610
  ident: b0030
  article-title: Hydrologic effects of frozen soils in the upper Mississippi River basin
  publication-title: J. Geophys. Res.: Atmos.
– volume: 20
  start-page: 121
  year: 2005
  end-page: 144
  ident: b0210
  article-title: Reducing nitrogen runoff from the upper Mississippi River basin to control hypoxia in the Gulf of Mexico: easements or taxes?
  publication-title: Mar. Resour. Econ.
– ident: 10.1016/j.jhydrol.2019.02.020_b0200
– volume: 163
  start-page: 94
  year: 2016
  ident: 10.1016/j.jhydrol.2019.02.020_b0090
  article-title: Impacts of climate change on water erosion: a review
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2016.10.004
– volume: 82
  start-page: 363
  issue: 1–2
  year: 1995
  ident: 10.1016/j.jhydrol.2019.02.020_b0100
  article-title: The Nashwaak experimental watershed project: analysing effects of clearcutting on soil temperature, soil moisture, snowpack, snowmelt and stream flow
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/BF01182847
– volume: 109
  issue: D7
  year: 2004
  ident: 10.1016/j.jhydrol.2019.02.020_b0105
  article-title: The multi-institution North American Land Data Assimilation System (NLDAS): utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system
  publication-title: J. Geophys. Res.: Atmos.
– volume: 20
  start-page: 121
  issue: 2
  year: 2005
  ident: 10.1016/j.jhydrol.2019.02.020_b0210
  article-title: Reducing nitrogen runoff from the upper Mississippi River basin to control hypoxia in the Gulf of Mexico: easements or taxes?
  publication-title: Mar. Resour. Econ.
  doi: 10.1086/mre.20.2.42629465
– volume: 30
  start-page: 428
  issue: 4
  year: 1966
  ident: 10.1016/j.jhydrol.2019.02.020_b0020
  article-title: Soil moisture transport due to thermal gradients: practical aspects 1
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1966.03615995003000040011x
– volume: 401
  start-page: 165
  issue: 3–4
  year: 2011
  ident: 10.1016/j.jhydrol.2019.02.020_b0065
  article-title: Influence of rain, air temperature, and snow cover on subsequent spring-snowmelt infiltration into thin frozen soil layer in northern Japan
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2011.02.019
– volume: 519
  start-page: 1466
  year: 2014
  ident: 10.1016/j.jhydrol.2019.02.020_b0025
  article-title: In situ measured and simulated seasonal freeze–thaw cycle: a 2-year comparative study between layered and homogeneous field soil profiles
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.09.023
– volume: 30
  start-page: 5021
  issue: 14
  year: 2016
  ident: 10.1016/j.jhydrol.2019.02.020_b0135
  article-title: Assessing an enhanced version of SWAT on water quantity and quality simulation in regions with seasonal snow cover
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-016-1466-8
– ident: 10.1016/j.jhydrol.2019.02.020_b0015
– volume: 50
  start-page: 1211
  issue: 4
  year: 2007
  ident: 10.1016/j.jhydrol.2019.02.020_b0040
  article-title: The soil and water assessment tool: historical development, applications, and future research directions
  publication-title: Trans. ASABE
  doi: 10.13031/2013.23637
– volume: 115
  start-page: 14
  year: 2013
  ident: 10.1016/j.jhydrol.2019.02.020_b0225
  article-title: Phosphorus losses from agricultural watersheds in the Mississippi Delta
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2012.10.028
– volume: 270
  start-page: 214
  issue: 3–4
  year: 2003
  ident: 10.1016/j.jhydrol.2019.02.020_b0055
  article-title: Focused infiltration of snowmelt water in partially frozen soil under small depressions
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(02)00287-1
– volume: 43
  start-page: 26
  issue: 143
  year: 1997
  ident: 10.1016/j.jhydrol.2019.02.020_b0180
  article-title: The thermal conductivity of seasonal snow
  publication-title: J. Glaciol.
  doi: 10.3189/S0022143000002781
– volume: 537
  start-page: 96
  year: 2016
  ident: 10.1016/j.jhydrol.2019.02.020_b0120
  article-title: Satellite-based estimation of watershed groundwater storage dynamics in a freeze–thaw area under intensive agricultural development
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.03.034
– volume: 104
  start-page: 19599
  issue: D16
  year: 1999
  ident: 10.1016/j.jhydrol.2019.02.020_b0030
  article-title: Hydrologic effects of frozen soils in the upper Mississippi River basin
  publication-title: J. Geophys. Res.: Atmos.
  doi: 10.1029/1999JD900337
– volume: 538
  start-page: 863
  year: 2016
  ident: 10.1016/j.jhydrol.2019.02.020_b0140
  article-title: A new soil-temperature module for SWAT application in regions with seasonal snow cover
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.05.003
– volume: 50
  start-page: 885
  issue: 3
  year: 2007
  ident: 10.1016/j.jhydrol.2019.02.020_b0110
  article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations
  publication-title: Trans. ASABE
  doi: 10.13031/2013.23153
– year: 2007
  ident: 10.1016/j.jhydrol.2019.02.020_b0165
– volume: 34
  start-page: 73
  issue: 1
  year: 1998
  ident: 10.1016/j.jhydrol.2019.02.020_b0010
  article-title: Large area hydrologic modeling and assessment part I: Model development
  publication-title: JAWRA J. Am. Water Resour. Assoc.
  doi: 10.1111/j.1752-1688.1998.tb05961.x
– volume: 23
  start-page: 2521
  issue: 12
  year: 1993
  ident: 10.1016/j.jhydrol.2019.02.020_b0220
  article-title: Predicting forest soil temperatures from monthly air temperature and precipitation records
  publication-title: Can. J. For. Res.
  doi: 10.1139/x93-313
– volume: 31
  start-page: 916
  issue: 4
  year: 2017
  ident: 10.1016/j.jhydrol.2019.02.020_b0230
  article-title: Assessing impacts of riparian buffer zones on sediment and nutrient loadings into streams at watershed scale using an integrated REMM-SWAT model
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.11073
– volume: 22
  start-page: 3789
  issue: 7
  year: 2018
  ident: 10.1016/j.jhydrol.2019.02.020_b0125
  article-title: Developing a decision support tool for assessing land use change and BMPs in ungauged watersheds based on decision rules provided by SWAT simulation
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-22-3789-2018
– year: 2011
  ident: 10.1016/j.jhydrol.2019.02.020_b0115
– volume: 49
  start-page: 3278
  issue: 6
  year: 2015
  ident: 10.1016/j.jhydrol.2019.02.020_b0195
  article-title: Evaluation of the current state of distributed watershed nutrient water quality modeling
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5049557
– volume: 9
  start-page: 1314
  issue: 5
  year: 1973
  ident: 10.1016/j.jhydrol.2019.02.020_b0050
  article-title: Analysis of coupled heat-fluid transport in partially frozen soil
  publication-title: Water Resour. Res.
  doi: 10.1029/WR009i005p01314
– volume: 109
  start-page: 329
  year: 2018
  ident: 10.1016/j.jhydrol.2019.02.020_b0145
  article-title: Assessing the performance of a physically-based soil moisture module integrated within the Soil and Water Assessment Tool
  publication-title: Environ. Modell. Software
  doi: 10.1016/j.envsoft.2018.08.024
– volume: 31
  issue: 12
  year: 2004
  ident: 10.1016/j.jhydrol.2019.02.020_b0205
  article-title: A two-directional freeze and thaw algorithm for hydrologic and land surface modelling
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2004GL019475
– volume: 103
  start-page: 11303
  issue: D10
  year: 1998
  ident: 10.1016/j.jhydrol.2019.02.020_b0160
  article-title: Simulation of freeze-thaw cycles in a general circulation model land surface scheme
  publication-title: J. Geophys. Res.: Atmos.
  doi: 10.1029/97JD03630
– volume: 563
  start-page: 382
  year: 2018
  ident: 10.1016/j.jhydrol.2019.02.020_b0245
  article-title: Impact of soil freeze-thaw mechanism on the runoff dynamics of two Tibetan rivers
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.06.024
– volume: 13
  start-page: 1843
  issue: 12–13
  year: 1999
  ident: 10.1016/j.jhydrol.2019.02.020_b0155
  article-title: The effect of frozen soil on snowmelt runoff at Sleepers River, Vermont
  publication-title: Hydrol. Process.
  doi: 10.1002/(SICI)1099-1085(199909)13:12/13<1843::AID-HYP879>3.0.CO;2-G
– volume: 375
  start-page: 438
  issue: 3–4
  year: 2009
  ident: 10.1016/j.jhydrol.2019.02.020_b0190
  article-title: The influence of freeze–thaw cycles of active soil layer on surface runoff in a permafrost watershed
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2009.06.046
– volume: 56
  start-page: 135
  issue: 2
  year: 2001
  ident: 10.1016/j.jhydrol.2019.02.020_b0045
  article-title: Colder soils in a warmer world: a snow manipulation study in a northern hardwood forest ecosystem
  publication-title: Biogeochemistry
  doi: 10.1023/A:1013039830323
– volume: 196
  start-page: 114
  year: 2014
  ident: 10.1016/j.jhydrol.2019.02.020_b0085
  article-title: An approach for assessing impact of land use and biophysical conditions across landscape on recharge rate and nitrogen loading of groundwater
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2014.06.028
– volume: 40
  start-page: 811
  issue: 3
  year: 2004
  ident: 10.1016/j.jhydrol.2019.02.020_b0070
  article-title: Effect of watershed subdivision on swat flow, sediment, and nutrient predictions
  publication-title: JAWRA J. Am. Water Resour. Assoc.
  doi: 10.1111/j.1752-1688.2004.tb04460.x
– volume: 43
  issue: 4
  year: 2005
  ident: 10.1016/j.jhydrol.2019.02.020_b0235
  article-title: Influence of the seasonal snow cover on the ground thermal regime: an overview
  publication-title: Rev. Geophys.
  doi: 10.1029/2004RG000157
– ident: 10.1016/j.jhydrol.2019.02.020_b0215
  doi: 10.1029/2011JD016048
– volume: 262
  start-page: 209
  issue: 1
  year: 2002
  ident: 10.1016/j.jhydrol.2019.02.020_b0035
  article-title: Development of a snowfall–snowmelt routine for mountainous terrain for the soil water assessment tool (SWAT)
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(02)00029-X
– ident: 10.1016/j.jhydrol.2019.02.020_b0150
– volume: 93
  start-page: 146
  year: 2017
  ident: 10.1016/j.jhydrol.2019.02.020_b0130
  article-title: Modifying SWAT with an energy balance module to simulate snowmelt for maritime regions
  publication-title: Environ. Modell. Software
  doi: 10.1016/j.envsoft.2017.03.007
– ident: 10.1016/j.jhydrol.2019.02.020_b0175
– ident: 10.1016/j.jhydrol.2019.02.020_b0075
  doi: 10.21236/ADA044002
– volume: 4
  start-page: 334
  issue: 2
  year: 2003
  ident: 10.1016/j.jhydrol.2019.02.020_b0095
  article-title: Effects of frozen soil on soil temperature, spring infiltration, and runoff: results from the PILPS 2 (d) experiment at Valdai, Russia
  publication-title: J. Hydrometeorol.
  doi: 10.1175/1525-7541(2003)4<334:EOFSOS>2.0.CO;2
– volume: 200
  start-page: 345
  issue: 1–4
  year: 1997
  ident: 10.1016/j.jhydrol.2019.02.020_b0240
  article-title: Numerical analysis of simultaneous heat and mass transfer during infiltration into frozen ground
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(97)00028-0
– volume: 227
  start-page: 21
  issue: 1–4
  year: 2000
  ident: 10.1016/j.jhydrol.2019.02.020_b0005
  article-title: Regional estimation of base flow and groundwater recharge in the Upper Mississippi river basin
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(99)00139-0
– year: 1980
  ident: 10.1016/j.jhydrol.2019.02.020_b0060
– volume: 11
  start-page: 111
  issue: 2
  year: 1991
  ident: 10.1016/j.jhydrol.2019.02.020_b0185
  article-title: CLASS—a Canadian land surface scheme for GCMs. I. Soil model
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.3370110202
– volume: 378
  start-page: 161
  issue: 1
  year: 2009
  ident: 10.1016/j.jhydrol.2019.02.020_b0080
  article-title: Estimating the snow water equivalent from snow depth measurements in the Swiss Alps
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2009.09.021
– volume: 53
  start-page: 1533
  issue: 5
  year: 2010
  ident: 10.1016/j.jhydrol.2019.02.020_b0170
  article-title: SWAT ungauged: hydrological budget and crop yield predictions in the Upper Mississippi River Basin
  publication-title: Trans. ASABE
  doi: 10.13031/2013.34903
SSID ssj0000334
Score 2.44538
Snippet •Freeze-thaw cycle representation is often simplified in watershed modeling.•A physically based method outperforms the empirical approach for the freeze-thaw...
Freeze-thaw cycles are important processes relevant to terrestrial hydrological cycling. However, the representation of freeze-thaw cycles has been often...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 605
SubjectTerms base flow
climate
Freeze-thaw cycles
freezing
hydrologic factors
Mississippi River
model validation
runoff
Soil and Water Assessment Tool model
soil depth
Soil temperature
statistical analysis
Streamflow
SWAT
thawing
United States
water management
watersheds
winter
Title Improving hydrological simulation in the Upper Mississippi River Basin through enhanced freeze-thaw cycle representation
URI https://dx.doi.org/10.1016/j.jhydrol.2019.02.020
https://www.proquest.com/docview/2237537617
Volume 571
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: AKRWK
  dateStart: 19630101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEA-iD_pynF_4TQRfu5u02SZ9VFFWRR_EBd9CNp2yXe66ZT_w9h7ubzeTpooiCAd5ack0ZWY6mWlmfkPIWSysVIVKXGxi00jY1EQqExCBEEXMbZ6mvor__iHtD8Ttc-95hVy2tTCYVhlsf2PTvbUOd7qBm926LLHGN4451mFmTkmlxEJzRP9yOt35957mwZJEtIjhOPu9iqc77oxHy3w6wRMInnnoTmz7_fX-9MlS--3n-if5EfxGet682iZZgWqLrIcW5qPlNvnz9nuANss1No3Oyt-hQxctK-rcPTqoa5jSe8dxHHVd0kdMzqAXZuZn-MY9FKqRTw6gxRTgL0TzkXmhdukWpx4Isy1aqnbI4Prq6bIfhbYKkRE9NY94z3BmIe2ZwsaSDY1KLQhs1JflNufgwuViGDPjYimZGetYqlyMyIZZzguZWJbsktVqUsEeoQIKpkBym0kQCHqsTMYNLyw3zlIIu09Ey0xtA-Y4tr74pdvksrEOMtAoA81iN9g-6byR1Q3oxncEqpWU_qA92m0M35GetpLV7svC4xJTwWQx085xkgh2w-XB_z_-kGzgVZPrc0RW59MFHDs3Zj488Xp6QtbOb-76D6-CI_T8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90PuiL-InzM4KvdU2bNu2jDmV-bA_iwLeQpVfWoV3ZJjr_epM2nSiCIOSp7TUll_5yl9z9DuDMY4pHaeRr30SFDlOhdKKYoYOMpR5VSRiWWfzdXtjps9un4GkJ2nUujAmrtNhfYXqJ1vZKy45mq8gyk-PredTkYcZ6knIeLMMKCzQmN2Dl4uau0_sCZN9nNWm4EfhK5GmNzkfDeTIZm0MIGpfsnaby9-9L1A-wLleg6w1Yt6Yjuai-bhOWMN-CVVvFfDjfhvfFDgGpuqtgjUyzF1uki2Q50RYf6RcFTkhXD7ppRZGRBxOfQS7ltHyirN1DMB-W8QEknSB-oDMbyjei5rpzUnJh1nlL-Q70r68e2x3HVlZwJAuimUMDSV2FYSBT5XF3IKNQITO1-uJEJRS1x5wOPFdqd4rHUjFtpmg30R3ECU25r1x_Fxr5OMc9IAxTN0JOVcyRGd7jSMZU0lRRqcGCqSawejCFsrTjpvrFs6jjy0bC6kAYHQjX081twvlCrKh4N_4SiGpNiW8TSOi14S_R01qzQv9c5sRE5jh-nQptO3HDd0P5_v9ffwKrncfuvbi_6d0dwJq5U4X-HEJjNnnFI23VzAbHdtZ-As5Q96c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+hydrological+simulation+in+the+Upper+Mississippi+River+Basin+through+enhanced+freeze-thaw+cycle+representation&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Qi%2C+Junyu&rft.au=Zhang%2C+Xuesong&rft.au=Wang%2C+Qianfeng&rft.date=2019-04-01&rft.issn=0022-1694&rft.volume=571+p.605-618&rft.spage=605&rft.epage=618&rft_id=info:doi/10.1016%2Fj.jhydrol.2019.02.020&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon