Python-Based Algorithm for Calculating Physical Properties of Aqueous Mixtures Composed of Substances Not Available in Databases
In this study, we developed a Python-based open-source algorithm compatible with the aqueous physical property models provided in the electrolyte templates of AspenTech software. To validate the accuracy of the model, the results obtained from the proposed algorithm were compared to experimental dat...
        Saved in:
      
    
          | Published in | ACS omega Vol. 10; no. 16; pp. 16683 - 16694 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          American Chemical Society
    
        29.04.2025
     | 
| Online Access | Get full text | 
| ISSN | 2470-1343 2470-1343  | 
| DOI | 10.1021/acsomega.5c00424 | 
Cover
| Abstract | In this study, we developed a Python-based open-source algorithm compatible with the aqueous physical property models provided in the electrolyte templates of AspenTech software. To validate the accuracy of the model, the results obtained from the proposed algorithm were compared to experimental data for 37 binary aqueous mixture systems covering properties such as density, heat capacity, viscosity, and thermal conductivity. The input variables included results from our previous research on pure component property prediction and the nonrandom two-liquid (NRTL) model parameters based on the UNIFAC model simulations. This open-source algorithm is compatible with AspenTech software. The mean absolute percentage errors (MAPE) for density, heat capacity, viscosity, and thermal conductivity were 2.88, 0.355, 12.1, and 10.1%, respectively. In the case of density and viscosity, the actual data trends could not be accurately reflected under high-concentration conditions for certain substances. In addition, it was confirmed that inaccurate predictions of the viscosity and thermal conductivity in the commercial-scale falling-film evaporator simulation for l-valine production led to inaccurate predictions of the overall heat transfer coefficient. Therefore, caution is required when predicting missing property parameters using this approach as significant errors may occur. Nevertheless, this algorithm can provide an initial parameter value for property models that are not included in existing databases without any commercial package. | 
    
|---|---|
| AbstractList | In this study, we developed a Python-based open-source algorithm compatible with the aqueous physical property models provided in the electrolyte templates of AspenTech software. To validate the accuracy of the model, the results obtained from the proposed algorithm were compared to experimental data for 37 binary aqueous mixture systems covering properties such as density, heat capacity, viscosity, and thermal conductivity. The input variables included results from our previous research on pure component property prediction and the nonrandom two-liquid (NRTL) model parameters based on the UNIFAC model simulations. This open-source algorithm is compatible with AspenTech software. The mean absolute percentage errors (MAPE) for density, heat capacity, viscosity, and thermal conductivity were 2.88, 0.355, 12.1, and 10.1%, respectively. In the case of density and viscosity, the actual data trends could not be accurately reflected under high-concentration conditions for certain substances. In addition, it was confirmed that inaccurate predictions of the viscosity and thermal conductivity in the commercial-scale falling-film evaporator simulation for l-valine production led to inaccurate predictions of the overall heat transfer coefficient. Therefore, caution is required when predicting missing property parameters using this approach as significant errors may occur. Nevertheless, this algorithm can provide an initial parameter value for property models that are not included in existing databases without any commercial package. In this study, we developed a Python-based open-source algorithm compatible with the aqueous physical property models provided in the electrolyte templates of AspenTech software. To validate the accuracy of the model, the results obtained from the proposed algorithm were compared to experimental data for 37 binary aqueous mixture systems covering properties such as density, heat capacity, viscosity, and thermal conductivity. The input variables included results from our previous research on pure component property prediction and the nonrandom two-liquid (NRTL) model parameters based on the UNIFAC model simulations. This open-source algorithm is compatible with AspenTech software. The mean absolute percentage errors (MAPE) for density, heat capacity, viscosity, and thermal conductivity were 2.88, 0.355, 12.1, and 10.1%, respectively. In the case of density and viscosity, the actual data trends could not be accurately reflected under high-concentration conditions for certain substances. In addition, it was confirmed that inaccurate predictions of the viscosity and thermal conductivity in the commercial-scale falling-film evaporator simulation for l-valine production led to inaccurate predictions of the overall heat transfer coefficient. Therefore, caution is required when predicting missing property parameters using this approach as significant errors may occur. Nevertheless, this algorithm can provide an initial parameter value for property models that are not included in existing databases without any commercial package.In this study, we developed a Python-based open-source algorithm compatible with the aqueous physical property models provided in the electrolyte templates of AspenTech software. To validate the accuracy of the model, the results obtained from the proposed algorithm were compared to experimental data for 37 binary aqueous mixture systems covering properties such as density, heat capacity, viscosity, and thermal conductivity. The input variables included results from our previous research on pure component property prediction and the nonrandom two-liquid (NRTL) model parameters based on the UNIFAC model simulations. This open-source algorithm is compatible with AspenTech software. The mean absolute percentage errors (MAPE) for density, heat capacity, viscosity, and thermal conductivity were 2.88, 0.355, 12.1, and 10.1%, respectively. In the case of density and viscosity, the actual data trends could not be accurately reflected under high-concentration conditions for certain substances. In addition, it was confirmed that inaccurate predictions of the viscosity and thermal conductivity in the commercial-scale falling-film evaporator simulation for l-valine production led to inaccurate predictions of the overall heat transfer coefficient. Therefore, caution is required when predicting missing property parameters using this approach as significant errors may occur. Nevertheless, this algorithm can provide an initial parameter value for property models that are not included in existing databases without any commercial package. In this study, we developed a Python-based open-source algorithm compatible with the aqueous physical property models provided in the electrolyte templates of AspenTech software. To validate the accuracy of the model, the results obtained from the proposed algorithm were compared to experimental data for 37 binary aqueous mixture systems covering properties such as density, heat capacity, viscosity, and thermal conductivity. The input variables included results from our previous research on pure component property prediction and the nonrandom two-liquid (NRTL) model parameters based on the UNIFAC model simulations. This open-source algorithm is compatible with AspenTech software. The mean absolute percentage errors (MAPE) for density, heat capacity, viscosity, and thermal conductivity were 2.88, 0.355, 12.1, and 10.1%, respectively. In the case of density and viscosity, the actual data trends could not be accurately reflected under high-concentration conditions for certain substances. In addition, it was confirmed that inaccurate predictions of the viscosity and thermal conductivity in the commercial-scale falling-film evaporator simulation for l-valine production led to inaccurate predictions of the overall heat transfer coefficient. Therefore, caution is required when predicting missing property parameters using this approach as significant errors may occur. Nevertheless, this algorithm can provide an initial parameter value for property models that are not included in existing databases without any commercial package.  | 
    
| Author | Kang, Ji Hun Lee, Jina Lee, Chungyup Kim, Jun-Woo Won, Wangyun Jo, Se-Hee  | 
    
| AuthorAffiliation | CJ BIO Research Institute, CJ CheilJedang Corp Department of Chemical and Biological Engineering  | 
    
| AuthorAffiliation_xml | – name: CJ BIO Research Institute, CJ CheilJedang Corp – name: Department of Chemical and Biological Engineering  | 
    
| Author_xml | – sequence: 1 givenname: Jina orcidid: 0009-0002-8217-7039 surname: Lee fullname: Lee, Jina organization: CJ BIO Research Institute, CJ CheilJedang Corp – sequence: 2 givenname: Se-Hee orcidid: 0009-0001-2799-2295 surname: Jo fullname: Jo, Se-Hee organization: CJ BIO Research Institute, CJ CheilJedang Corp – sequence: 3 givenname: Chungyup surname: Lee fullname: Lee, Chungyup organization: CJ BIO Research Institute, CJ CheilJedang Corp – sequence: 4 givenname: Ji Hun surname: Kang fullname: Kang, Ji Hun organization: CJ BIO Research Institute, CJ CheilJedang Corp – sequence: 5 givenname: Wangyun orcidid: 0000-0003-1072-9842 surname: Won fullname: Won, Wangyun email: wwon@korea.ac.kr organization: Department of Chemical and Biological Engineering – sequence: 6 givenname: Jun-Woo orcidid: 0000-0002-2562-5491 surname: Kim fullname: Kim, Jun-Woo email: junwoo.kim1@cj.net organization: CJ BIO Research Institute, CJ CheilJedang Corp  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40321552$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkUtvEzEUhUeoiD7onhXykgUpfs5jhdJQoFKBSHRv3fF4EkceO9ieQnb8dBwmrdoFEitb9577HV-f0-LIeaeL4hXBFwRT8g5U9INewYVQGHPKnxUnlFd4RhhnR4_ux8V5jBuMMSlrWtPyRXHMMaNECHpS_F7u0tq72SVE3aG5Xflg0npAvQ9oAVaNFpJxK7Rc76JRYNEy-K0OyeiIfI_mP0btx4i-mF9pDLm28MPW71G5-X1sYwKncvmrT2h-B8ZCazUyDn2ABG32jC-L5z3YqM8P51lx-_HqdvF5dvPt0_VifjMDLkSacQEd1yAarUnX54Wbsqp6zKBpCeW456TtRM1KokgNUNasawRTQutK0B44OyuuJ2znYSO3wQwQdtKDkX8LPqwk5K2U1bLvuMpMAZVgnGenjpCqBV22rQLW6cwiE2t0W9j9BGsfgATLfTbyPht5yCbPvJ9mtmM76E5plwLYJw952nFmLVf-ThKKOedNnQlvDoTg86_HJAcTlbYW3D4CySjOqZYNpln6-rHZg8t97FmAJ4EKPsag-_9Z4O00kjty48fgclr_lv8BNgTT_A | 
    
| Cites_doi | 10.1016/j.jechem.2024.08.042 10.1002/aic.10151 10.1002/ceat.202200361 10.1016/j.jclepro.2023.136804 10.1063/1.1461829 10.1021/ct400371h 10.1021/acssuschemeng.3c00547 10.1016/j.jfoodeng.2024.112438 10.1016/j.enconman.2020.112756 10.1016/j.compchemeng.2023.108521 10.1002/ceat.201800279 10.1016/j.seppur.2024.128938 10.1021/acs.jced.1c00645 10.1007/s10529-006-9218-0 10.1021/ie201276m 10.1016/j.cej.2024.150540 10.1002/aic.17623 10.1021/acsomega.3c09657 10.1016/j.scp.2024.101629 10.1021/je100930y 10.1021/acssuschemeng.4c01718 10.1021/je60047a012 10.1016/j.jclepro.2024.142700 10.1002/aic.690190241 10.1002/ceat.202300136 10.1590/0104-6632.20150321s00002825 10.1002/aic.690210607 10.1021/acssuschemeng.4c00330 10.3390/en13133401 10.1039/D0GC00058B 10.1021/acssuschemeng.4c01783 10.1016/j.molliq.2022.120456 10.1021/acsomega.4c09246 10.1002/aic.690170613 10.1021/acs.iecr.4c00902 10.1006/abio.2000.4653 10.1002/aic.15080 10.1039/C6RE00227G 10.1038/s41467-024-54495-5 10.1016/j.biortech.2024.130595 10.1155/2022/9186536  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2025 The Authors. Published by American Chemical Society 2025 The Authors. Published by American Chemical Society. 2025 The Authors. Published by American Chemical Society 2025 The Authors  | 
    
| Copyright_xml | – notice: 2025 The Authors. Published by American Chemical Society – notice: 2025 The Authors. Published by American Chemical Society. – notice: 2025 The Authors. Published by American Chemical Society 2025 The Authors  | 
    
| DBID | N~. AAYXX CITATION NPM 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1021/acsomega.5c00424 | 
    
| DatabaseName | ACS Publications CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic PubMed  | 
    
| Database_xml | – sequence: 1 dbid: N~. name: ACS Publications url: https://pubs.acs.org sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Chemistry | 
    
| EISSN | 2470-1343 | 
    
| EndPage | 16694 | 
    
| ExternalDocumentID | oai_doaj_org_article_fd4c1245a75344009d117bae6bbca3de 10.1021/acsomega.5c00424 PMC12044498 40321552 10_1021_acsomega_5c00424 a5467667  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | 53G AAFWJ AAHBH ABUCX ACS ADBBV ADUCK AFEFF AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV EBS GROUPED_DOAJ HYE M~E N~. OK1 RPM VF5 AAYXX ABBLG CITATION NPM 7X8 5PM ADTOC EJD ROL UNPAY  | 
    
| ID | FETCH-LOGICAL-a455t-45ad4ea59ee1dfc009677f03a9b1240f41bd58361c18aa683d953c5ee752fa43 | 
    
| IEDL.DBID | N~. | 
    
| ISSN | 2470-1343 | 
    
| IngestDate | Fri Oct 03 12:53:57 EDT 2025 Sun Oct 26 04:13:20 EDT 2025 Tue Sep 30 17:03:23 EDT 2025 Mon May 05 20:51:37 EDT 2025 Thu May 08 05:31:36 EDT 2025 Tue Jul 01 05:08:48 EDT 2025 Wed Apr 30 03:10:37 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 16 | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 2025 The Authors. Published by American Chemical Society. Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-a455t-45ad4ea59ee1dfc009677f03a9b1240f41bd58361c18aa683d953c5ee752fa43 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0009-0002-8217-7039 0009-0001-2799-2295 0000-0002-2562-5491 0000-0003-1072-9842  | 
    
| OpenAccessLink | http://dx.doi.org/10.1021/acsomega.5c00424 | 
    
| PMID | 40321552 | 
    
| PQID | 3200326902 | 
    
| PQPubID | 23479 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_fd4c1245a75344009d117bae6bbca3de unpaywall_primary_10_1021_acsomega_5c00424 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12044498 proquest_miscellaneous_3200326902 pubmed_primary_40321552 crossref_primary_10_1021_acsomega_5c00424 acs_journals_10_1021_acsomega_5c00424  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-04-29 | 
    
| PublicationDateYYYYMMDD | 2025-04-29 | 
    
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-29 day: 29  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationTitle | ACS omega | 
    
| PublicationTitleAlternate | ACS Omega | 
    
| PublicationYear | 2025 | 
    
| Publisher | American Chemical Society | 
    
| Publisher_xml | – name: American Chemical Society | 
    
| References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 Serth R. W. (ref39/cit39) 2007 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 Kern D. Q. (ref38/cit38) 1950 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref44/cit44 ref7/cit7  | 
    
| References_xml | – ident: ref4/cit4 doi: 10.1016/j.jechem.2024.08.042 – ident: ref26/cit26 doi: 10.1002/aic.10151 – ident: ref1/cit1 doi: 10.1002/ceat.202200361 – ident: ref5/cit5 doi: 10.1016/j.jclepro.2023.136804 – ident: ref29/cit29 doi: 10.1063/1.1461829 – ident: ref44/cit44 doi: 10.1021/ct400371h – ident: ref11/cit11 doi: 10.1021/acssuschemeng.3c00547 – ident: ref37/cit37 doi: 10.1016/j.jfoodeng.2024.112438 – ident: ref15/cit15 doi: 10.1016/j.enconman.2020.112756 – ident: ref28/cit28 doi: 10.1016/j.compchemeng.2023.108521 – ident: ref24/cit24 doi: 10.1002/ceat.201800279 – ident: ref36/cit36 doi: 10.1016/j.seppur.2024.128938 – ident: ref41/cit41 doi: 10.1021/acs.jced.1c00645 – ident: ref8/cit8 doi: 10.1007/s10529-006-9218-0 – ident: ref32/cit32 doi: 10.1021/ie201276m – ident: ref23/cit23 doi: 10.1016/j.cej.2024.150540 – ident: ref16/cit16 doi: 10.1002/aic.17623 – volume-title: Process Heat Transfer Principles and Applications year: 2007 ident: ref39/cit39 – ident: ref3/cit3 doi: 10.1021/acsomega.3c09657 – ident: ref17/cit17 doi: 10.1016/j.scp.2024.101629 – ident: ref33/cit33 doi: 10.1021/je100930y – ident: ref18/cit18 doi: 10.1021/acssuschemeng.4c01718 – ident: ref30/cit30 doi: 10.1021/je60047a012 – ident: ref21/cit21 doi: 10.1016/j.jclepro.2024.142700 – ident: ref43/cit43 doi: 10.1002/aic.690190241 – ident: ref2/cit2 doi: 10.1002/ceat.202300136 – ident: ref19/cit19 doi: 10.1590/0104-6632.20150321s00002825 – ident: ref34/cit34 doi: 10.1002/aic.690210607 – ident: ref22/cit22 doi: 10.1021/acssuschemeng.4c00330 – ident: ref14/cit14 doi: 10.3390/en13133401 – ident: ref12/cit12 doi: 10.1039/D0GC00058B – ident: ref20/cit20 doi: 10.1021/acssuschemeng.4c01783 – ident: ref42/cit42 doi: 10.1016/j.molliq.2022.120456 – ident: ref27/cit27 doi: 10.1021/acsomega.4c09246 – ident: ref40/cit40 doi: 10.1002/aic.690170613 – ident: ref35/cit35 doi: 10.1021/acs.iecr.4c00902 – ident: ref10/cit10 doi: 10.1006/abio.2000.4653 – ident: ref31/cit31 doi: 10.1002/aic.15080 – ident: ref25/cit25 doi: 10.1039/C6RE00227G – ident: ref7/cit7 – ident: ref6/cit6 doi: 10.1038/s41467-024-54495-5 – ident: ref13/cit13 doi: 10.1016/j.biortech.2024.130595 – volume-title: Process Heat Transfer year: 1950 ident: ref38/cit38 – ident: ref9/cit9 doi: 10.1155/2022/9186536  | 
    
| SSID | ssj0001682826 | 
    
| Score | 2.2927294 | 
    
| Snippet | In this study, we developed a Python-based open-source algorithm compatible with the aqueous physical property models provided in the electrolyte templates of... In this study, we developed a Python-based open-source algorithm compatible with the aqueous physical property models provided in the electrolyte templates of...  | 
    
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref acs  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher  | 
    
| StartPage | 16683 | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL-WCeJNSkJHgAFJonNhJfNwuVBVSqz0Uqbdo_NpGSpNqk4X2xk_Hk8dqVyB64RpbiT3z2TPjcb4h5L02kZagTSi9MxTyxEQhAGM-5gHLHIhE9bUBz87T0-_826W43Cr1hXfCBnrgQXBHznDtbZAA71dzDzhpGMsU2FQpDYmxuPtGudwKpvrTldRHEvGUl_R27Ah021zbJXwWuk_3oTXS7Y416kn7_-Zp_nlhcn9d38DdT6iqLWt08pg8Gt1IOhuG_4Q8sPVTsj-fqrc9I78Wd8gKEB57K2XorFo2q7K7uqbeR6VzqHRftate0sWoJ7rAU_kV0qvSxtGZH1qzbulZeYsphpbivtHgq3wjbjYdoqWl501HZz-grPAPLFrW9At0gJaxfU4uTr5ezE_DsdpCCFyILvQiNtyCkNYy4zTGNlnmogSk8vKPHGfKiDxJmWY5QJonRopEC2szETvgyQuyVze1fUWoUiY1qQ_FfHDJhcqkzFysI-ZcZFIONiAfvOiLcbG0RZ8Hj1kxqagYVRSQj5NyipuBe-MffY9Re5t-yJrdP_BYKkYsFfdhKSDvJt0XXl2YOoEapV0keIcvTmUUB-TlgIXNp7hvQSK7gOQ7KNkZy25LXV71TN4sRro-mQfk0wZQ90714H9M9TV5GGMl44iHsTwke91qbd9496pTb_uV9Bu2oydo priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgeyiX8oblJSPBAaQscWwn62O6UFVIXe2hlcopGj-yjUiTapMtlBM_HU82u2Kh4nGNncTzsGfGY39DyCtjQ6PA2EB5ZygQ3IYBAGM-5gHHcpBcd7UBj6bx4Yn4eCpP-_0OvAuzlb-P2DswTX3u5jCSpsvS3SQ7sfRe94DsnExn6SesHSeSMGBc8D4Led1raHtMs2V7Ooj-6_zK349H7i6rC7j6AmX5k-05uL0CQmo6yEI8cvJ5tGz1yHz7BdDxX8i6Q_Z6B5SmK425S2646h7Znazrvt0n32dXiCcQ7Hv7ZmlazutF0Z6dU-_d0gmUpqv3Vc3prJcwneF-_gKBWWmd09STWS8belR8xeREQ3HFqfFTvhGXqRb1rKHTuqXpJRQl3t2iRUXfQwtoU5sH5Pjgw_HkMOjrNAQgpGwDIcEKB1I5x2xuMCpKkjzkoLT3HsJcMG3lmMfMsDFAPOZWSW6kc4mMchD8IRlUdeUeE6q1jW3sgzgflgqpE6WSPDIhy_PQxgLckLz2nMv6adZkXQY9YtmanVnPziF5sxZ0drFC7fhD333UhE0_xNvuHnh5Zf30zXIrjKdFgo_uhF_2lGUs0eBirQ1w6wf2cq1HmRcXJl2gQm5nHE__RbEKoyF5tNKrza-Eb0EIvCEZb2nc1li2W6rirMMAZxEC_anxkLzdKOdfSX3yP52fklsR1joORRCpZ2TQLpbuuXfAWv2in3s_ANO3Me0 priority: 102 providerName: Unpaywall  | 
    
| Title | Python-Based Algorithm for Calculating Physical Properties of Aqueous Mixtures Composed of Substances Not Available in Databases | 
    
| URI | http://dx.doi.org/10.1021/acsomega.5c00424 https://www.ncbi.nlm.nih.gov/pubmed/40321552 https://www.proquest.com/docview/3200326902 https://pubmed.ncbi.nlm.nih.gov/PMC12044498 https://doi.org/10.1021/acsomega.5c00424 https://doaj.org/article/fd4c1245a75344009d117bae6bbca3de  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 10 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: ACS Publications customDbUrl: eissn: 2470-1343 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001682826 issn: 2470-1343 databaseCode: N~. dateStart: 20250325 isFulltext: true titleUrlDefault: https://pubs.acs.org providerName: American Chemical Society – providerCode: PRVABC databaseName: ACS Publications customDbUrl: eissn: 2470-1343 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001682826 issn: 2470-1343 databaseCode: N~. dateStart: 20160731 isFulltext: true titleUrlDefault: https://pubs.acs.org providerName: American Chemical Society – providerCode: PRVABC databaseName: ACS Publications customDbUrl: eissn: 2470-1343 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001682826 issn: 2470-1343 databaseCode: N~. dateStart: 20250121 isFulltext: true titleUrlDefault: https://pubs.acs.org providerName: American Chemical Society – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 2470-1343 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001682826 issn: 2470-1343 databaseCode: ACS dateStart: 20160731 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2470-1343 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001682826 issn: 2470-1343 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2470-1343 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001682826 issn: 2470-1343 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2470-1343 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001682826 issn: 2470-1343 databaseCode: RPM dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLdgO4wL4nvlozISHEDKiL-S-JiVTRNSq0ps0jhFL7bTVeqSqUk3dpn40_FL047CBFxyiC3H9u_Z7z0_5_cIeWdsaDQYG2hvDAVS2DAAYMz7POBYAUrkbW7A4Sg6OpFfTtXpLU3O7xF8zj6BqatzN4E9Zdo43X2yzaM4Rgke3ezdnqdE3ndos6txGYcBE1J0Ucm7GkFdZOoNXdRS9t9lZ_55XXJnUV7A9RXMZr_oosNH5GFnRNJ0ifpjcs-VT8jOYJW77Sn5Mb5GToBg3-soS9PZpJpPm7Nz6i1UOoCZaXN2lRM67lCiYzyTnyO5Kq0KmvquVYuaDqffMcBQU9w1KmzKF-JW06Cs1HRUNTS9hOkM_7-i05J-hgZQL9bPyPHhwfHgKOhyLQQglWoCqcBKB0o7x2xh0LOJ4yIUoHNvAYSFZLlViYiYYQlAlAirlTDKuVjxAqR4TrbKqnS7hOa5jWzkHTHvWkqVx1rHBTchK4rQRhJcj7z3U591S6XO2ig4Z9kKoqyDqEc-rMDJLpbMG3-pu4_oreshZ3b7wgtS1i3BrLDS-LEo8B6a9FuXtozFObgozw0I6zv2doV95uHCwAmUONuZwBt8PNIh75EXS1lYf0r6EqSx65FkQ0o2-rJZUk7PWh5vxpGsTyc98nEtUP8c6sv_nL5X5AHHVMWhDLh-Tbaa-cK98fZTk_e9_zD42m9PH_xzeHPQb5dSn2yfjMbpt5_mkB6J | 
    
| linkProvider | American Chemical Society | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELaW5VAuvB_laSQ4gJRunNhJfewWVgW2VQVF2ls0fqRb0U1WTQosJ346YzftUljxuMaR4xl_9sx4nG8IeaZNqCVoE0h0hgIemzAAYAxjHrAsBxErXxtwOEoGH_nbI3G0Q9j6XxgcRIU9VT6Jf84uwPbwWXlip9AR2qfrLpHLIuHMxVu9_ofzY5UEQwhfZC3iaRiwmMdNcvKiTpxJ0tWWSfLM_Re5m7_fmmwti1M4-wLz-U8m6eAaeb8Rxt9E-dRZ1qqjv_3C8_hf0l4nVxsHlfZWiLpBdmxxk7T667pwt8j38ZnjGwj20f4Z2ptPy8WsPj6h6P3SPsy1rwdWTOm4QQAdu_P-hSNupWVOeyhvuazocPbVJS8q6nak0nWFjW4bqx0OKzoqa9r7DLO5-7eLzgr6CmpwNre6TSYHryf9QdDUcQiAC1EHXIDhFoS0lplcu6gpTfMwBqnQuwhzzpQR3ThhmnUBkm5spIi1sDYVUQ48vkN2i7Kw9whVyiQmwSAPw1YuVCplmkc6ZHkemoSDbZPnqLmsWYZV5jPsEcvW6swadbbJi_WMZ6crVo8_vLvvILF5z_Fx-wc4Z1mzvLPccI2yCMDoj-O2KA1jqQKbKKUhNjiwp2tAZThdLikDhdN2FrvbgVEiw6hN7q4AtvkUxxZHkdcm3S3obY1lu6WYHXuOcBY5IkDZbZOXG5T-VdT7_6i-J6Q1mAwPs8M3o3cPyJXIlUQOeRDJh2S3XiztI_TTavXYr8wfD4w7NA | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfGkBgvfA_Kp5HgAaSUOLGT-rHrqMbHqkoMtLfo_NVFdEnVpMB44k_nnKaFwsTHqx05vvOd785n_46QJ9qEWoI2gURnKOCxCQMAxjDmAcsciFg1tQEPR8nBe_76WBxvEbF6C4OTqHCkqknie62eGdciDLAX2F6e2gl0hW5SdhfIRZGgpnuPaPDux9FKgmFEU2gt4mkYsJjHbYLyvEG8WdLVhllq0PvPczl_vzm5syhmcPYZptOfzNLwKvmwJqi5jfKxu6hVV3_9Bevxvym-Rq60jirtLyXrOtmyxQ2yM1jVh7tJvo3PPO5AsId20ND-dFLO8_rklKIXTAcw1U1dsGJCx60k0LE_9597AFdaOtpHmstFRQ_zLz6JUVG_M5V-KOz021nt5bGio7Km_U-QT_0bL5oXdB9q8La3ukWOhi-PBgdBW88hAC5EHXABhlsQ0lpmnPbRU5q6MAap0MsIHWfKiF6cMM16AEkvNlLEWlibisgBj3fJdlEW9g6hSpnEJBjsYfjKhUqlTF2kQ-ZcaBIOtkOeIueyVh2rrMm0RyxbsTNr2dkhz1arns2W6B5_-HbPi8X6O4_L3TTgumWtmmfOcI20CMAokOP2KA1jqQKbKKUhNjixxyuhynC5fHIGCs_tLPa3BKNEhlGH3F4K2fpXHHs8VF6H9DbEb2Mumz1FftJghbPIAwLKXoc8X0vqX0m9-4_se0QujfeH2dtXozf3yOXIV0YOeRDJ-2S7ni_sA3TXavWwUc7v_3k9tw | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgeyiX8oblJSPBAaQscWwn62O6UFVIXe2hlcopGj-yjUiTapMtlBM_HU82u2Kh4nGNncTzsGfGY39DyCtjQ6PA2EB5ZygQ3IYBAGM-5gHHcpBcd7UBj6bx4Yn4eCpP-_0OvAuzlb-P2DswTX3u5jCSpsvS3SQ7sfRe94DsnExn6SesHSeSMGBc8D4Led1raHtMs2V7Ooj-6_zK349H7i6rC7j6AmX5k-05uL0CQmo6yEI8cvJ5tGz1yHz7BdDxX8i6Q_Z6B5SmK425S2646h7Znazrvt0n32dXiCcQ7Hv7ZmlazutF0Z6dU-_d0gmUpqv3Vc3prJcwneF-_gKBWWmd09STWS8belR8xeREQ3HFqfFTvhGXqRb1rKHTuqXpJRQl3t2iRUXfQwtoU5sH5Pjgw_HkMOjrNAQgpGwDIcEKB1I5x2xuMCpKkjzkoLT3HsJcMG3lmMfMsDFAPOZWSW6kc4mMchD8IRlUdeUeE6q1jW3sgzgflgqpE6WSPDIhy_PQxgLckLz2nMv6adZkXQY9YtmanVnPziF5sxZ0drFC7fhD333UhE0_xNvuHnh5Zf30zXIrjKdFgo_uhF_2lGUs0eBirQ1w6wf2cq1HmRcXJl2gQm5nHE__RbEKoyF5tNKrza-Eb0EIvCEZb2nc1li2W6rirMMAZxEC_anxkLzdKOdfSX3yP52fklsR1joORRCpZ2TQLpbuuXfAWv2in3s_ANO3Me0 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Python-Based+Algorithm+for+Calculating+Physical+Properties+of+Aqueous+Mixtures+Composed+of+Substances+Not+Available+in+Databases&rft.jtitle=ACS+omega&rft.au=Lee%2C+Jina&rft.au=Jo%2C+Se-Hee&rft.au=Lee%2C+Chungyup&rft.au=Kang%2C+Ji+Hun&rft.date=2025-04-29&rft.pub=American+Chemical+Society&rft.issn=2470-1343&rft.eissn=2470-1343&rft.volume=10&rft.issue=16&rft.spage=16683&rft.epage=16694&rft_id=info:doi/10.1021%2Facsomega.5c00424&rft.externalDocID=a5467667 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-1343&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-1343&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-1343&client=summon |