(U–Th)/He chronology of the Robe River channel iron deposits, Hamersley Province, Western Australia

Channel iron deposits (CID) supply 40% of Australia's iron ore but their genesis is still the subject of debate. Two well-characterised samples of goethite/hematite CID from a diamond drill core in Mesa J of the Robe River area in Western Australia were dated using (U–Th)/He methods in order to...

Full description

Saved in:
Bibliographic Details
Published inChemical geology Vol. 354; pp. 150 - 162
Main Authors Danišík, Martin, Evans, Noreen J., Ramanaidou, Erick R., McDonald, Brad J., Mayers, Celia, McInnes, Brent I.A.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 16.09.2013
Subjects
Online AccessGet full text
ISSN0009-2541
1872-6836
DOI10.1016/j.chemgeo.2013.06.012

Cover

Abstract Channel iron deposits (CID) supply 40% of Australia's iron ore but their genesis is still the subject of debate. Two well-characterised samples of goethite/hematite CID from a diamond drill core in Mesa J of the Robe River area in Western Australia were dated using (U–Th)/He methods in order to constrain the timing of iron oxide formation and thereby provide a temporal context for CID genesis. (U–Th)/He ages (He ages) range from 25.7±0.6 to 7.0±0.8Ma and, despite a high degree of scatter, they corroborate relationships expected from the internal ooidal stratigraphy. For individual ooids, the hematitic core is older than or indistinguishable from the age of the surrounding goethitic cortex. The goethitic cortices are, in turn, older than the ferruginised wood fragments recovered from the cementing goethitic matrix. The data suggest the following paragenesis: (i) Hematitic cores in ooids formed in the Early to Middle Miocene as documented by ages of ~14.3±3.7Ma and 18.3±3.5Ma measured in the shallower (8.2m deep) and deeper (32.8m) sample, respectively; (ii) Goethitic cortices of both samples formed in the late Middle to early Late Miocene at 11.6±3.0Ma; (iii) Wood fragments form a prominent component of the matrix and were ferruginised during the Late Miocene (He ages ranging from 9.4±0.5 to 8.2±0.4Ma in the deeper core and 8.4±0.9 to 7.0±0.8Ma in the shallower core). The data suggest that the unique environmental conditions conducive to CID formation existed during the Miocene and that a “typical Robe River CID sequence” likely took 4 to 8Myr to accumulate. A methodological implication of this study is that it confirms the previous observation of Vasconcelos et al. (2013) suggesting that the temperature utilised for He-extraction from iron oxides has a critical impact on the mobility of parent nuclides. The typical ~1000°C laser heating used for crystalline minerals like apatite or zircon induces loss of U and Th and results in erroneously old ages. Modest extraction temperature (<500°C), utilising a low-power laser or, preferably, a temperature-controllable resistance furnace is recommended. •We date genesis of channel iron deposits by goethite/hematite U–Th/He geochronology.•Channel iron deposits supplying 40% of Australia's iron ore formed in the Miocene.•U–Th/He dating of secondary Fe oxides constrains palaeotopography and palaeoclimate.
AbstractList Channel iron deposits (CID) supply 40% of Australia's iron ore but their genesis is still the subject of debate. Two well-characterised samples of goethite/hematite CID from a diamond drill core in Mesa J of the Robe River area in Western Australia were dated using (U–Th)/He methods in order to constrain the timing of iron oxide formation and thereby provide a temporal context for CID genesis. (U–Th)/He ages (He ages) range from 25.7±0.6 to 7.0±0.8Ma and, despite a high degree of scatter, they corroborate relationships expected from the internal ooidal stratigraphy. For individual ooids, the hematitic core is older than or indistinguishable from the age of the surrounding goethitic cortex. The goethitic cortices are, in turn, older than the ferruginised wood fragments recovered from the cementing goethitic matrix. The data suggest the following paragenesis: (i) Hematitic cores in ooids formed in the Early to Middle Miocene as documented by ages of ~14.3±3.7Ma and 18.3±3.5Ma measured in the shallower (8.2m deep) and deeper (32.8m) sample, respectively; (ii) Goethitic cortices of both samples formed in the late Middle to early Late Miocene at 11.6±3.0Ma; (iii) Wood fragments form a prominent component of the matrix and were ferruginised during the Late Miocene (He ages ranging from 9.4±0.5 to 8.2±0.4Ma in the deeper core and 8.4±0.9 to 7.0±0.8Ma in the shallower core). The data suggest that the unique environmental conditions conducive to CID formation existed during the Miocene and that a “typical Robe River CID sequence” likely took 4 to 8Myr to accumulate. A methodological implication of this study is that it confirms the previous observation of Vasconcelos et al. (2013) suggesting that the temperature utilised for He-extraction from iron oxides has a critical impact on the mobility of parent nuclides. The typical ~1000°C laser heating used for crystalline minerals like apatite or zircon induces loss of U and Th and results in erroneously old ages. Modest extraction temperature (<500°C), utilising a low-power laser or, preferably, a temperature-controllable resistance furnace is recommended. •We date genesis of channel iron deposits by goethite/hematite U–Th/He geochronology.•Channel iron deposits supplying 40% of Australia's iron ore formed in the Miocene.•U–Th/He dating of secondary Fe oxides constrains palaeotopography and palaeoclimate.
Channel iron deposits (CID) supply 40% of Australia's iron ore but their genesis is still the subject of debate. Two well-characterised samples of goethite/hematite CID from a diamond drill core in Mesa J of the Robe River area in Western Australia were dated using (U-Th)/He methods in order to constrain the timing of iron oxide formation and thereby provide a temporal context for CID genesis. (U-Th)/He ages (He ages) range from 25.7 plus or minus 0.6 to 7.0 plus or minus 0.8Ma and, despite a high degree of scatter, they corroborate relationships expected from the internal ooidal stratigraphy. For individual ooids, the hematitic core is older than or indistinguishable from the age of the surrounding goethitic cortex. The goethitic cortices are, in turn, older than the ferruginised wood fragments recovered from the cementing goethitic matrix. The data suggest the following paragenesis: (i) Hematitic cores in ooids formed in the Early to Middle Miocene as documented by ages of ~14.3 plus or minus 3.7Ma and 18.3 plus or minus 3.5Ma measured in the shallower (8.2m deep) and deeper (32.8m) sample, respectively; (ii) Goethitic cortices of both samples formed in the late Middle to early Late Miocene at 11.6 plus or minus 3.0Ma; (iii) Wood fragments form a prominent component of the matrix and were ferruginised during the Late Miocene (He ages ranging from 9.4 plus or minus 0.5 to 8.2 plus or minus 0.4Ma in the deeper core and 8.4 plus or minus 0.9 to 7.0 plus or minus 0.8Ma in the shallower core). The data suggest that the unique environmental conditions conducive to CID formation existed during the Miocene and that a "typical Robe River CID sequence" likely took 4 to 8Myr to accumulate. A methodological implication of this study is that it confirms the previous observation of Vasconcelos et al. (2013) suggesting that the temperature utilised for He-extraction from iron oxides has a critical impact on the mobility of parent nuclides. The typical ~1000 degree C laser heating used for crystalline minerals like apatite or zircon induces loss of U and Th and results in erroneously old ages. Modest extraction temperature (<500 degree C), utilising a low-power laser or, preferably, a temperature-controllable resistance furnace is recommended.
Channel iron deposits (CID) supply 40% of Australia's iron ore but their genesis is still the subject of debate. Two well-characterised samples of goethite/hematite CID from a diamond drill core in Mesa J of the Robe River area in Western Australia were dated using (U–Th)/He methods in order to constrain the timing of iron oxide formation and thereby provide a temporal context for CID genesis. (U–Th)/He ages (He ages) range from 25.7±0.6 to 7.0±0.8Ma and, despite a high degree of scatter, they corroborate relationships expected from the internal ooidal stratigraphy. For individual ooids, the hematitic core is older than or indistinguishable from the age of the surrounding goethitic cortex. The goethitic cortices are, in turn, older than the ferruginised wood fragments recovered from the cementing goethitic matrix. The data suggest the following paragenesis: (i) Hematitic cores in ooids formed in the Early to Middle Miocene as documented by ages of ~14.3±3.7Ma and 18.3±3.5Ma measured in the shallower (8.2m deep) and deeper (32.8m) sample, respectively; (ii) Goethitic cortices of both samples formed in the late Middle to early Late Miocene at 11.6±3.0Ma; (iii) Wood fragments form a prominent component of the matrix and were ferruginised during the Late Miocene (He ages ranging from 9.4±0.5 to 8.2±0.4Ma in the deeper core and 8.4±0.9 to 7.0±0.8Ma in the shallower core). The data suggest that the unique environmental conditions conducive to CID formation existed during the Miocene and that a “typical Robe River CID sequence” likely took 4 to 8Myr to accumulate. A methodological implication of this study is that it confirms the previous observation of Vasconcelos et al. (2013) suggesting that the temperature utilised for He-extraction from iron oxides has a critical impact on the mobility of parent nuclides. The typical ~1000°C laser heating used for crystalline minerals like apatite or zircon induces loss of U and Th and results in erroneously old ages. Modest extraction temperature (<500°C), utilising a low-power laser or, preferably, a temperature-controllable resistance furnace is recommended.
Author McInnes, Brent I.A.
Ramanaidou, Erick R.
Danišík, Martin
Evans, Noreen J.
Mayers, Celia
McDonald, Brad J.
Author_xml – sequence: 1
  givenname: Martin
  surname: Danišík
  fullname: Danišík, Martin
  email: M.Danisik@waikato.ac.nz
  organization: John de Laeter Centre for Isotope Research, Applied Geology, Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia
– sequence: 2
  givenname: Noreen J.
  surname: Evans
  fullname: Evans, Noreen J.
  email: Noreen.Evans@curtin.edu.au
  organization: John de Laeter Centre for Isotope Research, Applied Geology, Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia
– sequence: 3
  givenname: Erick R.
  surname: Ramanaidou
  fullname: Ramanaidou, Erick R.
  email: Erick.Ramanaidou@csiro.au
  organization: CSIRO Earth Science and Resource Engineering, ARRC, 26 Dick Perry Avenue, WA 6151, Australia
– sequence: 4
  givenname: Brad J.
  surname: McDonald
  fullname: McDonald, Brad J.
  email: Brad.Mcdonald@csiro.au
  organization: John de Laeter Centre for Isotope Research, Applied Geology, Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia
– sequence: 5
  givenname: Celia
  surname: Mayers
  fullname: Mayers, Celia
  email: Celia.Mayers@csiro.au
  organization: CSIRO Earth Science and Resource Engineering, ARRC, 26 Dick Perry Avenue, WA 6151, Australia
– sequence: 6
  givenname: Brent I.A.
  surname: McInnes
  fullname: McInnes, Brent I.A.
  email: B.Mcinnes@curtin.edu.au
  organization: John de Laeter Centre for Isotope Research, Applied Geology, Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia
BookMark eNqNkctqGzEUhkVJoU7aRyjVMoXMRJfRZeiihNDGgUBLG9Ol0GjO2DJjyZXGBu_6Dn3DPkkVnFU37kYHoe8_R5zvHJ2FGACht5TUlFB5va7dCjZLiDUjlNdE1oSyF2hGtWKV1FyeoRkhpK2YaOgrdJ7zulwpF2KG4HLx59fvx9X76zlgt0oxxDEuDzgOeFoB_ha7cvg9pPJoQ4AR-8LgHrYx-ylf4bndQMojHPDXFPc-OLjCPyBPkAK-2eUp2dHb1-jlYMcMb57rBVp8_vR4O68evtzd3948VLYRYqocCHC0c1Ipy0GJQTWkIwN3feu0sgNRsoO201oSUNATqhlrOVVCOq7b3vILdHnsu03x5678wmx8djCONkDcZUMVU1KzpuWnUSlbrTSj6n9QLnRDaVtQcURdijknGMw2-Y1NB0OJeZJl1uZZlnmSZYg0RVbJffgn5_xkJx9DWaAfT6bfHdODjcYuk89m8b0AomhWBaCF-HgkoGx_7yGZ7DwUWb1P4CbTR39ixl8VC77N
CitedBy_id crossref_primary_10_1016_j_gca_2017_06_036
crossref_primary_10_1029_2023GC010993
crossref_primary_10_1016_j_chemgeo_2019_05_030
crossref_primary_10_1016_j_chemgeo_2024_122254
crossref_primary_10_1016_j_gca_2020_07_014
crossref_primary_10_1016_j_gloplacha_2022_103815
crossref_primary_10_3390_min12091151
crossref_primary_10_1016_j_chemgeo_2018_11_005
crossref_primary_10_1144_geochem2017_056
crossref_primary_10_1080_22020586_2019_12073094
crossref_primary_10_1016_j_gca_2022_02_017
crossref_primary_10_1080_08120099_2014_898408
crossref_primary_10_1016_j_gsf_2024_101969
crossref_primary_10_1080_08120099_2017_1266387
crossref_primary_10_1016_j_gca_2020_03_033
crossref_primary_10_3390_d13100482
crossref_primary_10_1029_2023GL102928
crossref_primary_10_1016_j_sedgeo_2016_04_015
crossref_primary_10_1016_j_gca_2018_02_023
crossref_primary_10_1016_j_palaeo_2024_112674
crossref_primary_10_1126_sciadv_adp0414
crossref_primary_10_1016_j_proeng_2015_12_535
crossref_primary_10_1016_j_chemgeo_2019_119350
crossref_primary_10_1080_08120099_2017_1278719
crossref_primary_10_1180_mgm_2018_80
crossref_primary_10_1093_gji_ggu293
crossref_primary_10_1130_B30983_1
crossref_primary_10_1130_G50374_1
crossref_primary_10_1016_j_chemgeo_2024_122287
crossref_primary_10_1029_2018TC005312
crossref_primary_10_1080_08120099_2022_2048888
crossref_primary_10_1016_j_chemgeo_2020_119792
crossref_primary_10_1016_j_oregeorev_2024_106203
crossref_primary_10_1144_SP393_11
crossref_primary_10_1016_j_epsl_2018_08_021
crossref_primary_10_1130_B31627_1
crossref_primary_10_1130_B36266_1
crossref_primary_10_1016_j_gsf_2019_05_005
crossref_primary_10_1016_j_palaeo_2022_111212
crossref_primary_10_3389_feart_2022_888993
crossref_primary_10_18654_1000_0569_2019_01_17
crossref_primary_10_3390_min11070679
Cites_doi 10.1007/BF00203111
10.1016/S0016-7037(02)00953-5
10.1016/j.epsl.2012.10.010
10.1046/j.1440-0952.2002.00912.x
10.1080/08120090701305251
10.1111/j.1440-0952.2003.01019.x
10.1002/(SICI)1097-4555(199905)30:5<355::AID-JRS398>3.0.CO;2-C
10.1016/S0012-821X(03)00594-6
10.1029/94JB01055
10.1016/0012-821X(95)00046-F
10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO;2-B
10.1046/j.1440-0952.2002.00942.x
10.1130/G22003.1
10.1346/CCMN.1979.0270205
10.1016/j.gca.2004.07.028
10.1016/0016-7037(89)90104-X
10.1016/S0016-7037(96)00193-7
10.1016/0016-7037(94)90474-X
10.2138/rmg.2002.47.18
10.1016/0012-821X(93)90031-4
10.1111/j.1365-246X.1985.tb06494.x
10.2113/gsecongeo.94.1.87
10.1126/science.235.4793.1156
10.1007/s10809-005-0260-1
10.1029/94GL00014
10.1080/08120090802120120
10.1111/j.1400-0952.2004.01094.x
10.1016/0016-7037(94)90565-7
10.1016/S0012-821X(02)01069-5
10.1154/1.2358358
10.1016/j.gca.2013.03.037
10.1111/j.1400-0952.2004.01071.x
10.1016/j.epsl.2007.04.044
ContentType Journal Article
Copyright 2013 Elsevier B.V.
Copyright_xml – notice: 2013 Elsevier B.V.
DBID FBQ
AAYXX
CITATION
7S9
L.6
8FD
FR3
KR7
7QH
7UA
C1K
F1W
H96
L.G
DOI 10.1016/j.chemgeo.2013.06.012
DatabaseName AGRIS
CrossRef
AGRICOLA
AGRICOLA - Academic
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aqualine
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Technology Research Database
AGRICOLA

Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1872-6836
EndPage 162
ExternalDocumentID 10_1016_j_chemgeo_2013_06_012
US201500070121
S0009254113002696
GeographicLocations Western Australia
Australia, Western Australia, Hamersley Prov
ISW, Australia, Western Australia
GeographicLocations_xml – name: Western Australia
– name: Australia, Western Australia, Hamersley Prov
– name: ISW, Australia, Western Australia
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABLJU
ABMAC
ABPPZ
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSZ
T5K
TN5
~02
~G-
6TJ
AAQXK
ABEFU
ABFNM
ABPIF
ABPTK
ABTAH
ADIYS
ADMUD
AETEA
AI.
ASPBG
AVWKF
AZFZN
FBQ
FEDTE
FGOYB
G-2
HMA
HVGLF
HZ~
H~9
OHT
R2-
SEP
SEW
VH1
WUQ
XJT
XOL
XPP
ZKB
ZMT
ZY4
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
ACLOT
L.6
8FD
FR3
KR7
7QH
7UA
C1K
F1W
H96
L.G
ID FETCH-LOGICAL-a455t-ce5ec1bc677a3e75f740b0f3cd9c87af076be9b8860e7ed01822931756c389da3
IEDL.DBID AIKHN
ISSN 0009-2541
IngestDate Sun Sep 28 00:54:56 EDT 2025
Sat Sep 27 21:48:20 EDT 2025
Sat Sep 27 22:29:24 EDT 2025
Thu Sep 18 00:05:16 EDT 2025
Thu Apr 24 22:53:13 EDT 2025
Wed Dec 27 19:17:48 EST 2023
Fri Feb 23 02:30:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Robe River/Mesa J
Western Australia
Channel iron deposits
(U–Th)/He dating
Goethite/hematite
Iron ore genesis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a455t-ce5ec1bc677a3e75f740b0f3cd9c87af076be9b8860e7ed01822931756c389da3
Notes http://dx.doi.org/10.1016/j.chemgeo.2013.06.012
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1663584119
PQPubID 24069
PageCount 13
ParticipantIDs proquest_miscellaneous_1727682493
proquest_miscellaneous_1669878217
proquest_miscellaneous_1663584119
crossref_primary_10_1016_j_chemgeo_2013_06_012
crossref_citationtrail_10_1016_j_chemgeo_2013_06_012
fao_agris_US201500070121
elsevier_sciencedirect_doi_10_1016_j_chemgeo_2013_06_012
PublicationCentury 2000
PublicationDate 2013-09-16
PublicationDateYYYYMMDD 2013-09-16
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-16
  day: 16
PublicationDecade 2010
PublicationTitle Chemical geology
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ramanaidou, Morris, Horwitz (bb0180) 2003; 50
Bersani, Lottici, Montenero (bb0020) 1999; 30
Wernicke, Lippolt (bb0265) 1993; 114
Pillans (bb0315) 1998
Vasconcelos, Knesel, Cohen, Heim (bb0235) 2008; 55
Bähr (bb0270) 1987
Ehlers, Farley (bb0065) 2003; 206
Morris, Kneeshaw, Ramanaidou (bb0310) 2007
Morris, Ramanaidou (bb0150) 2007; 54
Strutt (bb0210) 1905; 76
Strutt (bb0215) 1910; A83
Evans, Byrne, Keegan, Dotter (bb0070) 2005; 60
Pillans (bb9020) 2002; 67
Shuster, Vasconcelos, Heim, Farley (bb0200) 2005; 69
Lippolt, Wernicke, Boschmann (bb0115) 1993; 20
Schwertmann, Fitzpatrick, Taylor, Lewis (bb9010) 1979; 27
Bird, Chivas (bb0025) 1989; 53
MacPhail, Stone (bb0135) 2004; 51
Kohn, Gleadow, Brown, Gallagher, O'Sullivan, Foster (bb0110) 2002; 49
Dammer (bb0290) 1995
Wernicke, Lippolt (bb0250) 1994; 21
Boschmann (bb0275) 1986; 4
Duff, Coughlin, Hunter (bb0060) 2002; 66
Ramanaidou, Wells, Belton, Verral, Ryan (bb0185) 2008; 15
Haq, Hardebol, Vail (bb0095) 1987; 235
Pidgeon, Brander, Lippolt (bb0165) 2004; 51
Harms, Morgan (bb0090) 1964; 212
Lippolt, Brander, Mankopf (bb0125) 1998; 11
Farley, Flowers (bb9015) 2012; 359–360
Hall, Kneeshaw (bb0085) 1990
MacLeod, de la Hunty, Jones, Halligan (bb0295) 1963; 1962
Li, O’Connor, Low, van Riessen (bb9005) 2006; 21
Dammer, McDougall, Chivas (bb0050) 1999; 94
Vasconcelos, Heim, Farley, Shuster, Broadbent (bb0340) 2007
Thern, Jourdan, Evans, McDonald, Danišík, Frew, Nelson (bb0335) 2011
Farley (bb0080) 2002; 47
Butler (bb0280) 1976
McGowran, Li (bb0300) 1998; 20
Ramanaidou, Tapley, van Bronswijk (bb0320) 1996
Morris, Ramanaidou, Horwitz (bb0155) 1993; 399R
Bähr, Lippolt, Wernicke (bb0015) 1994; 99
Shuster, Farley, Sisterson, Burnett (bb0195) 2004; 217
Vasconcelos, Heim, Farley, Monteiro, Waltenberg (bb0345) 2013; 117
Wernicke, Lippolt (bb0255) 1994; 58
Lippolt, Wernicke, Bähr (bb0120) 1995; 132
Anand, Paine (bb0005) 2002; 49
Morris (bb0305) 1994; 76R
Veevers (bb0245) 2001
Schwertmann, Taylor (bb0325) 1989
Campana, Hughes, Burns, Whitcher, Mucenieka (bb0285) 1964; 210
Vasconcelos, Renne, Brimhall, Becker (bb0225) 1994; 58
Farley, Wolf, Silver (bb0075) 1996; 60
Heim, Vasconcelos, Shuster, Farley, Broadbent (bb0100) 2006; 34
Idnurm (bb0105) 1985; 83
Wernicke (bb0350) 1991
Blackburn, Stockli, Walker (bb9025) 2007; 259
Stone (bb0330) 2005
de Faria, Silva, de Oliveira (bb0055) 1997; 28
Lippolt (10.1016/j.chemgeo.2013.06.012_bb0125) 1998; 11
Haq (10.1016/j.chemgeo.2013.06.012_bb0095) 1987; 235
Shuster (10.1016/j.chemgeo.2013.06.012_bb0200) 2005; 69
Boschmann (10.1016/j.chemgeo.2013.06.012_bb0275) 1986; 4
Wernicke (10.1016/j.chemgeo.2013.06.012_bb0350) 1991
MacPhail (10.1016/j.chemgeo.2013.06.012_bb0135) 2004; 51
Veevers (10.1016/j.chemgeo.2013.06.012_bb0245) 2001
Morris (10.1016/j.chemgeo.2013.06.012_bb0310) 2007
Pillans (10.1016/j.chemgeo.2013.06.012_bb9020) 2002; 67
Heim (10.1016/j.chemgeo.2013.06.012_bb0100) 2006; 34
Bersani (10.1016/j.chemgeo.2013.06.012_bb0020) 1999; 30
Vasconcelos (10.1016/j.chemgeo.2013.06.012_bb0340) 2007
Wernicke (10.1016/j.chemgeo.2013.06.012_bb0255) 1994; 58
Campana (10.1016/j.chemgeo.2013.06.012_bb0285) 1964; 210
Schwertmann (10.1016/j.chemgeo.2013.06.012_bb0325) 1989
Pillans (10.1016/j.chemgeo.2013.06.012_bb0315) 1998
Ramanaidou (10.1016/j.chemgeo.2013.06.012_bb0180) 2003; 50
Schwertmann (10.1016/j.chemgeo.2013.06.012_bb9010) 1979; 27
Dammer (10.1016/j.chemgeo.2013.06.012_bb0050) 1999; 94
Vasconcelos (10.1016/j.chemgeo.2013.06.012_bb0345) 2013; 117
Duff (10.1016/j.chemgeo.2013.06.012_bb0060) 2002; 66
Blackburn (10.1016/j.chemgeo.2013.06.012_bb9025) 2007; 259
Evans (10.1016/j.chemgeo.2013.06.012_bb0070) 2005; 60
Ramanaidou (10.1016/j.chemgeo.2013.06.012_bb0320) 1996
Thern (10.1016/j.chemgeo.2013.06.012_bb0335) 2011
Ramanaidou (10.1016/j.chemgeo.2013.06.012_bb0185) 2008; 15
Vasconcelos (10.1016/j.chemgeo.2013.06.012_bb0235) 2008; 55
Bähr (10.1016/j.chemgeo.2013.06.012_bb0270) 1987
Bähr (10.1016/j.chemgeo.2013.06.012_bb0015) 1994; 99
Lippolt (10.1016/j.chemgeo.2013.06.012_bb0115) 1993; 20
Kohn (10.1016/j.chemgeo.2013.06.012_bb0110) 2002; 49
Morris (10.1016/j.chemgeo.2013.06.012_bb0150) 2007; 54
Morris (10.1016/j.chemgeo.2013.06.012_bb0155) 1993; 399R
Harms (10.1016/j.chemgeo.2013.06.012_bb0090) 1964; 212
Wernicke (10.1016/j.chemgeo.2013.06.012_bb0250) 1994; 21
Dammer (10.1016/j.chemgeo.2013.06.012_bb0290) 1995
Farley (10.1016/j.chemgeo.2013.06.012_bb0075) 1996; 60
Anand (10.1016/j.chemgeo.2013.06.012_bb0005) 2002; 49
de Faria (10.1016/j.chemgeo.2013.06.012_bb0055) 1997; 28
Strutt (10.1016/j.chemgeo.2013.06.012_bb0215) 1910; A83
Lippolt (10.1016/j.chemgeo.2013.06.012_bb0120) 1995; 132
MacLeod (10.1016/j.chemgeo.2013.06.012_bb0295) 1963; 1962
Li (10.1016/j.chemgeo.2013.06.012_bb9005) 2006; 21
Strutt (10.1016/j.chemgeo.2013.06.012_bb0210) 1905; 76
Wernicke (10.1016/j.chemgeo.2013.06.012_bb0265) 1993; 114
McGowran (10.1016/j.chemgeo.2013.06.012_bb0300) 1998; 20
Hall (10.1016/j.chemgeo.2013.06.012_bb0085) 1990
Butler (10.1016/j.chemgeo.2013.06.012_bb0280) 1976
Pidgeon (10.1016/j.chemgeo.2013.06.012_bb0165) 2004; 51
Morris (10.1016/j.chemgeo.2013.06.012_bb0305) 1994; 76R
Farley (10.1016/j.chemgeo.2013.06.012_bb9015) 2012; 359–360
Ehlers (10.1016/j.chemgeo.2013.06.012_bb0065) 2003; 206
Stone (10.1016/j.chemgeo.2013.06.012_bb0330) 2005
Farley (10.1016/j.chemgeo.2013.06.012_bb0080) 2002; 47
Shuster (10.1016/j.chemgeo.2013.06.012_bb0195) 2004; 217
Bird (10.1016/j.chemgeo.2013.06.012_bb0025) 1989; 53
Idnurm (10.1016/j.chemgeo.2013.06.012_bb0105) 1985; 83
Vasconcelos (10.1016/j.chemgeo.2013.06.012_bb0225) 1994; 58
References_xml – volume: 55
  start-page: 865
  year: 2008
  end-page: 914
  ident: bb0235
  article-title: Geochronology of the Australian Cenozoic: a history of tectonic and igneous activity, weathering, erosion, and sedimentation
  publication-title: Australian Journal of Earth Sciences
– year: 1991
  ident: bb0350
  article-title: Botryoidal Hematite and its Potential for the Helium Isochron Dating Method
– volume: 132
  start-page: 43
  year: 1995
  end-page: 51
  ident: bb0120
  article-title: Paragenetic specularite and adularia (Elba, Italy): concordant (U
  publication-title: Earth and Planetary Science Letters
– volume: 359–360
  start-page: 131
  year: 2012
  end-page: 140
  ident: bb9015
  article-title: (U-Th)/Ne and multidomain (U-Th)/He systematics of a hydrothermal hematite from eastern Grand Canyon
  publication-title: Earth and Planetary Science Letters
– volume: 20
  start-page: 415
  year: 1993
  end-page: 418
  ident: bb0115
  article-title: He diffusion in specular hematite
  publication-title: Physics and Chemistry of Minerals
– volume: 51
  start-page: 901
  year: 2004
  end-page: 909
  ident: bb0165
  article-title: Late Miocene (U
  publication-title: Australian Journal of Earth Sciences
– volume: 114
  start-page: 287
  year: 1993
  end-page: 300
  ident: bb0265
  article-title: Botryoidal hematite from the Schwarzwald (Germany): heterogeneous uranium distributions and their bearing on the helium dating method
  publication-title: Earth and Planetary Science Letters
– start-page: 379
  year: 1989
  end-page: 439
  ident: bb0325
  article-title: Iron oxides
  publication-title: Minerals in Soils Environments
– volume: 21
  start-page: 345
  year: 1994
  end-page: 347
  ident: bb0250
  article-title: Dating of vein specularite using internal (U
  publication-title: Geophysical Research Letters
– year: 1987
  ident: bb0270
  article-title: Das (U
– volume: 58
  start-page: 1635
  year: 1994
  end-page: 1665
  ident: bb0225
  article-title: Direct dating of weathering phenomena by
  publication-title: Geochimica et Cosmochimica Acta
– volume: 217
  start-page: 19
  year: 2004
  end-page: 32
  ident: bb0195
  article-title: Quantifying the diffusion kinetics and spatial distributions of radiogenic
  publication-title: Earth and Planetary Science Letters
– year: 1995
  ident: bb0290
  article-title: Geochronology of Chemical Weathering Processes in the Northern and Western Australian Regolith
– volume: 399R
  year: 1993
  ident: bb0155
  article-title: Channel iron deposits of the Hamersley Province
  publication-title: Bentley, CSIRO Australia, Exploration and Mining Report
– volume: 15
  start-page: 129
  year: 2008
  end-page: 156
  ident: bb0185
  article-title: Mineralogical and microchemical methods for the characterization of high-grade BIF derived iron ore
  publication-title: Reviews in Economic Geology
– volume: 117
  start-page: 283
  year: 2013
  end-page: 312
  ident: bb0345
  article-title: Ar/
  publication-title: Geochimica et Cosmochimica Acta
– volume: 11
  start-page: 505
  year: 1998
  end-page: 528
  ident: bb0125
  article-title: An attempt to determine formation ages of goethites and limonites by (U
  publication-title: Neues Jahrbuch für Mineralogie — Monatshefte
– start-page: 1581
  year: 1990
  end-page: 1586
  ident: bb0085
  article-title: Yandicoogina–Marillana pisolitic iron deposits
  publication-title: Geology of the Mineral Deposits of Australia and Papua New Guinea
– volume: 49
  start-page: 697
  year: 2002
  end-page: 717
  ident: bb0110
  article-title: Shaping the Australian crust over the last 300
  publication-title: Australian Journal of Earth Sciences
– volume: 54
  start-page: 733
  year: 2007
  end-page: 756
  ident: bb0150
  article-title: Genesis of the channel iron deposits (CID) of the Pilbara region, Western Australia
  publication-title: Australian Journal of Earth Sciences
– start-page: 35
  year: 1996
  end-page: 36
  ident: bb0320
  article-title: Determination of aluminium substitution in hematite and goethite by vibrational spectroscopy
  publication-title: Proceedings of the 2nd Australian Conference on Vibrational Spectroscopy, 2–4 October 1996
– year: 2011
  ident: bb0335
  article-title: Post-depositional thermal history of the 4364–3060
  publication-title: Goldschmidt Conference 2011, Prague, Abstract Volume, 4494
– volume: 206
  start-page: 1
  year: 2003
  end-page: 14
  ident: bb0065
  article-title: Apatite (U–Th)/He thermochronometry: methods and applications to problems in tectonic and surface processes
  publication-title: Earth and Planetary Science Letters
– volume: 83
  start-page: 399
  year: 1985
  end-page: 418
  ident: bb0105
  article-title: Late Mesozoic and Cenozoic palaeomagnetism of Australia — 1. A redetermined polar wander path
  publication-title: Geophysical Journal of the Royal Astronomical Society
– volume: 27
  start-page: 105
  year: 1979
  end-page: 112
  ident: bb9010
  article-title: The influence of aluminum on iron oxides. Part II. Preparation and properties of Al-substituted hematites
  publication-title: Clays and Clay Minerals
– volume: 1962
  start-page: 44
  year: 1963
  end-page: 54
  ident: bb0295
  article-title: A preliminary report on the Hamersley Iron Province, North-West Division
  publication-title: GSWA, Annual Report
– volume: 259
  start-page: 360
  year: 2007
  end-page: 371
  ident: bb9025
  article-title: Magnetite (U-Th)/He dating and its application to the geochronology of intermediate to mafic volcanic rocks
  publication-title: Earth and Planetary Science Letters
– volume: 76R
  year: 1994
  ident: bb0305
  article-title: AMIRA Project P75G — detrital iron deposits of the Hamersley Province
  publication-title: CSIRO Exploration and Mining Restricted Report
– volume: 99
  start-page: 17695
  year: 1994
  end-page: 17707
  ident: bb0015
  article-title: Temperature-induced
  publication-title: Journal of Geophysical Research
– volume: 20
  start-page: 86
  year: 1998
  end-page: 103
  ident: bb0300
  article-title: Cainozoic climate change and its implication for understanding the Australian regolith
  publication-title: The State of the Regolith. Proceedings of the 2nd Australian Conference on Landscape Evolution and Mineral Exploration
– volume: 53
  start-page: 3239
  year: 1989
  end-page: 3256
  ident: bb0025
  article-title: Stable isotope geochronology of the Australian regolith
  publication-title: Geochimica et Cosmochimica Acta
– volume: 212
  start-page: 91
  year: 1964
  end-page: 124
  ident: bb0090
  article-title: Pisolitic limonite deposits in northwest Australia
  publication-title: Proceedings of the Australasian Institute of Mining and Metallurgy
– volume: 49
  start-page: 3
  year: 2002
  end-page: 162
  ident: bb0005
  article-title: Regolith geology of the Yilgarn Craton, Western Australia: implications for exploration
  publication-title: Australian Journal of Earth Sciences
– volume: 51
  start-page: 497
  year: 2004
  end-page: 520
  ident: bb0135
  article-title: Age and palaeoenvironmental constraints on the genesis of the Yandi channel iron deposits, Marillana Formation, Pilbara, northwestern Australia
  publication-title: Australian Journal of Earth Sciences
– volume: 58
  start-page: 421
  year: 1994
  end-page: 429
  ident: bb0255
  article-title: He age discordance and release behavior of a double shell botryoidal hematite from the Schwarzwald, Germany
  publication-title: Geochimica et Cosmochimica Acta
– volume: 210
  start-page: 1
  year: 1964
  end-page: 30
  ident: bb0285
  article-title: Discovery of the Hamersley iron deposits (Duck Creek–Mt. Pyrton–Mt. Turner Area)
  publication-title: Proceedings of the Australasian Institute of Mining and Metallurgy
– volume: 94
  start-page: 87
  year: 1999
  end-page: 108
  ident: bb0050
  article-title: Timing of weathering-induced alteration of manganese deposits in Western Australia: evidence from K/Ar and
  publication-title: Economic Geology
– volume: 30
  start-page: 355
  year: 1999
  end-page: 360
  ident: bb0020
  article-title: Micro-Raman investigation of iron oxide films and powders produced by sol–gel synthesis
  publication-title: Journal of Raman Spectroscopy
– year: 1998
  ident: bb0315
  article-title: Regolith Dating Methods. A Guide to Numerical Dating Methods
– volume: 28
  start-page: 873
  year: 1997
  end-page: 878
  ident: bb0055
  article-title: Raman microspectroscopy of some iron oxides and oxyhydroxides
  publication-title: Journal of Raman Spectroscopy
– volume: 34
  start-page: 173
  year: 2006
  end-page: 176
  ident: bb0100
  article-title: Dating palaeochannel iron ore by (U–Th)/He analysis of supergene goethite, Hamersley Province, Australia
  publication-title: Geology
– year: 1976
  ident: bb0280
  article-title: Geology of the Tertiary Ironstones in the Middle and Upper Robe River area, Pilbara Region, Western Australia
– volume: 60
  start-page: 1159
  year: 2005
  end-page: 1165
  ident: bb0070
  article-title: Determination of uranium and thorium in zircon, apatite, and fluorite: application to laser (U–Th)/He thermochronology
  publication-title: Journal of Analytical Chemistry
– volume: 76
  start-page: 88
  year: 1905
  end-page: 101
  ident: bb0210
  article-title: On the radioactive minerals
  publication-title: Proceedings of the Royal Society of London Series A
– volume: 50
  start-page: 669
  year: 2003
  end-page: 690
  ident: bb0180
  article-title: Channel iron deposits of the Hamersley Province, Western Australia
  publication-title: Australian Journal of Earth Sciences
– year: 2005
  ident: bb0330
  article-title: Depositional History and Mineralisation of Tertiary Iron Deposits at Yandi, Eastern Pilbara, Australia
– volume: 67
  start-page: 428
  year: 2002
  ident: bb9020
  article-title: Climate-driven weathering episodes during the last 200
  publication-title: Abstracts
– volume: 4
  year: 1986
  ident: bb0275
  article-title: Uran und Helium in Erzmineralien und die Frage ihrer Datierbarkeit
  publication-title: Heidelberger Geowissenschaftliche Abhandlungen
– volume: 66
  start-page: 3533
  year: 2002
  end-page: 3547
  ident: bb0060
  article-title: Uranium coprecipitation with iron oxide minerals
  publication-title: Geochimica et Cosmochimica Acta
– volume: 47
  start-page: 819
  year: 2002
  end-page: 844
  ident: bb0080
  article-title: (U–Th)/He dating: techniques, calibrations, and applications
  publication-title: Reviews in Mineralogy and Geochemistry
– volume: 235
  start-page: 1156
  year: 1987
  end-page: 1167
  ident: bb0095
  article-title: The chronology of fluctuating sea levels since the Jurassic
  publication-title: Science
– volume: A83
  start-page: 96
  year: 1910
  end-page: 99
  ident: bb0215
  article-title: The accumulation of helium in geological time III
  publication-title: Proceedings of the Royal Society
– start-page: e118
  year: 2007
  ident: bb0340
  article-title: Dating paleochannel iron ore by (U–Th)/He analysis of supergene goethite, Hamersley Province, Australia
  publication-title: Geological Society of America
– start-page: e118
  year: 2007
  ident: bb0310
  article-title: Dating paleochannel iron ore by (U–Th)/He analysis of supergene goethite, Hamersley Province, Australia
  publication-title: Geological Society of America
– volume: 60
  start-page: 4223
  year: 1996
  end-page: 4229
  ident: bb0075
  article-title: The effects of long alpha-stopping distances on (U–Th)/He ages
  publication-title: Geochimica et Cosmochimica Acta
– volume: 69
  start-page: 659
  year: 2005
  end-page: 673
  ident: bb0200
  article-title: Weathering geochronology by (U–Th)/He dating of goethite
  publication-title: Geochimica et Cosmochimica Acta
– volume: 21
  start-page: 289
  year: 2006
  end-page: 299
  ident: bb9005
  article-title: Mineralogy of Al-substituted goethites
  publication-title: Powder Diffraction
– year: 2001
  ident: bb0245
  article-title: Atlas of Billion-year Earth History of Australia and Neighbours in Gondwanaland
– volume: 20
  start-page: 415
  issue: 6
  year: 1993
  ident: 10.1016/j.chemgeo.2013.06.012_bb0115
  article-title: 4He diffusion in specular hematite
  publication-title: Physics and Chemistry of Minerals
  doi: 10.1007/BF00203111
– volume: 66
  start-page: 3533
  issue: 20
  year: 2002
  ident: 10.1016/j.chemgeo.2013.06.012_bb0060
  article-title: Uranium coprecipitation with iron oxide minerals
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/S0016-7037(02)00953-5
– volume: 359–360
  start-page: 131
  year: 2012
  ident: 10.1016/j.chemgeo.2013.06.012_bb9015
  article-title: (U-Th)/Ne and multidomain (U-Th)/He systematics of a hydrothermal hematite from eastern Grand Canyon
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/j.epsl.2012.10.010
– start-page: 35
  year: 1996
  ident: 10.1016/j.chemgeo.2013.06.012_bb0320
  article-title: Determination of aluminium substitution in hematite and goethite by vibrational spectroscopy
– volume: 49
  start-page: 3
  year: 2002
  ident: 10.1016/j.chemgeo.2013.06.012_bb0005
  article-title: Regolith geology of the Yilgarn Craton, Western Australia: implications for exploration
  publication-title: Australian Journal of Earth Sciences
  doi: 10.1046/j.1440-0952.2002.00912.x
– volume: 54
  start-page: 733
  issue: 5
  year: 2007
  ident: 10.1016/j.chemgeo.2013.06.012_bb0150
  article-title: Genesis of the channel iron deposits (CID) of the Pilbara region, Western Australia
  publication-title: Australian Journal of Earth Sciences
  doi: 10.1080/08120090701305251
– volume: 50
  start-page: 669
  year: 2003
  ident: 10.1016/j.chemgeo.2013.06.012_bb0180
  article-title: Channel iron deposits of the Hamersley Province, Western Australia
  publication-title: Australian Journal of Earth Sciences
  doi: 10.1111/j.1440-0952.2003.01019.x
– volume: 15
  start-page: 129
  year: 2008
  ident: 10.1016/j.chemgeo.2013.06.012_bb0185
  article-title: Mineralogical and microchemical methods for the characterization of high-grade BIF derived iron ore
  publication-title: Reviews in Economic Geology
– volume: 4
  year: 1986
  ident: 10.1016/j.chemgeo.2013.06.012_bb0275
  article-title: Uran und Helium in Erzmineralien und die Frage ihrer Datierbarkeit
– volume: 210
  start-page: 1
  year: 1964
  ident: 10.1016/j.chemgeo.2013.06.012_bb0285
  article-title: Discovery of the Hamersley iron deposits (Duck Creek–Mt. Pyrton–Mt. Turner Area)
  publication-title: Proceedings of the Australasian Institute of Mining and Metallurgy
– year: 2001
  ident: 10.1016/j.chemgeo.2013.06.012_bb0245
– start-page: 1581
  year: 1990
  ident: 10.1016/j.chemgeo.2013.06.012_bb0085
  article-title: Yandicoogina–Marillana pisolitic iron deposits
– year: 2011
  ident: 10.1016/j.chemgeo.2013.06.012_bb0335
  article-title: Post-depositional thermal history of the 4364–3060Ma zircon-bearing metasandstones of the Illaara and Maynard Hills granite greenstone belts, Western Australia
– volume: 30
  start-page: 355
  year: 1999
  ident: 10.1016/j.chemgeo.2013.06.012_bb0020
  article-title: Micro-Raman investigation of iron oxide films and powders produced by sol–gel synthesis
  publication-title: Journal of Raman Spectroscopy
  doi: 10.1002/(SICI)1097-4555(199905)30:5<355::AID-JRS398>3.0.CO;2-C
– volume: 217
  start-page: 19
  year: 2004
  ident: 10.1016/j.chemgeo.2013.06.012_bb0195
  article-title: Quantifying the diffusion kinetics and spatial distributions of radiogenic 4He in minerals containing proton-induced 3He
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/S0012-821X(03)00594-6
– volume: 99
  start-page: 17695
  year: 1994
  ident: 10.1016/j.chemgeo.2013.06.012_bb0015
  article-title: Temperature-induced 4He degassing of specularite and botryoidal hematite: a 4He retentivity study
  publication-title: Journal of Geophysical Research
  doi: 10.1029/94JB01055
– volume: 132
  start-page: 43
  year: 1995
  ident: 10.1016/j.chemgeo.2013.06.012_bb0120
  article-title: Paragenetic specularite and adularia (Elba, Italy): concordant (U+Th)–He and K–Ar ages
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/0012-821X(95)00046-F
– volume: 28
  start-page: 873
  year: 1997
  ident: 10.1016/j.chemgeo.2013.06.012_bb0055
  article-title: Raman microspectroscopy of some iron oxides and oxyhydroxides
  publication-title: Journal of Raman Spectroscopy
  doi: 10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO;2-B
– volume: 49
  start-page: 697
  issue: 4
  year: 2002
  ident: 10.1016/j.chemgeo.2013.06.012_bb0110
  article-title: Shaping the Australian crust over the last 300millionyears: insights from fission track thermotectonic imaging and denudation studies of key terranes
  publication-title: Australian Journal of Earth Sciences
  doi: 10.1046/j.1440-0952.2002.00942.x
– year: 1976
  ident: 10.1016/j.chemgeo.2013.06.012_bb0280
– volume: 34
  start-page: 173
  issue: 3
  year: 2006
  ident: 10.1016/j.chemgeo.2013.06.012_bb0100
  article-title: Dating palaeochannel iron ore by (U–Th)/He analysis of supergene goethite, Hamersley Province, Australia
  publication-title: Geology
  doi: 10.1130/G22003.1
– volume: 27
  start-page: 105
  year: 1979
  ident: 10.1016/j.chemgeo.2013.06.012_bb9010
  article-title: The influence of aluminum on iron oxides. Part II. Preparation and properties of Al-substituted hematites
  publication-title: Clays and Clay Minerals
  doi: 10.1346/CCMN.1979.0270205
– volume: 69
  start-page: 659
  year: 2005
  ident: 10.1016/j.chemgeo.2013.06.012_bb0200
  article-title: Weathering geochronology by (U–Th)/He dating of goethite
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/j.gca.2004.07.028
– volume: 76
  start-page: 88
  year: 1905
  ident: 10.1016/j.chemgeo.2013.06.012_bb0210
  article-title: On the radioactive minerals
  publication-title: Proceedings of the Royal Society of London Series A
– volume: 11
  start-page: 505
  year: 1998
  ident: 10.1016/j.chemgeo.2013.06.012_bb0125
  article-title: An attempt to determine formation ages of goethites and limonites by (U+Th)–4He dating
  publication-title: Neues Jahrbuch für Mineralogie — Monatshefte
– volume: 76R
  year: 1994
  ident: 10.1016/j.chemgeo.2013.06.012_bb0305
  article-title: AMIRA Project P75G — detrital iron deposits of the Hamersley Province
– volume: 53
  start-page: 3239
  year: 1989
  ident: 10.1016/j.chemgeo.2013.06.012_bb0025
  article-title: Stable isotope geochronology of the Australian regolith
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/0016-7037(89)90104-X
– volume: 60
  start-page: 4223
  year: 1996
  ident: 10.1016/j.chemgeo.2013.06.012_bb0075
  article-title: The effects of long alpha-stopping distances on (U–Th)/He ages
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/S0016-7037(96)00193-7
– year: 1998
  ident: 10.1016/j.chemgeo.2013.06.012_bb0315
– volume: 58
  start-page: 421
  year: 1994
  ident: 10.1016/j.chemgeo.2013.06.012_bb0255
  article-title: 4He age discordance and release behavior of a double shell botryoidal hematite from the Schwarzwald, Germany
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/0016-7037(94)90474-X
– volume: 67
  start-page: 428
  year: 2002
  ident: 10.1016/j.chemgeo.2013.06.012_bb9020
  article-title: Climate-driven weathering episodes during the last 200Ma in Southern Australia. In: Preiss, V.P. (Ed.), Geological Society of Australia
  publication-title: Abstracts
– volume: 47
  start-page: 819
  year: 2002
  ident: 10.1016/j.chemgeo.2013.06.012_bb0080
  article-title: (U–Th)/He dating: techniques, calibrations, and applications
  publication-title: Reviews in Mineralogy and Geochemistry
  doi: 10.2138/rmg.2002.47.18
– volume: 114
  start-page: 287
  year: 1993
  ident: 10.1016/j.chemgeo.2013.06.012_bb0265
  article-title: Botryoidal hematite from the Schwarzwald (Germany): heterogeneous uranium distributions and their bearing on the helium dating method
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/0012-821X(93)90031-4
– volume: 83
  start-page: 399
  year: 1985
  ident: 10.1016/j.chemgeo.2013.06.012_bb0105
  article-title: Late Mesozoic and Cenozoic palaeomagnetism of Australia — 1. A redetermined polar wander path
  publication-title: Geophysical Journal of the Royal Astronomical Society
  doi: 10.1111/j.1365-246X.1985.tb06494.x
– volume: A83
  start-page: 96
  year: 1910
  ident: 10.1016/j.chemgeo.2013.06.012_bb0215
  article-title: The accumulation of helium in geological time III
  publication-title: Proceedings of the Royal Society
– volume: 94
  start-page: 87
  year: 1999
  ident: 10.1016/j.chemgeo.2013.06.012_bb0050
  article-title: Timing of weathering-induced alteration of manganese deposits in Western Australia: evidence from K/Ar and 40Ar/39Ar dating
  publication-title: Economic Geology
  doi: 10.2113/gsecongeo.94.1.87
– volume: 235
  start-page: 1156
  year: 1987
  ident: 10.1016/j.chemgeo.2013.06.012_bb0095
  article-title: The chronology of fluctuating sea levels since the Jurassic
  publication-title: Science
  doi: 10.1126/science.235.4793.1156
– volume: 399R
  year: 1993
  ident: 10.1016/j.chemgeo.2013.06.012_bb0155
  article-title: Channel iron deposits of the Hamersley Province
– start-page: e118
  year: 2007
  ident: 10.1016/j.chemgeo.2013.06.012_bb0310
  article-title: Dating paleochannel iron ore by (U–Th)/He analysis of supergene goethite, Hamersley Province, Australia
  publication-title: Geological Society of America
– volume: 60
  start-page: 1159
  issue: 12
  year: 2005
  ident: 10.1016/j.chemgeo.2013.06.012_bb0070
  article-title: Determination of uranium and thorium in zircon, apatite, and fluorite: application to laser (U–Th)/He thermochronology
  publication-title: Journal of Analytical Chemistry
  doi: 10.1007/s10809-005-0260-1
– volume: 21
  start-page: 345
  year: 1994
  ident: 10.1016/j.chemgeo.2013.06.012_bb0250
  article-title: Dating of vein specularite using internal (U+Th)/4He isochrons
  publication-title: Geophysical Research Letters
  doi: 10.1029/94GL00014
– volume: 55
  start-page: 865
  year: 2008
  ident: 10.1016/j.chemgeo.2013.06.012_bb0235
  article-title: Geochronology of the Australian Cenozoic: a history of tectonic and igneous activity, weathering, erosion, and sedimentation
  publication-title: Australian Journal of Earth Sciences
  doi: 10.1080/08120090802120120
– year: 1995
  ident: 10.1016/j.chemgeo.2013.06.012_bb0290
– volume: 20
  start-page: 86
  year: 1998
  ident: 10.1016/j.chemgeo.2013.06.012_bb0300
  article-title: Cainozoic climate change and its implication for understanding the Australian regolith
– volume: 51
  start-page: 901
  year: 2004
  ident: 10.1016/j.chemgeo.2013.06.012_bb0165
  article-title: Late Miocene (U+Th)–4He ages of ferruginous nodules from lateritic duricrust, Darling Range, Western Australia
  publication-title: Australian Journal of Earth Sciences
  doi: 10.1111/j.1400-0952.2004.01094.x
– start-page: e118
  year: 2007
  ident: 10.1016/j.chemgeo.2013.06.012_bb0340
  article-title: Dating paleochannel iron ore by (U–Th)/He analysis of supergene goethite, Hamersley Province, Australia
  publication-title: Geological Society of America
– volume: 58
  start-page: 1635
  issue: 6
  year: 1994
  ident: 10.1016/j.chemgeo.2013.06.012_bb0225
  article-title: Direct dating of weathering phenomena by 40Ar/39Ar and K–Ar analysis of supergene K–Mn oxides
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/0016-7037(94)90565-7
– volume: 206
  start-page: 1
  year: 2003
  ident: 10.1016/j.chemgeo.2013.06.012_bb0065
  article-title: Apatite (U–Th)/He thermochronometry: methods and applications to problems in tectonic and surface processes
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/S0012-821X(02)01069-5
– year: 1987
  ident: 10.1016/j.chemgeo.2013.06.012_bb0270
– volume: 1962
  start-page: 44
  year: 1963
  ident: 10.1016/j.chemgeo.2013.06.012_bb0295
  article-title: A preliminary report on the Hamersley Iron Province, North-West Division
– volume: 212
  start-page: 91
  year: 1964
  ident: 10.1016/j.chemgeo.2013.06.012_bb0090
  article-title: Pisolitic limonite deposits in northwest Australia
  publication-title: Proceedings of the Australasian Institute of Mining and Metallurgy
– volume: 21
  start-page: 289
  year: 2006
  ident: 10.1016/j.chemgeo.2013.06.012_bb9005
  article-title: Mineralogy of Al-substituted goethites
  publication-title: Powder Diffraction
  doi: 10.1154/1.2358358
– year: 1991
  ident: 10.1016/j.chemgeo.2013.06.012_bb0350
– year: 2005
  ident: 10.1016/j.chemgeo.2013.06.012_bb0330
– volume: 117
  start-page: 283
  year: 2013
  ident: 10.1016/j.chemgeo.2013.06.012_bb0345
  article-title: 40Ar/39Ar and (U-Th)/He - 4He/3He geochronology of landscape evolution and channel iron deposit genesis at Lynn Peak, Western Australia
  publication-title: Geochimica et Cosmochimica Acta
  doi: 10.1016/j.gca.2013.03.037
– start-page: 379
  year: 1989
  ident: 10.1016/j.chemgeo.2013.06.012_bb0325
  article-title: Iron oxides
– volume: 51
  start-page: 497
  year: 2004
  ident: 10.1016/j.chemgeo.2013.06.012_bb0135
  article-title: Age and palaeoenvironmental constraints on the genesis of the Yandi channel iron deposits, Marillana Formation, Pilbara, northwestern Australia
  publication-title: Australian Journal of Earth Sciences
  doi: 10.1111/j.1400-0952.2004.01071.x
– volume: 259
  start-page: 360
  issue: 3–4
  year: 2007
  ident: 10.1016/j.chemgeo.2013.06.012_bb9025
  article-title: Magnetite (U-Th)/He dating and its application to the geochronology of intermediate to mafic volcanic rocks
  publication-title: Earth and Planetary Science Letters
  doi: 10.1016/j.epsl.2007.04.044
SSID ssj0001355
Score 2.325972
Snippet Channel iron deposits (CID) supply 40% of Australia's iron ore but their genesis is still the subject of debate. Two well-characterised samples of...
SourceID proquest
crossref
fao
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 150
SubjectTerms (U–Th)/He dating
Age
apatite
Channel iron
Channel iron deposits
cortex
Deposition
environmental factors
Fragments
Genesis
goethite
Goethite/hematite
heat
hematite
Iron ore genesis
Iron oxides
Lasers
nuclides
Rivers
Robe River/Mesa J
stratigraphy
temperature
Western Australia
wood
zirconium
Title (U–Th)/He chronology of the Robe River channel iron deposits, Hamersley Province, Western Australia
URI https://dx.doi.org/10.1016/j.chemgeo.2013.06.012
https://www.proquest.com/docview/1663584119
https://www.proquest.com/docview/1669878217
https://www.proquest.com/docview/1727682493
Volume 354
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa6WyFxqVoe6kKpjMQBpGY3duLXsapaAogKQVf0Zjn2pA-VbNVuD1wQ_4F_yC_B400WIUQrcU08VjJjz3wez4OQF2AiZmiYz-ogdVY2osy0A5cVkHslfG1EjsnJ7w9lNS3fHovjFbLX58JgWGWn-xc6PWnr7smk4-bk8uwMc3xzE483DC9kuDRyQFZ5tPZ6SFZ337yrDpcKmRVC9A3VkOB3Is_kfBxZ8-UkpQGyIlXyZPxfJmrQuNlfKjvZoYN1stYBSLq7-MYNsgLtA3LvdWrQ-_UhgZfTn99_HJ2-mlRAPVa-TS_orKER6lEMpKYfMRaDYspvCxcU89xogBS9db1DK9d5sumH5G3wsEM_L8op0KVj5BGZHuwf7VVZ10ohc6UQ88yDAM9qL5VyBSjRqDKv86bwwXitXJMrWYOptZY5KAg5wzrwCC2kj4gmuOIxGbazFjYJ1UGFAjsWQ5wEZJQsFK4uRQg8ohkeRqTsuWd9V2cc211c2D6g7Nx2TLfIdIuBdYyPyHhJdrkotHEXge5FY_9YMTYag7tIN6MorTuJetROP3H0-mDdI8bZiDzv5WvjRsPbE9fC7ObaMsRmOi43c-sYoyPmYuqWMRExSh1PvcWT__-Dp-Q-T305TMbkFhnOr27gWURH83qbDMbf2Ha3B34BwUgNyQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbarRBcEE91KQ8jcQCp6cZx_DpWFSWl7QrBrujNcuxJaVWyVbs9cOM_8A_5JXi8ySKEaCWuSSZKZuzx5_HMN4S8AhMxQ8N8Vgeps7IRZaYduIxD7pXwtRE5FicfjmU1Ld8fiaMVstPXwmBaZef7Fz49eevuyqjT5uj85ARrfHMTtzcMD2QKaeQqWSuxqfWArG3v7VfjpUNmXIi-oRoK_C7kGZ1uRdV8PU5lgIwnJk9W_GuJWm3c7C-Xndah3Xvkbgcg6fbiG--TFWgfkFvvUoPebw8JvJ7-_P5j8uXNqALqkfk23aCzhkaoRzGRmn7EXAyKJb8tnFGsc6MBUvbW5SatXBfJph9StMHDJv28oFOgy8DIIzLdfTvZqbKulULmSiHmmQcBntVeKuU4KNGoMq_zhvtgvFauyZWswdRayxwUhJwhDzxCC-kjogmOPyaDdtbCOqE6qMCxYzHEl4CMlgXu6lKEUEQ0U4QhKXvtWd_xjGO7izPbJ5Sd2k7pFpVuMbGOFUOytRQ7XxBt3CSge9PYP0aMjYvBTaLr0ZTWHUc_aqefCoz6IO8RK9iQvOzta-NEw9MT18Ls6tIyxGY6Djdz7TNGR8zF1DXPRMQoddz18if__wcvyO1qcnhgD_bG-xvkTpF6dJiMyadkML-4gmcRKc3r591M-AUaKQ-v
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%28U-Th%29%2FHe+chronology+of+the+Robe+River+channel+iron+deposits%2C+Hamersley+Province%2C+Western+Australia&rft.jtitle=Chemical+geology&rft.au=Danisik%2C+Martin&rft.au=Evans%2C+Noreen+J&rft.au=Ramanaidou%2C+Erick+R&rft.au=McDonald%2C+Brad+J&rft.date=2013-09-16&rft.issn=0009-2541&rft.volume=354&rft.spage=150&rft.epage=162&rft_id=info:doi/10.1016%2Fj.chemgeo.2013.06.012&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2541&client=summon