Diagnosis and Classification of 17 Diseases from 1404 Subjects via Pattern Analysis of Exhaled Molecules
We report on an artificially intelligent nanoarray based on molecularly modified gold nanoparticles and a random network of single-walled carbon nanotubes for noninvasive diagnosis and classification of a number of diseases from exhaled breath. The performance of this artificially intelligent nanoar...
Saved in:
Published in | ACS nano Vol. 11; no. 1; pp. 112 - 125 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
24.01.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1936-0851 1936-086X |
DOI | 10.1021/acsnano.6b04930 |
Cover
Abstract | We report on an artificially intelligent nanoarray based on molecularly modified gold nanoparticles and a random network of single-walled carbon nanotubes for noninvasive diagnosis and classification of a number of diseases from exhaled breath. The performance of this artificially intelligent nanoarray was clinically assessed on breath samples collected from 1404 subjects having one of 17 different disease conditions included in the study or having no evidence of any disease (healthy controls). Blind experiments showed that 86% accuracy could be achieved with the artificially intelligent nanoarray, allowing both detection and discrimination between the different disease conditions examined. Analysis of the artificially intelligent nanoarray also showed that each disease has its own unique breathprint, and that the presence of one disease would not screen out others. Cluster analysis showed a reasonable classification power of diseases from the same categories. The effect of confounding clinical and environmental factors on the performance of the nanoarray did not significantly alter the obtained results. The diagnosis and classification power of the nanoarray was also validated by an independent analytical technique, i.e., gas chromatography linked with mass spectrometry. This analysis found that 13 exhaled chemical species, called volatile organic compounds, are associated with certain diseases, and the composition of this assembly of volatile organic compounds differs from one disease to another. Overall, these findings could contribute to one of the most important criteria for successful health intervention in the modern era, viz. easy-to-use, inexpensive (affordable), and miniaturized tools that could also be used for personalized screening, diagnosis, and follow-up of a number of diseases, which can clearly be extended by further development. |
---|---|
AbstractList | We report on an artificially intelligent nanoarray based on molecularly modified gold nanoparticles and a random network of single-walled carbon nanotubes for noninvasive diagnosis and classification of a number of diseases from exhaled breath. The performance of this artificially intelligent nanoarray was clinically assessed on breath samples collected from 1404 subjects having one of 17 different disease conditions included in the study or having no evidence of any disease (healthy controls). Blind experiments showed that 86% accuracy could be achieved with the artificially intelligent nanoarray, allowing both detection and discrimination between the different disease conditions examined. Analysis of the artificially intelligent nanoarray also showed that each disease has its own unique breathprint, and that the presence of one disease would not screen out others. Cluster analysis showed a reasonable classification power of diseases from the same categories. The effect of confounding clinical and environmental factors on the performance of the nanoarray did not significantly alter the obtained results. The diagnosis and classification power of the nanoarray was also validated by an independent analytical technique, i.e., gas chromatography linked with mass spectrometry. This analysis found that 13 exhaled chemical species, called volatile organic compounds, are associated with certain diseases, and the composition of this assembly of volatile organic compounds differs from one disease to another. Overall, these findings could contribute to one of the most important criteria for successful health intervention in the modern era, viz. easy-to-use, inexpensive (affordable), and miniaturized tools that could also be used for personalized screening, diagnosis, and follow-up of a number of diseases, which can clearly be extended by further development. We report on an artificially intelligent nanoarray based on molecularly modified gold nanoparticles and a random network of single-walled carbon nanotubes for noninvasive diagnosis and classification of a number of diseases from exhaled breath. The performance of this artificially intelligent nanoarray was clinically assessed on breath samples collected from 1404 subjects having one of 17 different disease conditions included in the study or having no evidence of any disease (healthy controls). Blind experiments showed that 86% accuracy could be achieved with the artificially intelligent nanoarray, allowing both detection and discrimination between the different disease conditions examined. Analysis of the artificially intelligent nanoarray also showed that each disease has its own unique breathprint, and that the presence of one disease would not screen out others. Cluster analysis showed a reasonable classification power of diseases from the same categories. The effect of confounding clinical and environmental factors on the performance of the nanoarray did not significantly alter the obtained results. The diagnosis and classification power of the nanoarray was also validated by an independent analytical technique, i.e. , gas chromatography linked with mass spectrometry. This analysis found that 13 exhaled chemical species, called volatile organic compounds, are associated with certain diseases, and the composition of this assembly of volatile organic compounds differs from one disease to another. Overall, these findings could contribute to one of the most important criteria for successful health intervention in the modern era, viz. easy-to-use, inexpensive (affordable), and miniaturized tools that could also be used for personalized screening, diagnosis, and follow-up of a number of diseases, which can clearly be extended by further development. |
Author | Jeries, Raneen Rainis, Tova Skapars, Roberts Shi, Da-you Lejbkowicz, Izabella Peled, Nir Har-Shai, Lior Koifman, Eduard Simonneau, Gérald Pan, Yue-yin Liu, Hu Lasina, Ieva Miller, Ariel Ivgi, Hodaya Cohen-Kaminsky, Sylvia Hakim, Marwan Broza, Yoav Y Kikuste, Ilze Humbert, Marc Aboud, Manal Montani, David Ronen, Ohad Doweck, Ilana Wilf, Larry H Karban, Amir Johnson, Douglas Nativ, Ofer Wells, John W Perros, Frédéric Amal, Haitham Salim, Raed Badarny, Samih Nakhleh, Morad K Liepniece-Karele, Inta Tolmanis, Ivars Garcia, Gilles Millstone, Stuart Z Tao, Li Bahouth, Zaher Badarneh, Shifaa Fulton, Jennifer Haick, Hossam Glass-Marmor, Lea Girerd, Barbara Gruber, Maayan Khatib, Salam Hua, Qing-ling Sivins, Armands Zhang, Wei Leja, Marcis Ancans, Guntis Winer, Raz Gharra, Alaa Baram, Shira Finberg, John Nakhoul, Farid Marshak, Tal |
AuthorAffiliation | Division of Neuroimmunology and Multiple Sclerosis Center, Carmel Medical Center and Rappaport Family Faculty of Medicine Department of Molecular Pharmacology, Rappaport Family Faculty of Medicine Department of Oncology Digestive Diseases Centre Internal Medicine C and Gastroenterology Departments, Rambam Medical Center, Rappaport Family Faculty of Medicine University of Latvia Department of Obstetrics and Gynecology, Nazareth Hospital EMMS, Nazareth, and Faculty of Medicine in the Galilee Bnai Zion Medical Center Oncologic Imaging Division Department of Urology Baptist Cancer Institute (BCI) Thoracic Cancer Unit Baptist Medical Center Department of Chemical Engineering and Russell Berrie Nanotechnology Institute GASTRO Pulmonary Diseases Department of Nephrology and Hypertension Department of Gastroenterology, Bnai Zion Hospital and Rappaport Family Faculty of Medicine Department of Radiation Oncology Movement Disorders Clinic, Department of Neurology, Carmel Medical Center, and Rappaport Family Faculty |
AuthorAffiliation_xml | – name: Division of Neuroimmunology and Multiple Sclerosis Center, Carmel Medical Center and Rappaport Family Faculty of Medicine – name: Movement Disorders Clinic, Department of Neurology, Carmel Medical Center, and Rappaport Family Faculty of Medicine – name: GASTRO – name: Davidoff Cancer Center – name: Baptist Cancer Institute (BCI) – name: Pulmonary Diseases – name: Thoracic Cancer Unit – name: Baptist Medical Center – name: Bnai Zion Medical Center – name: Department of Obstetrics and Gynecology, Nazareth Hospital EMMS, Nazareth, and Faculty of Medicine in the Galilee – name: Oncologic Imaging Division – name: Department of Radiation Oncology – name: Department of Obstetrics and Gynecology, Emek Medical Center, Afula 18101, and Rappaport Family Faculty of Medicine – name: Department of Molecular Pharmacology, Rappaport Family Faculty of Medicine – name: Baruch Padeh Medical Center – name: Digestive Diseases Centre – name: Department of Gastroenterology, Bnai Zion Hospital and Rappaport Family Faculty of Medicine – name: Department of Urology – name: Department of Oncology – name: University of Latvia – name: Florida Radiation Oncology Group – name: The Department of Otolaryngology Head and Neck Surgery – name: Department of Chemical Engineering and Russell Berrie Nanotechnology Institute – name: Internal Medicine C and Gastroenterology Departments, Rambam Medical Center, Rappaport Family Faculty of Medicine – name: Department of Nephrology and Hypertension |
Author_xml | – sequence: 1 givenname: Morad K surname: Nakhleh fullname: Nakhleh, Morad K – sequence: 2 givenname: Haitham surname: Amal fullname: Amal, Haitham – sequence: 3 givenname: Raneen surname: Jeries fullname: Jeries, Raneen – sequence: 4 givenname: Yoav Y surname: Broza fullname: Broza, Yoav Y – sequence: 5 givenname: Manal surname: Aboud fullname: Aboud, Manal – sequence: 6 givenname: Alaa surname: Gharra fullname: Gharra, Alaa – sequence: 7 givenname: Hodaya surname: Ivgi fullname: Ivgi, Hodaya – sequence: 8 givenname: Salam surname: Khatib fullname: Khatib, Salam – sequence: 9 givenname: Shifaa surname: Badarneh fullname: Badarneh, Shifaa – sequence: 10 givenname: Lior surname: Har-Shai fullname: Har-Shai, Lior – sequence: 11 givenname: Lea surname: Glass-Marmor fullname: Glass-Marmor, Lea – sequence: 12 givenname: Izabella surname: Lejbkowicz fullname: Lejbkowicz, Izabella – sequence: 13 givenname: Ariel surname: Miller fullname: Miller, Ariel – sequence: 14 givenname: Samih surname: Badarny fullname: Badarny, Samih – sequence: 15 givenname: Raz surname: Winer fullname: Winer, Raz – sequence: 16 givenname: John surname: Finberg fullname: Finberg, John – sequence: 17 givenname: Sylvia surname: Cohen-Kaminsky fullname: Cohen-Kaminsky, Sylvia – sequence: 18 givenname: Frédéric surname: Perros fullname: Perros, Frédéric – sequence: 19 givenname: David surname: Montani fullname: Montani, David – sequence: 20 givenname: Barbara surname: Girerd fullname: Girerd, Barbara – sequence: 21 givenname: Gilles surname: Garcia fullname: Garcia, Gilles – sequence: 22 givenname: Gérald surname: Simonneau fullname: Simonneau, Gérald – sequence: 23 givenname: Farid surname: Nakhoul fullname: Nakhoul, Farid – sequence: 24 givenname: Shira surname: Baram fullname: Baram, Shira – sequence: 25 givenname: Raed surname: Salim fullname: Salim, Raed – sequence: 26 givenname: Marwan surname: Hakim fullname: Hakim, Marwan – sequence: 27 givenname: Maayan surname: Gruber fullname: Gruber, Maayan – sequence: 28 givenname: Ohad surname: Ronen fullname: Ronen, Ohad – sequence: 29 givenname: Tal surname: Marshak fullname: Marshak, Tal – sequence: 30 givenname: Ilana surname: Doweck fullname: Doweck, Ilana – sequence: 31 givenname: Ofer surname: Nativ fullname: Nativ, Ofer – sequence: 32 givenname: Zaher surname: Bahouth fullname: Bahouth, Zaher – sequence: 33 givenname: Da-you surname: Shi fullname: Shi, Da-you – sequence: 34 givenname: Wei surname: Zhang fullname: Zhang, Wei – sequence: 35 givenname: Qing-ling surname: Hua fullname: Hua, Qing-ling – sequence: 36 givenname: Yue-yin surname: Pan fullname: Pan, Yue-yin – sequence: 37 givenname: Li surname: Tao fullname: Tao, Li – sequence: 38 givenname: Hu surname: Liu fullname: Liu, Hu – sequence: 39 givenname: Amir surname: Karban fullname: Karban, Amir – sequence: 40 givenname: Eduard surname: Koifman fullname: Koifman, Eduard – sequence: 41 givenname: Tova surname: Rainis fullname: Rainis, Tova – sequence: 42 givenname: Roberts surname: Skapars fullname: Skapars, Roberts – sequence: 43 givenname: Armands surname: Sivins fullname: Sivins, Armands – sequence: 44 givenname: Guntis surname: Ancans fullname: Ancans, Guntis – sequence: 45 givenname: Inta surname: Liepniece-Karele fullname: Liepniece-Karele, Inta – sequence: 46 givenname: Ilze surname: Kikuste fullname: Kikuste, Ilze – sequence: 47 givenname: Ieva surname: Lasina fullname: Lasina, Ieva – sequence: 48 givenname: Ivars surname: Tolmanis fullname: Tolmanis, Ivars – sequence: 49 givenname: Douglas orcidid: 0000-0001-6584-1327 surname: Johnson fullname: Johnson, Douglas – sequence: 50 givenname: Stuart Z surname: Millstone fullname: Millstone, Stuart Z – sequence: 51 givenname: Jennifer surname: Fulton fullname: Fulton, Jennifer – sequence: 52 givenname: John W surname: Wells fullname: Wells, John W – sequence: 53 givenname: Larry H surname: Wilf fullname: Wilf, Larry H – sequence: 54 givenname: Marc surname: Humbert fullname: Humbert, Marc – sequence: 55 givenname: Marcis surname: Leja fullname: Leja, Marcis – sequence: 56 givenname: Nir surname: Peled fullname: Peled, Nir – sequence: 57 givenname: Hossam orcidid: 0000-0002-2370-4073 surname: Haick fullname: Haick, Hossam email: hhossam@technion.ac.il |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28000444$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kd1PwjAUxRuDEUGffTN9N0C3td32YkIAPxKMJmriW3NX7qBktGQdRP57hyBRE326Te75ndye0yIN6ywSchGwbsDCoAfaW7CuKzPG04gdkdMgjWSHJfKtcXiLoEla3s8ZE3ESyxPSDBPGGOf8lMyGBqbWeeMp2AkdFOC9yY2GyjhLXU6DmA6NR_DoaV66BQ044_R5lc1RV56uDdAnqCosLe1bKDZbpxobvc-gwAl9cAXqVYH-jBznUHg83882eb0ZvQzuOuPH2_tBf9wBLnjVkWkGCAlyljEMY0w1gs4jLqL6e5NY80TKWPI8EjLFOI00SiFB6DBLkoxlImqT653vcpUtcKLRViUUalmaBZQb5cConxtrZmrq1kqEMpU8qg0uvxscyK_MakFvJ9Cl877E_CAJmNq2ovatqH0rNSF-EdpUnwnXF5jiH-5qx9ULNXersg7Y_6n-AGMroyE |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2024_e32020 crossref_primary_10_1039_C8ME00097B crossref_primary_10_1021_acschemneuro_7b00318 crossref_primary_10_1021_acssensors_4c02451 crossref_primary_10_1021_acsnano_0c05657 crossref_primary_10_1016_j_euf_2018_11_006 crossref_primary_10_1021_acsami_8b13498 crossref_primary_10_1002_adfm_202309531 crossref_primary_10_1021_acssensors_7b00383 crossref_primary_10_62347_RXSH1223 crossref_primary_10_3390_s21144742 crossref_primary_10_1016_j_trac_2024_117656 crossref_primary_10_4236_jbise_2019_121004 crossref_primary_10_1016_j_mtbio_2019_100002 crossref_primary_10_1016_j_ceramint_2024_10_010 crossref_primary_10_1088_1752_7163_aa88e4 crossref_primary_10_1021_acsomega_9b02929 crossref_primary_10_1016_j_cclet_2021_11_012 crossref_primary_10_1002_adhm_202200356 crossref_primary_10_3389_fnano_2023_1127363 crossref_primary_10_3390_s22031238 crossref_primary_10_3390_chemosensors8020038 crossref_primary_10_1149_2754_2726_ac82bc crossref_primary_10_3390_mi12040430 crossref_primary_10_1109_JSEN_2022_3224284 crossref_primary_10_3233_JPD_213133 crossref_primary_10_1016_j_jallcom_2020_158294 crossref_primary_10_1039_D2TA07071E crossref_primary_10_1088_1752_7163_ac135e crossref_primary_10_37648_ijrst_v13i04_008 crossref_primary_10_3390_diagnostics12123170 crossref_primary_10_1088_1752_7163_aad9cc crossref_primary_10_1371_journal_pone_0249191 crossref_primary_10_1021_acs_analchem_9b01428 crossref_primary_10_1016_j_jcis_2020_02_081 crossref_primary_10_1038_s41598_018_21544_1 crossref_primary_10_1021_acs_chemmater_1c04318 crossref_primary_10_1136_gutjnl_2021_326298 crossref_primary_10_1016_j_snb_2018_07_094 crossref_primary_10_1080_17476348_2019_1614918 crossref_primary_10_1097_MD_0000000000020937 crossref_primary_10_1016_j_mtchem_2025_102517 crossref_primary_10_1007_s00604_022_05317_2 crossref_primary_10_1016_j_trac_2024_117783 crossref_primary_10_1159_000507188 crossref_primary_10_3390_chemosensors9080209 crossref_primary_10_3906_kim_1701_46 crossref_primary_10_1002_adhm_202100734 crossref_primary_10_1021_acsomega_9b03793 crossref_primary_10_1088_1752_7163_aaf3dc crossref_primary_10_54503_18291171_2022_15_1_13 crossref_primary_10_1021_acs_accounts_7b00047 crossref_primary_10_1001_jamanetworkopen_2022_19372 crossref_primary_10_1088_1752_7163_ad324f crossref_primary_10_3390_s20092666 crossref_primary_10_1021_acsami_2c11153 crossref_primary_10_1134_S1068337222030045 crossref_primary_10_1002_adfm_202011089 crossref_primary_10_1021_acsami_8b01176 crossref_primary_10_1007_s12035_019_1615_1 crossref_primary_10_1002_ange_201910865 crossref_primary_10_1021_acsami_9b19358 crossref_primary_10_1177_15347354221140516 crossref_primary_10_1002_advs_202100235 crossref_primary_10_1002_smll_201703934 crossref_primary_10_52853_18291171_2021_14_3_148 crossref_primary_10_1088_1752_7163_ac5f13 crossref_primary_10_1002_adma_201800634 crossref_primary_10_1088_1748_605X_abddf4 crossref_primary_10_1021_acsami_1c16637 crossref_primary_10_1038_s41699_019_0125_3 crossref_primary_10_3390_cryst11010024 crossref_primary_10_1007_s13337_020_00590_2 crossref_primary_10_1002_adma_201705024 crossref_primary_10_1021_acsnano_1c00085 crossref_primary_10_1016_j_cell_2017_08_007 crossref_primary_10_1016_j_chroma_2022_463606 crossref_primary_10_1016_j_optlaseng_2022_107222 crossref_primary_10_54097_bqn07j61 crossref_primary_10_1021_acsbiomaterials_1c01106 crossref_primary_10_3389_fonc_2020_01020 crossref_primary_10_1002_cncr_33437 crossref_primary_10_3390_bios11090337 crossref_primary_10_1021_acsami_8b10789 crossref_primary_10_1002_adfm_202405232 crossref_primary_10_1021_acssensors_8b00937 crossref_primary_10_1088_1752_7163_abc09b crossref_primary_10_1002_smll_202411495 crossref_primary_10_1080_17520363_2025_2468151 crossref_primary_10_1183_16000617_0011_2019 crossref_primary_10_1109_TIE_2021_3080218 crossref_primary_10_3390_chemosensors9040066 crossref_primary_10_1038_s41598_021_02906_8 crossref_primary_10_1088_1752_7163_aae557 crossref_primary_10_1002_adhm_201700024 crossref_primary_10_1021_acs_analchem_0c01751 crossref_primary_10_1093_infdis_jiy072 crossref_primary_10_1109_RBME_2024_3481360 crossref_primary_10_1039_D1SC00729G crossref_primary_10_1177_15353702221082634 crossref_primary_10_1021_acssensors_8b00276 crossref_primary_10_1038_s41596_021_00528_y crossref_primary_10_1088_1752_7163_ab0684 crossref_primary_10_1016_j_snb_2020_127859 crossref_primary_10_1183_13993003_00064_2017 crossref_primary_10_1002_VIW_20200164 crossref_primary_10_1088_1748_0221_19_07_P07016 crossref_primary_10_1038_s41598_022_22581_7 crossref_primary_10_1021_acssensors_3c01755 crossref_primary_10_1088_2050_6120_ab1dbd crossref_primary_10_1007_s11426_019_9585_5 crossref_primary_10_1093_database_baz139 crossref_primary_10_1016_j_lungcan_2024_107514 crossref_primary_10_1039_C9TB02518A crossref_primary_10_1016_j_clgc_2019_02_003 crossref_primary_10_1039_C7CS00730B crossref_primary_10_1016_j_talanta_2018_12_070 crossref_primary_10_1016_j_aca_2018_04_027 crossref_primary_10_1021_acsnano_0c06137 crossref_primary_10_3390_s17102192 crossref_primary_10_1007_s11306_024_02180_5 crossref_primary_10_1016_j_chest_2022_09_042 crossref_primary_10_1371_journal_pone_0273355 crossref_primary_10_1016_j_scitotenv_2017_12_097 crossref_primary_10_1002_admt_202100872 crossref_primary_10_1088_1752_7163_ab7b8d crossref_primary_10_1183_16000617_0002_2019 crossref_primary_10_3390_chemosensors9050087 crossref_primary_10_1038_s41395_018_0187_4 crossref_primary_10_3389_fmolb_2020_607904 crossref_primary_10_1021_acsinfecdis_7b00088 crossref_primary_10_1039_D0TB02745F crossref_primary_10_1016_j_trac_2024_117987 crossref_primary_10_1088_1752_7163_aa8a15 crossref_primary_10_1038_s41598_020_70993_0 crossref_primary_10_1051_medsci_2019001 crossref_primary_10_1038_s41598_019_52165_x crossref_primary_10_1016_j_snb_2018_11_090 crossref_primary_10_1007_s00216_019_02024_5 crossref_primary_10_2217_fon_2020_0789 crossref_primary_10_1016_j_snb_2024_135637 crossref_primary_10_1088_1752_7163_abb18a crossref_primary_10_1021_acs_chemrev_9b00437 crossref_primary_10_1016_j_bbcan_2021_188644 crossref_primary_10_1016_j_snb_2024_135633 crossref_primary_10_3389_fchem_2021_629329 crossref_primary_10_1021_acssensors_9b00825 crossref_primary_10_1016_j_coche_2020_05_004 crossref_primary_10_1016_j_nantod_2018_04_006 crossref_primary_10_1097_SLA_0000000000002539 crossref_primary_10_1016_j_jhazmat_2021_125964 crossref_primary_10_1001_jamanetworkopen_2021_3486 crossref_primary_10_1088_1752_7163_acb791 crossref_primary_10_3390_s24154806 crossref_primary_10_3390_bios12100871 crossref_primary_10_1016_j_cej_2024_156184 crossref_primary_10_1007_s10544_022_00638_8 crossref_primary_10_1021_acsnano_7b03176 crossref_primary_10_3103_S1068337221040046 crossref_primary_10_1038_s41416_022_01987_0 crossref_primary_10_1088_1752_7163_ace9f2 crossref_primary_10_1016_j_trac_2024_117958 crossref_primary_10_1038_s41565_018_0209_9 crossref_primary_10_1088_1752_7163_aacbfb crossref_primary_10_3390_bios10080084 crossref_primary_10_1021_acssensors_1c01875 crossref_primary_10_3390_jcm8020235 crossref_primary_10_1002_adsu_202200083 crossref_primary_10_1038_s41598_018_29221_z crossref_primary_10_1021_acs_chemrev_8b00340 crossref_primary_10_1016_j_jtho_2018_02_026 crossref_primary_10_1021_acsaelm_0c00770 crossref_primary_10_1155_2018_9549853 crossref_primary_10_1002_ppsc_202100159 crossref_primary_10_1007_s00216_017_0498_0 crossref_primary_10_1021_acssensors_1c00312 crossref_primary_10_3390_mi9110557 crossref_primary_10_1021_acschemneuro_7b00181 crossref_primary_10_1109_ACCESS_2025_3550453 crossref_primary_10_3389_fphys_2022_946401 crossref_primary_10_1021_acssensors_9b00289 crossref_primary_10_1155_2018_3437149 crossref_primary_10_1016_j_apsusc_2021_149175 crossref_primary_10_1159_000531504 crossref_primary_10_1002_alz_13053 crossref_primary_10_1038_s41598_019_51417_0 crossref_primary_10_1070_RCR4831 crossref_primary_10_1016_j_susmat_2018_01_001 crossref_primary_10_1002_anie_201910865 crossref_primary_10_3390_chemosensors11100514 crossref_primary_10_1016_j_compag_2020_105293 crossref_primary_10_1021_acsnano_7b03308 crossref_primary_10_1016_j_bspc_2021_103060 crossref_primary_10_2196_25907 crossref_primary_10_1021_acschemneuro_8b00245 crossref_primary_10_1002_adhm_201800232 crossref_primary_10_1021_acssensors_1c01808 crossref_primary_10_1039_C8AN01823E crossref_primary_10_2478_afpuc_2021_0005 crossref_primary_10_1093_chromsci_bmz011 crossref_primary_10_1021_acsanm_1c01892 crossref_primary_10_1109_JSEN_2021_3074610 crossref_primary_10_1038_s41378_024_00729_x crossref_primary_10_1183_13993003_00056_2019 crossref_primary_10_3390_s20205742 crossref_primary_10_1016_j_msard_2020_102675 crossref_primary_10_1051_e3sconf_202127103030 crossref_primary_10_3390_s20247024 crossref_primary_10_1016_j_snb_2019_127371 crossref_primary_10_1088_1361_6528_ac547a crossref_primary_10_1021_acssensors_8b00987 crossref_primary_10_1038_s41598_021_96845_z crossref_primary_10_1016_j_jtho_2018_11_023 crossref_primary_10_1177_1753466620910092 crossref_primary_10_1149_2162_8777_abc513 crossref_primary_10_1007_s10103_020_03000_7 crossref_primary_10_1002_adma_202402287 crossref_primary_10_1002_cac2_12030 crossref_primary_10_3390_chemosensors12010011 crossref_primary_10_1021_acsnano_2c10240 crossref_primary_10_1002_adsr_202300018 crossref_primary_10_3390_mi14020391 crossref_primary_10_3390_s17040402 crossref_primary_10_1039_C8AN02285B crossref_primary_10_1039_D0NR07686D crossref_primary_10_1080_10408363_2024_2387038 crossref_primary_10_1007_s12598_024_02879_3 crossref_primary_10_1021_acssensors_2c02422 crossref_primary_10_1021_acssensors_8b00759 crossref_primary_10_1038_s41578_018_0070_3 crossref_primary_10_1016_j_cej_2019_123104 crossref_primary_10_1021_acsnano_6b06040 crossref_primary_10_1088_2058_8585_aad433 crossref_primary_10_1183_23120541_00221_2019 crossref_primary_10_1080_14796694_2024_2355080 crossref_primary_10_1111_odi_12699 crossref_primary_10_3390_s18020550 crossref_primary_10_1002_adsr_202300009 crossref_primary_10_1039_D1AN00378J crossref_primary_10_1088_1752_7163_aad207 crossref_primary_10_3390_diagnostics13243673 crossref_primary_10_3390_nano12183211 crossref_primary_10_1016_j_aca_2017_09_021 crossref_primary_10_1016_j_mehy_2019_02_009 crossref_primary_10_1088_1752_7163_ad1d64 crossref_primary_10_1159_000525688 crossref_primary_10_1002_aisy_202100194 crossref_primary_10_1093_infdis_jiy449 crossref_primary_10_1039_C6CS00778C crossref_primary_10_1021_acs_chemmater_7b00899 crossref_primary_10_1093_eurheartj_suz204 crossref_primary_10_3390_bios9010043 crossref_primary_10_1021_acssensors_2c00356 crossref_primary_10_3390_diagnostics12020491 crossref_primary_10_3390_diagnostics13030335 crossref_primary_10_1021_acsnano_1c10827 crossref_primary_10_1109_TIM_2021_3084312 crossref_primary_10_1016_j_jcoa_2023_100097 crossref_primary_10_1007_s13629_017_0194_z crossref_primary_10_3390_metabo15010037 crossref_primary_10_1021_acsnano_0c03402 crossref_primary_10_3390_app13052852 crossref_primary_10_1016_j_coelec_2021_100922 crossref_primary_10_3390_bios15020082 crossref_primary_10_3390_photonics10111231 crossref_primary_10_4329_wjr_v12_i7_130 crossref_primary_10_1016_j_snb_2018_06_078 crossref_primary_10_1088_1752_7163_ab433d crossref_primary_10_3390_mi9120679 crossref_primary_10_1016_j_jallcom_2020_155760 crossref_primary_10_1021_acsnano_1c01741 crossref_primary_10_1371_journal_pone_0297615 crossref_primary_10_3390_molecules28052320 crossref_primary_10_37648_ijrst_v13i03_013 crossref_primary_10_1021_acsnano_2c08906 crossref_primary_10_1021_acssensors_3c00945 crossref_primary_10_1109_JSEN_2022_3198014 crossref_primary_10_3390_microorganisms12061051 crossref_primary_10_1039_D4LP00199K crossref_primary_10_3390_chemosensors9080194 crossref_primary_10_1097_MOU_0000000000001128 crossref_primary_10_1021_acsnano_2c12606 crossref_primary_10_3390_electronics12010010 crossref_primary_10_1039_C7CS00007C crossref_primary_10_2139_ssrn_4111897 crossref_primary_10_3390_jlpea13020039 crossref_primary_10_1002_cplu_202400210 crossref_primary_10_1021_acssensors_2c02596 crossref_primary_10_3390_chemosensors13010015 crossref_primary_10_1016_j_aej_2024_04_074 crossref_primary_10_1039_C7LC00810D crossref_primary_10_1002_admi_201700380 crossref_primary_10_1002_jbio_202000125 crossref_primary_10_1016_j_saa_2024_124181 crossref_primary_10_3390_bios13040427 crossref_primary_10_1016_j_measurement_2022_110733 crossref_primary_10_1021_acsnano_1c07176 crossref_primary_10_5005_jp_journals_10062_0193 crossref_primary_10_1016_j_cca_2020_12_036 crossref_primary_10_1021_acsomega_2c04963 crossref_primary_10_3390_chemosensors12110228 crossref_primary_10_1039_D0TC04843G crossref_primary_10_1021_acs_analchem_8b01769 crossref_primary_10_54503_0002_3035_2022_57_3_386 crossref_primary_10_1186_s40880_017_0254_z crossref_primary_10_14233_ajchem_2021_23446 crossref_primary_10_3390_molecules27134012 crossref_primary_10_1109_JSEN_2020_3007493 crossref_primary_10_1007_s40820_024_01489_z crossref_primary_10_1063_1_5098140 crossref_primary_10_1016_j_matt_2022_05_032 crossref_primary_10_1007_s12668_025_01876_9 crossref_primary_10_1016_j_aca_2021_339230 crossref_primary_10_1021_acssensors_3c00367 crossref_primary_10_1017_dmp_2021_317 crossref_primary_10_1021_acssensors_8b00210 crossref_primary_10_1093_jat_bkae007 crossref_primary_10_1016_j_cej_2021_130543 crossref_primary_10_1080_05704928_2020_1848857 crossref_primary_10_1016_j_isci_2023_107821 crossref_primary_10_1016_j_jchromb_2018_11_002 crossref_primary_10_1109_JSEN_2022_3176049 crossref_primary_10_2217_nnm_2017_0269 crossref_primary_10_1002_hed_26043 crossref_primary_10_1016_j_cjac_2022_100059 crossref_primary_10_1063_1_5144532 crossref_primary_10_1016_j_trac_2020_116066 crossref_primary_10_1097_MNH_0000000000000661 crossref_primary_10_1021_acs_analchem_8b00688 crossref_primary_10_1373_clinchem_2018_287052 crossref_primary_10_1016_j_bios_2021_113664 crossref_primary_10_1021_acssensors_9b00310 crossref_primary_10_1021_acssensors_9b01763 crossref_primary_10_1088_1361_648X_abf477 crossref_primary_10_1002_aisy_202000063 crossref_primary_10_1021_acsomega_7b02035 crossref_primary_10_1371_journal_pntd_0007599 crossref_primary_10_1016_j_xcrp_2021_100661 crossref_primary_10_2116_analsci_19N018 crossref_primary_10_3390_diagnostics14141563 crossref_primary_10_3390_nano12172992 crossref_primary_10_3390_s18020343 crossref_primary_10_1109_TCSII_2021_3079163 crossref_primary_10_1021_acssensors_3c00011 crossref_primary_10_1088_1752_7163_ab0b8d crossref_primary_10_1002_admt_201800488 crossref_primary_10_1016_j_cca_2021_03_016 crossref_primary_10_1016_j_isci_2018_12_008 crossref_primary_10_1063_5_0139950 crossref_primary_10_1002_adbi_202000397 crossref_primary_10_1021_acsomega_2c01668 crossref_primary_10_1016_j_bios_2022_114919 crossref_primary_10_1088_1752_7163_ad53f8 crossref_primary_10_3390_biomedicines12081815 crossref_primary_10_3390_s22031120 crossref_primary_10_1021_acssensors_2c00146 crossref_primary_10_1016_j_cej_2021_134107 crossref_primary_10_1039_D2TB00690A crossref_primary_10_3390_s23208429 crossref_primary_10_4251_wjgo_v16_i5_2181 crossref_primary_10_1016_j_taap_2017_09_016 crossref_primary_10_1557_s43577_023_00495_7 crossref_primary_10_1039_D2SC02981B |
Cites_doi | 10.1021/acsnano.6b01441 10.1038/nnano.2009.235 10.1002/smll.201501904 10.1088/1752-7155/8/1/016003 10.1088/1752-7155/10/2/026004 10.1038/sj.bjc.6605810 10.18632/oncotarget.6269 10.1021/cn2000603 10.1586/erm.10.112 10.1016/S0140-6736(98)07552-7 10.1183/09031936.00015814 10.1016/j.nano.2011.10.001 10.1002/ijc.29166 10.1016/j.tube.2012.04.002 10.1016/j.tube.2010.01.003 10.1002/adfm.201602326 10.1002/smll.200801831 10.2217/nnm.14.121 10.1136/bmj.287.6392.594 10.1038/bjc.2014.411 10.1097/JTO.0b013e3182637d5f 10.1039/C3CS60329F 10.1002/adhm.201600588 10.1016/j.jtho.2016.02.017 10.1038/scientificamerican0792-74 10.1007/s10549-010-1317-x 10.1038/bjc.2013.44 10.1164/rccm.201303-0467LE 10.1183/09031936.00005614 10.1136/gutjnl-2014-308536 10.1021/jp105810w 10.1016/j.proeng.2011.12.385 10.1088/1752-7155/5/2/022001 10.1002/bmc.835 10.1067/mlc.2000.108943 10.1088/1752-7155/3/2/027002 10.1016/j.parkreldis.2014.11.023 10.1021/nl504482t 10.1016/j.cca.2014.04.030 10.1016/j.aca.2012.10.036 10.1063/1.3050524 10.7150/thno.7560 10.1021/ar400070m 10.1088/1752-7155/8/1/014001 10.2217/nnm.13.64 10.1038/bjc.2011.128 10.1038/ctg.2015.40 10.1016/0925-4005(91)80172-G 10.1016/j.resp.2006.01.007 10.1021/cr300174a 10.1097/SLA.0000000000001101 10.1016/j.etap.2015.07.018 10.1557/mrs2010.509 10.2217/nnm.11.135 10.1002/anie.201500153 10.1002/adma.201505641 10.1183/09031936.00019114 10.2147/ciia.2006.1.3.253 10.1088/0022-3727/40/23/S01 10.1002/admt.201600132 10.1021/acsnano.6b03127 10.1021/am2013695 10.1183/1025448x.00018509 10.1002/ijc.29701 10.1371/journal.pone.0095331 10.1021/nl404335p 10.1016/j.nano.2013.01.008 10.2174/1381612820666140314154331 10.1088/1752-7155/10/2/021002 10.1007/s12127-011-0078-5 10.1093/fampra/2.1.1 10.2174/1389200216666150625121546 |
ContentType | Journal Article |
Copyright | Copyright © 2016 American
Chemical Society Copyright © 2016 American Chemical Society 2016 American Chemical Society |
Copyright_xml | – notice: Copyright © 2016 American Chemical Society – notice: Copyright © 2016 American Chemical Society 2016 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 5PM |
DOI | 10.1021/acsnano.6b04930 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 125 |
ExternalDocumentID | PMC5269643 28000444 10_1021_acsnano_6b04930 a222008845 |
Genre | Research Support, Non-U.S. Gov't Meta-Analysis Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 4.4 5VS 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 5PM |
ID | FETCH-LOGICAL-a454t-69baea8e40b0e27e9ceacf3453930d7c4866764f3569e793ce656a5c2b88b0b53 |
IEDL.DBID | ACS |
ISSN | 1936-0851 |
IngestDate | Thu Aug 21 14:09:56 EDT 2025 Mon Jul 21 06:05:51 EDT 2025 Tue Jul 01 01:34:05 EDT 2025 Thu Apr 24 23:11:45 EDT 2025 Thu Aug 27 13:42:28 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | breath carbon nanotube disease noninvasive nanoparticle diagnosis sensor volatile organic compound |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_termsofuse.html This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a454t-69baea8e40b0e27e9ceacf3453930d7c4866764f3569e793ce656a5c2b88b0b53 |
ORCID | 0000-0002-2370-4073 0000-0001-6584-1327 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5269643 |
PMID | 28000444 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5269643 pubmed_primary_28000444 crossref_primary_10_1021_acsnano_6b04930 crossref_citationtrail_10_1021_acsnano_6b04930 acs_journals_10_1021_acsnano_6b04930 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-24 |
PublicationDateYYYYMMDD | 2017-01-24 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref38/cit38 doi: 10.1021/acsnano.6b01441 – ident: ref32/cit32 doi: 10.1038/nnano.2009.235 – ident: ref36/cit36 doi: 10.1002/smll.201501904 – ident: ref5/cit5 doi: 10.1088/1752-7155/8/1/016003 – ident: ref15/cit15 doi: 10.1088/1752-7155/10/2/026004 – ident: ref31/cit31 doi: 10.1038/sj.bjc.6605810 – ident: ref27/cit27 doi: 10.18632/oncotarget.6269 – ident: ref49/cit49 doi: 10.1021/cn2000603 – ident: ref20/cit20 doi: 10.1586/erm.10.112 – ident: ref21/cit21 doi: 10.1016/S0140-6736(98)07552-7 – ident: ref13/cit13 doi: 10.1183/09031936.00015814 – ident: ref26/cit26 doi: 10.1016/j.nano.2011.10.001 – ident: ref25/cit25 doi: 10.1002/ijc.29166 – ident: ref11/cit11 doi: 10.1016/j.tube.2012.04.002 – ident: ref12/cit12 doi: 10.1016/j.tube.2010.01.003 – ident: ref46/cit46 doi: 10.1002/adfm.201602326 – ident: ref72/cit72 doi: 10.1002/smll.200801831 – ident: ref6/cit6 doi: 10.2217/nnm.14.121 – ident: ref33/cit33 doi: 10.1136/bmj.287.6392.594 – ident: ref28/cit28 doi: 10.1038/bjc.2014.411 – ident: ref30/cit30 doi: 10.1097/JTO.0b013e3182637d5f – ident: ref3/cit3 doi: 10.1039/C3CS60329F – ident: ref50/cit50 doi: 10.1002/adhm.201600588 – ident: ref54/cit54 doi: 10.1016/j.jtho.2016.02.017 – ident: ref1/cit1 doi: 10.1038/scientificamerican0792-74 – ident: ref56/cit56 doi: 10.1007/s10549-010-1317-x – ident: ref57/cit57 doi: 10.1038/bjc.2013.44 – ident: ref14/cit14 doi: 10.1164/rccm.201303-0467LE – ident: ref17/cit17 doi: 10.1183/09031936.00005614 – ident: ref24/cit24 doi: 10.1136/gutjnl-2014-308536 – ident: ref71/cit71 doi: 10.1021/jp105810w – ident: ref39/cit39 doi: 10.1016/j.proeng.2011.12.385 – ident: ref64/cit64 doi: 10.1088/1752-7155/5/2/022001 – ident: ref2/cit2 doi: 10.1002/bmc.835 – ident: ref69/cit69 doi: 10.1067/mlc.2000.108943 – ident: ref70/cit70 doi: 10.1088/1752-7155/3/2/027002 – ident: ref52/cit52 doi: 10.1016/j.parkreldis.2014.11.023 – ident: ref47/cit47 doi: 10.1021/nl504482t – ident: ref61/cit61 doi: 10.1016/j.cca.2014.04.030 – ident: ref41/cit41 doi: 10.1016/j.aca.2012.10.036 – ident: ref40/cit40 doi: 10.1063/1.3050524 – ident: ref22/cit22 doi: 10.7150/thno.7560 – ident: ref37/cit37 doi: 10.1021/ar400070m – ident: ref9/cit9 doi: 10.1088/1752-7155/8/1/014001 – ident: ref7/cit7 doi: 10.2217/nnm.13.64 – ident: ref29/cit29 doi: 10.1038/bjc.2011.128 – ident: ref63/cit63 doi: 10.1038/ctg.2015.40 – ident: ref42/cit42 doi: 10.1016/0925-4005(91)80172-G – ident: ref68/cit68 doi: 10.1016/j.resp.2006.01.007 – ident: ref8/cit8 doi: 10.1021/cr300174a – ident: ref62/cit62 doi: 10.1097/SLA.0000000000001101 – ident: ref67/cit67 doi: 10.1016/j.etap.2015.07.018 – ident: ref58/cit58 doi: 10.1557/mrs2010.509 – ident: ref51/cit51 doi: 10.2217/nnm.11.135 – ident: ref4/cit4 doi: 10.1002/anie.201500153 – ident: ref48/cit48 doi: 10.1002/adma.201505641 – ident: ref53/cit53 doi: 10.1183/09031936.00019114 – ident: ref66/cit66 doi: 10.2147/ciia.2006.1.3.253 – ident: ref10/cit10 doi: 10.1088/0022-3727/40/23/S01 – ident: ref45/cit45 doi: 10.1002/admt.201600132 – ident: ref43/cit43 doi: 10.1021/acsnano.6b03127 – ident: ref59/cit59 doi: 10.1021/am2013695 – ident: ref60/cit60 doi: 10.1183/1025448x.00018509 – ident: ref23/cit23 doi: 10.1002/ijc.29701 – ident: ref18/cit18 doi: 10.1371/journal.pone.0095331 – ident: ref44/cit44 doi: 10.1021/nl404335p – ident: ref55/cit55 doi: 10.1016/j.nano.2013.01.008 – ident: ref65/cit65 doi: 10.2174/1381612820666140314154331 – ident: ref19/cit19 doi: 10.1088/1752-7155/10/2/021002 – ident: ref16/cit16 doi: 10.1007/s12127-011-0078-5 – ident: ref34/cit34 doi: 10.1093/fampra/2.1.1 – ident: ref35/cit35 doi: 10.2174/1389200216666150625121546 |
SSID | ssj0057876 |
Score | 2.6522274 |
SecondaryResourceType | review_article |
Snippet | We report on an artificially intelligent nanoarray based on molecularly modified gold nanoparticles and a random network of single-walled carbon nanotubes for... We report on an artificially intelligent nanoarray based on molecularly modified gold nanoparticles and a random network of single-walled carbon nanotubes for... |
SourceID | pubmedcentral pubmed crossref acs |
SourceType | Open Access Repository Index Database Enrichment Source Publisher |
StartPage | 112 |
SubjectTerms | Adult Artificial Intelligence Biosensing Techniques Breath Tests Case-Control Studies Disease - classification Female Gold - chemistry Humans Male Metal Nanoparticles - chemistry Middle Aged Nanotubes, Carbon - chemistry Pattern Recognition, Automated Volatile Organic Compounds - analysis |
Title | Diagnosis and Classification of 17 Diseases from 1404 Subjects via Pattern Analysis of Exhaled Molecules |
URI | http://dx.doi.org/10.1021/acsnano.6b04930 https://www.ncbi.nlm.nih.gov/pubmed/28000444 https://pubmed.ncbi.nlm.nih.gov/PMC5269643 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3NS8MwFMCDzIse_P6YX-Swg5fONk2T7Dj2wRAmgg52K0mTsqF0YjsR_3pf2q5ujqHnJoHkveS99L38HkIN03IDxTzhWJybQwNuGZDEc4RWYE24NozaB87DBzYY0ftxMP6BRf-O4BPvTkZpIpNZkylwZn24nW8TJphV4HbnaXHoWr1jRQAZLsjgRVQUn7UBrBmK0hUzVNme1bzIJUPT3y9StNKcT2jzS16a80w1o691euPfczhAe6W7iduFfhyiLZMcod0lCOExmnSLbLtpimWicV4l0-YP5SLDsxh7HHeLME6K7WsUbFk5GE4c-wsnxR9TiR9zSmeCF4gT2633OQHjo_GwKMBr0hM06veeOwOnrL_gSBrQzGEtJY0UhrrKNYSbVgSndOzTwIc5aB6BdBkHWfoBaxnY55EB51AGEVFCKFcF_imqJbPEnCMcx5JyoUD02qNKcyF5rF2jjUe4gktaHTVgjcJy_6RhHhonXlguXFguXB01F1ILo5JhbktpvG7ucFt1eCvwHZubnhXSrxoSkce7aR3xFb2oGlg09-qXZDrJEd22bjv4ehf_m9Yl2iHWW3A9h9ArVMve5-YafJ1M3eRa_g0z2_sr |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED4hGICB96M8PTCwpMSJE6cjokXlUQQCJLbIjh21AqWItAjx6zk7aWhBlWBNbMv2nX2ffefvAI50ww1kSCPH0Lk5LOCGA9KjTqQkWhOudMjMA-fOTdh-ZJdPwdMMuKO3MNiJHFvKrRP_m12AnuC3TGT9eigR0_p4SJ9DKEKNHp-e3Y_2XqN-YeFHxnMygomKzOdXA8YaJfmENapM0GR45Ji9OV-Gu6qnNszkuT4cyHry-YPE8T9DWYGlEnyS00JbVmFGZ2uwOEZJuA7dZhF718uJyBSxOTNNNJEVIOmnhHLSLJw6OTFvU4hhziG4_5gLnZy89wS5tZydGRkRnphqrY8umiJFOkU6Xp1vwON56-Gs7ZTZGBzBAjZwwoYUWkSaudLVHteNBPfs1GeBj2NQPEFZhxwl6wdhQ-OqTzRCRREknowi6crA34TZrJ_pbSBpKhiPJCqCokwqHgmeKlcrTT0u8chWgyOco7hcTXlsHeUejcuJi8uJq0F9JLw4KRnNTWKNl-kVjqsKrwWZx_SiW4USVAW9yHq_WQ34hHpUBQxR9-SfrNe1hN0mizsiv52_DesQ5tsPnev4-uLmahcWPIMjXOp4bA9mB29DvY8oaCAPrOJ_AX9hA5s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELUQSAgO7EtZfeiBS0oWJ06PVRextaoElbhFduyoFSitSIsQX8-Mk0YtCAmuiW3FnmfPODPzhpCqrtu-DJzQQjo3i_kcOSBdxwqVBG3ClQ4YJjh3e8HNgN09-89FUhjmwsBHZDBSZpz4uKsnKikYBpxreJ6KdFwLJNi1HlzU19AcQSw3mo_z8xchGOS-ZLgrg0FREvr8GAA1UpwtaaRSDS2HSC7onM42GZRfa0JNXmqzqazFn9-IHP87nR2yVRihtJGjZpes6HSPbC5QE-6TYSuPwRtlVKSKmtqZGFVkBEnHCXU4beXOnYxijgpFBh0K5xD-2Mno-0jQvuHuTOmc-AS7tT-GoJIU7eZleXV2QAad9lPzxiqqMliC-WxqBXUptAg1s6WtXa7rMZzdicd8D-ageAwyDzhI2APJaNj9sQYZCT92ZRhKW_reIVlNx6k-JjRJBOOhBEAoh0nFQ8ETZWulHZdLuLpVSBXWKCp2VRYZh7nrRMXCRcXCVUhtLsAoLpjNscDG6-8drsoOk5zU4_emRzkQyoZuaLzgrEL4EkTKBkjYvfwmHQ0NcTdWcwcL8ORv07ok6_1WJ3q47d2fkg0XzQnbsVx2RlanbzN9DsbQVF4Y7H8B04MGHg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnosis+and+Classification+of+17+Diseases+from+1404+Subjects+via+Pattern+Analysis+of+Exhaled+Molecules&rft.jtitle=ACS+nano&rft.au=Nakhleh%2C+Morad+K&rft.au=Amal%2C+Haitham&rft.au=Jeries%2C+Raneen&rft.au=Broza%2C+Yoav+Y&rft.date=2017-01-24&rft.eissn=1936-086X&rft.volume=11&rft.issue=1&rft.spage=112&rft_id=info:doi/10.1021%2Facsnano.6b04930&rft_id=info%3Apmid%2F28000444&rft.externalDocID=28000444 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |