Improving hydrological simulation in the Upper Mississippi River Basin through enhanced freeze-thaw cycle representation
•Freeze-thaw cycle representation is often simplified in watershed modeling.•A physically based method outperforms the empirical approach for the freeze-thaw cycle.•Modeled hydrologic variables are sensitive to different schemes.•Streamflow simulation is much improved with the physically based repre...
Saved in:
Published in | Journal of hydrology (Amsterdam) Vol. 571; pp. 605 - 618 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-1694 1879-2707 |
DOI | 10.1016/j.jhydrol.2019.02.020 |
Cover
Abstract | •Freeze-thaw cycle representation is often simplified in watershed modeling.•A physically based method outperforms the empirical approach for the freeze-thaw cycle.•Modeled hydrologic variables are sensitive to different schemes.•Streamflow simulation is much improved with the physically based representation.
Freeze-thaw cycles are important processes relevant to terrestrial hydrological cycling. However, the representation of freeze-thaw cycles has been often simplified in large scale watershed models. The Soil and Water Assessment Tool (SWAT), which has been widely used to understand and assess hydrologic budgets and water resources management, employs a simplified empirical approach to estimate soil temperature and determine the freezing and thawing status of soils. Here, we compared the performance of a physically-based soil temperature module and the built-in empirical approach in SWAT against field measurements at surface and 5, 10, 20, 50, and 100 cm depths at six stations of the U.S. Climate Reference Network (USCRN) within the Upper Mississippi River Basin (UMRB). In general, SWAT consistently underestimated winter soil temperatures and overestimated frozen days at all soil depths, while the modified version of SWAT (equipped with the physically-based soil temperature model; referred to as TSWAT) pronouncedly reduced the bias in estimated winter soil temperatures and frozen days compared with SWAT. Model performance assessment is conducted with three statistical coefficients, i.e., Bias (°C), the coefficient of determination (R2), and Nash-Sutcliffe coefficient (NS). Statistical analyses show that TSWAT accurately simulated surface and soil temperatures at the five depths with R2 and NS values greater than 0.82 at most sites, and Bias values were generally within the range of −1 to 1 °C during winter and ranged between −2.09 and 2.58 °C in non-winter seasons. The differences in freeze-thaw cycle representation between SWAT and TSWAT translate into noticeable discrepancies in simulated key hydrologic variables, such as surface runoff, percolation, and baseflow. Compared against long-term observed streamflow (1980–2015), TSWAT outperformed SWAT in capturing variations in monthly streamflow in both winter and non-winter seasons. These results and analyses highlight the value of improving freeze-thaw cycle representation for enhanced hydrologic modeling in large watersheds that are subject to freeze-thaw cycles. |
---|---|
AbstractList | •Freeze-thaw cycle representation is often simplified in watershed modeling.•A physically based method outperforms the empirical approach for the freeze-thaw cycle.•Modeled hydrologic variables are sensitive to different schemes.•Streamflow simulation is much improved with the physically based representation.
Freeze-thaw cycles are important processes relevant to terrestrial hydrological cycling. However, the representation of freeze-thaw cycles has been often simplified in large scale watershed models. The Soil and Water Assessment Tool (SWAT), which has been widely used to understand and assess hydrologic budgets and water resources management, employs a simplified empirical approach to estimate soil temperature and determine the freezing and thawing status of soils. Here, we compared the performance of a physically-based soil temperature module and the built-in empirical approach in SWAT against field measurements at surface and 5, 10, 20, 50, and 100 cm depths at six stations of the U.S. Climate Reference Network (USCRN) within the Upper Mississippi River Basin (UMRB). In general, SWAT consistently underestimated winter soil temperatures and overestimated frozen days at all soil depths, while the modified version of SWAT (equipped with the physically-based soil temperature model; referred to as TSWAT) pronouncedly reduced the bias in estimated winter soil temperatures and frozen days compared with SWAT. Model performance assessment is conducted with three statistical coefficients, i.e., Bias (°C), the coefficient of determination (R2), and Nash-Sutcliffe coefficient (NS). Statistical analyses show that TSWAT accurately simulated surface and soil temperatures at the five depths with R2 and NS values greater than 0.82 at most sites, and Bias values were generally within the range of −1 to 1 °C during winter and ranged between −2.09 and 2.58 °C in non-winter seasons. The differences in freeze-thaw cycle representation between SWAT and TSWAT translate into noticeable discrepancies in simulated key hydrologic variables, such as surface runoff, percolation, and baseflow. Compared against long-term observed streamflow (1980–2015), TSWAT outperformed SWAT in capturing variations in monthly streamflow in both winter and non-winter seasons. These results and analyses highlight the value of improving freeze-thaw cycle representation for enhanced hydrologic modeling in large watersheds that are subject to freeze-thaw cycles. Freeze-thaw cycles are important processes relevant to terrestrial hydrological cycling. However, the representation of freeze-thaw cycles has been often simplified in large scale watershed models. The Soil and Water Assessment Tool (SWAT), which has been widely used to understand and assess hydrologic budgets and water resources management, employs a simplified empirical approach to estimate soil temperature and determine the freezing and thawing status of soils. Here, we compared the performance of a physically-based soil temperature module and the built-in empirical approach in SWAT against field measurements at surface and 5, 10, 20, 50, and 100 cm depths at six stations of the U.S. Climate Reference Network (USCRN) within the Upper Mississippi River Basin (UMRB). In general, SWAT consistently underestimated winter soil temperatures and overestimated frozen days at all soil depths, while the modified version of SWAT (equipped with the physically-based soil temperature model; referred to as TSWAT) pronouncedly reduced the bias in estimated winter soil temperatures and frozen days compared with SWAT. Model performance assessment is conducted with three statistical coefficients, i.e., Bias (°C), the coefficient of determination (R2), and Nash-Sutcliffe coefficient (NS). Statistical analyses show that TSWAT accurately simulated surface and soil temperatures at the five depths with R2 and NS values greater than 0.82 at most sites, and Bias values were generally within the range of −1 to 1 °C during winter and ranged between −2.09 and 2.58 °C in non-winter seasons. The differences in freeze-thaw cycle representation between SWAT and TSWAT translate into noticeable discrepancies in simulated key hydrologic variables, such as surface runoff, percolation, and baseflow. Compared against long-term observed streamflow (1980–2015), TSWAT outperformed SWAT in capturing variations in monthly streamflow in both winter and non-winter seasons. These results and analyses highlight the value of improving freeze-thaw cycle representation for enhanced hydrologic modeling in large watersheds that are subject to freeze-thaw cycles. |
Author | Zhang, Xuesong Wang, Qianfeng Qi, Junyu |
Author_xml | – sequence: 1 givenname: Junyu orcidid: 0000-0001-5316-4226 surname: Qi fullname: Qi, Junyu organization: Earth System Science Interdisciplinary Center, University of Maryland, College Park, 5825 University Research Ct, College Park, MD 20740, USA – sequence: 2 givenname: Xuesong orcidid: 0000-0003-4711-7751 surname: Zhang fullname: Zhang, Xuesong email: xzhang14@umd.edu, Xuesong.zhang@pnnl.gov organization: Earth System Science Interdisciplinary Center, University of Maryland, College Park, 5825 University Research Ct, College Park, MD 20740, USA – sequence: 3 givenname: Qianfeng orcidid: 0000-0002-8460-6821 surname: Wang fullname: Wang, Qianfeng organization: College of Environment and Resources, Fuzhou University, Fuzhou, Fujian 350116, China |
BookMark | eNqFkF1LwzAYhYNMcE5_gpBLbzqT9CMtXoiKH4OJIO46ZOnbNaNLatJN5683Xb3yxnAgEM454TynaGSsAYQuKJlSQrOr9XRd70tnmykjtJgSFkSO0JjmvIgYJ3yExoQwFtGsSE7QqfdrEk4cJ2P0Ndu0zu60WeGhw660kg32erNtZKetwdrgrga8aFtw-EV736ttNX7Tu_ByJ_3B4ex2VWMwtTQKSlw5gG-Iulp-YrVXDWAHrQMPpjvUnqHjSjYezn_vCVo8PrzfP0fz16fZ_e08kkmadxFNJSUKslRWKkxZyjxTkMQpLYpSlRQKwqslI5LlnBdSJVmaUxJ8RUkrHisST9Dl0BtmfmzBd2KjvYKmkQbs1gvGYp7GPKM8WNPBqpz13kElWqc30u0FJaInLdbil7ToSQvCgvovrv_klB5Gdk7q5t_0zZCGQGGnwQmvNPQMtQPVidLqfxp-AP2-ovI |
CitedBy_id | crossref_primary_10_1016_j_ejrh_2022_101137 crossref_primary_10_1016_j_jhydrol_2023_129772 crossref_primary_10_1016_j_jhydrol_2021_126983 crossref_primary_10_3389_feart_2022_875145 crossref_primary_10_1016_j_jhydrol_2023_129312 crossref_primary_10_1007_s12665_023_11153_1 crossref_primary_10_3390_w13040422 crossref_primary_10_3390_su141710804 crossref_primary_10_1007_s11368_020_02632_0 crossref_primary_10_3390_w11050960 crossref_primary_10_3390_w12030878 crossref_primary_10_1016_j_wace_2022_100412 crossref_primary_10_1029_2024WR037218 crossref_primary_10_1080_20964471_2022_2148331 crossref_primary_10_3390_w14142185 crossref_primary_10_1016_j_advwatres_2019_103380 crossref_primary_10_1016_j_jhydrol_2021_126891 crossref_primary_10_1016_j_catena_2020_104767 crossref_primary_10_1080_00380768_2024_2328201 crossref_primary_10_1016_j_jenvman_2024_123104 crossref_primary_10_1021_acs_est_1c02692 crossref_primary_10_1016_j_ejrh_2023_101521 crossref_primary_10_3390_su15075907 crossref_primary_10_1186_s13021_020_00148_1 crossref_primary_10_1016_j_watres_2020_116355 crossref_primary_10_1016_j_scitotenv_2020_137562 crossref_primary_10_1029_2024WR038318 crossref_primary_10_3390_agriculture13112102 crossref_primary_10_1016_j_jhydrol_2022_128978 crossref_primary_10_1016_j_agwat_2022_107680 |
Cites_doi | 10.1016/j.earscirev.2016.10.004 10.1007/BF01182847 10.1086/mre.20.2.42629465 10.2136/sssaj1966.03615995003000040011x 10.1016/j.jhydrol.2011.02.019 10.1016/j.jhydrol.2014.09.023 10.1007/s11269-016-1466-8 10.13031/2013.23637 10.1016/j.jenvman.2012.10.028 10.1016/S0022-1694(02)00287-1 10.3189/S0022143000002781 10.1016/j.jhydrol.2016.03.034 10.1029/1999JD900337 10.1016/j.jhydrol.2016.05.003 10.13031/2013.23153 10.1111/j.1752-1688.1998.tb05961.x 10.1139/x93-313 10.1002/hyp.11073 10.5194/hess-22-3789-2018 10.1021/es5049557 10.1029/WR009i005p01314 10.1016/j.envsoft.2018.08.024 10.1029/2004GL019475 10.1029/97JD03630 10.1016/j.jhydrol.2018.06.024 10.1002/(SICI)1099-1085(199909)13:12/13<1843::AID-HYP879>3.0.CO;2-G 10.1016/j.jhydrol.2009.06.046 10.1023/A:1013039830323 10.1016/j.agee.2014.06.028 10.1111/j.1752-1688.2004.tb04460.x 10.1029/2004RG000157 10.1029/2011JD016048 10.1016/S0022-1694(02)00029-X 10.1016/j.envsoft.2017.03.007 10.21236/ADA044002 10.1175/1525-7541(2003)4<334:EOFSOS>2.0.CO;2 10.1016/S0022-1694(97)00028-0 10.1016/S0022-1694(99)00139-0 10.1002/joc.3370110202 10.1016/j.jhydrol.2009.09.021 10.13031/2013.34903 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jhydrol.2019.02.020 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1879-2707 |
EndPage | 618 |
ExternalDocumentID | 10_1016_j_jhydrol_2019_02_020 S0022169419301775 |
GeographicLocations | United States Mississippi River |
GeographicLocations_xml | – name: Mississippi River – name: United States |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
ID | FETCH-LOGICAL-a458t-15a10ce65afc270ba86ce435199dcd1e907fb20a28779ac46581070b9d1f73c03 |
IEDL.DBID | .~1 |
ISSN | 0022-1694 |
IngestDate | Sun Sep 28 11:56:13 EDT 2025 Thu Apr 24 23:02:34 EDT 2025 Wed Oct 01 05:16:33 EDT 2025 Fri Feb 23 02:33:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | SWAT Streamflow Soil temperature Freeze-thaw cycles |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a458t-15a10ce65afc270ba86ce435199dcd1e907fb20a28779ac46581070b9d1f73c03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5316-4226 0000-0003-4711-7751 0000-0002-8460-6821 |
PQID | 2237537617 |
PQPubID | 24069 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2237537617 crossref_primary_10_1016_j_jhydrol_2019_02_020 crossref_citationtrail_10_1016_j_jhydrol_2019_02_020 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2019_02_020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2019 2019-04-00 20190401 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: April 2019 |
PublicationDecade | 2010 |
PublicationTitle | Journal of hydrology (Amsterdam) |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Cary (b0020) 1966; 30 Jonas, Marty, Magnusson (b0080) 2009; 378 Yuan, Locke, Bingner, Rebich (b0225) 2013; 115 Harlan (b0050) 1973; 9 Zhao, Gray, Male (b0240) 1997; 200 Williams, P.J., Smith, M.W., 1991. The frozen earth. Cheng (b0025) 2014; 519 Bélanger, J.A., 2009. Modelling soil temperature on the boreal plain with an emphasis on the rapid cooling period. Master Thesis Thesis, Lakehead University. Iwata (b0065) 2011; 401 Moriasi (b0110) 2007; 50 Hayashi, van der Kamp, Schmidt (b0055) 2003; 270 Neitsch, Williams, Arnold, Kiniry (b0115) 2011 Wellen, Kamran-Disfani, Arhonditsis (b0195) 2015; 49 Zhang, Li, Qi, Xing, Meng (b0230) 2017; 31 Sturm, Holmgren, König, Morris (b0180) 1997; 43 Zheng (b0245) 2018; 563 Mitchell (b0105) 2004; 109 Arnold, Muttiah, Srinivasan, Allen (b0005) 2000; 227 Qi (b0145) 2018; 109 Qi (b0135) 2016; 30 Qi (b0130) 2017; 93 Riseborough, D., 1990. Soil latent heat as a filter of the climate signal in permafrost. Proceedings of the Fifth Canadian Permafrost Conference, Collect. Nordicana. Citeseer, pp. 199–205. Solomon (b0165) 2007 Steppuhn, H., 1981. Snow and agriculture. Handbook of snow, principles, processes, management and use. Pergamon, Toronto, pp. 60–126. Verseghy (b0185) 1991; 11 Srinivasan, Zhang, Arnold (b0170) 2010; 53 Xia, Y., et al., 2012. Continental‐scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS‐2): 1. Intercomparison and application of model products. J. Geophys. Res.: Atmos., 117(D3). Cherkauer, Lettenmaier (b0030) 1999; 104 Slater, Pitman, Desborough (b0160) 1998; 103 Groffman (b0045) 2001; 56 Li, Fang (b0090) 2016; 163 Wu, Tanaka (b0210) 2005; 20 Fontaine, Cruickshank, Arnold, Hotchkiss (b0035) 2002; 262 Shanley, Chalmers (b0155) 1999; 13 Woo, Arain, Mollinga, Yi (b0205) 2004; 31 Yin, Arp (b0220) 1993; 23 Jha, Gassman, Secchi, Gu, Arnold (b0070) 2004; 40 Wang, Hu, Li (b0190) 2009; 375 Ouyang, Liu, Wu (b0120) 2016; 537 Hillel (b0060) 1980 Johansen, O., 1975. Thermal conductivity of soils. Ph.D. Thesis, Trondheim, Norway (CRREL Draft Translation 637, 1977) ADA 044002. Arnold, Srinivasan, Muttiah, Williams (b0010) 1998; 34 Qi, Li, Bourque, Xing, Fan-Rui (b0125) 2018; 22 Qi (b0140) 2016; 538 Li (b0085) 2014; 196 Gassman, Reyes, Green, Arnold (b0040) 2007; 50 Meng, Bourque, Jewett, Daugharty, Arp (b0100) 1995; 82 Zhang (b0235) 2005; 43 Luo (b0095) 2003; 4 Zhao (10.1016/j.jhydrol.2019.02.020_b0240) 1997; 200 Wellen (10.1016/j.jhydrol.2019.02.020_b0195) 2015; 49 Jonas (10.1016/j.jhydrol.2019.02.020_b0080) 2009; 378 Fontaine (10.1016/j.jhydrol.2019.02.020_b0035) 2002; 262 Arnold (10.1016/j.jhydrol.2019.02.020_b0005) 2000; 227 Zheng (10.1016/j.jhydrol.2019.02.020_b0245) 2018; 563 Arnold (10.1016/j.jhydrol.2019.02.020_b0010) 1998; 34 Gassman (10.1016/j.jhydrol.2019.02.020_b0040) 2007; 50 10.1016/j.jhydrol.2019.02.020_b0200 Zhang (10.1016/j.jhydrol.2019.02.020_b0230) 2017; 31 Qi (10.1016/j.jhydrol.2019.02.020_b0125) 2018; 22 Qi (10.1016/j.jhydrol.2019.02.020_b0145) 2018; 109 Li (10.1016/j.jhydrol.2019.02.020_b0085) 2014; 196 Srinivasan (10.1016/j.jhydrol.2019.02.020_b0170) 2010; 53 Yuan (10.1016/j.jhydrol.2019.02.020_b0225) 2013; 115 Qi (10.1016/j.jhydrol.2019.02.020_b0135) 2016; 30 Harlan (10.1016/j.jhydrol.2019.02.020_b0050) 1973; 9 Zhang (10.1016/j.jhydrol.2019.02.020_b0235) 2005; 43 Li (10.1016/j.jhydrol.2019.02.020_b0090) 2016; 163 Qi (10.1016/j.jhydrol.2019.02.020_b0140) 2016; 538 10.1016/j.jhydrol.2019.02.020_b0215 10.1016/j.jhydrol.2019.02.020_b0015 10.1016/j.jhydrol.2019.02.020_b0175 Qi (10.1016/j.jhydrol.2019.02.020_b0130) 2017; 93 Ouyang (10.1016/j.jhydrol.2019.02.020_b0120) 2016; 537 Moriasi (10.1016/j.jhydrol.2019.02.020_b0110) 2007; 50 Neitsch (10.1016/j.jhydrol.2019.02.020_b0115) 2011 Shanley (10.1016/j.jhydrol.2019.02.020_b0155) 1999; 13 Yin (10.1016/j.jhydrol.2019.02.020_b0220) 1993; 23 Groffman (10.1016/j.jhydrol.2019.02.020_b0045) 2001; 56 Hayashi (10.1016/j.jhydrol.2019.02.020_b0055) 2003; 270 Verseghy (10.1016/j.jhydrol.2019.02.020_b0185) 1991; 11 Iwata (10.1016/j.jhydrol.2019.02.020_b0065) 2011; 401 Sturm (10.1016/j.jhydrol.2019.02.020_b0180) 1997; 43 Slater (10.1016/j.jhydrol.2019.02.020_b0160) 1998; 103 Luo (10.1016/j.jhydrol.2019.02.020_b0095) 2003; 4 Cary (10.1016/j.jhydrol.2019.02.020_b0020) 1966; 30 Woo (10.1016/j.jhydrol.2019.02.020_b0205) 2004; 31 Hillel (10.1016/j.jhydrol.2019.02.020_b0060) 1980 Cherkauer (10.1016/j.jhydrol.2019.02.020_b0030) 1999; 104 Cheng (10.1016/j.jhydrol.2019.02.020_b0025) 2014; 519 Solomon (10.1016/j.jhydrol.2019.02.020_b0165) 2007 Meng (10.1016/j.jhydrol.2019.02.020_b0100) 1995; 82 Wang (10.1016/j.jhydrol.2019.02.020_b0190) 2009; 375 Wu (10.1016/j.jhydrol.2019.02.020_b0210) 2005; 20 Jha (10.1016/j.jhydrol.2019.02.020_b0070) 2004; 40 10.1016/j.jhydrol.2019.02.020_b0075 Mitchell (10.1016/j.jhydrol.2019.02.020_b0105) 2004; 109 10.1016/j.jhydrol.2019.02.020_b0150 |
References_xml | – volume: 56 start-page: 135 year: 2001 end-page: 150 ident: b0045 article-title: Colder soils in a warmer world: a snow manipulation study in a northern hardwood forest ecosystem publication-title: Biogeochemistry – volume: 93 start-page: 146 year: 2017 end-page: 160 ident: b0130 article-title: Modifying SWAT with an energy balance module to simulate snowmelt for maritime regions publication-title: Environ. Modell. Software – volume: 50 start-page: 1211 year: 2007 end-page: 1250 ident: b0040 article-title: The soil and water assessment tool: historical development, applications, and future research directions publication-title: Trans. ASABE – volume: 196 start-page: 114 year: 2014 end-page: 124 ident: b0085 article-title: An approach for assessing impact of land use and biophysical conditions across landscape on recharge rate and nitrogen loading of groundwater publication-title: Agric. Ecosyst. Environ. – volume: 13 start-page: 1843 year: 1999 end-page: 1857 ident: b0155 article-title: The effect of frozen soil on snowmelt runoff at Sleepers River, Vermont publication-title: Hydrol. Process. – volume: 378 start-page: 161 year: 2009 end-page: 167 ident: b0080 article-title: Estimating the snow water equivalent from snow depth measurements in the Swiss Alps publication-title: J. Hydrol. – reference: Steppuhn, H., 1981. Snow and agriculture. Handbook of snow, principles, processes, management and use. Pergamon, Toronto, pp. 60–126. – volume: 9 start-page: 1314 year: 1973 end-page: 1323 ident: b0050 article-title: Analysis of coupled heat-fluid transport in partially frozen soil publication-title: Water Resour. Res. – volume: 49 start-page: 3278 year: 2015 end-page: 3290 ident: b0195 article-title: Evaluation of the current state of distributed watershed nutrient water quality modeling publication-title: Environ. Sci. Technol. – volume: 53 start-page: 1533 year: 2010 end-page: 1546 ident: b0170 article-title: SWAT ungauged: hydrological budget and crop yield predictions in the Upper Mississippi River Basin publication-title: Trans. ASABE – year: 1980 ident: b0060 article-title: Fundamentals of Soil Physics – volume: 82 start-page: 363 year: 1995 end-page: 374 ident: b0100 article-title: The Nashwaak experimental watershed project: analysing effects of clearcutting on soil temperature, soil moisture, snowpack, snowmelt and stream flow publication-title: Water Air Soil Pollut. – year: 2007 ident: b0165 article-title: Climate Change 2007-The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC, 4 – volume: 200 start-page: 345 year: 1997 end-page: 363 ident: b0240 article-title: Numerical analysis of simultaneous heat and mass transfer during infiltration into frozen ground publication-title: J. Hydrol. – volume: 563 start-page: 382 year: 2018 end-page: 394 ident: b0245 article-title: Impact of soil freeze-thaw mechanism on the runoff dynamics of two Tibetan rivers publication-title: J. Hydrol. – volume: 270 start-page: 214 year: 2003 end-page: 229 ident: b0055 article-title: Focused infiltration of snowmelt water in partially frozen soil under small depressions publication-title: J. Hydrol. – volume: 22 start-page: 3789 year: 2018 end-page: 3806 ident: b0125 article-title: Developing a decision support tool for assessing land use change and BMPs in ungauged watersheds based on decision rules provided by SWAT simulation publication-title: Hydrol. Earth Syst. Sci. – volume: 109 year: 2004 ident: b0105 article-title: The multi-institution North American Land Data Assimilation System (NLDAS): utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system publication-title: J. Geophys. Res.: Atmos. – volume: 31 start-page: 916 year: 2017 end-page: 924 ident: b0230 article-title: Assessing impacts of riparian buffer zones on sediment and nutrient loadings into streams at watershed scale using an integrated REMM-SWAT model publication-title: Hydrol. Process. – volume: 163 start-page: 94 year: 2016 end-page: 117 ident: b0090 article-title: Impacts of climate change on water erosion: a review publication-title: Earth Sci. Rev. – volume: 401 start-page: 165 year: 2011 end-page: 176 ident: b0065 article-title: Influence of rain, air temperature, and snow cover on subsequent spring-snowmelt infiltration into thin frozen soil layer in northern Japan publication-title: J. Hydrol. – volume: 40 start-page: 811 year: 2004 end-page: 825 ident: b0070 article-title: Effect of watershed subdivision on swat flow, sediment, and nutrient predictions publication-title: JAWRA J. Am. Water Resour. Assoc. – volume: 4 start-page: 334 year: 2003 end-page: 351 ident: b0095 article-title: Effects of frozen soil on soil temperature, spring infiltration, and runoff: results from the PILPS 2 (d) experiment at Valdai, Russia publication-title: J. Hydrometeorol. – reference: Johansen, O., 1975. Thermal conductivity of soils. Ph.D. Thesis, Trondheim, Norway (CRREL Draft Translation 637, 1977) ADA 044002. – volume: 31 year: 2004 ident: b0205 article-title: A two-directional freeze and thaw algorithm for hydrologic and land surface modelling publication-title: Geophys. Res. Lett. – volume: 50 start-page: 885 year: 2007 end-page: 900 ident: b0110 article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations publication-title: Trans. ASABE – reference: Xia, Y., et al., 2012. Continental‐scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS‐2): 1. Intercomparison and application of model products. J. Geophys. Res.: Atmos., 117(D3). – volume: 115 start-page: 14 year: 2013 end-page: 20 ident: b0225 article-title: Phosphorus losses from agricultural watersheds in the Mississippi Delta publication-title: J. Environ. Manage. – volume: 227 start-page: 21 year: 2000 end-page: 40 ident: b0005 article-title: Regional estimation of base flow and groundwater recharge in the Upper Mississippi river basin publication-title: J. Hydrol. – volume: 537 start-page: 96 year: 2016 end-page: 105 ident: b0120 article-title: Satellite-based estimation of watershed groundwater storage dynamics in a freeze–thaw area under intensive agricultural development publication-title: J. Hydrol. – volume: 30 start-page: 5021 year: 2016 end-page: 5037 ident: b0135 article-title: Assessing an enhanced version of SWAT on water quantity and quality simulation in regions with seasonal snow cover publication-title: Water Resour. Manage. – volume: 23 start-page: 2521 year: 1993 end-page: 2536 ident: b0220 article-title: Predicting forest soil temperatures from monthly air temperature and precipitation records publication-title: Can. J. For. Res. – volume: 43 start-page: 26 year: 1997 end-page: 41 ident: b0180 article-title: The thermal conductivity of seasonal snow publication-title: J. Glaciol. – volume: 519 start-page: 1466 year: 2014 end-page: 1473 ident: b0025 article-title: In situ measured and simulated seasonal freeze–thaw cycle: a 2-year comparative study between layered and homogeneous field soil profiles publication-title: J. Hydrol. – volume: 11 start-page: 111 year: 1991 end-page: 133 ident: b0185 article-title: CLASS—a Canadian land surface scheme for GCMs. I. Soil model publication-title: Int. J. Climatol. – volume: 538 start-page: 863 year: 2016 end-page: 877 ident: b0140 article-title: A new soil-temperature module for SWAT application in regions with seasonal snow cover publication-title: J. Hydrol. – volume: 262 start-page: 209 year: 2002 end-page: 223 ident: b0035 article-title: Development of a snowfall–snowmelt routine for mountainous terrain for the soil water assessment tool (SWAT) publication-title: J. Hydrol. – year: 2011 ident: b0115 article-title: Soil and Water Assessment Tool Theoretical Documentation Version 2009 – reference: Williams, P.J., Smith, M.W., 1991. The frozen earth. – reference: Bélanger, J.A., 2009. Modelling soil temperature on the boreal plain with an emphasis on the rapid cooling period. Master Thesis Thesis, Lakehead University. – volume: 109 start-page: 329 year: 2018 end-page: 341 ident: b0145 article-title: Assessing the performance of a physically-based soil moisture module integrated within the Soil and Water Assessment Tool publication-title: Environ. Modell. Software – volume: 30 start-page: 428 year: 1966 end-page: 433 ident: b0020 article-title: Soil moisture transport due to thermal gradients: practical aspects 1 publication-title: Soil Sci. Soc. Am. J. – reference: Riseborough, D., 1990. Soil latent heat as a filter of the climate signal in permafrost. Proceedings of the Fifth Canadian Permafrost Conference, Collect. Nordicana. Citeseer, pp. 199–205. – volume: 103 start-page: 11303 year: 1998 end-page: 11312 ident: b0160 article-title: Simulation of freeze-thaw cycles in a general circulation model land surface scheme publication-title: J. Geophys. Res.: Atmos. – volume: 43 year: 2005 ident: b0235 article-title: Influence of the seasonal snow cover on the ground thermal regime: an overview publication-title: Rev. Geophys. – volume: 34 start-page: 73 year: 1998 end-page: 89 ident: b0010 article-title: Large area hydrologic modeling and assessment part I: Model development publication-title: JAWRA J. Am. Water Resour. Assoc. – volume: 375 start-page: 438 year: 2009 end-page: 449 ident: b0190 article-title: The influence of freeze–thaw cycles of active soil layer on surface runoff in a permafrost watershed publication-title: J. Hydrol. – volume: 104 start-page: 19599 year: 1999 end-page: 19610 ident: b0030 article-title: Hydrologic effects of frozen soils in the upper Mississippi River basin publication-title: J. Geophys. Res.: Atmos. – volume: 20 start-page: 121 year: 2005 end-page: 144 ident: b0210 article-title: Reducing nitrogen runoff from the upper Mississippi River basin to control hypoxia in the Gulf of Mexico: easements or taxes? publication-title: Mar. Resour. Econ. – ident: 10.1016/j.jhydrol.2019.02.020_b0200 – volume: 163 start-page: 94 year: 2016 ident: 10.1016/j.jhydrol.2019.02.020_b0090 article-title: Impacts of climate change on water erosion: a review publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2016.10.004 – volume: 82 start-page: 363 issue: 1–2 year: 1995 ident: 10.1016/j.jhydrol.2019.02.020_b0100 article-title: The Nashwaak experimental watershed project: analysing effects of clearcutting on soil temperature, soil moisture, snowpack, snowmelt and stream flow publication-title: Water Air Soil Pollut. doi: 10.1007/BF01182847 – volume: 109 issue: D7 year: 2004 ident: 10.1016/j.jhydrol.2019.02.020_b0105 article-title: The multi-institution North American Land Data Assimilation System (NLDAS): utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system publication-title: J. Geophys. Res.: Atmos. – volume: 20 start-page: 121 issue: 2 year: 2005 ident: 10.1016/j.jhydrol.2019.02.020_b0210 article-title: Reducing nitrogen runoff from the upper Mississippi River basin to control hypoxia in the Gulf of Mexico: easements or taxes? publication-title: Mar. Resour. Econ. doi: 10.1086/mre.20.2.42629465 – volume: 30 start-page: 428 issue: 4 year: 1966 ident: 10.1016/j.jhydrol.2019.02.020_b0020 article-title: Soil moisture transport due to thermal gradients: practical aspects 1 publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1966.03615995003000040011x – volume: 401 start-page: 165 issue: 3–4 year: 2011 ident: 10.1016/j.jhydrol.2019.02.020_b0065 article-title: Influence of rain, air temperature, and snow cover on subsequent spring-snowmelt infiltration into thin frozen soil layer in northern Japan publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2011.02.019 – volume: 519 start-page: 1466 year: 2014 ident: 10.1016/j.jhydrol.2019.02.020_b0025 article-title: In situ measured and simulated seasonal freeze–thaw cycle: a 2-year comparative study between layered and homogeneous field soil profiles publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.09.023 – volume: 30 start-page: 5021 issue: 14 year: 2016 ident: 10.1016/j.jhydrol.2019.02.020_b0135 article-title: Assessing an enhanced version of SWAT on water quantity and quality simulation in regions with seasonal snow cover publication-title: Water Resour. Manage. doi: 10.1007/s11269-016-1466-8 – ident: 10.1016/j.jhydrol.2019.02.020_b0015 – volume: 50 start-page: 1211 issue: 4 year: 2007 ident: 10.1016/j.jhydrol.2019.02.020_b0040 article-title: The soil and water assessment tool: historical development, applications, and future research directions publication-title: Trans. ASABE doi: 10.13031/2013.23637 – volume: 115 start-page: 14 year: 2013 ident: 10.1016/j.jhydrol.2019.02.020_b0225 article-title: Phosphorus losses from agricultural watersheds in the Mississippi Delta publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2012.10.028 – volume: 270 start-page: 214 issue: 3–4 year: 2003 ident: 10.1016/j.jhydrol.2019.02.020_b0055 article-title: Focused infiltration of snowmelt water in partially frozen soil under small depressions publication-title: J. Hydrol. doi: 10.1016/S0022-1694(02)00287-1 – volume: 43 start-page: 26 issue: 143 year: 1997 ident: 10.1016/j.jhydrol.2019.02.020_b0180 article-title: The thermal conductivity of seasonal snow publication-title: J. Glaciol. doi: 10.3189/S0022143000002781 – volume: 537 start-page: 96 year: 2016 ident: 10.1016/j.jhydrol.2019.02.020_b0120 article-title: Satellite-based estimation of watershed groundwater storage dynamics in a freeze–thaw area under intensive agricultural development publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.03.034 – volume: 104 start-page: 19599 issue: D16 year: 1999 ident: 10.1016/j.jhydrol.2019.02.020_b0030 article-title: Hydrologic effects of frozen soils in the upper Mississippi River basin publication-title: J. Geophys. Res.: Atmos. doi: 10.1029/1999JD900337 – volume: 538 start-page: 863 year: 2016 ident: 10.1016/j.jhydrol.2019.02.020_b0140 article-title: A new soil-temperature module for SWAT application in regions with seasonal snow cover publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.05.003 – volume: 50 start-page: 885 issue: 3 year: 2007 ident: 10.1016/j.jhydrol.2019.02.020_b0110 article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations publication-title: Trans. ASABE doi: 10.13031/2013.23153 – year: 2007 ident: 10.1016/j.jhydrol.2019.02.020_b0165 – volume: 34 start-page: 73 issue: 1 year: 1998 ident: 10.1016/j.jhydrol.2019.02.020_b0010 article-title: Large area hydrologic modeling and assessment part I: Model development publication-title: JAWRA J. Am. Water Resour. Assoc. doi: 10.1111/j.1752-1688.1998.tb05961.x – volume: 23 start-page: 2521 issue: 12 year: 1993 ident: 10.1016/j.jhydrol.2019.02.020_b0220 article-title: Predicting forest soil temperatures from monthly air temperature and precipitation records publication-title: Can. J. For. Res. doi: 10.1139/x93-313 – volume: 31 start-page: 916 issue: 4 year: 2017 ident: 10.1016/j.jhydrol.2019.02.020_b0230 article-title: Assessing impacts of riparian buffer zones on sediment and nutrient loadings into streams at watershed scale using an integrated REMM-SWAT model publication-title: Hydrol. Process. doi: 10.1002/hyp.11073 – volume: 22 start-page: 3789 issue: 7 year: 2018 ident: 10.1016/j.jhydrol.2019.02.020_b0125 article-title: Developing a decision support tool for assessing land use change and BMPs in ungauged watersheds based on decision rules provided by SWAT simulation publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-22-3789-2018 – year: 2011 ident: 10.1016/j.jhydrol.2019.02.020_b0115 – volume: 49 start-page: 3278 issue: 6 year: 2015 ident: 10.1016/j.jhydrol.2019.02.020_b0195 article-title: Evaluation of the current state of distributed watershed nutrient water quality modeling publication-title: Environ. Sci. Technol. doi: 10.1021/es5049557 – volume: 9 start-page: 1314 issue: 5 year: 1973 ident: 10.1016/j.jhydrol.2019.02.020_b0050 article-title: Analysis of coupled heat-fluid transport in partially frozen soil publication-title: Water Resour. Res. doi: 10.1029/WR009i005p01314 – volume: 109 start-page: 329 year: 2018 ident: 10.1016/j.jhydrol.2019.02.020_b0145 article-title: Assessing the performance of a physically-based soil moisture module integrated within the Soil and Water Assessment Tool publication-title: Environ. Modell. Software doi: 10.1016/j.envsoft.2018.08.024 – volume: 31 issue: 12 year: 2004 ident: 10.1016/j.jhydrol.2019.02.020_b0205 article-title: A two-directional freeze and thaw algorithm for hydrologic and land surface modelling publication-title: Geophys. Res. Lett. doi: 10.1029/2004GL019475 – volume: 103 start-page: 11303 issue: D10 year: 1998 ident: 10.1016/j.jhydrol.2019.02.020_b0160 article-title: Simulation of freeze-thaw cycles in a general circulation model land surface scheme publication-title: J. Geophys. Res.: Atmos. doi: 10.1029/97JD03630 – volume: 563 start-page: 382 year: 2018 ident: 10.1016/j.jhydrol.2019.02.020_b0245 article-title: Impact of soil freeze-thaw mechanism on the runoff dynamics of two Tibetan rivers publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.06.024 – volume: 13 start-page: 1843 issue: 12–13 year: 1999 ident: 10.1016/j.jhydrol.2019.02.020_b0155 article-title: The effect of frozen soil on snowmelt runoff at Sleepers River, Vermont publication-title: Hydrol. Process. doi: 10.1002/(SICI)1099-1085(199909)13:12/13<1843::AID-HYP879>3.0.CO;2-G – volume: 375 start-page: 438 issue: 3–4 year: 2009 ident: 10.1016/j.jhydrol.2019.02.020_b0190 article-title: The influence of freeze–thaw cycles of active soil layer on surface runoff in a permafrost watershed publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2009.06.046 – volume: 56 start-page: 135 issue: 2 year: 2001 ident: 10.1016/j.jhydrol.2019.02.020_b0045 article-title: Colder soils in a warmer world: a snow manipulation study in a northern hardwood forest ecosystem publication-title: Biogeochemistry doi: 10.1023/A:1013039830323 – volume: 196 start-page: 114 year: 2014 ident: 10.1016/j.jhydrol.2019.02.020_b0085 article-title: An approach for assessing impact of land use and biophysical conditions across landscape on recharge rate and nitrogen loading of groundwater publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2014.06.028 – volume: 40 start-page: 811 issue: 3 year: 2004 ident: 10.1016/j.jhydrol.2019.02.020_b0070 article-title: Effect of watershed subdivision on swat flow, sediment, and nutrient predictions publication-title: JAWRA J. Am. Water Resour. Assoc. doi: 10.1111/j.1752-1688.2004.tb04460.x – volume: 43 issue: 4 year: 2005 ident: 10.1016/j.jhydrol.2019.02.020_b0235 article-title: Influence of the seasonal snow cover on the ground thermal regime: an overview publication-title: Rev. Geophys. doi: 10.1029/2004RG000157 – ident: 10.1016/j.jhydrol.2019.02.020_b0215 doi: 10.1029/2011JD016048 – volume: 262 start-page: 209 issue: 1 year: 2002 ident: 10.1016/j.jhydrol.2019.02.020_b0035 article-title: Development of a snowfall–snowmelt routine for mountainous terrain for the soil water assessment tool (SWAT) publication-title: J. Hydrol. doi: 10.1016/S0022-1694(02)00029-X – ident: 10.1016/j.jhydrol.2019.02.020_b0150 – volume: 93 start-page: 146 year: 2017 ident: 10.1016/j.jhydrol.2019.02.020_b0130 article-title: Modifying SWAT with an energy balance module to simulate snowmelt for maritime regions publication-title: Environ. Modell. Software doi: 10.1016/j.envsoft.2017.03.007 – ident: 10.1016/j.jhydrol.2019.02.020_b0175 – ident: 10.1016/j.jhydrol.2019.02.020_b0075 doi: 10.21236/ADA044002 – volume: 4 start-page: 334 issue: 2 year: 2003 ident: 10.1016/j.jhydrol.2019.02.020_b0095 article-title: Effects of frozen soil on soil temperature, spring infiltration, and runoff: results from the PILPS 2 (d) experiment at Valdai, Russia publication-title: J. Hydrometeorol. doi: 10.1175/1525-7541(2003)4<334:EOFSOS>2.0.CO;2 – volume: 200 start-page: 345 issue: 1–4 year: 1997 ident: 10.1016/j.jhydrol.2019.02.020_b0240 article-title: Numerical analysis of simultaneous heat and mass transfer during infiltration into frozen ground publication-title: J. Hydrol. doi: 10.1016/S0022-1694(97)00028-0 – volume: 227 start-page: 21 issue: 1–4 year: 2000 ident: 10.1016/j.jhydrol.2019.02.020_b0005 article-title: Regional estimation of base flow and groundwater recharge in the Upper Mississippi river basin publication-title: J. Hydrol. doi: 10.1016/S0022-1694(99)00139-0 – year: 1980 ident: 10.1016/j.jhydrol.2019.02.020_b0060 – volume: 11 start-page: 111 issue: 2 year: 1991 ident: 10.1016/j.jhydrol.2019.02.020_b0185 article-title: CLASS—a Canadian land surface scheme for GCMs. I. Soil model publication-title: Int. J. Climatol. doi: 10.1002/joc.3370110202 – volume: 378 start-page: 161 issue: 1 year: 2009 ident: 10.1016/j.jhydrol.2019.02.020_b0080 article-title: Estimating the snow water equivalent from snow depth measurements in the Swiss Alps publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2009.09.021 – volume: 53 start-page: 1533 issue: 5 year: 2010 ident: 10.1016/j.jhydrol.2019.02.020_b0170 article-title: SWAT ungauged: hydrological budget and crop yield predictions in the Upper Mississippi River Basin publication-title: Trans. ASABE doi: 10.13031/2013.34903 |
SSID | ssj0000334 |
Score | 2.44538 |
Snippet | •Freeze-thaw cycle representation is often simplified in watershed modeling.•A physically based method outperforms the empirical approach for the freeze-thaw... Freeze-thaw cycles are important processes relevant to terrestrial hydrological cycling. However, the representation of freeze-thaw cycles has been often... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 605 |
SubjectTerms | base flow climate Freeze-thaw cycles freezing hydrologic factors Mississippi River model validation runoff Soil and Water Assessment Tool model soil depth Soil temperature statistical analysis Streamflow SWAT thawing United States water management watersheds winter |
Title | Improving hydrological simulation in the Upper Mississippi River Basin through enhanced freeze-thaw cycle representation |
URI | https://dx.doi.org/10.1016/j.jhydrol.2019.02.020 https://www.proquest.com/docview/2237537617 |
Volume | 571 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2707 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000334 issn: 0022-1694 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2707 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000334 issn: 0022-1694 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-2707 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000334 issn: 0022-1694 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-2707 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000334 issn: 0022-1694 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2707 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000334 issn: 0022-1694 databaseCode: AKRWK dateStart: 19630101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEA-iD_pynF_4TQRfu5u02SZ9VFFWRR_EBd9CNp2yXe66ZT_w9h7ubzeTpooiCAd5ack0ZWY6mWlmfkPIWSysVIVKXGxi00jY1EQqExCBEEXMbZ6mvor__iHtD8Ttc-95hVy2tTCYVhlsf2PTvbUOd7qBm926LLHGN4451mFmTkmlxEJzRP9yOt35957mwZJEtIjhOPu9iqc77oxHy3w6wRMInnnoTmz7_fX-9MlS--3n-if5EfxGet682iZZgWqLrIcW5qPlNvnz9nuANss1No3Oyt-hQxctK-rcPTqoa5jSe8dxHHVd0kdMzqAXZuZn-MY9FKqRTw6gxRTgL0TzkXmhdukWpx4Isy1aqnbI4Prq6bIfhbYKkRE9NY94z3BmIe2ZwsaSDY1KLQhs1JflNufgwuViGDPjYimZGetYqlyMyIZZzguZWJbsktVqUsEeoQIKpkBym0kQCHqsTMYNLyw3zlIIu09Ey0xtA-Y4tr74pdvksrEOMtAoA81iN9g-6byR1Q3oxncEqpWU_qA92m0M35GetpLV7svC4xJTwWQx085xkgh2w-XB_z_-kGzgVZPrc0RW59MFHDs3Zj488Xp6QtbOb-76D6-CI_T8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90PuiL-InzM4KvdU2bNu2jDmV-bA_iwLeQpVfWoV3ZJjr_epM2nSiCIOSp7TUll_5yl9z9DuDMY4pHaeRr30SFDlOhdKKYoYOMpR5VSRiWWfzdXtjps9un4GkJ2nUujAmrtNhfYXqJ1vZKy45mq8gyk-PredTkYcZ6knIeLMMKCzQmN2Dl4uau0_sCZN9nNWm4EfhK5GmNzkfDeTIZm0MIGpfsnaby9-9L1A-wLleg6w1Yt6Yjuai-bhOWMN-CVVvFfDjfhvfFDgGpuqtgjUyzF1uki2Q50RYf6RcFTkhXD7ppRZGRBxOfQS7ltHyirN1DMB-W8QEknSB-oDMbyjei5rpzUnJh1nlL-Q70r68e2x3HVlZwJAuimUMDSV2FYSBT5XF3IKNQITO1-uJEJRS1x5wOPFdqd4rHUjFtpmg30R3ECU25r1x_Fxr5OMc9IAxTN0JOVcyRGd7jSMZU0lRRqcGCqSawejCFsrTjpvrFs6jjy0bC6kAYHQjX081twvlCrKh4N_4SiGpNiW8TSOi14S_R01qzQv9c5sRE5jh-nQptO3HDd0P5_v9ffwKrncfuvbi_6d0dwJq5U4X-HEJjNnnFI23VzAbHdtZ-As5Q96c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+hydrological+simulation+in+the+Upper+Mississippi+River+Basin+through+enhanced+freeze-thaw+cycle+representation&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Qi%2C+Junyu&rft.au=Zhang%2C+Xuesong&rft.au=Wang%2C+Qianfeng&rft.date=2019-04-01&rft.issn=0022-1694&rft.volume=571+p.605-618&rft.spage=605&rft.epage=618&rft_id=info:doi/10.1016%2Fj.jhydrol.2019.02.020&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |