Diagnosis and Classification of 17 Diseases from 1404 Subjects via Pattern Analysis of Exhaled Molecules

We report on an artificially intelligent nanoarray based on molecularly modified gold nanoparticles and a random network of single-walled carbon nanotubes for noninvasive diagnosis and classification of a number of diseases from exhaled breath. The performance of this artificially intelligent nanoar...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 11; no. 1; pp. 112 - 125
Main Authors Nakhleh, Morad K, Amal, Haitham, Jeries, Raneen, Broza, Yoav Y, Aboud, Manal, Gharra, Alaa, Ivgi, Hodaya, Khatib, Salam, Badarneh, Shifaa, Har-Shai, Lior, Glass-Marmor, Lea, Lejbkowicz, Izabella, Miller, Ariel, Badarny, Samih, Winer, Raz, Finberg, John, Cohen-Kaminsky, Sylvia, Perros, Frédéric, Montani, David, Girerd, Barbara, Garcia, Gilles, Simonneau, Gérald, Nakhoul, Farid, Baram, Shira, Salim, Raed, Hakim, Marwan, Gruber, Maayan, Ronen, Ohad, Marshak, Tal, Doweck, Ilana, Nativ, Ofer, Bahouth, Zaher, Shi, Da-you, Zhang, Wei, Hua, Qing-ling, Pan, Yue-yin, Tao, Li, Liu, Hu, Karban, Amir, Koifman, Eduard, Rainis, Tova, Skapars, Roberts, Sivins, Armands, Ancans, Guntis, Liepniece-Karele, Inta, Kikuste, Ilze, Lasina, Ieva, Tolmanis, Ivars, Johnson, Douglas, Millstone, Stuart Z, Fulton, Jennifer, Wells, John W, Wilf, Larry H, Humbert, Marc, Leja, Marcis, Peled, Nir, Haick, Hossam
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 24.01.2017
Subjects
Online AccessGet full text
ISSN1936-0851
1936-086X
DOI10.1021/acsnano.6b04930

Cover

Abstract We report on an artificially intelligent nanoarray based on molecularly modified gold nanoparticles and a random network of single-walled carbon nanotubes for noninvasive diagnosis and classification of a number of diseases from exhaled breath. The performance of this artificially intelligent nanoarray was clinically assessed on breath samples collected from 1404 subjects having one of 17 different disease conditions included in the study or having no evidence of any disease (healthy controls). Blind experiments showed that 86% accuracy could be achieved with the artificially intelligent nanoarray, allowing both detection and discrimination between the different disease conditions examined. Analysis of the artificially intelligent nanoarray also showed that each disease has its own unique breathprint, and that the presence of one disease would not screen out others. Cluster analysis showed a reasonable classification power of diseases from the same categories. The effect of confounding clinical and environmental factors on the performance of the nanoarray did not significantly alter the obtained results. The diagnosis and classification power of the nanoarray was also validated by an independent analytical technique, i.e., gas chromatography linked with mass spectrometry. This analysis found that 13 exhaled chemical species, called volatile organic compounds, are associated with certain diseases, and the composition of this assembly of volatile organic compounds differs from one disease to another. Overall, these findings could contribute to one of the most important criteria for successful health intervention in the modern era, viz. easy-to-use, inexpensive (affordable), and miniaturized tools that could also be used for personalized screening, diagnosis, and follow-up of a number of diseases, which can clearly be extended by further development.
AbstractList We report on an artificially intelligent nanoarray based on molecularly modified gold nanoparticles and a random network of single-walled carbon nanotubes for noninvasive diagnosis and classification of a number of diseases from exhaled breath. The performance of this artificially intelligent nanoarray was clinically assessed on breath samples collected from 1404 subjects having one of 17 different disease conditions included in the study or having no evidence of any disease (healthy controls). Blind experiments showed that 86% accuracy could be achieved with the artificially intelligent nanoarray, allowing both detection and discrimination between the different disease conditions examined. Analysis of the artificially intelligent nanoarray also showed that each disease has its own unique breathprint, and that the presence of one disease would not screen out others. Cluster analysis showed a reasonable classification power of diseases from the same categories. The effect of confounding clinical and environmental factors on the performance of the nanoarray did not significantly alter the obtained results. The diagnosis and classification power of the nanoarray was also validated by an independent analytical technique, i.e., gas chromatography linked with mass spectrometry. This analysis found that 13 exhaled chemical species, called volatile organic compounds, are associated with certain diseases, and the composition of this assembly of volatile organic compounds differs from one disease to another. Overall, these findings could contribute to one of the most important criteria for successful health intervention in the modern era, viz. easy-to-use, inexpensive (affordable), and miniaturized tools that could also be used for personalized screening, diagnosis, and follow-up of a number of diseases, which can clearly be extended by further development.
We report on an artificially intelligent nanoarray based on molecularly modified gold nanoparticles and a random network of single-walled carbon nanotubes for noninvasive diagnosis and classification of a number of diseases from exhaled breath. The performance of this artificially intelligent nanoarray was clinically assessed on breath samples collected from 1404 subjects having one of 17 different disease conditions included in the study or having no evidence of any disease (healthy controls). Blind experiments showed that 86% accuracy could be achieved with the artificially intelligent nanoarray, allowing both detection and discrimination between the different disease conditions examined. Analysis of the artificially intelligent nanoarray also showed that each disease has its own unique breathprint, and that the presence of one disease would not screen out others. Cluster analysis showed a reasonable classification power of diseases from the same categories. The effect of confounding clinical and environmental factors on the performance of the nanoarray did not significantly alter the obtained results. The diagnosis and classification power of the nanoarray was also validated by an independent analytical technique, i.e. , gas chromatography linked with mass spectrometry. This analysis found that 13 exhaled chemical species, called volatile organic compounds, are associated with certain diseases, and the composition of this assembly of volatile organic compounds differs from one disease to another. Overall, these findings could contribute to one of the most important criteria for successful health intervention in the modern era, viz. easy-to-use, inexpensive (affordable), and miniaturized tools that could also be used for personalized screening, diagnosis, and follow-up of a number of diseases, which can clearly be extended by further development.
Author Jeries, Raneen
Rainis, Tova
Skapars, Roberts
Shi, Da-you
Lejbkowicz, Izabella
Peled, Nir
Har-Shai, Lior
Koifman, Eduard
Simonneau, Gérald
Pan, Yue-yin
Liu, Hu
Lasina, Ieva
Miller, Ariel
Ivgi, Hodaya
Cohen-Kaminsky, Sylvia
Hakim, Marwan
Broza, Yoav Y
Kikuste, Ilze
Humbert, Marc
Aboud, Manal
Montani, David
Ronen, Ohad
Doweck, Ilana
Wilf, Larry H
Karban, Amir
Johnson, Douglas
Nativ, Ofer
Wells, John W
Perros, Frédéric
Amal, Haitham
Salim, Raed
Badarny, Samih
Nakhleh, Morad K
Liepniece-Karele, Inta
Tolmanis, Ivars
Garcia, Gilles
Millstone, Stuart Z
Tao, Li
Bahouth, Zaher
Badarneh, Shifaa
Fulton, Jennifer
Haick, Hossam
Glass-Marmor, Lea
Girerd, Barbara
Gruber, Maayan
Khatib, Salam
Hua, Qing-ling
Sivins, Armands
Zhang, Wei
Leja, Marcis
Ancans, Guntis
Winer, Raz
Gharra, Alaa
Baram, Shira
Finberg, John
Nakhoul, Farid
Marshak, Tal
AuthorAffiliation Division of Neuroimmunology and Multiple Sclerosis Center, Carmel Medical Center and Rappaport Family Faculty of Medicine
Department of Molecular Pharmacology, Rappaport Family Faculty of Medicine
Department of Oncology
Digestive Diseases Centre
Internal Medicine C and Gastroenterology Departments, Rambam Medical Center, Rappaport Family Faculty of Medicine
University of Latvia
Department of Obstetrics and Gynecology, Nazareth Hospital EMMS, Nazareth, and Faculty of Medicine in the Galilee
Bnai Zion Medical Center
Oncologic Imaging Division
Department of Urology
Baptist Cancer Institute (BCI)
Thoracic Cancer Unit
Baptist Medical Center
Department of Chemical Engineering and Russell Berrie Nanotechnology Institute
GASTRO
Pulmonary Diseases
Department of Nephrology and Hypertension
Department of Gastroenterology, Bnai Zion Hospital and Rappaport Family Faculty of Medicine
Department of Radiation Oncology
Movement Disorders Clinic, Department of Neurology, Carmel Medical Center, and Rappaport Family Faculty
AuthorAffiliation_xml – name: Division of Neuroimmunology and Multiple Sclerosis Center, Carmel Medical Center and Rappaport Family Faculty of Medicine
– name: Movement Disorders Clinic, Department of Neurology, Carmel Medical Center, and Rappaport Family Faculty of Medicine
– name: GASTRO
– name: Davidoff Cancer Center
– name: Baptist Cancer Institute (BCI)
– name: Pulmonary Diseases
– name: Thoracic Cancer Unit
– name: Baptist Medical Center
– name: Bnai Zion Medical Center
– name: Department of Obstetrics and Gynecology, Nazareth Hospital EMMS, Nazareth, and Faculty of Medicine in the Galilee
– name: Oncologic Imaging Division
– name: Department of Radiation Oncology
– name: Department of Obstetrics and Gynecology, Emek Medical Center, Afula 18101, and Rappaport Family Faculty of Medicine
– name: Department of Molecular Pharmacology, Rappaport Family Faculty of Medicine
– name: Baruch Padeh Medical Center
– name: Digestive Diseases Centre
– name: Department of Gastroenterology, Bnai Zion Hospital and Rappaport Family Faculty of Medicine
– name: Department of Urology
– name: Department of Oncology
– name: University of Latvia
– name: Florida Radiation Oncology Group
– name: The Department of Otolaryngology Head and Neck Surgery
– name: Department of Chemical Engineering and Russell Berrie Nanotechnology Institute
– name: Internal Medicine C and Gastroenterology Departments, Rambam Medical Center, Rappaport Family Faculty of Medicine
– name: Department of Nephrology and Hypertension
Author_xml – sequence: 1
  givenname: Morad K
  surname: Nakhleh
  fullname: Nakhleh, Morad K
– sequence: 2
  givenname: Haitham
  surname: Amal
  fullname: Amal, Haitham
– sequence: 3
  givenname: Raneen
  surname: Jeries
  fullname: Jeries, Raneen
– sequence: 4
  givenname: Yoav Y
  surname: Broza
  fullname: Broza, Yoav Y
– sequence: 5
  givenname: Manal
  surname: Aboud
  fullname: Aboud, Manal
– sequence: 6
  givenname: Alaa
  surname: Gharra
  fullname: Gharra, Alaa
– sequence: 7
  givenname: Hodaya
  surname: Ivgi
  fullname: Ivgi, Hodaya
– sequence: 8
  givenname: Salam
  surname: Khatib
  fullname: Khatib, Salam
– sequence: 9
  givenname: Shifaa
  surname: Badarneh
  fullname: Badarneh, Shifaa
– sequence: 10
  givenname: Lior
  surname: Har-Shai
  fullname: Har-Shai, Lior
– sequence: 11
  givenname: Lea
  surname: Glass-Marmor
  fullname: Glass-Marmor, Lea
– sequence: 12
  givenname: Izabella
  surname: Lejbkowicz
  fullname: Lejbkowicz, Izabella
– sequence: 13
  givenname: Ariel
  surname: Miller
  fullname: Miller, Ariel
– sequence: 14
  givenname: Samih
  surname: Badarny
  fullname: Badarny, Samih
– sequence: 15
  givenname: Raz
  surname: Winer
  fullname: Winer, Raz
– sequence: 16
  givenname: John
  surname: Finberg
  fullname: Finberg, John
– sequence: 17
  givenname: Sylvia
  surname: Cohen-Kaminsky
  fullname: Cohen-Kaminsky, Sylvia
– sequence: 18
  givenname: Frédéric
  surname: Perros
  fullname: Perros, Frédéric
– sequence: 19
  givenname: David
  surname: Montani
  fullname: Montani, David
– sequence: 20
  givenname: Barbara
  surname: Girerd
  fullname: Girerd, Barbara
– sequence: 21
  givenname: Gilles
  surname: Garcia
  fullname: Garcia, Gilles
– sequence: 22
  givenname: Gérald
  surname: Simonneau
  fullname: Simonneau, Gérald
– sequence: 23
  givenname: Farid
  surname: Nakhoul
  fullname: Nakhoul, Farid
– sequence: 24
  givenname: Shira
  surname: Baram
  fullname: Baram, Shira
– sequence: 25
  givenname: Raed
  surname: Salim
  fullname: Salim, Raed
– sequence: 26
  givenname: Marwan
  surname: Hakim
  fullname: Hakim, Marwan
– sequence: 27
  givenname: Maayan
  surname: Gruber
  fullname: Gruber, Maayan
– sequence: 28
  givenname: Ohad
  surname: Ronen
  fullname: Ronen, Ohad
– sequence: 29
  givenname: Tal
  surname: Marshak
  fullname: Marshak, Tal
– sequence: 30
  givenname: Ilana
  surname: Doweck
  fullname: Doweck, Ilana
– sequence: 31
  givenname: Ofer
  surname: Nativ
  fullname: Nativ, Ofer
– sequence: 32
  givenname: Zaher
  surname: Bahouth
  fullname: Bahouth, Zaher
– sequence: 33
  givenname: Da-you
  surname: Shi
  fullname: Shi, Da-you
– sequence: 34
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
– sequence: 35
  givenname: Qing-ling
  surname: Hua
  fullname: Hua, Qing-ling
– sequence: 36
  givenname: Yue-yin
  surname: Pan
  fullname: Pan, Yue-yin
– sequence: 37
  givenname: Li
  surname: Tao
  fullname: Tao, Li
– sequence: 38
  givenname: Hu
  surname: Liu
  fullname: Liu, Hu
– sequence: 39
  givenname: Amir
  surname: Karban
  fullname: Karban, Amir
– sequence: 40
  givenname: Eduard
  surname: Koifman
  fullname: Koifman, Eduard
– sequence: 41
  givenname: Tova
  surname: Rainis
  fullname: Rainis, Tova
– sequence: 42
  givenname: Roberts
  surname: Skapars
  fullname: Skapars, Roberts
– sequence: 43
  givenname: Armands
  surname: Sivins
  fullname: Sivins, Armands
– sequence: 44
  givenname: Guntis
  surname: Ancans
  fullname: Ancans, Guntis
– sequence: 45
  givenname: Inta
  surname: Liepniece-Karele
  fullname: Liepniece-Karele, Inta
– sequence: 46
  givenname: Ilze
  surname: Kikuste
  fullname: Kikuste, Ilze
– sequence: 47
  givenname: Ieva
  surname: Lasina
  fullname: Lasina, Ieva
– sequence: 48
  givenname: Ivars
  surname: Tolmanis
  fullname: Tolmanis, Ivars
– sequence: 49
  givenname: Douglas
  orcidid: 0000-0001-6584-1327
  surname: Johnson
  fullname: Johnson, Douglas
– sequence: 50
  givenname: Stuart Z
  surname: Millstone
  fullname: Millstone, Stuart Z
– sequence: 51
  givenname: Jennifer
  surname: Fulton
  fullname: Fulton, Jennifer
– sequence: 52
  givenname: John W
  surname: Wells
  fullname: Wells, John W
– sequence: 53
  givenname: Larry H
  surname: Wilf
  fullname: Wilf, Larry H
– sequence: 54
  givenname: Marc
  surname: Humbert
  fullname: Humbert, Marc
– sequence: 55
  givenname: Marcis
  surname: Leja
  fullname: Leja, Marcis
– sequence: 56
  givenname: Nir
  surname: Peled
  fullname: Peled, Nir
– sequence: 57
  givenname: Hossam
  orcidid: 0000-0002-2370-4073
  surname: Haick
  fullname: Haick, Hossam
  email: hhossam@technion.ac.il
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28000444$$D View this record in MEDLINE/PubMed
BookMark eNp9kd1PwjAUxRuDEUGffTN9N0C3td32YkIAPxKMJmriW3NX7qBktGQdRP57hyBRE326Te75ndye0yIN6ywSchGwbsDCoAfaW7CuKzPG04gdkdMgjWSHJfKtcXiLoEla3s8ZE3ESyxPSDBPGGOf8lMyGBqbWeeMp2AkdFOC9yY2GyjhLXU6DmA6NR_DoaV66BQ044_R5lc1RV56uDdAnqCosLe1bKDZbpxobvc-gwAl9cAXqVYH-jBznUHg83882eb0ZvQzuOuPH2_tBf9wBLnjVkWkGCAlyljEMY0w1gs4jLqL6e5NY80TKWPI8EjLFOI00SiFB6DBLkoxlImqT653vcpUtcKLRViUUalmaBZQb5cConxtrZmrq1kqEMpU8qg0uvxscyK_MakFvJ9Cl877E_CAJmNq2ovatqH0rNSF-EdpUnwnXF5jiH-5qx9ULNXersg7Y_6n-AGMroyE
CitedBy_id crossref_primary_10_1016_j_heliyon_2024_e32020
crossref_primary_10_1039_C8ME00097B
crossref_primary_10_1021_acschemneuro_7b00318
crossref_primary_10_1021_acssensors_4c02451
crossref_primary_10_1021_acsnano_0c05657
crossref_primary_10_1016_j_euf_2018_11_006
crossref_primary_10_1021_acsami_8b13498
crossref_primary_10_1002_adfm_202309531
crossref_primary_10_1021_acssensors_7b00383
crossref_primary_10_62347_RXSH1223
crossref_primary_10_3390_s21144742
crossref_primary_10_1016_j_trac_2024_117656
crossref_primary_10_4236_jbise_2019_121004
crossref_primary_10_1016_j_mtbio_2019_100002
crossref_primary_10_1016_j_ceramint_2024_10_010
crossref_primary_10_1088_1752_7163_aa88e4
crossref_primary_10_1021_acsomega_9b02929
crossref_primary_10_1016_j_cclet_2021_11_012
crossref_primary_10_1002_adhm_202200356
crossref_primary_10_3389_fnano_2023_1127363
crossref_primary_10_3390_s22031238
crossref_primary_10_3390_chemosensors8020038
crossref_primary_10_1149_2754_2726_ac82bc
crossref_primary_10_3390_mi12040430
crossref_primary_10_1109_JSEN_2022_3224284
crossref_primary_10_3233_JPD_213133
crossref_primary_10_1016_j_jallcom_2020_158294
crossref_primary_10_1039_D2TA07071E
crossref_primary_10_1088_1752_7163_ac135e
crossref_primary_10_37648_ijrst_v13i04_008
crossref_primary_10_3390_diagnostics12123170
crossref_primary_10_1088_1752_7163_aad9cc
crossref_primary_10_1371_journal_pone_0249191
crossref_primary_10_1021_acs_analchem_9b01428
crossref_primary_10_1016_j_jcis_2020_02_081
crossref_primary_10_1038_s41598_018_21544_1
crossref_primary_10_1021_acs_chemmater_1c04318
crossref_primary_10_1136_gutjnl_2021_326298
crossref_primary_10_1016_j_snb_2018_07_094
crossref_primary_10_1080_17476348_2019_1614918
crossref_primary_10_1097_MD_0000000000020937
crossref_primary_10_1016_j_mtchem_2025_102517
crossref_primary_10_1007_s00604_022_05317_2
crossref_primary_10_1016_j_trac_2024_117783
crossref_primary_10_1159_000507188
crossref_primary_10_3390_chemosensors9080209
crossref_primary_10_3906_kim_1701_46
crossref_primary_10_1002_adhm_202100734
crossref_primary_10_1021_acsomega_9b03793
crossref_primary_10_1088_1752_7163_aaf3dc
crossref_primary_10_54503_18291171_2022_15_1_13
crossref_primary_10_1021_acs_accounts_7b00047
crossref_primary_10_1001_jamanetworkopen_2022_19372
crossref_primary_10_1088_1752_7163_ad324f
crossref_primary_10_3390_s20092666
crossref_primary_10_1021_acsami_2c11153
crossref_primary_10_1134_S1068337222030045
crossref_primary_10_1002_adfm_202011089
crossref_primary_10_1021_acsami_8b01176
crossref_primary_10_1007_s12035_019_1615_1
crossref_primary_10_1002_ange_201910865
crossref_primary_10_1021_acsami_9b19358
crossref_primary_10_1177_15347354221140516
crossref_primary_10_1002_advs_202100235
crossref_primary_10_1002_smll_201703934
crossref_primary_10_52853_18291171_2021_14_3_148
crossref_primary_10_1088_1752_7163_ac5f13
crossref_primary_10_1002_adma_201800634
crossref_primary_10_1088_1748_605X_abddf4
crossref_primary_10_1021_acsami_1c16637
crossref_primary_10_1038_s41699_019_0125_3
crossref_primary_10_3390_cryst11010024
crossref_primary_10_1007_s13337_020_00590_2
crossref_primary_10_1002_adma_201705024
crossref_primary_10_1021_acsnano_1c00085
crossref_primary_10_1016_j_cell_2017_08_007
crossref_primary_10_1016_j_chroma_2022_463606
crossref_primary_10_1016_j_optlaseng_2022_107222
crossref_primary_10_54097_bqn07j61
crossref_primary_10_1021_acsbiomaterials_1c01106
crossref_primary_10_3389_fonc_2020_01020
crossref_primary_10_1002_cncr_33437
crossref_primary_10_3390_bios11090337
crossref_primary_10_1021_acsami_8b10789
crossref_primary_10_1002_adfm_202405232
crossref_primary_10_1021_acssensors_8b00937
crossref_primary_10_1088_1752_7163_abc09b
crossref_primary_10_1002_smll_202411495
crossref_primary_10_1080_17520363_2025_2468151
crossref_primary_10_1183_16000617_0011_2019
crossref_primary_10_1109_TIE_2021_3080218
crossref_primary_10_3390_chemosensors9040066
crossref_primary_10_1038_s41598_021_02906_8
crossref_primary_10_1088_1752_7163_aae557
crossref_primary_10_1002_adhm_201700024
crossref_primary_10_1021_acs_analchem_0c01751
crossref_primary_10_1093_infdis_jiy072
crossref_primary_10_1109_RBME_2024_3481360
crossref_primary_10_1039_D1SC00729G
crossref_primary_10_1177_15353702221082634
crossref_primary_10_1021_acssensors_8b00276
crossref_primary_10_1038_s41596_021_00528_y
crossref_primary_10_1088_1752_7163_ab0684
crossref_primary_10_1016_j_snb_2020_127859
crossref_primary_10_1183_13993003_00064_2017
crossref_primary_10_1002_VIW_20200164
crossref_primary_10_1088_1748_0221_19_07_P07016
crossref_primary_10_1038_s41598_022_22581_7
crossref_primary_10_1021_acssensors_3c01755
crossref_primary_10_1088_2050_6120_ab1dbd
crossref_primary_10_1007_s11426_019_9585_5
crossref_primary_10_1093_database_baz139
crossref_primary_10_1016_j_lungcan_2024_107514
crossref_primary_10_1039_C9TB02518A
crossref_primary_10_1016_j_clgc_2019_02_003
crossref_primary_10_1039_C7CS00730B
crossref_primary_10_1016_j_talanta_2018_12_070
crossref_primary_10_1016_j_aca_2018_04_027
crossref_primary_10_1021_acsnano_0c06137
crossref_primary_10_3390_s17102192
crossref_primary_10_1007_s11306_024_02180_5
crossref_primary_10_1016_j_chest_2022_09_042
crossref_primary_10_1371_journal_pone_0273355
crossref_primary_10_1016_j_scitotenv_2017_12_097
crossref_primary_10_1002_admt_202100872
crossref_primary_10_1088_1752_7163_ab7b8d
crossref_primary_10_1183_16000617_0002_2019
crossref_primary_10_3390_chemosensors9050087
crossref_primary_10_1038_s41395_018_0187_4
crossref_primary_10_3389_fmolb_2020_607904
crossref_primary_10_1021_acsinfecdis_7b00088
crossref_primary_10_1039_D0TB02745F
crossref_primary_10_1016_j_trac_2024_117987
crossref_primary_10_1088_1752_7163_aa8a15
crossref_primary_10_1038_s41598_020_70993_0
crossref_primary_10_1051_medsci_2019001
crossref_primary_10_1038_s41598_019_52165_x
crossref_primary_10_1016_j_snb_2018_11_090
crossref_primary_10_1007_s00216_019_02024_5
crossref_primary_10_2217_fon_2020_0789
crossref_primary_10_1016_j_snb_2024_135637
crossref_primary_10_1088_1752_7163_abb18a
crossref_primary_10_1021_acs_chemrev_9b00437
crossref_primary_10_1016_j_bbcan_2021_188644
crossref_primary_10_1016_j_snb_2024_135633
crossref_primary_10_3389_fchem_2021_629329
crossref_primary_10_1021_acssensors_9b00825
crossref_primary_10_1016_j_coche_2020_05_004
crossref_primary_10_1016_j_nantod_2018_04_006
crossref_primary_10_1097_SLA_0000000000002539
crossref_primary_10_1016_j_jhazmat_2021_125964
crossref_primary_10_1001_jamanetworkopen_2021_3486
crossref_primary_10_1088_1752_7163_acb791
crossref_primary_10_3390_s24154806
crossref_primary_10_3390_bios12100871
crossref_primary_10_1016_j_cej_2024_156184
crossref_primary_10_1007_s10544_022_00638_8
crossref_primary_10_1021_acsnano_7b03176
crossref_primary_10_3103_S1068337221040046
crossref_primary_10_1038_s41416_022_01987_0
crossref_primary_10_1088_1752_7163_ace9f2
crossref_primary_10_1016_j_trac_2024_117958
crossref_primary_10_1038_s41565_018_0209_9
crossref_primary_10_1088_1752_7163_aacbfb
crossref_primary_10_3390_bios10080084
crossref_primary_10_1021_acssensors_1c01875
crossref_primary_10_3390_jcm8020235
crossref_primary_10_1002_adsu_202200083
crossref_primary_10_1038_s41598_018_29221_z
crossref_primary_10_1021_acs_chemrev_8b00340
crossref_primary_10_1016_j_jtho_2018_02_026
crossref_primary_10_1021_acsaelm_0c00770
crossref_primary_10_1155_2018_9549853
crossref_primary_10_1002_ppsc_202100159
crossref_primary_10_1007_s00216_017_0498_0
crossref_primary_10_1021_acssensors_1c00312
crossref_primary_10_3390_mi9110557
crossref_primary_10_1021_acschemneuro_7b00181
crossref_primary_10_1109_ACCESS_2025_3550453
crossref_primary_10_3389_fphys_2022_946401
crossref_primary_10_1021_acssensors_9b00289
crossref_primary_10_1155_2018_3437149
crossref_primary_10_1016_j_apsusc_2021_149175
crossref_primary_10_1159_000531504
crossref_primary_10_1002_alz_13053
crossref_primary_10_1038_s41598_019_51417_0
crossref_primary_10_1070_RCR4831
crossref_primary_10_1016_j_susmat_2018_01_001
crossref_primary_10_1002_anie_201910865
crossref_primary_10_3390_chemosensors11100514
crossref_primary_10_1016_j_compag_2020_105293
crossref_primary_10_1021_acsnano_7b03308
crossref_primary_10_1016_j_bspc_2021_103060
crossref_primary_10_2196_25907
crossref_primary_10_1021_acschemneuro_8b00245
crossref_primary_10_1002_adhm_201800232
crossref_primary_10_1021_acssensors_1c01808
crossref_primary_10_1039_C8AN01823E
crossref_primary_10_2478_afpuc_2021_0005
crossref_primary_10_1093_chromsci_bmz011
crossref_primary_10_1021_acsanm_1c01892
crossref_primary_10_1109_JSEN_2021_3074610
crossref_primary_10_1038_s41378_024_00729_x
crossref_primary_10_1183_13993003_00056_2019
crossref_primary_10_3390_s20205742
crossref_primary_10_1016_j_msard_2020_102675
crossref_primary_10_1051_e3sconf_202127103030
crossref_primary_10_3390_s20247024
crossref_primary_10_1016_j_snb_2019_127371
crossref_primary_10_1088_1361_6528_ac547a
crossref_primary_10_1021_acssensors_8b00987
crossref_primary_10_1038_s41598_021_96845_z
crossref_primary_10_1016_j_jtho_2018_11_023
crossref_primary_10_1177_1753466620910092
crossref_primary_10_1149_2162_8777_abc513
crossref_primary_10_1007_s10103_020_03000_7
crossref_primary_10_1002_adma_202402287
crossref_primary_10_1002_cac2_12030
crossref_primary_10_3390_chemosensors12010011
crossref_primary_10_1021_acsnano_2c10240
crossref_primary_10_1002_adsr_202300018
crossref_primary_10_3390_mi14020391
crossref_primary_10_3390_s17040402
crossref_primary_10_1039_C8AN02285B
crossref_primary_10_1039_D0NR07686D
crossref_primary_10_1080_10408363_2024_2387038
crossref_primary_10_1007_s12598_024_02879_3
crossref_primary_10_1021_acssensors_2c02422
crossref_primary_10_1021_acssensors_8b00759
crossref_primary_10_1038_s41578_018_0070_3
crossref_primary_10_1016_j_cej_2019_123104
crossref_primary_10_1021_acsnano_6b06040
crossref_primary_10_1088_2058_8585_aad433
crossref_primary_10_1183_23120541_00221_2019
crossref_primary_10_1080_14796694_2024_2355080
crossref_primary_10_1111_odi_12699
crossref_primary_10_3390_s18020550
crossref_primary_10_1002_adsr_202300009
crossref_primary_10_1039_D1AN00378J
crossref_primary_10_1088_1752_7163_aad207
crossref_primary_10_3390_diagnostics13243673
crossref_primary_10_3390_nano12183211
crossref_primary_10_1016_j_aca_2017_09_021
crossref_primary_10_1016_j_mehy_2019_02_009
crossref_primary_10_1088_1752_7163_ad1d64
crossref_primary_10_1159_000525688
crossref_primary_10_1002_aisy_202100194
crossref_primary_10_1093_infdis_jiy449
crossref_primary_10_1039_C6CS00778C
crossref_primary_10_1021_acs_chemmater_7b00899
crossref_primary_10_1093_eurheartj_suz204
crossref_primary_10_3390_bios9010043
crossref_primary_10_1021_acssensors_2c00356
crossref_primary_10_3390_diagnostics12020491
crossref_primary_10_3390_diagnostics13030335
crossref_primary_10_1021_acsnano_1c10827
crossref_primary_10_1109_TIM_2021_3084312
crossref_primary_10_1016_j_jcoa_2023_100097
crossref_primary_10_1007_s13629_017_0194_z
crossref_primary_10_3390_metabo15010037
crossref_primary_10_1021_acsnano_0c03402
crossref_primary_10_3390_app13052852
crossref_primary_10_1016_j_coelec_2021_100922
crossref_primary_10_3390_bios15020082
crossref_primary_10_3390_photonics10111231
crossref_primary_10_4329_wjr_v12_i7_130
crossref_primary_10_1016_j_snb_2018_06_078
crossref_primary_10_1088_1752_7163_ab433d
crossref_primary_10_3390_mi9120679
crossref_primary_10_1016_j_jallcom_2020_155760
crossref_primary_10_1021_acsnano_1c01741
crossref_primary_10_1371_journal_pone_0297615
crossref_primary_10_3390_molecules28052320
crossref_primary_10_37648_ijrst_v13i03_013
crossref_primary_10_1021_acsnano_2c08906
crossref_primary_10_1021_acssensors_3c00945
crossref_primary_10_1109_JSEN_2022_3198014
crossref_primary_10_3390_microorganisms12061051
crossref_primary_10_1039_D4LP00199K
crossref_primary_10_3390_chemosensors9080194
crossref_primary_10_1097_MOU_0000000000001128
crossref_primary_10_1021_acsnano_2c12606
crossref_primary_10_3390_electronics12010010
crossref_primary_10_1039_C7CS00007C
crossref_primary_10_2139_ssrn_4111897
crossref_primary_10_3390_jlpea13020039
crossref_primary_10_1002_cplu_202400210
crossref_primary_10_1021_acssensors_2c02596
crossref_primary_10_3390_chemosensors13010015
crossref_primary_10_1016_j_aej_2024_04_074
crossref_primary_10_1039_C7LC00810D
crossref_primary_10_1002_admi_201700380
crossref_primary_10_1002_jbio_202000125
crossref_primary_10_1016_j_saa_2024_124181
crossref_primary_10_3390_bios13040427
crossref_primary_10_1016_j_measurement_2022_110733
crossref_primary_10_1021_acsnano_1c07176
crossref_primary_10_5005_jp_journals_10062_0193
crossref_primary_10_1016_j_cca_2020_12_036
crossref_primary_10_1021_acsomega_2c04963
crossref_primary_10_3390_chemosensors12110228
crossref_primary_10_1039_D0TC04843G
crossref_primary_10_1021_acs_analchem_8b01769
crossref_primary_10_54503_0002_3035_2022_57_3_386
crossref_primary_10_1186_s40880_017_0254_z
crossref_primary_10_14233_ajchem_2021_23446
crossref_primary_10_3390_molecules27134012
crossref_primary_10_1109_JSEN_2020_3007493
crossref_primary_10_1007_s40820_024_01489_z
crossref_primary_10_1063_1_5098140
crossref_primary_10_1016_j_matt_2022_05_032
crossref_primary_10_1007_s12668_025_01876_9
crossref_primary_10_1016_j_aca_2021_339230
crossref_primary_10_1021_acssensors_3c00367
crossref_primary_10_1017_dmp_2021_317
crossref_primary_10_1021_acssensors_8b00210
crossref_primary_10_1093_jat_bkae007
crossref_primary_10_1016_j_cej_2021_130543
crossref_primary_10_1080_05704928_2020_1848857
crossref_primary_10_1016_j_isci_2023_107821
crossref_primary_10_1016_j_jchromb_2018_11_002
crossref_primary_10_1109_JSEN_2022_3176049
crossref_primary_10_2217_nnm_2017_0269
crossref_primary_10_1002_hed_26043
crossref_primary_10_1016_j_cjac_2022_100059
crossref_primary_10_1063_1_5144532
crossref_primary_10_1016_j_trac_2020_116066
crossref_primary_10_1097_MNH_0000000000000661
crossref_primary_10_1021_acs_analchem_8b00688
crossref_primary_10_1373_clinchem_2018_287052
crossref_primary_10_1016_j_bios_2021_113664
crossref_primary_10_1021_acssensors_9b00310
crossref_primary_10_1021_acssensors_9b01763
crossref_primary_10_1088_1361_648X_abf477
crossref_primary_10_1002_aisy_202000063
crossref_primary_10_1021_acsomega_7b02035
crossref_primary_10_1371_journal_pntd_0007599
crossref_primary_10_1016_j_xcrp_2021_100661
crossref_primary_10_2116_analsci_19N018
crossref_primary_10_3390_diagnostics14141563
crossref_primary_10_3390_nano12172992
crossref_primary_10_3390_s18020343
crossref_primary_10_1109_TCSII_2021_3079163
crossref_primary_10_1021_acssensors_3c00011
crossref_primary_10_1088_1752_7163_ab0b8d
crossref_primary_10_1002_admt_201800488
crossref_primary_10_1016_j_cca_2021_03_016
crossref_primary_10_1016_j_isci_2018_12_008
crossref_primary_10_1063_5_0139950
crossref_primary_10_1002_adbi_202000397
crossref_primary_10_1021_acsomega_2c01668
crossref_primary_10_1016_j_bios_2022_114919
crossref_primary_10_1088_1752_7163_ad53f8
crossref_primary_10_3390_biomedicines12081815
crossref_primary_10_3390_s22031120
crossref_primary_10_1021_acssensors_2c00146
crossref_primary_10_1016_j_cej_2021_134107
crossref_primary_10_1039_D2TB00690A
crossref_primary_10_3390_s23208429
crossref_primary_10_4251_wjgo_v16_i5_2181
crossref_primary_10_1016_j_taap_2017_09_016
crossref_primary_10_1557_s43577_023_00495_7
crossref_primary_10_1039_D2SC02981B
Cites_doi 10.1021/acsnano.6b01441
10.1038/nnano.2009.235
10.1002/smll.201501904
10.1088/1752-7155/8/1/016003
10.1088/1752-7155/10/2/026004
10.1038/sj.bjc.6605810
10.18632/oncotarget.6269
10.1021/cn2000603
10.1586/erm.10.112
10.1016/S0140-6736(98)07552-7
10.1183/09031936.00015814
10.1016/j.nano.2011.10.001
10.1002/ijc.29166
10.1016/j.tube.2012.04.002
10.1016/j.tube.2010.01.003
10.1002/adfm.201602326
10.1002/smll.200801831
10.2217/nnm.14.121
10.1136/bmj.287.6392.594
10.1038/bjc.2014.411
10.1097/JTO.0b013e3182637d5f
10.1039/C3CS60329F
10.1002/adhm.201600588
10.1016/j.jtho.2016.02.017
10.1038/scientificamerican0792-74
10.1007/s10549-010-1317-x
10.1038/bjc.2013.44
10.1164/rccm.201303-0467LE
10.1183/09031936.00005614
10.1136/gutjnl-2014-308536
10.1021/jp105810w
10.1016/j.proeng.2011.12.385
10.1088/1752-7155/5/2/022001
10.1002/bmc.835
10.1067/mlc.2000.108943
10.1088/1752-7155/3/2/027002
10.1016/j.parkreldis.2014.11.023
10.1021/nl504482t
10.1016/j.cca.2014.04.030
10.1016/j.aca.2012.10.036
10.1063/1.3050524
10.7150/thno.7560
10.1021/ar400070m
10.1088/1752-7155/8/1/014001
10.2217/nnm.13.64
10.1038/bjc.2011.128
10.1038/ctg.2015.40
10.1016/0925-4005(91)80172-G
10.1016/j.resp.2006.01.007
10.1021/cr300174a
10.1097/SLA.0000000000001101
10.1016/j.etap.2015.07.018
10.1557/mrs2010.509
10.2217/nnm.11.135
10.1002/anie.201500153
10.1002/adma.201505641
10.1183/09031936.00019114
10.2147/ciia.2006.1.3.253
10.1088/0022-3727/40/23/S01
10.1002/admt.201600132
10.1021/acsnano.6b03127
10.1021/am2013695
10.1183/1025448x.00018509
10.1002/ijc.29701
10.1371/journal.pone.0095331
10.1021/nl404335p
10.1016/j.nano.2013.01.008
10.2174/1381612820666140314154331
10.1088/1752-7155/10/2/021002
10.1007/s12127-011-0078-5
10.1093/fampra/2.1.1
10.2174/1389200216666150625121546
ContentType Journal Article
Copyright Copyright © 2016 American Chemical Society
Copyright © 2016 American Chemical Society 2016 American Chemical Society
Copyright_xml – notice: Copyright © 2016 American Chemical Society
– notice: Copyright © 2016 American Chemical Society 2016 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
5PM
DOI 10.1021/acsnano.6b04930
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 125
ExternalDocumentID PMC5269643
28000444
10_1021_acsnano_6b04930
a222008845
Genre Research Support, Non-U.S. Gov't
Meta-Analysis
Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
5PM
ID FETCH-LOGICAL-a454t-69baea8e40b0e27e9ceacf3453930d7c4866764f3569e793ce656a5c2b88b0b53
IEDL.DBID ACS
ISSN 1936-0851
IngestDate Thu Aug 21 14:09:56 EDT 2025
Mon Jul 21 06:05:51 EDT 2025
Tue Jul 01 01:34:05 EDT 2025
Thu Apr 24 23:11:45 EDT 2025
Thu Aug 27 13:42:28 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords breath
carbon nanotube
disease
noninvasive
nanoparticle
diagnosis
sensor
volatile organic compound
Language English
License http://pubs.acs.org/page/policy/authorchoice_termsofuse.html
This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a454t-69baea8e40b0e27e9ceacf3453930d7c4866764f3569e793ce656a5c2b88b0b53
ORCID 0000-0002-2370-4073
0000-0001-6584-1327
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5269643
PMID 28000444
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5269643
pubmed_primary_28000444
crossref_primary_10_1021_acsnano_6b04930
crossref_citationtrail_10_1021_acsnano_6b04930
acs_journals_10_1021_acsnano_6b04930
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-24
PublicationDateYYYYMMDD 2017-01-24
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-24
  day: 24
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref38/cit38
  doi: 10.1021/acsnano.6b01441
– ident: ref32/cit32
  doi: 10.1038/nnano.2009.235
– ident: ref36/cit36
  doi: 10.1002/smll.201501904
– ident: ref5/cit5
  doi: 10.1088/1752-7155/8/1/016003
– ident: ref15/cit15
  doi: 10.1088/1752-7155/10/2/026004
– ident: ref31/cit31
  doi: 10.1038/sj.bjc.6605810
– ident: ref27/cit27
  doi: 10.18632/oncotarget.6269
– ident: ref49/cit49
  doi: 10.1021/cn2000603
– ident: ref20/cit20
  doi: 10.1586/erm.10.112
– ident: ref21/cit21
  doi: 10.1016/S0140-6736(98)07552-7
– ident: ref13/cit13
  doi: 10.1183/09031936.00015814
– ident: ref26/cit26
  doi: 10.1016/j.nano.2011.10.001
– ident: ref25/cit25
  doi: 10.1002/ijc.29166
– ident: ref11/cit11
  doi: 10.1016/j.tube.2012.04.002
– ident: ref12/cit12
  doi: 10.1016/j.tube.2010.01.003
– ident: ref46/cit46
  doi: 10.1002/adfm.201602326
– ident: ref72/cit72
  doi: 10.1002/smll.200801831
– ident: ref6/cit6
  doi: 10.2217/nnm.14.121
– ident: ref33/cit33
  doi: 10.1136/bmj.287.6392.594
– ident: ref28/cit28
  doi: 10.1038/bjc.2014.411
– ident: ref30/cit30
  doi: 10.1097/JTO.0b013e3182637d5f
– ident: ref3/cit3
  doi: 10.1039/C3CS60329F
– ident: ref50/cit50
  doi: 10.1002/adhm.201600588
– ident: ref54/cit54
  doi: 10.1016/j.jtho.2016.02.017
– ident: ref1/cit1
  doi: 10.1038/scientificamerican0792-74
– ident: ref56/cit56
  doi: 10.1007/s10549-010-1317-x
– ident: ref57/cit57
  doi: 10.1038/bjc.2013.44
– ident: ref14/cit14
  doi: 10.1164/rccm.201303-0467LE
– ident: ref17/cit17
  doi: 10.1183/09031936.00005614
– ident: ref24/cit24
  doi: 10.1136/gutjnl-2014-308536
– ident: ref71/cit71
  doi: 10.1021/jp105810w
– ident: ref39/cit39
  doi: 10.1016/j.proeng.2011.12.385
– ident: ref64/cit64
  doi: 10.1088/1752-7155/5/2/022001
– ident: ref2/cit2
  doi: 10.1002/bmc.835
– ident: ref69/cit69
  doi: 10.1067/mlc.2000.108943
– ident: ref70/cit70
  doi: 10.1088/1752-7155/3/2/027002
– ident: ref52/cit52
  doi: 10.1016/j.parkreldis.2014.11.023
– ident: ref47/cit47
  doi: 10.1021/nl504482t
– ident: ref61/cit61
  doi: 10.1016/j.cca.2014.04.030
– ident: ref41/cit41
  doi: 10.1016/j.aca.2012.10.036
– ident: ref40/cit40
  doi: 10.1063/1.3050524
– ident: ref22/cit22
  doi: 10.7150/thno.7560
– ident: ref37/cit37
  doi: 10.1021/ar400070m
– ident: ref9/cit9
  doi: 10.1088/1752-7155/8/1/014001
– ident: ref7/cit7
  doi: 10.2217/nnm.13.64
– ident: ref29/cit29
  doi: 10.1038/bjc.2011.128
– ident: ref63/cit63
  doi: 10.1038/ctg.2015.40
– ident: ref42/cit42
  doi: 10.1016/0925-4005(91)80172-G
– ident: ref68/cit68
  doi: 10.1016/j.resp.2006.01.007
– ident: ref8/cit8
  doi: 10.1021/cr300174a
– ident: ref62/cit62
  doi: 10.1097/SLA.0000000000001101
– ident: ref67/cit67
  doi: 10.1016/j.etap.2015.07.018
– ident: ref58/cit58
  doi: 10.1557/mrs2010.509
– ident: ref51/cit51
  doi: 10.2217/nnm.11.135
– ident: ref4/cit4
  doi: 10.1002/anie.201500153
– ident: ref48/cit48
  doi: 10.1002/adma.201505641
– ident: ref53/cit53
  doi: 10.1183/09031936.00019114
– ident: ref66/cit66
  doi: 10.2147/ciia.2006.1.3.253
– ident: ref10/cit10
  doi: 10.1088/0022-3727/40/23/S01
– ident: ref45/cit45
  doi: 10.1002/admt.201600132
– ident: ref43/cit43
  doi: 10.1021/acsnano.6b03127
– ident: ref59/cit59
  doi: 10.1021/am2013695
– ident: ref60/cit60
  doi: 10.1183/1025448x.00018509
– ident: ref23/cit23
  doi: 10.1002/ijc.29701
– ident: ref18/cit18
  doi: 10.1371/journal.pone.0095331
– ident: ref44/cit44
  doi: 10.1021/nl404335p
– ident: ref55/cit55
  doi: 10.1016/j.nano.2013.01.008
– ident: ref65/cit65
  doi: 10.2174/1381612820666140314154331
– ident: ref19/cit19
  doi: 10.1088/1752-7155/10/2/021002
– ident: ref16/cit16
  doi: 10.1007/s12127-011-0078-5
– ident: ref34/cit34
  doi: 10.1093/fampra/2.1.1
– ident: ref35/cit35
  doi: 10.2174/1389200216666150625121546
SSID ssj0057876
Score 2.6522274
SecondaryResourceType review_article
Snippet We report on an artificially intelligent nanoarray based on molecularly modified gold nanoparticles and a random network of single-walled carbon nanotubes for...
We report on an artificially intelligent nanoarray based on molecularly modified gold nanoparticles and a random network of single-walled carbon nanotubes for...
SourceID pubmedcentral
pubmed
crossref
acs
SourceType Open Access Repository
Index Database
Enrichment Source
Publisher
StartPage 112
SubjectTerms Adult
Artificial Intelligence
Biosensing Techniques
Breath Tests
Case-Control Studies
Disease - classification
Female
Gold - chemistry
Humans
Male
Metal Nanoparticles - chemistry
Middle Aged
Nanotubes, Carbon - chemistry
Pattern Recognition, Automated
Volatile Organic Compounds - analysis
Title Diagnosis and Classification of 17 Diseases from 1404 Subjects via Pattern Analysis of Exhaled Molecules
URI http://dx.doi.org/10.1021/acsnano.6b04930
https://www.ncbi.nlm.nih.gov/pubmed/28000444
https://pubmed.ncbi.nlm.nih.gov/PMC5269643
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3NS8MwFMCDzIse_P6YX-Swg5fONk2T7Dj2wRAmgg52K0mTsqF0YjsR_3pf2q5ujqHnJoHkveS99L38HkIN03IDxTzhWJybQwNuGZDEc4RWYE24NozaB87DBzYY0ftxMP6BRf-O4BPvTkZpIpNZkylwZn24nW8TJphV4HbnaXHoWr1jRQAZLsjgRVQUn7UBrBmK0hUzVNme1bzIJUPT3y9StNKcT2jzS16a80w1o691euPfczhAe6W7iduFfhyiLZMcod0lCOExmnSLbLtpimWicV4l0-YP5SLDsxh7HHeLME6K7WsUbFk5GE4c-wsnxR9TiR9zSmeCF4gT2633OQHjo_GwKMBr0hM06veeOwOnrL_gSBrQzGEtJY0UhrrKNYSbVgSndOzTwIc5aB6BdBkHWfoBaxnY55EB51AGEVFCKFcF_imqJbPEnCMcx5JyoUD02qNKcyF5rF2jjUe4gktaHTVgjcJy_6RhHhonXlguXFguXB01F1ILo5JhbktpvG7ucFt1eCvwHZubnhXSrxoSkce7aR3xFb2oGlg09-qXZDrJEd22bjv4ehf_m9Yl2iHWW3A9h9ArVMve5-YafJ1M3eRa_g0z2_sr
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED4hGICB96M8PTCwpMSJE6cjokXlUQQCJLbIjh21AqWItAjx6zk7aWhBlWBNbMv2nX2ffefvAI50ww1kSCPH0Lk5LOCGA9KjTqQkWhOudMjMA-fOTdh-ZJdPwdMMuKO3MNiJHFvKrRP_m12AnuC3TGT9eigR0_p4SJ9DKEKNHp-e3Y_2XqN-YeFHxnMygomKzOdXA8YaJfmENapM0GR45Ji9OV-Gu6qnNszkuT4cyHry-YPE8T9DWYGlEnyS00JbVmFGZ2uwOEZJuA7dZhF718uJyBSxOTNNNJEVIOmnhHLSLJw6OTFvU4hhziG4_5gLnZy89wS5tZydGRkRnphqrY8umiJFOkU6Xp1vwON56-Gs7ZTZGBzBAjZwwoYUWkSaudLVHteNBPfs1GeBj2NQPEFZhxwl6wdhQ-OqTzRCRREknowi6crA34TZrJ_pbSBpKhiPJCqCokwqHgmeKlcrTT0u8chWgyOco7hcTXlsHeUejcuJi8uJq0F9JLw4KRnNTWKNl-kVjqsKrwWZx_SiW4USVAW9yHq_WQ34hHpUBQxR9-SfrNe1hN0mizsiv52_DesQ5tsPnev4-uLmahcWPIMjXOp4bA9mB29DvY8oaCAPrOJ_AX9hA5s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELUQSAgO7EtZfeiBS0oWJ06PVRextaoElbhFduyoFSitSIsQX8-Mk0YtCAmuiW3FnmfPODPzhpCqrtu-DJzQQjo3i_kcOSBdxwqVBG3ClQ4YJjh3e8HNgN09-89FUhjmwsBHZDBSZpz4uKsnKikYBpxreJ6KdFwLJNi1HlzU19AcQSw3mo_z8xchGOS-ZLgrg0FREvr8GAA1UpwtaaRSDS2HSC7onM42GZRfa0JNXmqzqazFn9-IHP87nR2yVRihtJGjZpes6HSPbC5QE-6TYSuPwRtlVKSKmtqZGFVkBEnHCXU4beXOnYxijgpFBh0K5xD-2Mno-0jQvuHuTOmc-AS7tT-GoJIU7eZleXV2QAad9lPzxiqqMliC-WxqBXUptAg1s6WtXa7rMZzdicd8D-ageAwyDzhI2APJaNj9sQYZCT92ZRhKW_reIVlNx6k-JjRJBOOhBEAoh0nFQ8ETZWulHZdLuLpVSBXWKCp2VRYZh7nrRMXCRcXCVUhtLsAoLpjNscDG6-8drsoOk5zU4_emRzkQyoZuaLzgrEL4EkTKBkjYvfwmHQ0NcTdWcwcL8ORv07ok6_1WJ3q47d2fkg0XzQnbsVx2RlanbzN9DsbQVF4Y7H8B04MGHg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnosis+and+Classification+of+17+Diseases+from+1404+Subjects+via+Pattern+Analysis+of+Exhaled+Molecules&rft.jtitle=ACS+nano&rft.au=Nakhleh%2C+Morad+K&rft.au=Amal%2C+Haitham&rft.au=Jeries%2C+Raneen&rft.au=Broza%2C+Yoav+Y&rft.date=2017-01-24&rft.eissn=1936-086X&rft.volume=11&rft.issue=1&rft.spage=112&rft_id=info:doi/10.1021%2Facsnano.6b04930&rft_id=info%3Apmid%2F28000444&rft.externalDocID=28000444
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon