Python-Based Algorithm for Calculating Physical Properties of Aqueous Mixtures Composed of Substances Not Available in Databases

In this study, we developed a Python-based open-source algorithm compatible with the aqueous physical property models provided in the electrolyte templates of AspenTech software. To validate the accuracy of the model, the results obtained from the proposed algorithm were compared to experimental dat...

Full description

Saved in:
Bibliographic Details
Published inACS omega Vol. 10; no. 16; pp. 16683 - 16694
Main Authors Lee, Jina, Jo, Se-Hee, Lee, Chungyup, Kang, Ji Hun, Won, Wangyun, Kim, Jun-Woo
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 29.04.2025
Online AccessGet full text
ISSN2470-1343
2470-1343
DOI10.1021/acsomega.5c00424

Cover

Abstract In this study, we developed a Python-based open-source algorithm compatible with the aqueous physical property models provided in the electrolyte templates of AspenTech software. To validate the accuracy of the model, the results obtained from the proposed algorithm were compared to experimental data for 37 binary aqueous mixture systems covering properties such as density, heat capacity, viscosity, and thermal conductivity. The input variables included results from our previous research on pure component property prediction and the nonrandom two-liquid (NRTL) model parameters based on the UNIFAC model simulations. This open-source algorithm is compatible with AspenTech software. The mean absolute percentage errors (MAPE) for density, heat capacity, viscosity, and thermal conductivity were 2.88, 0.355, 12.1, and 10.1%, respectively. In the case of density and viscosity, the actual data trends could not be accurately reflected under high-concentration conditions for certain substances. In addition, it was confirmed that inaccurate predictions of the viscosity and thermal conductivity in the commercial-scale falling-film evaporator simulation for l-valine production led to inaccurate predictions of the overall heat transfer coefficient. Therefore, caution is required when predicting missing property parameters using this approach as significant errors may occur. Nevertheless, this algorithm can provide an initial parameter value for property models that are not included in existing databases without any commercial package.
AbstractList In this study, we developed a Python-based open-source algorithm compatible with the aqueous physical property models provided in the electrolyte templates of AspenTech software. To validate the accuracy of the model, the results obtained from the proposed algorithm were compared to experimental data for 37 binary aqueous mixture systems covering properties such as density, heat capacity, viscosity, and thermal conductivity. The input variables included results from our previous research on pure component property prediction and the nonrandom two-liquid (NRTL) model parameters based on the UNIFAC model simulations. This open-source algorithm is compatible with AspenTech software. The mean absolute percentage errors (MAPE) for density, heat capacity, viscosity, and thermal conductivity were 2.88, 0.355, 12.1, and 10.1%, respectively. In the case of density and viscosity, the actual data trends could not be accurately reflected under high-concentration conditions for certain substances. In addition, it was confirmed that inaccurate predictions of the viscosity and thermal conductivity in the commercial-scale falling-film evaporator simulation for l-valine production led to inaccurate predictions of the overall heat transfer coefficient. Therefore, caution is required when predicting missing property parameters using this approach as significant errors may occur. Nevertheless, this algorithm can provide an initial parameter value for property models that are not included in existing databases without any commercial package.
In this study, we developed a Python-based open-source algorithm compatible with the aqueous physical property models provided in the electrolyte templates of AspenTech software. To validate the accuracy of the model, the results obtained from the proposed algorithm were compared to experimental data for 37 binary aqueous mixture systems covering properties such as density, heat capacity, viscosity, and thermal conductivity. The input variables included results from our previous research on pure component property prediction and the nonrandom two-liquid (NRTL) model parameters based on the UNIFAC model simulations. This open-source algorithm is compatible with AspenTech software. The mean absolute percentage errors (MAPE) for density, heat capacity, viscosity, and thermal conductivity were 2.88, 0.355, 12.1, and 10.1%, respectively. In the case of density and viscosity, the actual data trends could not be accurately reflected under high-concentration conditions for certain substances. In addition, it was confirmed that inaccurate predictions of the viscosity and thermal conductivity in the commercial-scale falling-film evaporator simulation for l-valine production led to inaccurate predictions of the overall heat transfer coefficient. Therefore, caution is required when predicting missing property parameters using this approach as significant errors may occur. Nevertheless, this algorithm can provide an initial parameter value for property models that are not included in existing databases without any commercial package.In this study, we developed a Python-based open-source algorithm compatible with the aqueous physical property models provided in the electrolyte templates of AspenTech software. To validate the accuracy of the model, the results obtained from the proposed algorithm were compared to experimental data for 37 binary aqueous mixture systems covering properties such as density, heat capacity, viscosity, and thermal conductivity. The input variables included results from our previous research on pure component property prediction and the nonrandom two-liquid (NRTL) model parameters based on the UNIFAC model simulations. This open-source algorithm is compatible with AspenTech software. The mean absolute percentage errors (MAPE) for density, heat capacity, viscosity, and thermal conductivity were 2.88, 0.355, 12.1, and 10.1%, respectively. In the case of density and viscosity, the actual data trends could not be accurately reflected under high-concentration conditions for certain substances. In addition, it was confirmed that inaccurate predictions of the viscosity and thermal conductivity in the commercial-scale falling-film evaporator simulation for l-valine production led to inaccurate predictions of the overall heat transfer coefficient. Therefore, caution is required when predicting missing property parameters using this approach as significant errors may occur. Nevertheless, this algorithm can provide an initial parameter value for property models that are not included in existing databases without any commercial package.
In this study, we developed a Python-based open-source algorithm compatible with the aqueous physical property models provided in the electrolyte templates of AspenTech software. To validate the accuracy of the model, the results obtained from the proposed algorithm were compared to experimental data for 37 binary aqueous mixture systems covering properties such as density, heat capacity, viscosity, and thermal conductivity. The input variables included results from our previous research on pure component property prediction and the nonrandom two-liquid (NRTL) model parameters based on the UNIFAC model simulations. This open-source algorithm is compatible with AspenTech software. The mean absolute percentage errors (MAPE) for density, heat capacity, viscosity, and thermal conductivity were 2.88, 0.355, 12.1, and 10.1%, respectively. In the case of density and viscosity, the actual data trends could not be accurately reflected under high-concentration conditions for certain substances. In addition, it was confirmed that inaccurate predictions of the viscosity and thermal conductivity in the commercial-scale falling-film evaporator simulation for l-valine production led to inaccurate predictions of the overall heat transfer coefficient. Therefore, caution is required when predicting missing property parameters using this approach as significant errors may occur. Nevertheless, this algorithm can provide an initial parameter value for property models that are not included in existing databases without any commercial package.
Author Kang, Ji Hun
Lee, Jina
Lee, Chungyup
Kim, Jun-Woo
Won, Wangyun
Jo, Se-Hee
AuthorAffiliation CJ BIO Research Institute, CJ CheilJedang Corp
Department of Chemical and Biological Engineering
AuthorAffiliation_xml – name: CJ BIO Research Institute, CJ CheilJedang Corp
– name: Department of Chemical and Biological Engineering
Author_xml – sequence: 1
  givenname: Jina
  orcidid: 0009-0002-8217-7039
  surname: Lee
  fullname: Lee, Jina
  organization: CJ BIO Research Institute, CJ CheilJedang Corp
– sequence: 2
  givenname: Se-Hee
  orcidid: 0009-0001-2799-2295
  surname: Jo
  fullname: Jo, Se-Hee
  organization: CJ BIO Research Institute, CJ CheilJedang Corp
– sequence: 3
  givenname: Chungyup
  surname: Lee
  fullname: Lee, Chungyup
  organization: CJ BIO Research Institute, CJ CheilJedang Corp
– sequence: 4
  givenname: Ji Hun
  surname: Kang
  fullname: Kang, Ji Hun
  organization: CJ BIO Research Institute, CJ CheilJedang Corp
– sequence: 5
  givenname: Wangyun
  orcidid: 0000-0003-1072-9842
  surname: Won
  fullname: Won, Wangyun
  email: wwon@korea.ac.kr
  organization: Department of Chemical and Biological Engineering
– sequence: 6
  givenname: Jun-Woo
  orcidid: 0000-0002-2562-5491
  surname: Kim
  fullname: Kim, Jun-Woo
  email: junwoo.kim1@cj.net
  organization: CJ BIO Research Institute, CJ CheilJedang Corp
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40321552$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtvEzEUhUeoiD7onhXykgUpfs5jhdJQoFKBSHRv3fF4EkceO9ieQnb8dBwmrdoFEitb9577HV-f0-LIeaeL4hXBFwRT8g5U9INewYVQGHPKnxUnlFd4RhhnR4_ux8V5jBuMMSlrWtPyRXHMMaNECHpS_F7u0tq72SVE3aG5Xflg0npAvQ9oAVaNFpJxK7Rc76JRYNEy-K0OyeiIfI_mP0btx4i-mF9pDLm28MPW71G5-X1sYwKncvmrT2h-B8ZCazUyDn2ABG32jC-L5z3YqM8P51lx-_HqdvF5dvPt0_VifjMDLkSacQEd1yAarUnX54Wbsqp6zKBpCeW456TtRM1KokgNUNasawRTQutK0B44OyuuJ2znYSO3wQwQdtKDkX8LPqwk5K2U1bLvuMpMAZVgnGenjpCqBV22rQLW6cwiE2t0W9j9BGsfgATLfTbyPht5yCbPvJ9mtmM76E5plwLYJw952nFmLVf-ThKKOedNnQlvDoTg86_HJAcTlbYW3D4CySjOqZYNpln6-rHZg8t97FmAJ4EKPsag-_9Z4O00kjty48fgclr_lv8BNgTT_A
Cites_doi 10.1016/j.jechem.2024.08.042
10.1002/aic.10151
10.1002/ceat.202200361
10.1016/j.jclepro.2023.136804
10.1063/1.1461829
10.1021/ct400371h
10.1021/acssuschemeng.3c00547
10.1016/j.jfoodeng.2024.112438
10.1016/j.enconman.2020.112756
10.1016/j.compchemeng.2023.108521
10.1002/ceat.201800279
10.1016/j.seppur.2024.128938
10.1021/acs.jced.1c00645
10.1007/s10529-006-9218-0
10.1021/ie201276m
10.1016/j.cej.2024.150540
10.1002/aic.17623
10.1021/acsomega.3c09657
10.1016/j.scp.2024.101629
10.1021/je100930y
10.1021/acssuschemeng.4c01718
10.1021/je60047a012
10.1016/j.jclepro.2024.142700
10.1002/aic.690190241
10.1002/ceat.202300136
10.1590/0104-6632.20150321s00002825
10.1002/aic.690210607
10.1021/acssuschemeng.4c00330
10.3390/en13133401
10.1039/D0GC00058B
10.1021/acssuschemeng.4c01783
10.1016/j.molliq.2022.120456
10.1021/acsomega.4c09246
10.1002/aic.690170613
10.1021/acs.iecr.4c00902
10.1006/abio.2000.4653
10.1002/aic.15080
10.1039/C6RE00227G
10.1038/s41467-024-54495-5
10.1016/j.biortech.2024.130595
10.1155/2022/9186536
ContentType Journal Article
Copyright 2025 The Authors. Published by American Chemical Society
2025 The Authors. Published by American Chemical Society.
2025 The Authors. Published by American Chemical Society 2025 The Authors
Copyright_xml – notice: 2025 The Authors. Published by American Chemical Society
– notice: 2025 The Authors. Published by American Chemical Society.
– notice: 2025 The Authors. Published by American Chemical Society 2025 The Authors
DBID N~.
AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1021/acsomega.5c00424
DatabaseName ACS Publications
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: N~.
  name: ACS Publications
  url: https://pubs.acs.org
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2470-1343
EndPage 16694
ExternalDocumentID oai_doaj_org_article_fd4c1245a75344009d117bae6bbca3de
10.1021/acsomega.5c00424
PMC12044498
40321552
10_1021_acsomega_5c00424
a5467667
Genre Journal Article
GroupedDBID 53G
AAFWJ
AAHBH
ABUCX
ACS
ADBBV
ADUCK
AFEFF
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
EBS
GROUPED_DOAJ
HYE
M~E
N~.
OK1
RPM
VF5
AAYXX
ABBLG
CITATION
NPM
7X8
5PM
ADTOC
EJD
ROL
UNPAY
ID FETCH-LOGICAL-a455t-45ad4ea59ee1dfc009677f03a9b1240f41bd58361c18aa683d953c5ee752fa43
IEDL.DBID N~.
ISSN 2470-1343
IngestDate Fri Oct 03 12:53:57 EDT 2025
Sun Oct 26 04:13:20 EDT 2025
Tue Sep 30 17:03:23 EDT 2025
Mon May 05 20:51:37 EDT 2025
Thu May 08 05:31:36 EDT 2025
Tue Jul 01 05:08:48 EDT 2025
Wed Apr 30 03:10:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
2025 The Authors. Published by American Chemical Society.
Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a455t-45ad4ea59ee1dfc009677f03a9b1240f41bd58361c18aa683d953c5ee752fa43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0002-8217-7039
0009-0001-2799-2295
0000-0002-2562-5491
0000-0003-1072-9842
OpenAccessLink http://dx.doi.org/10.1021/acsomega.5c00424
PMID 40321552
PQID 3200326902
PQPubID 23479
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_fd4c1245a75344009d117bae6bbca3de
unpaywall_primary_10_1021_acsomega_5c00424
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12044498
proquest_miscellaneous_3200326902
pubmed_primary_40321552
crossref_primary_10_1021_acsomega_5c00424
acs_journals_10_1021_acsomega_5c00424
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-29
PublicationDateYYYYMMDD 2025-04-29
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-29
  day: 29
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS omega
PublicationTitleAlternate ACS Omega
PublicationYear 2025
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
Serth R. W. (ref39/cit39) 2007
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
Kern D. Q. (ref38/cit38) 1950
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref44/cit44
ref7/cit7
References_xml – ident: ref4/cit4
  doi: 10.1016/j.jechem.2024.08.042
– ident: ref26/cit26
  doi: 10.1002/aic.10151
– ident: ref1/cit1
  doi: 10.1002/ceat.202200361
– ident: ref5/cit5
  doi: 10.1016/j.jclepro.2023.136804
– ident: ref29/cit29
  doi: 10.1063/1.1461829
– ident: ref44/cit44
  doi: 10.1021/ct400371h
– ident: ref11/cit11
  doi: 10.1021/acssuschemeng.3c00547
– ident: ref37/cit37
  doi: 10.1016/j.jfoodeng.2024.112438
– ident: ref15/cit15
  doi: 10.1016/j.enconman.2020.112756
– ident: ref28/cit28
  doi: 10.1016/j.compchemeng.2023.108521
– ident: ref24/cit24
  doi: 10.1002/ceat.201800279
– ident: ref36/cit36
  doi: 10.1016/j.seppur.2024.128938
– ident: ref41/cit41
  doi: 10.1021/acs.jced.1c00645
– ident: ref8/cit8
  doi: 10.1007/s10529-006-9218-0
– ident: ref32/cit32
  doi: 10.1021/ie201276m
– ident: ref23/cit23
  doi: 10.1016/j.cej.2024.150540
– ident: ref16/cit16
  doi: 10.1002/aic.17623
– volume-title: Process Heat Transfer Principles and Applications
  year: 2007
  ident: ref39/cit39
– ident: ref3/cit3
  doi: 10.1021/acsomega.3c09657
– ident: ref17/cit17
  doi: 10.1016/j.scp.2024.101629
– ident: ref33/cit33
  doi: 10.1021/je100930y
– ident: ref18/cit18
  doi: 10.1021/acssuschemeng.4c01718
– ident: ref30/cit30
  doi: 10.1021/je60047a012
– ident: ref21/cit21
  doi: 10.1016/j.jclepro.2024.142700
– ident: ref43/cit43
  doi: 10.1002/aic.690190241
– ident: ref2/cit2
  doi: 10.1002/ceat.202300136
– ident: ref19/cit19
  doi: 10.1590/0104-6632.20150321s00002825
– ident: ref34/cit34
  doi: 10.1002/aic.690210607
– ident: ref22/cit22
  doi: 10.1021/acssuschemeng.4c00330
– ident: ref14/cit14
  doi: 10.3390/en13133401
– ident: ref12/cit12
  doi: 10.1039/D0GC00058B
– ident: ref20/cit20
  doi: 10.1021/acssuschemeng.4c01783
– ident: ref42/cit42
  doi: 10.1016/j.molliq.2022.120456
– ident: ref27/cit27
  doi: 10.1021/acsomega.4c09246
– ident: ref40/cit40
  doi: 10.1002/aic.690170613
– ident: ref35/cit35
  doi: 10.1021/acs.iecr.4c00902
– ident: ref10/cit10
  doi: 10.1006/abio.2000.4653
– ident: ref31/cit31
  doi: 10.1002/aic.15080
– ident: ref25/cit25
  doi: 10.1039/C6RE00227G
– ident: ref7/cit7
– ident: ref6/cit6
  doi: 10.1038/s41467-024-54495-5
– ident: ref13/cit13
  doi: 10.1016/j.biortech.2024.130595
– volume-title: Process Heat Transfer
  year: 1950
  ident: ref38/cit38
– ident: ref9/cit9
  doi: 10.1155/2022/9186536
SSID ssj0001682826
Score 2.2927294
Snippet In this study, we developed a Python-based open-source algorithm compatible with the aqueous physical property models provided in the electrolyte templates of...
In this study, we developed a Python-based open-source algorithm compatible with the aqueous physical property models provided in the electrolyte templates of...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 16683
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL-WCeJNSkJHgAFJonNhJfNwuVBVSqz0Uqbdo_NpGSpNqk4X2xk_Hk8dqVyB64RpbiT3z2TPjcb4h5L02kZagTSi9MxTyxEQhAGM-5gHLHIhE9bUBz87T0-_826W43Cr1hXfCBnrgQXBHznDtbZAA71dzDzhpGMsU2FQpDYmxuPtGudwKpvrTldRHEvGUl_R27Ah021zbJXwWuk_3oTXS7Y416kn7_-Zp_nlhcn9d38DdT6iqLWt08pg8Gt1IOhuG_4Q8sPVTsj-fqrc9I78Wd8gKEB57K2XorFo2q7K7uqbeR6VzqHRftate0sWoJ7rAU_kV0qvSxtGZH1qzbulZeYsphpbivtHgq3wjbjYdoqWl501HZz-grPAPLFrW9At0gJaxfU4uTr5ezE_DsdpCCFyILvQiNtyCkNYy4zTGNlnmogSk8vKPHGfKiDxJmWY5QJonRopEC2szETvgyQuyVze1fUWoUiY1qQ_FfHDJhcqkzFysI-ZcZFIONiAfvOiLcbG0RZ8Hj1kxqagYVRSQj5NyipuBe-MffY9Re5t-yJrdP_BYKkYsFfdhKSDvJt0XXl2YOoEapV0keIcvTmUUB-TlgIXNp7hvQSK7gOQ7KNkZy25LXV71TN4sRro-mQfk0wZQ90714H9M9TV5GGMl44iHsTwke91qbd9496pTb_uV9Bu2oydo
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgeyiX8oblJSPBAaQscWwn62O6UFVIXe2hlcopGj-yjUiTapMtlBM_HU82u2Kh4nGNncTzsGfGY39DyCtjQ6PA2EB5ZygQ3IYBAGM-5gHHcpBcd7UBj6bx4Yn4eCpP-_0OvAuzlb-P2DswTX3u5jCSpsvS3SQ7sfRe94DsnExn6SesHSeSMGBc8D4Led1raHtMs2V7Ooj-6_zK349H7i6rC7j6AmX5k-05uL0CQmo6yEI8cvJ5tGz1yHz7BdDxX8i6Q_Z6B5SmK425S2646h7Znazrvt0n32dXiCcQ7Hv7ZmlazutF0Z6dU-_d0gmUpqv3Vc3prJcwneF-_gKBWWmd09STWS8belR8xeREQ3HFqfFTvhGXqRb1rKHTuqXpJRQl3t2iRUXfQwtoU5sH5Pjgw_HkMOjrNAQgpGwDIcEKB1I5x2xuMCpKkjzkoLT3HsJcMG3lmMfMsDFAPOZWSW6kc4mMchD8IRlUdeUeE6q1jW3sgzgflgqpE6WSPDIhy_PQxgLckLz2nMv6adZkXQY9YtmanVnPziF5sxZ0drFC7fhD333UhE0_xNvuHnh5Zf30zXIrjKdFgo_uhF_2lGUs0eBirQ1w6wf2cq1HmRcXJl2gQm5nHE__RbEKoyF5tNKrza-Eb0EIvCEZb2nc1li2W6rirMMAZxEC_anxkLzdKOdfSX3yP52fklsR1joORRCpZ2TQLpbuuXfAWv2in3s_ANO3Me0
  priority: 102
  providerName: Unpaywall
Title Python-Based Algorithm for Calculating Physical Properties of Aqueous Mixtures Composed of Substances Not Available in Databases
URI http://dx.doi.org/10.1021/acsomega.5c00424
https://www.ncbi.nlm.nih.gov/pubmed/40321552
https://www.proquest.com/docview/3200326902
https://pubmed.ncbi.nlm.nih.gov/PMC12044498
https://doi.org/10.1021/acsomega.5c00424
https://doaj.org/article/fd4c1245a75344009d117bae6bbca3de
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: ACS Publications
  customDbUrl:
  eissn: 2470-1343
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001682826
  issn: 2470-1343
  databaseCode: N~.
  dateStart: 20250325
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org
  providerName: American Chemical Society
– providerCode: PRVABC
  databaseName: ACS Publications
  customDbUrl:
  eissn: 2470-1343
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001682826
  issn: 2470-1343
  databaseCode: N~.
  dateStart: 20160731
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org
  providerName: American Chemical Society
– providerCode: PRVABC
  databaseName: ACS Publications
  customDbUrl:
  eissn: 2470-1343
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001682826
  issn: 2470-1343
  databaseCode: N~.
  dateStart: 20250121
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org
  providerName: American Chemical Society
– providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 2470-1343
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001682826
  issn: 2470-1343
  databaseCode: ACS
  dateStart: 20160731
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2470-1343
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001682826
  issn: 2470-1343
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2470-1343
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001682826
  issn: 2470-1343
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2470-1343
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001682826
  issn: 2470-1343
  databaseCode: RPM
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLdgO4wL4nvlozISHEDKiL-S-JiVTRNSq0ps0jhFL7bTVeqSqUk3dpn40_FL047CBFxyiC3H9u_Z7z0_5_cIeWdsaDQYG2hvDAVS2DAAYMz7POBYAUrkbW7A4Sg6OpFfTtXpLU3O7xF8zj6BqatzN4E9Zdo43X2yzaM4Rgke3ezdnqdE3ndos6txGYcBE1J0Ucm7GkFdZOoNXdRS9t9lZ_55XXJnUV7A9RXMZr_oosNH5GFnRNJ0ifpjcs-VT8jOYJW77Sn5Mb5GToBg3-soS9PZpJpPm7Nz6i1UOoCZaXN2lRM67lCiYzyTnyO5Kq0KmvquVYuaDqffMcBQU9w1KmzKF-JW06Cs1HRUNTS9hOkM_7-i05J-hgZQL9bPyPHhwfHgKOhyLQQglWoCqcBKB0o7x2xh0LOJ4yIUoHNvAYSFZLlViYiYYQlAlAirlTDKuVjxAqR4TrbKqnS7hOa5jWzkHTHvWkqVx1rHBTchK4rQRhJcj7z3U591S6XO2ig4Z9kKoqyDqEc-rMDJLpbMG3-pu4_oreshZ3b7wgtS1i3BrLDS-LEo8B6a9FuXtozFObgozw0I6zv2doV95uHCwAmUONuZwBt8PNIh75EXS1lYf0r6EqSx65FkQ0o2-rJZUk7PWh5vxpGsTyc98nEtUP8c6sv_nL5X5AHHVMWhDLh-Tbaa-cK98fZTk_e9_zD42m9PH_xzeHPQb5dSn2yfjMbpt5_mkB6J
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELaW5VAuvB_laSQ4gJRunNhJfewWVgW2VQVF2ls0fqRb0U1WTQosJ346YzftUljxuMaR4xl_9sx4nG8IeaZNqCVoE0h0hgIemzAAYAxjHrAsBxErXxtwOEoGH_nbI3G0Q9j6XxgcRIU9VT6Jf84uwPbwWXlip9AR2qfrLpHLIuHMxVu9_ofzY5UEQwhfZC3iaRiwmMdNcvKiTpxJ0tWWSfLM_Re5m7_fmmwti1M4-wLz-U8m6eAaeb8Rxt9E-dRZ1qqjv_3C8_hf0l4nVxsHlfZWiLpBdmxxk7T667pwt8j38ZnjGwj20f4Z2ptPy8WsPj6h6P3SPsy1rwdWTOm4QQAdu_P-hSNupWVOeyhvuazocPbVJS8q6nak0nWFjW4bqx0OKzoqa9r7DLO5-7eLzgr6CmpwNre6TSYHryf9QdDUcQiAC1EHXIDhFoS0lplcu6gpTfMwBqnQuwhzzpQR3ThhmnUBkm5spIi1sDYVUQ48vkN2i7Kw9whVyiQmwSAPw1YuVCplmkc6ZHkemoSDbZPnqLmsWYZV5jPsEcvW6swadbbJi_WMZ6crVo8_vLvvILF5z_Fx-wc4Z1mzvLPccI2yCMDoj-O2KA1jqQKbKKUhNjiwp2tAZThdLikDhdN2FrvbgVEiw6hN7q4AtvkUxxZHkdcm3S3obY1lu6WYHXuOcBY5IkDZbZOXG5T-VdT7_6i-J6Q1mAwPs8M3o3cPyJXIlUQOeRDJh2S3XiztI_TTavXYr8wfD4w7NA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfGkBgvfA_Kp5HgAaSUOLGT-rHrqMbHqkoMtLfo_NVFdEnVpMB44k_nnKaFwsTHqx05vvOd785n_46QJ9qEWoI2gURnKOCxCQMAxjDmAcsciFg1tQEPR8nBe_76WBxvEbF6C4OTqHCkqknie62eGdciDLAX2F6e2gl0hW5SdhfIRZGgpnuPaPDux9FKgmFEU2gt4mkYsJjHbYLyvEG8WdLVhllq0PvPczl_vzm5syhmcPYZptOfzNLwKvmwJqi5jfKxu6hVV3_9Bevxvym-Rq60jirtLyXrOtmyxQ2yM1jVh7tJvo3PPO5AsId20ND-dFLO8_rklKIXTAcw1U1dsGJCx60k0LE_9597AFdaOtpHmstFRQ_zLz6JUVG_M5V-KOz021nt5bGio7Km_U-QT_0bL5oXdB9q8La3ukWOhi-PBgdBW88hAC5EHXABhlsQ0lpmnPbRU5q6MAap0MsIHWfKiF6cMM16AEkvNlLEWlibisgBj3fJdlEW9g6hSpnEJBjsYfjKhUqlTF2kQ-ZcaBIOtkOeIueyVh2rrMm0RyxbsTNr2dkhz1arns2W6B5_-HbPi8X6O4_L3TTgumWtmmfOcI20CMAokOP2KA1jqQKbKKUhNjixxyuhynC5fHIGCs_tLPa3BKNEhlGH3F4K2fpXHHs8VF6H9DbEb2Mumz1FftJghbPIAwLKXoc8X0vqX0m9-4_se0QujfeH2dtXozf3yOXIV0YOeRDJ-2S7ni_sA3TXavWwUc7v_3k9tw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgeyiX8oblJSPBAaQscWwn62O6UFVIXe2hlcopGj-yjUiTapMtlBM_HU82u2Kh4nGNncTzsGfGY39DyCtjQ6PA2EB5ZygQ3IYBAGM-5gHHcpBcd7UBj6bx4Yn4eCpP-_0OvAuzlb-P2DswTX3u5jCSpsvS3SQ7sfRe94DsnExn6SesHSeSMGBc8D4Led1raHtMs2V7Ooj-6_zK349H7i6rC7j6AmX5k-05uL0CQmo6yEI8cvJ5tGz1yHz7BdDxX8i6Q_Z6B5SmK425S2646h7Znazrvt0n32dXiCcQ7Hv7ZmlazutF0Z6dU-_d0gmUpqv3Vc3prJcwneF-_gKBWWmd09STWS8belR8xeREQ3HFqfFTvhGXqRb1rKHTuqXpJRQl3t2iRUXfQwtoU5sH5Pjgw_HkMOjrNAQgpGwDIcEKB1I5x2xuMCpKkjzkoLT3HsJcMG3lmMfMsDFAPOZWSW6kc4mMchD8IRlUdeUeE6q1jW3sgzgflgqpE6WSPDIhy_PQxgLckLz2nMv6adZkXQY9YtmanVnPziF5sxZ0drFC7fhD333UhE0_xNvuHnh5Zf30zXIrjKdFgo_uhF_2lGUs0eBirQ1w6wf2cq1HmRcXJl2gQm5nHE__RbEKoyF5tNKrza-Eb0EIvCEZb2nc1li2W6rirMMAZxEC_anxkLzdKOdfSX3yP52fklsR1joORRCpZ2TQLpbuuXfAWv2in3s_ANO3Me0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Python-Based+Algorithm+for+Calculating+Physical+Properties+of+Aqueous+Mixtures+Composed+of+Substances+Not+Available+in+Databases&rft.jtitle=ACS+omega&rft.au=Lee%2C+Jina&rft.au=Jo%2C+Se-Hee&rft.au=Lee%2C+Chungyup&rft.au=Kang%2C+Ji+Hun&rft.date=2025-04-29&rft.pub=American+Chemical+Society&rft.issn=2470-1343&rft.eissn=2470-1343&rft.volume=10&rft.issue=16&rft.spage=16683&rft.epage=16694&rft_id=info:doi/10.1021%2Facsomega.5c00424&rft.externalDocID=a5467667
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-1343&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-1343&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-1343&client=summon