(U–Th)/He chronology of the Robe River channel iron deposits, Hamersley Province, Western Australia
Channel iron deposits (CID) supply 40% of Australia's iron ore but their genesis is still the subject of debate. Two well-characterised samples of goethite/hematite CID from a diamond drill core in Mesa J of the Robe River area in Western Australia were dated using (U–Th)/He methods in order to...
Saved in:
Published in | Chemical geology Vol. 354; pp. 150 - 162 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
16.09.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 0009-2541 1872-6836 |
DOI | 10.1016/j.chemgeo.2013.06.012 |
Cover
Abstract | Channel iron deposits (CID) supply 40% of Australia's iron ore but their genesis is still the subject of debate. Two well-characterised samples of goethite/hematite CID from a diamond drill core in Mesa J of the Robe River area in Western Australia were dated using (U–Th)/He methods in order to constrain the timing of iron oxide formation and thereby provide a temporal context for CID genesis. (U–Th)/He ages (He ages) range from 25.7±0.6 to 7.0±0.8Ma and, despite a high degree of scatter, they corroborate relationships expected from the internal ooidal stratigraphy. For individual ooids, the hematitic core is older than or indistinguishable from the age of the surrounding goethitic cortex. The goethitic cortices are, in turn, older than the ferruginised wood fragments recovered from the cementing goethitic matrix.
The data suggest the following paragenesis: (i) Hematitic cores in ooids formed in the Early to Middle Miocene as documented by ages of ~14.3±3.7Ma and 18.3±3.5Ma measured in the shallower (8.2m deep) and deeper (32.8m) sample, respectively; (ii) Goethitic cortices of both samples formed in the late Middle to early Late Miocene at 11.6±3.0Ma; (iii) Wood fragments form a prominent component of the matrix and were ferruginised during the Late Miocene (He ages ranging from 9.4±0.5 to 8.2±0.4Ma in the deeper core and 8.4±0.9 to 7.0±0.8Ma in the shallower core). The data suggest that the unique environmental conditions conducive to CID formation existed during the Miocene and that a “typical Robe River CID sequence” likely took 4 to 8Myr to accumulate.
A methodological implication of this study is that it confirms the previous observation of Vasconcelos et al. (2013) suggesting that the temperature utilised for He-extraction from iron oxides has a critical impact on the mobility of parent nuclides. The typical ~1000°C laser heating used for crystalline minerals like apatite or zircon induces loss of U and Th and results in erroneously old ages. Modest extraction temperature (<500°C), utilising a low-power laser or, preferably, a temperature-controllable resistance furnace is recommended.
•We date genesis of channel iron deposits by goethite/hematite U–Th/He geochronology.•Channel iron deposits supplying 40% of Australia's iron ore formed in the Miocene.•U–Th/He dating of secondary Fe oxides constrains palaeotopography and palaeoclimate. |
---|---|
AbstractList | Channel iron deposits (CID) supply 40% of Australia's iron ore but their genesis is still the subject of debate. Two well-characterised samples of goethite/hematite CID from a diamond drill core in Mesa J of the Robe River area in Western Australia were dated using (U–Th)/He methods in order to constrain the timing of iron oxide formation and thereby provide a temporal context for CID genesis. (U–Th)/He ages (He ages) range from 25.7±0.6 to 7.0±0.8Ma and, despite a high degree of scatter, they corroborate relationships expected from the internal ooidal stratigraphy. For individual ooids, the hematitic core is older than or indistinguishable from the age of the surrounding goethitic cortex. The goethitic cortices are, in turn, older than the ferruginised wood fragments recovered from the cementing goethitic matrix.
The data suggest the following paragenesis: (i) Hematitic cores in ooids formed in the Early to Middle Miocene as documented by ages of ~14.3±3.7Ma and 18.3±3.5Ma measured in the shallower (8.2m deep) and deeper (32.8m) sample, respectively; (ii) Goethitic cortices of both samples formed in the late Middle to early Late Miocene at 11.6±3.0Ma; (iii) Wood fragments form a prominent component of the matrix and were ferruginised during the Late Miocene (He ages ranging from 9.4±0.5 to 8.2±0.4Ma in the deeper core and 8.4±0.9 to 7.0±0.8Ma in the shallower core). The data suggest that the unique environmental conditions conducive to CID formation existed during the Miocene and that a “typical Robe River CID sequence” likely took 4 to 8Myr to accumulate.
A methodological implication of this study is that it confirms the previous observation of Vasconcelos et al. (2013) suggesting that the temperature utilised for He-extraction from iron oxides has a critical impact on the mobility of parent nuclides. The typical ~1000°C laser heating used for crystalline minerals like apatite or zircon induces loss of U and Th and results in erroneously old ages. Modest extraction temperature (<500°C), utilising a low-power laser or, preferably, a temperature-controllable resistance furnace is recommended.
•We date genesis of channel iron deposits by goethite/hematite U–Th/He geochronology.•Channel iron deposits supplying 40% of Australia's iron ore formed in the Miocene.•U–Th/He dating of secondary Fe oxides constrains palaeotopography and palaeoclimate. Channel iron deposits (CID) supply 40% of Australia's iron ore but their genesis is still the subject of debate. Two well-characterised samples of goethite/hematite CID from a diamond drill core in Mesa J of the Robe River area in Western Australia were dated using (U-Th)/He methods in order to constrain the timing of iron oxide formation and thereby provide a temporal context for CID genesis. (U-Th)/He ages (He ages) range from 25.7 plus or minus 0.6 to 7.0 plus or minus 0.8Ma and, despite a high degree of scatter, they corroborate relationships expected from the internal ooidal stratigraphy. For individual ooids, the hematitic core is older than or indistinguishable from the age of the surrounding goethitic cortex. The goethitic cortices are, in turn, older than the ferruginised wood fragments recovered from the cementing goethitic matrix. The data suggest the following paragenesis: (i) Hematitic cores in ooids formed in the Early to Middle Miocene as documented by ages of ~14.3 plus or minus 3.7Ma and 18.3 plus or minus 3.5Ma measured in the shallower (8.2m deep) and deeper (32.8m) sample, respectively; (ii) Goethitic cortices of both samples formed in the late Middle to early Late Miocene at 11.6 plus or minus 3.0Ma; (iii) Wood fragments form a prominent component of the matrix and were ferruginised during the Late Miocene (He ages ranging from 9.4 plus or minus 0.5 to 8.2 plus or minus 0.4Ma in the deeper core and 8.4 plus or minus 0.9 to 7.0 plus or minus 0.8Ma in the shallower core). The data suggest that the unique environmental conditions conducive to CID formation existed during the Miocene and that a "typical Robe River CID sequence" likely took 4 to 8Myr to accumulate. A methodological implication of this study is that it confirms the previous observation of Vasconcelos et al. (2013) suggesting that the temperature utilised for He-extraction from iron oxides has a critical impact on the mobility of parent nuclides. The typical ~1000 degree C laser heating used for crystalline minerals like apatite or zircon induces loss of U and Th and results in erroneously old ages. Modest extraction temperature (<500 degree C), utilising a low-power laser or, preferably, a temperature-controllable resistance furnace is recommended. Channel iron deposits (CID) supply 40% of Australia's iron ore but their genesis is still the subject of debate. Two well-characterised samples of goethite/hematite CID from a diamond drill core in Mesa J of the Robe River area in Western Australia were dated using (U–Th)/He methods in order to constrain the timing of iron oxide formation and thereby provide a temporal context for CID genesis. (U–Th)/He ages (He ages) range from 25.7±0.6 to 7.0±0.8Ma and, despite a high degree of scatter, they corroborate relationships expected from the internal ooidal stratigraphy. For individual ooids, the hematitic core is older than or indistinguishable from the age of the surrounding goethitic cortex. The goethitic cortices are, in turn, older than the ferruginised wood fragments recovered from the cementing goethitic matrix. The data suggest the following paragenesis: (i) Hematitic cores in ooids formed in the Early to Middle Miocene as documented by ages of ~14.3±3.7Ma and 18.3±3.5Ma measured in the shallower (8.2m deep) and deeper (32.8m) sample, respectively; (ii) Goethitic cortices of both samples formed in the late Middle to early Late Miocene at 11.6±3.0Ma; (iii) Wood fragments form a prominent component of the matrix and were ferruginised during the Late Miocene (He ages ranging from 9.4±0.5 to 8.2±0.4Ma in the deeper core and 8.4±0.9 to 7.0±0.8Ma in the shallower core). The data suggest that the unique environmental conditions conducive to CID formation existed during the Miocene and that a “typical Robe River CID sequence” likely took 4 to 8Myr to accumulate. A methodological implication of this study is that it confirms the previous observation of Vasconcelos et al. (2013) suggesting that the temperature utilised for He-extraction from iron oxides has a critical impact on the mobility of parent nuclides. The typical ~1000°C laser heating used for crystalline minerals like apatite or zircon induces loss of U and Th and results in erroneously old ages. Modest extraction temperature (<500°C), utilising a low-power laser or, preferably, a temperature-controllable resistance furnace is recommended. |
Author | McInnes, Brent I.A. Ramanaidou, Erick R. Danišík, Martin Evans, Noreen J. Mayers, Celia McDonald, Brad J. |
Author_xml | – sequence: 1 givenname: Martin surname: Danišík fullname: Danišík, Martin email: M.Danisik@waikato.ac.nz organization: John de Laeter Centre for Isotope Research, Applied Geology, Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia – sequence: 2 givenname: Noreen J. surname: Evans fullname: Evans, Noreen J. email: Noreen.Evans@curtin.edu.au organization: John de Laeter Centre for Isotope Research, Applied Geology, Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia – sequence: 3 givenname: Erick R. surname: Ramanaidou fullname: Ramanaidou, Erick R. email: Erick.Ramanaidou@csiro.au organization: CSIRO Earth Science and Resource Engineering, ARRC, 26 Dick Perry Avenue, WA 6151, Australia – sequence: 4 givenname: Brad J. surname: McDonald fullname: McDonald, Brad J. email: Brad.Mcdonald@csiro.au organization: John de Laeter Centre for Isotope Research, Applied Geology, Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia – sequence: 5 givenname: Celia surname: Mayers fullname: Mayers, Celia email: Celia.Mayers@csiro.au organization: CSIRO Earth Science and Resource Engineering, ARRC, 26 Dick Perry Avenue, WA 6151, Australia – sequence: 6 givenname: Brent I.A. surname: McInnes fullname: McInnes, Brent I.A. email: B.Mcinnes@curtin.edu.au organization: John de Laeter Centre for Isotope Research, Applied Geology, Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia |
BookMark | eNqNkctqGzEUhkVJoU7aRyjVMoXMRJfRZeiihNDGgUBLG9Ol0GjO2DJjyZXGBu_6Dn3DPkkVnFU37kYHoe8_R5zvHJ2FGACht5TUlFB5va7dCjZLiDUjlNdE1oSyF2hGtWKV1FyeoRkhpK2YaOgrdJ7zulwpF2KG4HLx59fvx9X76zlgt0oxxDEuDzgOeFoB_ha7cvg9pPJoQ4AR-8LgHrYx-ylf4bndQMojHPDXFPc-OLjCPyBPkAK-2eUp2dHb1-jlYMcMb57rBVp8_vR4O68evtzd3948VLYRYqocCHC0c1Ipy0GJQTWkIwN3feu0sgNRsoO201oSUNATqhlrOVVCOq7b3vILdHnsu03x5678wmx8djCONkDcZUMVU1KzpuWnUSlbrTSj6n9QLnRDaVtQcURdijknGMw2-Y1NB0OJeZJl1uZZlnmSZYg0RVbJffgn5_xkJx9DWaAfT6bfHdODjcYuk89m8b0AomhWBaCF-HgkoGx_7yGZ7DwUWb1P4CbTR39ixl8VC77N |
CitedBy_id | crossref_primary_10_1016_j_gca_2017_06_036 crossref_primary_10_1029_2023GC010993 crossref_primary_10_1016_j_chemgeo_2019_05_030 crossref_primary_10_1016_j_chemgeo_2024_122254 crossref_primary_10_1016_j_gca_2020_07_014 crossref_primary_10_1016_j_gloplacha_2022_103815 crossref_primary_10_3390_min12091151 crossref_primary_10_1016_j_chemgeo_2018_11_005 crossref_primary_10_1144_geochem2017_056 crossref_primary_10_1080_22020586_2019_12073094 crossref_primary_10_1016_j_gca_2022_02_017 crossref_primary_10_1080_08120099_2014_898408 crossref_primary_10_1016_j_gsf_2024_101969 crossref_primary_10_1080_08120099_2017_1266387 crossref_primary_10_1016_j_gca_2020_03_033 crossref_primary_10_3390_d13100482 crossref_primary_10_1029_2023GL102928 crossref_primary_10_1016_j_sedgeo_2016_04_015 crossref_primary_10_1016_j_gca_2018_02_023 crossref_primary_10_1016_j_palaeo_2024_112674 crossref_primary_10_1126_sciadv_adp0414 crossref_primary_10_1016_j_proeng_2015_12_535 crossref_primary_10_1016_j_chemgeo_2019_119350 crossref_primary_10_1080_08120099_2017_1278719 crossref_primary_10_1180_mgm_2018_80 crossref_primary_10_1093_gji_ggu293 crossref_primary_10_1130_B30983_1 crossref_primary_10_1130_G50374_1 crossref_primary_10_1016_j_chemgeo_2024_122287 crossref_primary_10_1029_2018TC005312 crossref_primary_10_1080_08120099_2022_2048888 crossref_primary_10_1016_j_chemgeo_2020_119792 crossref_primary_10_1016_j_oregeorev_2024_106203 crossref_primary_10_1144_SP393_11 crossref_primary_10_1016_j_epsl_2018_08_021 crossref_primary_10_1130_B31627_1 crossref_primary_10_1130_B36266_1 crossref_primary_10_1016_j_gsf_2019_05_005 crossref_primary_10_1016_j_palaeo_2022_111212 crossref_primary_10_3389_feart_2022_888993 crossref_primary_10_18654_1000_0569_2019_01_17 crossref_primary_10_3390_min11070679 |
Cites_doi | 10.1007/BF00203111 10.1016/S0016-7037(02)00953-5 10.1016/j.epsl.2012.10.010 10.1046/j.1440-0952.2002.00912.x 10.1080/08120090701305251 10.1111/j.1440-0952.2003.01019.x 10.1002/(SICI)1097-4555(199905)30:5<355::AID-JRS398>3.0.CO;2-C 10.1016/S0012-821X(03)00594-6 10.1029/94JB01055 10.1016/0012-821X(95)00046-F 10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO;2-B 10.1046/j.1440-0952.2002.00942.x 10.1130/G22003.1 10.1346/CCMN.1979.0270205 10.1016/j.gca.2004.07.028 10.1016/0016-7037(89)90104-X 10.1016/S0016-7037(96)00193-7 10.1016/0016-7037(94)90474-X 10.2138/rmg.2002.47.18 10.1016/0012-821X(93)90031-4 10.1111/j.1365-246X.1985.tb06494.x 10.2113/gsecongeo.94.1.87 10.1126/science.235.4793.1156 10.1007/s10809-005-0260-1 10.1029/94GL00014 10.1080/08120090802120120 10.1111/j.1400-0952.2004.01094.x 10.1016/0016-7037(94)90565-7 10.1016/S0012-821X(02)01069-5 10.1154/1.2358358 10.1016/j.gca.2013.03.037 10.1111/j.1400-0952.2004.01071.x 10.1016/j.epsl.2007.04.044 |
ContentType | Journal Article |
Copyright | 2013 Elsevier B.V. |
Copyright_xml | – notice: 2013 Elsevier B.V. |
DBID | FBQ AAYXX CITATION 7S9 L.6 8FD FR3 KR7 7QH 7UA C1K F1W H96 L.G |
DOI | 10.1016/j.chemgeo.2013.06.012 |
DatabaseName | AGRIS CrossRef AGRICOLA AGRICOLA - Academic Technology Research Database Engineering Research Database Civil Engineering Abstracts Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic Technology Research Database Civil Engineering Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aqualine ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Technology Research Database AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1872-6836 |
EndPage | 162 |
ExternalDocumentID | 10_1016_j_chemgeo_2013_06_012 US201500070121 S0009254113002696 |
GeographicLocations | Western Australia Australia, Western Australia, Hamersley Prov ISW, Australia, Western Australia |
GeographicLocations_xml | – name: Western Australia – name: Australia, Western Australia, Hamersley Prov – name: ISW, Australia, Western Australia |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABLJU ABMAC ABPPZ ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSE SSZ T5K TN5 ~02 ~G- 6TJ AAQXK ABEFU ABFNM ABPIF ABPTK ABTAH ADIYS ADMUD AETEA AI. ASPBG AVWKF AZFZN FBQ FEDTE FGOYB G-2 HMA HVGLF HZ~ H~9 OHT R2- SEP SEW VH1 WUQ XJT XOL XPP ZKB ZMT ZY4 AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 ACLOT L.6 8FD FR3 KR7 7QH 7UA C1K F1W H96 L.G |
ID | FETCH-LOGICAL-a455t-ce5ec1bc677a3e75f740b0f3cd9c87af076be9b8860e7ed01822931756c389da3 |
IEDL.DBID | AIKHN |
ISSN | 0009-2541 |
IngestDate | Sun Sep 28 00:54:56 EDT 2025 Sat Sep 27 21:48:20 EDT 2025 Sat Sep 27 22:29:24 EDT 2025 Thu Sep 18 00:05:16 EDT 2025 Thu Apr 24 22:53:13 EDT 2025 Wed Dec 27 19:17:48 EST 2023 Fri Feb 23 02:30:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Robe River/Mesa J Western Australia Channel iron deposits (U–Th)/He dating Goethite/hematite Iron ore genesis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a455t-ce5ec1bc677a3e75f740b0f3cd9c87af076be9b8860e7ed01822931756c389da3 |
Notes | http://dx.doi.org/10.1016/j.chemgeo.2013.06.012 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1663584119 |
PQPubID | 24069 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1727682493 proquest_miscellaneous_1669878217 proquest_miscellaneous_1663584119 crossref_primary_10_1016_j_chemgeo_2013_06_012 crossref_citationtrail_10_1016_j_chemgeo_2013_06_012 fao_agris_US201500070121 elsevier_sciencedirect_doi_10_1016_j_chemgeo_2013_06_012 |
PublicationCentury | 2000 |
PublicationDate | 2013-09-16 |
PublicationDateYYYYMMDD | 2013-09-16 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-16 day: 16 |
PublicationDecade | 2010 |
PublicationTitle | Chemical geology |
PublicationYear | 2013 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ramanaidou, Morris, Horwitz (bb0180) 2003; 50 Bersani, Lottici, Montenero (bb0020) 1999; 30 Wernicke, Lippolt (bb0265) 1993; 114 Pillans (bb0315) 1998 Vasconcelos, Knesel, Cohen, Heim (bb0235) 2008; 55 Bähr (bb0270) 1987 Ehlers, Farley (bb0065) 2003; 206 Morris, Kneeshaw, Ramanaidou (bb0310) 2007 Morris, Ramanaidou (bb0150) 2007; 54 Strutt (bb0210) 1905; 76 Strutt (bb0215) 1910; A83 Evans, Byrne, Keegan, Dotter (bb0070) 2005; 60 Pillans (bb9020) 2002; 67 Shuster, Vasconcelos, Heim, Farley (bb0200) 2005; 69 Lippolt, Wernicke, Boschmann (bb0115) 1993; 20 Schwertmann, Fitzpatrick, Taylor, Lewis (bb9010) 1979; 27 Bird, Chivas (bb0025) 1989; 53 MacPhail, Stone (bb0135) 2004; 51 Kohn, Gleadow, Brown, Gallagher, O'Sullivan, Foster (bb0110) 2002; 49 Dammer (bb0290) 1995 Wernicke, Lippolt (bb0250) 1994; 21 Boschmann (bb0275) 1986; 4 Duff, Coughlin, Hunter (bb0060) 2002; 66 Ramanaidou, Wells, Belton, Verral, Ryan (bb0185) 2008; 15 Haq, Hardebol, Vail (bb0095) 1987; 235 Pidgeon, Brander, Lippolt (bb0165) 2004; 51 Harms, Morgan (bb0090) 1964; 212 Lippolt, Brander, Mankopf (bb0125) 1998; 11 Farley, Flowers (bb9015) 2012; 359–360 Hall, Kneeshaw (bb0085) 1990 MacLeod, de la Hunty, Jones, Halligan (bb0295) 1963; 1962 Li, O’Connor, Low, van Riessen (bb9005) 2006; 21 Dammer, McDougall, Chivas (bb0050) 1999; 94 Vasconcelos, Heim, Farley, Shuster, Broadbent (bb0340) 2007 Thern, Jourdan, Evans, McDonald, Danišík, Frew, Nelson (bb0335) 2011 Farley (bb0080) 2002; 47 Butler (bb0280) 1976 McGowran, Li (bb0300) 1998; 20 Ramanaidou, Tapley, van Bronswijk (bb0320) 1996 Morris, Ramanaidou, Horwitz (bb0155) 1993; 399R Bähr, Lippolt, Wernicke (bb0015) 1994; 99 Shuster, Farley, Sisterson, Burnett (bb0195) 2004; 217 Vasconcelos, Heim, Farley, Monteiro, Waltenberg (bb0345) 2013; 117 Wernicke, Lippolt (bb0255) 1994; 58 Lippolt, Wernicke, Bähr (bb0120) 1995; 132 Anand, Paine (bb0005) 2002; 49 Morris (bb0305) 1994; 76R Veevers (bb0245) 2001 Schwertmann, Taylor (bb0325) 1989 Campana, Hughes, Burns, Whitcher, Mucenieka (bb0285) 1964; 210 Vasconcelos, Renne, Brimhall, Becker (bb0225) 1994; 58 Farley, Wolf, Silver (bb0075) 1996; 60 Heim, Vasconcelos, Shuster, Farley, Broadbent (bb0100) 2006; 34 Idnurm (bb0105) 1985; 83 Wernicke (bb0350) 1991 Blackburn, Stockli, Walker (bb9025) 2007; 259 Stone (bb0330) 2005 de Faria, Silva, de Oliveira (bb0055) 1997; 28 Lippolt (10.1016/j.chemgeo.2013.06.012_bb0125) 1998; 11 Haq (10.1016/j.chemgeo.2013.06.012_bb0095) 1987; 235 Shuster (10.1016/j.chemgeo.2013.06.012_bb0200) 2005; 69 Boschmann (10.1016/j.chemgeo.2013.06.012_bb0275) 1986; 4 Wernicke (10.1016/j.chemgeo.2013.06.012_bb0350) 1991 MacPhail (10.1016/j.chemgeo.2013.06.012_bb0135) 2004; 51 Veevers (10.1016/j.chemgeo.2013.06.012_bb0245) 2001 Morris (10.1016/j.chemgeo.2013.06.012_bb0310) 2007 Pillans (10.1016/j.chemgeo.2013.06.012_bb9020) 2002; 67 Heim (10.1016/j.chemgeo.2013.06.012_bb0100) 2006; 34 Bersani (10.1016/j.chemgeo.2013.06.012_bb0020) 1999; 30 Vasconcelos (10.1016/j.chemgeo.2013.06.012_bb0340) 2007 Wernicke (10.1016/j.chemgeo.2013.06.012_bb0255) 1994; 58 Campana (10.1016/j.chemgeo.2013.06.012_bb0285) 1964; 210 Schwertmann (10.1016/j.chemgeo.2013.06.012_bb0325) 1989 Pillans (10.1016/j.chemgeo.2013.06.012_bb0315) 1998 Ramanaidou (10.1016/j.chemgeo.2013.06.012_bb0180) 2003; 50 Schwertmann (10.1016/j.chemgeo.2013.06.012_bb9010) 1979; 27 Dammer (10.1016/j.chemgeo.2013.06.012_bb0050) 1999; 94 Vasconcelos (10.1016/j.chemgeo.2013.06.012_bb0345) 2013; 117 Duff (10.1016/j.chemgeo.2013.06.012_bb0060) 2002; 66 Blackburn (10.1016/j.chemgeo.2013.06.012_bb9025) 2007; 259 Evans (10.1016/j.chemgeo.2013.06.012_bb0070) 2005; 60 Ramanaidou (10.1016/j.chemgeo.2013.06.012_bb0320) 1996 Thern (10.1016/j.chemgeo.2013.06.012_bb0335) 2011 Ramanaidou (10.1016/j.chemgeo.2013.06.012_bb0185) 2008; 15 Vasconcelos (10.1016/j.chemgeo.2013.06.012_bb0235) 2008; 55 Bähr (10.1016/j.chemgeo.2013.06.012_bb0270) 1987 Bähr (10.1016/j.chemgeo.2013.06.012_bb0015) 1994; 99 Lippolt (10.1016/j.chemgeo.2013.06.012_bb0115) 1993; 20 Kohn (10.1016/j.chemgeo.2013.06.012_bb0110) 2002; 49 Morris (10.1016/j.chemgeo.2013.06.012_bb0150) 2007; 54 Morris (10.1016/j.chemgeo.2013.06.012_bb0155) 1993; 399R Harms (10.1016/j.chemgeo.2013.06.012_bb0090) 1964; 212 Wernicke (10.1016/j.chemgeo.2013.06.012_bb0250) 1994; 21 Dammer (10.1016/j.chemgeo.2013.06.012_bb0290) 1995 Farley (10.1016/j.chemgeo.2013.06.012_bb0075) 1996; 60 Anand (10.1016/j.chemgeo.2013.06.012_bb0005) 2002; 49 de Faria (10.1016/j.chemgeo.2013.06.012_bb0055) 1997; 28 Strutt (10.1016/j.chemgeo.2013.06.012_bb0215) 1910; A83 Lippolt (10.1016/j.chemgeo.2013.06.012_bb0120) 1995; 132 MacLeod (10.1016/j.chemgeo.2013.06.012_bb0295) 1963; 1962 Li (10.1016/j.chemgeo.2013.06.012_bb9005) 2006; 21 Strutt (10.1016/j.chemgeo.2013.06.012_bb0210) 1905; 76 Wernicke (10.1016/j.chemgeo.2013.06.012_bb0265) 1993; 114 McGowran (10.1016/j.chemgeo.2013.06.012_bb0300) 1998; 20 Hall (10.1016/j.chemgeo.2013.06.012_bb0085) 1990 Butler (10.1016/j.chemgeo.2013.06.012_bb0280) 1976 Pidgeon (10.1016/j.chemgeo.2013.06.012_bb0165) 2004; 51 Morris (10.1016/j.chemgeo.2013.06.012_bb0305) 1994; 76R Farley (10.1016/j.chemgeo.2013.06.012_bb9015) 2012; 359–360 Ehlers (10.1016/j.chemgeo.2013.06.012_bb0065) 2003; 206 Stone (10.1016/j.chemgeo.2013.06.012_bb0330) 2005 Farley (10.1016/j.chemgeo.2013.06.012_bb0080) 2002; 47 Shuster (10.1016/j.chemgeo.2013.06.012_bb0195) 2004; 217 Bird (10.1016/j.chemgeo.2013.06.012_bb0025) 1989; 53 Idnurm (10.1016/j.chemgeo.2013.06.012_bb0105) 1985; 83 Vasconcelos (10.1016/j.chemgeo.2013.06.012_bb0225) 1994; 58 |
References_xml | – volume: 55 start-page: 865 year: 2008 end-page: 914 ident: bb0235 article-title: Geochronology of the Australian Cenozoic: a history of tectonic and igneous activity, weathering, erosion, and sedimentation publication-title: Australian Journal of Earth Sciences – year: 1991 ident: bb0350 article-title: Botryoidal Hematite and its Potential for the Helium Isochron Dating Method – volume: 132 start-page: 43 year: 1995 end-page: 51 ident: bb0120 article-title: Paragenetic specularite and adularia (Elba, Italy): concordant (U publication-title: Earth and Planetary Science Letters – volume: 359–360 start-page: 131 year: 2012 end-page: 140 ident: bb9015 article-title: (U-Th)/Ne and multidomain (U-Th)/He systematics of a hydrothermal hematite from eastern Grand Canyon publication-title: Earth and Planetary Science Letters – volume: 20 start-page: 415 year: 1993 end-page: 418 ident: bb0115 article-title: He diffusion in specular hematite publication-title: Physics and Chemistry of Minerals – volume: 51 start-page: 901 year: 2004 end-page: 909 ident: bb0165 article-title: Late Miocene (U publication-title: Australian Journal of Earth Sciences – volume: 114 start-page: 287 year: 1993 end-page: 300 ident: bb0265 article-title: Botryoidal hematite from the Schwarzwald (Germany): heterogeneous uranium distributions and their bearing on the helium dating method publication-title: Earth and Planetary Science Letters – start-page: 379 year: 1989 end-page: 439 ident: bb0325 article-title: Iron oxides publication-title: Minerals in Soils Environments – volume: 21 start-page: 345 year: 1994 end-page: 347 ident: bb0250 article-title: Dating of vein specularite using internal (U publication-title: Geophysical Research Letters – year: 1987 ident: bb0270 article-title: Das (U – volume: 58 start-page: 1635 year: 1994 end-page: 1665 ident: bb0225 article-title: Direct dating of weathering phenomena by publication-title: Geochimica et Cosmochimica Acta – volume: 217 start-page: 19 year: 2004 end-page: 32 ident: bb0195 article-title: Quantifying the diffusion kinetics and spatial distributions of radiogenic publication-title: Earth and Planetary Science Letters – year: 1995 ident: bb0290 article-title: Geochronology of Chemical Weathering Processes in the Northern and Western Australian Regolith – volume: 399R year: 1993 ident: bb0155 article-title: Channel iron deposits of the Hamersley Province publication-title: Bentley, CSIRO Australia, Exploration and Mining Report – volume: 15 start-page: 129 year: 2008 end-page: 156 ident: bb0185 article-title: Mineralogical and microchemical methods for the characterization of high-grade BIF derived iron ore publication-title: Reviews in Economic Geology – volume: 117 start-page: 283 year: 2013 end-page: 312 ident: bb0345 article-title: Ar/ publication-title: Geochimica et Cosmochimica Acta – volume: 11 start-page: 505 year: 1998 end-page: 528 ident: bb0125 article-title: An attempt to determine formation ages of goethites and limonites by (U publication-title: Neues Jahrbuch für Mineralogie — Monatshefte – start-page: 1581 year: 1990 end-page: 1586 ident: bb0085 article-title: Yandicoogina–Marillana pisolitic iron deposits publication-title: Geology of the Mineral Deposits of Australia and Papua New Guinea – volume: 49 start-page: 697 year: 2002 end-page: 717 ident: bb0110 article-title: Shaping the Australian crust over the last 300 publication-title: Australian Journal of Earth Sciences – volume: 54 start-page: 733 year: 2007 end-page: 756 ident: bb0150 article-title: Genesis of the channel iron deposits (CID) of the Pilbara region, Western Australia publication-title: Australian Journal of Earth Sciences – start-page: 35 year: 1996 end-page: 36 ident: bb0320 article-title: Determination of aluminium substitution in hematite and goethite by vibrational spectroscopy publication-title: Proceedings of the 2nd Australian Conference on Vibrational Spectroscopy, 2–4 October 1996 – year: 2011 ident: bb0335 article-title: Post-depositional thermal history of the 4364–3060 publication-title: Goldschmidt Conference 2011, Prague, Abstract Volume, 4494 – volume: 206 start-page: 1 year: 2003 end-page: 14 ident: bb0065 article-title: Apatite (U–Th)/He thermochronometry: methods and applications to problems in tectonic and surface processes publication-title: Earth and Planetary Science Letters – volume: 83 start-page: 399 year: 1985 end-page: 418 ident: bb0105 article-title: Late Mesozoic and Cenozoic palaeomagnetism of Australia — 1. A redetermined polar wander path publication-title: Geophysical Journal of the Royal Astronomical Society – volume: 27 start-page: 105 year: 1979 end-page: 112 ident: bb9010 article-title: The influence of aluminum on iron oxides. Part II. Preparation and properties of Al-substituted hematites publication-title: Clays and Clay Minerals – volume: 1962 start-page: 44 year: 1963 end-page: 54 ident: bb0295 article-title: A preliminary report on the Hamersley Iron Province, North-West Division publication-title: GSWA, Annual Report – volume: 259 start-page: 360 year: 2007 end-page: 371 ident: bb9025 article-title: Magnetite (U-Th)/He dating and its application to the geochronology of intermediate to mafic volcanic rocks publication-title: Earth and Planetary Science Letters – volume: 76R year: 1994 ident: bb0305 article-title: AMIRA Project P75G — detrital iron deposits of the Hamersley Province publication-title: CSIRO Exploration and Mining Restricted Report – volume: 99 start-page: 17695 year: 1994 end-page: 17707 ident: bb0015 article-title: Temperature-induced publication-title: Journal of Geophysical Research – volume: 20 start-page: 86 year: 1998 end-page: 103 ident: bb0300 article-title: Cainozoic climate change and its implication for understanding the Australian regolith publication-title: The State of the Regolith. Proceedings of the 2nd Australian Conference on Landscape Evolution and Mineral Exploration – volume: 53 start-page: 3239 year: 1989 end-page: 3256 ident: bb0025 article-title: Stable isotope geochronology of the Australian regolith publication-title: Geochimica et Cosmochimica Acta – volume: 212 start-page: 91 year: 1964 end-page: 124 ident: bb0090 article-title: Pisolitic limonite deposits in northwest Australia publication-title: Proceedings of the Australasian Institute of Mining and Metallurgy – volume: 49 start-page: 3 year: 2002 end-page: 162 ident: bb0005 article-title: Regolith geology of the Yilgarn Craton, Western Australia: implications for exploration publication-title: Australian Journal of Earth Sciences – volume: 51 start-page: 497 year: 2004 end-page: 520 ident: bb0135 article-title: Age and palaeoenvironmental constraints on the genesis of the Yandi channel iron deposits, Marillana Formation, Pilbara, northwestern Australia publication-title: Australian Journal of Earth Sciences – volume: 58 start-page: 421 year: 1994 end-page: 429 ident: bb0255 article-title: He age discordance and release behavior of a double shell botryoidal hematite from the Schwarzwald, Germany publication-title: Geochimica et Cosmochimica Acta – volume: 210 start-page: 1 year: 1964 end-page: 30 ident: bb0285 article-title: Discovery of the Hamersley iron deposits (Duck Creek–Mt. Pyrton–Mt. Turner Area) publication-title: Proceedings of the Australasian Institute of Mining and Metallurgy – volume: 94 start-page: 87 year: 1999 end-page: 108 ident: bb0050 article-title: Timing of weathering-induced alteration of manganese deposits in Western Australia: evidence from K/Ar and publication-title: Economic Geology – volume: 30 start-page: 355 year: 1999 end-page: 360 ident: bb0020 article-title: Micro-Raman investigation of iron oxide films and powders produced by sol–gel synthesis publication-title: Journal of Raman Spectroscopy – year: 1998 ident: bb0315 article-title: Regolith Dating Methods. A Guide to Numerical Dating Methods – volume: 28 start-page: 873 year: 1997 end-page: 878 ident: bb0055 article-title: Raman microspectroscopy of some iron oxides and oxyhydroxides publication-title: Journal of Raman Spectroscopy – volume: 34 start-page: 173 year: 2006 end-page: 176 ident: bb0100 article-title: Dating palaeochannel iron ore by (U–Th)/He analysis of supergene goethite, Hamersley Province, Australia publication-title: Geology – year: 1976 ident: bb0280 article-title: Geology of the Tertiary Ironstones in the Middle and Upper Robe River area, Pilbara Region, Western Australia – volume: 60 start-page: 1159 year: 2005 end-page: 1165 ident: bb0070 article-title: Determination of uranium and thorium in zircon, apatite, and fluorite: application to laser (U–Th)/He thermochronology publication-title: Journal of Analytical Chemistry – volume: 76 start-page: 88 year: 1905 end-page: 101 ident: bb0210 article-title: On the radioactive minerals publication-title: Proceedings of the Royal Society of London Series A – volume: 50 start-page: 669 year: 2003 end-page: 690 ident: bb0180 article-title: Channel iron deposits of the Hamersley Province, Western Australia publication-title: Australian Journal of Earth Sciences – year: 2005 ident: bb0330 article-title: Depositional History and Mineralisation of Tertiary Iron Deposits at Yandi, Eastern Pilbara, Australia – volume: 67 start-page: 428 year: 2002 ident: bb9020 article-title: Climate-driven weathering episodes during the last 200 publication-title: Abstracts – volume: 4 year: 1986 ident: bb0275 article-title: Uran und Helium in Erzmineralien und die Frage ihrer Datierbarkeit publication-title: Heidelberger Geowissenschaftliche Abhandlungen – volume: 66 start-page: 3533 year: 2002 end-page: 3547 ident: bb0060 article-title: Uranium coprecipitation with iron oxide minerals publication-title: Geochimica et Cosmochimica Acta – volume: 47 start-page: 819 year: 2002 end-page: 844 ident: bb0080 article-title: (U–Th)/He dating: techniques, calibrations, and applications publication-title: Reviews in Mineralogy and Geochemistry – volume: 235 start-page: 1156 year: 1987 end-page: 1167 ident: bb0095 article-title: The chronology of fluctuating sea levels since the Jurassic publication-title: Science – volume: A83 start-page: 96 year: 1910 end-page: 99 ident: bb0215 article-title: The accumulation of helium in geological time III publication-title: Proceedings of the Royal Society – start-page: e118 year: 2007 ident: bb0340 article-title: Dating paleochannel iron ore by (U–Th)/He analysis of supergene goethite, Hamersley Province, Australia publication-title: Geological Society of America – start-page: e118 year: 2007 ident: bb0310 article-title: Dating paleochannel iron ore by (U–Th)/He analysis of supergene goethite, Hamersley Province, Australia publication-title: Geological Society of America – volume: 60 start-page: 4223 year: 1996 end-page: 4229 ident: bb0075 article-title: The effects of long alpha-stopping distances on (U–Th)/He ages publication-title: Geochimica et Cosmochimica Acta – volume: 69 start-page: 659 year: 2005 end-page: 673 ident: bb0200 article-title: Weathering geochronology by (U–Th)/He dating of goethite publication-title: Geochimica et Cosmochimica Acta – volume: 21 start-page: 289 year: 2006 end-page: 299 ident: bb9005 article-title: Mineralogy of Al-substituted goethites publication-title: Powder Diffraction – year: 2001 ident: bb0245 article-title: Atlas of Billion-year Earth History of Australia and Neighbours in Gondwanaland – volume: 20 start-page: 415 issue: 6 year: 1993 ident: 10.1016/j.chemgeo.2013.06.012_bb0115 article-title: 4He diffusion in specular hematite publication-title: Physics and Chemistry of Minerals doi: 10.1007/BF00203111 – volume: 66 start-page: 3533 issue: 20 year: 2002 ident: 10.1016/j.chemgeo.2013.06.012_bb0060 article-title: Uranium coprecipitation with iron oxide minerals publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/S0016-7037(02)00953-5 – volume: 359–360 start-page: 131 year: 2012 ident: 10.1016/j.chemgeo.2013.06.012_bb9015 article-title: (U-Th)/Ne and multidomain (U-Th)/He systematics of a hydrothermal hematite from eastern Grand Canyon publication-title: Earth and Planetary Science Letters doi: 10.1016/j.epsl.2012.10.010 – start-page: 35 year: 1996 ident: 10.1016/j.chemgeo.2013.06.012_bb0320 article-title: Determination of aluminium substitution in hematite and goethite by vibrational spectroscopy – volume: 49 start-page: 3 year: 2002 ident: 10.1016/j.chemgeo.2013.06.012_bb0005 article-title: Regolith geology of the Yilgarn Craton, Western Australia: implications for exploration publication-title: Australian Journal of Earth Sciences doi: 10.1046/j.1440-0952.2002.00912.x – volume: 54 start-page: 733 issue: 5 year: 2007 ident: 10.1016/j.chemgeo.2013.06.012_bb0150 article-title: Genesis of the channel iron deposits (CID) of the Pilbara region, Western Australia publication-title: Australian Journal of Earth Sciences doi: 10.1080/08120090701305251 – volume: 50 start-page: 669 year: 2003 ident: 10.1016/j.chemgeo.2013.06.012_bb0180 article-title: Channel iron deposits of the Hamersley Province, Western Australia publication-title: Australian Journal of Earth Sciences doi: 10.1111/j.1440-0952.2003.01019.x – volume: 15 start-page: 129 year: 2008 ident: 10.1016/j.chemgeo.2013.06.012_bb0185 article-title: Mineralogical and microchemical methods for the characterization of high-grade BIF derived iron ore publication-title: Reviews in Economic Geology – volume: 4 year: 1986 ident: 10.1016/j.chemgeo.2013.06.012_bb0275 article-title: Uran und Helium in Erzmineralien und die Frage ihrer Datierbarkeit – volume: 210 start-page: 1 year: 1964 ident: 10.1016/j.chemgeo.2013.06.012_bb0285 article-title: Discovery of the Hamersley iron deposits (Duck Creek–Mt. Pyrton–Mt. Turner Area) publication-title: Proceedings of the Australasian Institute of Mining and Metallurgy – year: 2001 ident: 10.1016/j.chemgeo.2013.06.012_bb0245 – start-page: 1581 year: 1990 ident: 10.1016/j.chemgeo.2013.06.012_bb0085 article-title: Yandicoogina–Marillana pisolitic iron deposits – year: 2011 ident: 10.1016/j.chemgeo.2013.06.012_bb0335 article-title: Post-depositional thermal history of the 4364–3060Ma zircon-bearing metasandstones of the Illaara and Maynard Hills granite greenstone belts, Western Australia – volume: 30 start-page: 355 year: 1999 ident: 10.1016/j.chemgeo.2013.06.012_bb0020 article-title: Micro-Raman investigation of iron oxide films and powders produced by sol–gel synthesis publication-title: Journal of Raman Spectroscopy doi: 10.1002/(SICI)1097-4555(199905)30:5<355::AID-JRS398>3.0.CO;2-C – volume: 217 start-page: 19 year: 2004 ident: 10.1016/j.chemgeo.2013.06.012_bb0195 article-title: Quantifying the diffusion kinetics and spatial distributions of radiogenic 4He in minerals containing proton-induced 3He publication-title: Earth and Planetary Science Letters doi: 10.1016/S0012-821X(03)00594-6 – volume: 99 start-page: 17695 year: 1994 ident: 10.1016/j.chemgeo.2013.06.012_bb0015 article-title: Temperature-induced 4He degassing of specularite and botryoidal hematite: a 4He retentivity study publication-title: Journal of Geophysical Research doi: 10.1029/94JB01055 – volume: 132 start-page: 43 year: 1995 ident: 10.1016/j.chemgeo.2013.06.012_bb0120 article-title: Paragenetic specularite and adularia (Elba, Italy): concordant (U+Th)–He and K–Ar ages publication-title: Earth and Planetary Science Letters doi: 10.1016/0012-821X(95)00046-F – volume: 28 start-page: 873 year: 1997 ident: 10.1016/j.chemgeo.2013.06.012_bb0055 article-title: Raman microspectroscopy of some iron oxides and oxyhydroxides publication-title: Journal of Raman Spectroscopy doi: 10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO;2-B – volume: 49 start-page: 697 issue: 4 year: 2002 ident: 10.1016/j.chemgeo.2013.06.012_bb0110 article-title: Shaping the Australian crust over the last 300millionyears: insights from fission track thermotectonic imaging and denudation studies of key terranes publication-title: Australian Journal of Earth Sciences doi: 10.1046/j.1440-0952.2002.00942.x – year: 1976 ident: 10.1016/j.chemgeo.2013.06.012_bb0280 – volume: 34 start-page: 173 issue: 3 year: 2006 ident: 10.1016/j.chemgeo.2013.06.012_bb0100 article-title: Dating palaeochannel iron ore by (U–Th)/He analysis of supergene goethite, Hamersley Province, Australia publication-title: Geology doi: 10.1130/G22003.1 – volume: 27 start-page: 105 year: 1979 ident: 10.1016/j.chemgeo.2013.06.012_bb9010 article-title: The influence of aluminum on iron oxides. Part II. Preparation and properties of Al-substituted hematites publication-title: Clays and Clay Minerals doi: 10.1346/CCMN.1979.0270205 – volume: 69 start-page: 659 year: 2005 ident: 10.1016/j.chemgeo.2013.06.012_bb0200 article-title: Weathering geochronology by (U–Th)/He dating of goethite publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/j.gca.2004.07.028 – volume: 76 start-page: 88 year: 1905 ident: 10.1016/j.chemgeo.2013.06.012_bb0210 article-title: On the radioactive minerals publication-title: Proceedings of the Royal Society of London Series A – volume: 11 start-page: 505 year: 1998 ident: 10.1016/j.chemgeo.2013.06.012_bb0125 article-title: An attempt to determine formation ages of goethites and limonites by (U+Th)–4He dating publication-title: Neues Jahrbuch für Mineralogie — Monatshefte – volume: 76R year: 1994 ident: 10.1016/j.chemgeo.2013.06.012_bb0305 article-title: AMIRA Project P75G — detrital iron deposits of the Hamersley Province – volume: 53 start-page: 3239 year: 1989 ident: 10.1016/j.chemgeo.2013.06.012_bb0025 article-title: Stable isotope geochronology of the Australian regolith publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/0016-7037(89)90104-X – volume: 60 start-page: 4223 year: 1996 ident: 10.1016/j.chemgeo.2013.06.012_bb0075 article-title: The effects of long alpha-stopping distances on (U–Th)/He ages publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/S0016-7037(96)00193-7 – year: 1998 ident: 10.1016/j.chemgeo.2013.06.012_bb0315 – volume: 58 start-page: 421 year: 1994 ident: 10.1016/j.chemgeo.2013.06.012_bb0255 article-title: 4He age discordance and release behavior of a double shell botryoidal hematite from the Schwarzwald, Germany publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/0016-7037(94)90474-X – volume: 67 start-page: 428 year: 2002 ident: 10.1016/j.chemgeo.2013.06.012_bb9020 article-title: Climate-driven weathering episodes during the last 200Ma in Southern Australia. In: Preiss, V.P. (Ed.), Geological Society of Australia publication-title: Abstracts – volume: 47 start-page: 819 year: 2002 ident: 10.1016/j.chemgeo.2013.06.012_bb0080 article-title: (U–Th)/He dating: techniques, calibrations, and applications publication-title: Reviews in Mineralogy and Geochemistry doi: 10.2138/rmg.2002.47.18 – volume: 114 start-page: 287 year: 1993 ident: 10.1016/j.chemgeo.2013.06.012_bb0265 article-title: Botryoidal hematite from the Schwarzwald (Germany): heterogeneous uranium distributions and their bearing on the helium dating method publication-title: Earth and Planetary Science Letters doi: 10.1016/0012-821X(93)90031-4 – volume: 83 start-page: 399 year: 1985 ident: 10.1016/j.chemgeo.2013.06.012_bb0105 article-title: Late Mesozoic and Cenozoic palaeomagnetism of Australia — 1. A redetermined polar wander path publication-title: Geophysical Journal of the Royal Astronomical Society doi: 10.1111/j.1365-246X.1985.tb06494.x – volume: A83 start-page: 96 year: 1910 ident: 10.1016/j.chemgeo.2013.06.012_bb0215 article-title: The accumulation of helium in geological time III publication-title: Proceedings of the Royal Society – volume: 94 start-page: 87 year: 1999 ident: 10.1016/j.chemgeo.2013.06.012_bb0050 article-title: Timing of weathering-induced alteration of manganese deposits in Western Australia: evidence from K/Ar and 40Ar/39Ar dating publication-title: Economic Geology doi: 10.2113/gsecongeo.94.1.87 – volume: 235 start-page: 1156 year: 1987 ident: 10.1016/j.chemgeo.2013.06.012_bb0095 article-title: The chronology of fluctuating sea levels since the Jurassic publication-title: Science doi: 10.1126/science.235.4793.1156 – volume: 399R year: 1993 ident: 10.1016/j.chemgeo.2013.06.012_bb0155 article-title: Channel iron deposits of the Hamersley Province – start-page: e118 year: 2007 ident: 10.1016/j.chemgeo.2013.06.012_bb0310 article-title: Dating paleochannel iron ore by (U–Th)/He analysis of supergene goethite, Hamersley Province, Australia publication-title: Geological Society of America – volume: 60 start-page: 1159 issue: 12 year: 2005 ident: 10.1016/j.chemgeo.2013.06.012_bb0070 article-title: Determination of uranium and thorium in zircon, apatite, and fluorite: application to laser (U–Th)/He thermochronology publication-title: Journal of Analytical Chemistry doi: 10.1007/s10809-005-0260-1 – volume: 21 start-page: 345 year: 1994 ident: 10.1016/j.chemgeo.2013.06.012_bb0250 article-title: Dating of vein specularite using internal (U+Th)/4He isochrons publication-title: Geophysical Research Letters doi: 10.1029/94GL00014 – volume: 55 start-page: 865 year: 2008 ident: 10.1016/j.chemgeo.2013.06.012_bb0235 article-title: Geochronology of the Australian Cenozoic: a history of tectonic and igneous activity, weathering, erosion, and sedimentation publication-title: Australian Journal of Earth Sciences doi: 10.1080/08120090802120120 – year: 1995 ident: 10.1016/j.chemgeo.2013.06.012_bb0290 – volume: 20 start-page: 86 year: 1998 ident: 10.1016/j.chemgeo.2013.06.012_bb0300 article-title: Cainozoic climate change and its implication for understanding the Australian regolith – volume: 51 start-page: 901 year: 2004 ident: 10.1016/j.chemgeo.2013.06.012_bb0165 article-title: Late Miocene (U+Th)–4He ages of ferruginous nodules from lateritic duricrust, Darling Range, Western Australia publication-title: Australian Journal of Earth Sciences doi: 10.1111/j.1400-0952.2004.01094.x – start-page: e118 year: 2007 ident: 10.1016/j.chemgeo.2013.06.012_bb0340 article-title: Dating paleochannel iron ore by (U–Th)/He analysis of supergene goethite, Hamersley Province, Australia publication-title: Geological Society of America – volume: 58 start-page: 1635 issue: 6 year: 1994 ident: 10.1016/j.chemgeo.2013.06.012_bb0225 article-title: Direct dating of weathering phenomena by 40Ar/39Ar and K–Ar analysis of supergene K–Mn oxides publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/0016-7037(94)90565-7 – volume: 206 start-page: 1 year: 2003 ident: 10.1016/j.chemgeo.2013.06.012_bb0065 article-title: Apatite (U–Th)/He thermochronometry: methods and applications to problems in tectonic and surface processes publication-title: Earth and Planetary Science Letters doi: 10.1016/S0012-821X(02)01069-5 – year: 1987 ident: 10.1016/j.chemgeo.2013.06.012_bb0270 – volume: 1962 start-page: 44 year: 1963 ident: 10.1016/j.chemgeo.2013.06.012_bb0295 article-title: A preliminary report on the Hamersley Iron Province, North-West Division – volume: 212 start-page: 91 year: 1964 ident: 10.1016/j.chemgeo.2013.06.012_bb0090 article-title: Pisolitic limonite deposits in northwest Australia publication-title: Proceedings of the Australasian Institute of Mining and Metallurgy – volume: 21 start-page: 289 year: 2006 ident: 10.1016/j.chemgeo.2013.06.012_bb9005 article-title: Mineralogy of Al-substituted goethites publication-title: Powder Diffraction doi: 10.1154/1.2358358 – year: 1991 ident: 10.1016/j.chemgeo.2013.06.012_bb0350 – year: 2005 ident: 10.1016/j.chemgeo.2013.06.012_bb0330 – volume: 117 start-page: 283 year: 2013 ident: 10.1016/j.chemgeo.2013.06.012_bb0345 article-title: 40Ar/39Ar and (U-Th)/He - 4He/3He geochronology of landscape evolution and channel iron deposit genesis at Lynn Peak, Western Australia publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/j.gca.2013.03.037 – start-page: 379 year: 1989 ident: 10.1016/j.chemgeo.2013.06.012_bb0325 article-title: Iron oxides – volume: 51 start-page: 497 year: 2004 ident: 10.1016/j.chemgeo.2013.06.012_bb0135 article-title: Age and palaeoenvironmental constraints on the genesis of the Yandi channel iron deposits, Marillana Formation, Pilbara, northwestern Australia publication-title: Australian Journal of Earth Sciences doi: 10.1111/j.1400-0952.2004.01071.x – volume: 259 start-page: 360 issue: 3–4 year: 2007 ident: 10.1016/j.chemgeo.2013.06.012_bb9025 article-title: Magnetite (U-Th)/He dating and its application to the geochronology of intermediate to mafic volcanic rocks publication-title: Earth and Planetary Science Letters doi: 10.1016/j.epsl.2007.04.044 |
SSID | ssj0001355 |
Score | 2.325972 |
Snippet | Channel iron deposits (CID) supply 40% of Australia's iron ore but their genesis is still the subject of debate. Two well-characterised samples of... |
SourceID | proquest crossref fao elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 150 |
SubjectTerms | (U–Th)/He dating Age apatite Channel iron Channel iron deposits cortex Deposition environmental factors Fragments Genesis goethite Goethite/hematite heat hematite Iron ore genesis Iron oxides Lasers nuclides Rivers Robe River/Mesa J stratigraphy temperature Western Australia wood zirconium |
Title | (U–Th)/He chronology of the Robe River channel iron deposits, Hamersley Province, Western Australia |
URI | https://dx.doi.org/10.1016/j.chemgeo.2013.06.012 https://www.proquest.com/docview/1663584119 https://www.proquest.com/docview/1669878217 https://www.proquest.com/docview/1727682493 |
Volume | 354 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa6WyFxqVoe6kKpjMQBpGY3duLXsapaAogKQVf0Zjn2pA-VbNVuD1wQ_4F_yC_B400WIUQrcU08VjJjz3wez4OQF2AiZmiYz-ogdVY2osy0A5cVkHslfG1EjsnJ7w9lNS3fHovjFbLX58JgWGWn-xc6PWnr7smk4-bk8uwMc3xzE483DC9kuDRyQFZ5tPZ6SFZ337yrDpcKmRVC9A3VkOB3Is_kfBxZ8-UkpQGyIlXyZPxfJmrQuNlfKjvZoYN1stYBSLq7-MYNsgLtA3LvdWrQ-_UhgZfTn99_HJ2-mlRAPVa-TS_orKER6lEMpKYfMRaDYspvCxcU89xogBS9db1DK9d5sumH5G3wsEM_L8op0KVj5BGZHuwf7VVZ10ohc6UQ88yDAM9qL5VyBSjRqDKv86bwwXitXJMrWYOptZY5KAg5wzrwCC2kj4gmuOIxGbazFjYJ1UGFAjsWQ5wEZJQsFK4uRQg8ohkeRqTsuWd9V2cc211c2D6g7Nx2TLfIdIuBdYyPyHhJdrkotHEXge5FY_9YMTYag7tIN6MorTuJetROP3H0-mDdI8bZiDzv5WvjRsPbE9fC7ObaMsRmOi43c-sYoyPmYuqWMRExSh1PvcWT__-Dp-Q-T305TMbkFhnOr27gWURH83qbDMbf2Ha3B34BwUgNyQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbarRBcEE91KQ8jcQCp6cZx_DpWFSWl7QrBrujNcuxJaVWyVbs9cOM_8A_5JXi8ySKEaCWuSSZKZuzx5_HMN4S8AhMxQ8N8Vgeps7IRZaYduIxD7pXwtRE5FicfjmU1Ld8fiaMVstPXwmBaZef7Fz49eevuyqjT5uj85ARrfHMTtzcMD2QKaeQqWSuxqfWArG3v7VfjpUNmXIi-oRoK_C7kGZ1uRdV8PU5lgIwnJk9W_GuJWm3c7C-Xndah3Xvkbgcg6fbiG--TFWgfkFvvUoPebw8JvJ7-_P5j8uXNqALqkfk23aCzhkaoRzGRmn7EXAyKJb8tnFGsc6MBUvbW5SatXBfJph9StMHDJv28oFOgy8DIIzLdfTvZqbKulULmSiHmmQcBntVeKuU4KNGoMq_zhvtgvFauyZWswdRayxwUhJwhDzxCC-kjogmOPyaDdtbCOqE6qMCxYzHEl4CMlgXu6lKEUEQ0U4QhKXvtWd_xjGO7izPbJ5Sd2k7pFpVuMbGOFUOytRQ7XxBt3CSge9PYP0aMjYvBTaLr0ZTWHUc_aqefCoz6IO8RK9iQvOzta-NEw9MT18Ls6tIyxGY6Djdz7TNGR8zF1DXPRMQoddz18if__wcvyO1qcnhgD_bG-xvkTpF6dJiMyadkML-4gmcRKc3r591M-AUaKQ-v |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%28U-Th%29%2FHe+chronology+of+the+Robe+River+channel+iron+deposits%2C+Hamersley+Province%2C+Western+Australia&rft.jtitle=Chemical+geology&rft.au=Danisik%2C+Martin&rft.au=Evans%2C+Noreen+J&rft.au=Ramanaidou%2C+Erick+R&rft.au=McDonald%2C+Brad+J&rft.date=2013-09-16&rft.issn=0009-2541&rft.volume=354&rft.spage=150&rft.epage=162&rft_id=info:doi/10.1016%2Fj.chemgeo.2013.06.012&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2541&client=summon |