Inverse Analysis of Deep Excavation Using Differential Evolution Algorithm

Summary This paper presents the applications of the differential evolution (DE) algorithm in back analysis of soil parameters for deep excavation problems. A computer code, named Python‐based DE, is developed and incorporated into the commercial finite element software ABAQUS, with a parallel comput...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical and analytical methods in geomechanics Vol. 39; no. 2; pp. 115 - 134
Main Authors Zhao, B. D., Zhang, L. L., Jeng, D. S., Wang, J. H., Chen, J. J.
Format Journal Article
LanguageEnglish
Published Bognor Regis Blackwell Publishing Ltd 10.02.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0363-9061
1096-9853
1096-9853
DOI10.1002/nag.2287

Cover

Abstract Summary This paper presents the applications of the differential evolution (DE) algorithm in back analysis of soil parameters for deep excavation problems. A computer code, named Python‐based DE, is developed and incorporated into the commercial finite element software ABAQUS, with a parallel computing technique to run an FE analysis for all trail vectors of one generation in DE in multiple cores of a cluster, which dramatically reduces the computational time. A synthetic case and a well‐instrumented real case, that is, the Taipei National Enterprise Center (TNEC) project, are used to demonstrate the capability of the proposed back‐analysis procedure. Results show that multiple soil parameters are well identified by back analysis using a DE optimization algorithm for highly nonlinear problems. For the synthetic excavation case, the back‐analyzed parameters are basically identical to the input parameters that are used to generate synthetic response of wall deflection. For the TNEC case with a total of nine parameters to be back analyzed, the relative errors of wall deflection for the last three stages are 2.2, 1.1, and 1.0%, respectively. Robustness of the back‐estimated parameters is further illustrated by a forward prediction. The wall deflection in the subsequent stages can be satisfactorily predicted using the back‐analyzed soil parameters at early stages. Copyright © 2014 John Wiley & Sons, Ltd.
AbstractList Summary This paper presents the applications of the differential evolution (DE) algorithm in back analysis of soil parameters for deep excavation problems. A computer code, named Python‐based DE, is developed and incorporated into the commercial finite element software ABAQUS, with a parallel computing technique to run an FE analysis for all trail vectors of one generation in DE in multiple cores of a cluster, which dramatically reduces the computational time. A synthetic case and a well‐instrumented real case, that is, the Taipei National Enterprise Center (TNEC) project, are used to demonstrate the capability of the proposed back‐analysis procedure. Results show that multiple soil parameters are well identified by back analysis using a DE optimization algorithm for highly nonlinear problems. For the synthetic excavation case, the back‐analyzed parameters are basically identical to the input parameters that are used to generate synthetic response of wall deflection. For the TNEC case with a total of nine parameters to be back analyzed, the relative errors of wall deflection for the last three stages are 2.2, 1.1, and 1.0%, respectively. Robustness of the back‐estimated parameters is further illustrated by a forward prediction. The wall deflection in the subsequent stages can be satisfactorily predicted using the back‐analyzed soil parameters at early stages. Copyright © 2014 John Wiley & Sons, Ltd.
This paper presents the applications of the differential evolution (DE) algorithm in back analysis of soil parameters for deep excavation problems. A computer code, named Python-based DE, is developed and incorporated into the commercial finite element software ABAQUS, with a parallel computing technique to run an FE analysis for all trail vectors of one generation in DE in multiple cores of a cluster, which dramatically reduces the computational time. A synthetic case and a well-instrumented real case, that is, the Taipei National Enterprise Center (TNEC) project, are used to demonstrate the capability of the proposed back-analysis procedure. Results show that multiple soil parameters are well identified by back analysis using a DE optimization algorithm for highly nonlinear problems. For the synthetic excavation case, the back-analyzed parameters are basically identical to the input parameters that are used to generate synthetic response of wall deflection. For the TNEC case with a total of nine parameters to be back analyzed, the relative errors of wall deflection for the last three stages are 2.2, 1.1, and 1.0%, respectively. Robustness of the back-estimated parameters is further illustrated by a forward prediction. The wall deflection in the subsequent stages can be satisfactorily predicted using the back-analyzed soil parameters at early stages. Copyright copyright 2014 John Wiley & Sons, Ltd.
Summary This paper presents the applications of the differential evolution (DE) algorithm in back analysis of soil parameters for deep excavation problems. A computer code, named Python-based DE, is developed and incorporated into the commercial finite element software ABAQUS, with a parallel computing technique to run an FE analysis for all trail vectors of one generation in DE in multiple cores of a cluster, which dramatically reduces the computational time. A synthetic case and a well-instrumented real case, that is, the Taipei National Enterprise Center (TNEC) project, are used to demonstrate the capability of the proposed back-analysis procedure. Results show that multiple soil parameters are well identified by back analysis using a DE optimization algorithm for highly nonlinear problems. For the synthetic excavation case, the back-analyzed parameters are basically identical to the input parameters that are used to generate synthetic response of wall deflection. For the TNEC case with a total of nine parameters to be back analyzed, the relative errors of wall deflection for the last three stages are 2.2, 1.1, and 1.0%, respectively. Robustness of the back-estimated parameters is further illustrated by a forward prediction. The wall deflection in the subsequent stages can be satisfactorily predicted using the back-analyzed soil parameters at early stages. Copyright © 2014 John Wiley & Sons, Ltd.
This paper presents the applications of the differential evolution (DE) algorithm in back analysis of soil parameters for deep excavation problems. A computer code, named Python‐based DE, is developed and incorporated into the commercial finite element software ABAQUS, with a parallel computing technique to run an FE analysis for all trail vectors of one generation in DE in multiple cores of a cluster, which dramatically reduces the computational time. A synthetic case and a well‐instrumented real case, that is, the Taipei National Enterprise Center (TNEC) project, are used to demonstrate the capability of the proposed back‐analysis procedure. Results show that multiple soil parameters are well identified by back analysis using a DE optimization algorithm for highly nonlinear problems. For the synthetic excavation case, the back‐analyzed parameters are basically identical to the input parameters that are used to generate synthetic response of wall deflection. For the TNEC case with a total of nine parameters to be back analyzed, the relative errors of wall deflection for the last three stages are 2.2, 1.1, and 1.0%, respectively. Robustness of the back‐estimated parameters is further illustrated by a forward prediction. The wall deflection in the subsequent stages can be satisfactorily predicted using the back‐analyzed soil parameters at early stages. Copyright © 2014 John Wiley & Sons, Ltd.
Author Wang, J. H.
Chen, J. J.
Zhang, L. L.
Zhao, B. D.
Jeng, D. S.
Author_xml – sequence: 1
  givenname: B. D.
  surname: Zhao
  fullname: Zhao, B. D.
  organization: Department of Civil and Architectural Engineering, City University of Hong Kong, Hong Kong, China
– sequence: 2
  givenname: L. L.
  surname: Zhang
  fullname: Zhang, L. L.
  email: Correspondence to: L. L. Zhang, State Key Laboratory of Ocean Engineering, Civil Engineering Department, Shanghai Jiaotong University, Shanghai, 200240, China., lulu_zhang@sjtu.edu.cn
  organization: State Key Laboratory of Ocean Engineering, Civil Engineering Department, Shanghai Jiaotong University, 200240, Shanghai, China
– sequence: 3
  givenname: D. S.
  surname: Jeng
  fullname: Jeng, D. S.
  organization: State Key Laboratory of Ocean Engineering, Civil Engineering Department, Shanghai Jiaotong University, 200240, Shanghai, China
– sequence: 4
  givenname: J. H.
  surname: Wang
  fullname: Wang, J. H.
  organization: State Key Laboratory of Ocean Engineering, Civil Engineering Department, Shanghai Jiaotong University, 200240, Shanghai, China
– sequence: 5
  givenname: J. J.
  surname: Chen
  fullname: Chen, J. J.
  organization: State Key Laboratory of Ocean Engineering, Civil Engineering Department, Shanghai Jiaotong University, 200240, Shanghai, China
BookMark eNqF0E1v2yAYwHE0tdLSF2kfwdIu28EpGAz4mDVp1ndVarcjwuRxRkcgBTttvv2cpqq0SutOHJ4f6OG_h3Z88IDQJ4KHBOPiyOv5sCik-IAGBFc8r2RJd9AAU07zCnPyEe2ldI8xLvvpAJ2d-hXEBNnIa7dONmWhycYAy2zyZPRKtzb47C5ZP8_Gtmkggm-tdtlkFVz3PBy5eYi2_bU4QLuNdgkOX859dHcyuT3-nl9cT0-PRxe5ZiUTOYgailpIQmYEZrSktZhVVGqqeSGACcOg1g0roJ7VjWwk4abEtSxNLRkYw-g--rp9t_NLvX7UzqlltAsd14pgtYmg-ghqE6G3X7Z2GcNDB6lVC5sMOKc9hC4pIhiXlSBU_p9yjrGQHPOefn5D70MX-4AbxRgjhBWbPYdbZWJIKUKjjG2fg7ZRW_fOsq8X3vlXvqWP1sH6n05djaZ_e5taeHr1Ov5WXFBRqp9XU_XthhWX8vyHmtI_M2e0YQ
CODEN IJNGDZ
CitedBy_id crossref_primary_10_1016_j_undsp_2021_12_005
crossref_primary_10_1061__ASCE_GM_1943_5622_0002359
crossref_primary_10_3390_app122010665
crossref_primary_10_1016_j_enggeo_2018_03_019
crossref_primary_10_1016_j_jrmge_2023_05_007
crossref_primary_10_1007_s11440_023_02191_x
crossref_primary_10_1007_s10706_022_02351_y
crossref_primary_10_1080_19648189_2020_1752809
crossref_primary_10_1016_j_jrmge_2021_07_011
crossref_primary_10_1016_j_tust_2021_104340
crossref_primary_10_1007_s10064_020_01936_2
crossref_primary_10_1007_s11440_021_01441_0
crossref_primary_10_1016_j_swevo_2024_101818
crossref_primary_10_1007_s10064_023_03286_1
crossref_primary_10_1007_s11831_020_09442_0
crossref_primary_10_1016_j_enganabound_2023_10_011
crossref_primary_10_1016_j_engappai_2018_11_002
crossref_primary_10_1016_j_engappai_2025_110506
crossref_primary_10_1016_j_eswa_2024_125495
crossref_primary_10_1007_s11440_017_0586_5
crossref_primary_10_1016_j_jrmge_2023_09_034
crossref_primary_10_1139_cgj_2023_0457
crossref_primary_10_3390_app12178519
crossref_primary_10_1007_s10706_024_02951_w
crossref_primary_10_1007_s11204_018_9522_4
crossref_primary_10_3390_buildings14051321
crossref_primary_10_1002_nag_3480
crossref_primary_10_1007_s10706_023_02639_7
crossref_primary_10_1016_j_undsp_2023_02_005
crossref_primary_10_1007_s11440_020_00936_6
crossref_primary_10_1016_j_geotexmem_2024_11_008
crossref_primary_10_1016_j_ijrmms_2020_104419
crossref_primary_10_1002_nag_2554
crossref_primary_10_1002_nag_3742
crossref_primary_10_1016_j_tust_2017_01_009
crossref_primary_10_1002_nag_2714
crossref_primary_10_1007_s00500_019_04316_5
crossref_primary_10_1061__ASCE_GM_1943_5622_0002245
Cites_doi 10.1061/(ASCE)GT.1943-5606.0000205
10.1139/t89-064
10.1061/(ASCE)1090-0241(1998)124:9(798)
10.1680/geot.2005.55.7.497
10.1016/j.compgeo.2009.11.005
10.1016/0266-352X(95)00021-2
10.1002/nag.684
10.1016/j.compgeo.2012.09.011
10.7551/mitpress/1090.001.0001
10.1139/t94-026
10.1155/2013/980154
10.1680/geot.1999.49.6.825
10.1139/t00-018
10.1016/j.tust.2011.10.003
10.1111/0272-4332.00039
10.1061/(ASCE)GT.1943-5606.0000782
10.1002/nag.1028
10.1061/(ASCE)GT.1943-5606.0000826
10.1016/j.compgeo.2008.09.005
10.1002/nag.813
10.1002/nag.776
10.1680/geot.1998.48.6.731
10.1016/j.compgeo.2010.11.010
10.1016/j.compgeo.2007.01.007
10.1007/978-3-540-68830-3
10.1016/j.tust.2008.08.001
10.1061/(ASCE)1090-0241(2007)133:7(878)
10.1016/S0266-352X(00)00020-3
10.1061/(ASCE)1090-0241(2009)135:4(497)
10.1061/(ASCE)GT.1943-5606.0000518
10.1002/nag.614
10.1061/(ASCE)GT.1943-5606.0000348
10.1016/S0098-3004(02)00106-1
10.1680/geot.1989.39.2.175
10.1007/978-3-642-31125-3_48
10.1061/(ASCE)1090-0241(2005)131:7(826)
10.1016/j.compgeo.2010.07.009
10.1002/nag.1019
10.1016/j.compgeo.2005.11.005
10.1061/(ASCE)GT.1943-5606.0000553
10.1023/A:1008202821328
10.1061/(ASCE)0733-9410(1996)122:6(474)
10.1061/(ASCE)0733-9410(1991)117:10(1590)
10.1016/j.compgeo.2007.08.008
10.1016/0266-352X(93)90014-X
10.1016/j.compgeo.2008.02.004
10.1061/(ASCE)1090-0241(2006)132:8(1019)
10.1109/TEVC.2010.2059031
10.1139/t07-014
10.1016/j.compgeo.2005.02.001
10.1016/S0098-1354(98)00277-4
ContentType Journal Article
Copyright Copyright © 2014 John Wiley & Sons, Ltd.
Copyright © 2015 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2014 John Wiley & Sons, Ltd.
– notice: Copyright © 2015 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
7UA
8FD
C1K
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1002/nag.2287
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Civil Engineering Abstracts
Civil Engineering Abstracts
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-9853
EndPage 134
ExternalDocumentID oai:researchrepository.ucd.ie:10197/12593
3554287901
10_1002_nag_2287
NAG2287
ark_67375_WNG_BQ42M8KV_G
Genre article
GeographicLocations Taiwan, Taipei
GeographicLocations_xml – name: Taiwan, Taipei
GrantInformation_xml – fundername: Shanghai Rising‐Star Program of Science and Technology Commission of Shanghai Municipality
  funderid: 12QA1401800
– fundername: Natural Science Foundation of China
  funderid: 41172252; 41372282
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
7SC
7UA
8FD
C1K
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
.Y3
31~
41~
ABEML
ACSCC
ADTOC
AFZJQ
AGHNM
AI.
AIQQE
ASPBG
AVWKF
AZFZN
BDRZF
FEDTE
GBZZK
HF~
HVGLF
M6O
PALCI
RIWAO
RJQFR
SAMSI
UNPAY
VH1
ZY4
ID FETCH-LOGICAL-a4547-e7be2b7811d1ed353b7d938a3a627e47c4ebaf42ebdbf8f816c50b85cb84ecc43
IEDL.DBID DR2
ISSN 0363-9061
1096-9853
IngestDate Sun Oct 26 04:12:11 EDT 2025
Tue Oct 07 09:22:15 EDT 2025
Thu Oct 02 06:48:35 EDT 2025
Fri Jul 25 12:06:08 EDT 2025
Thu Apr 24 22:58:22 EDT 2025
Wed Oct 01 03:41:34 EDT 2025
Wed Aug 20 07:26:26 EDT 2025
Sun Sep 21 06:14:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4547-e7be2b7811d1ed353b7d938a3a627e47c4ebaf42ebdbf8f816c50b85cb84ecc43
Notes ark:/67375/WNG-BQ42M8KV-G
Natural Science Foundation of China - No. 41172252; No. 41372282
Shanghai Rising-Star Program of Science and Technology Commission of Shanghai Municipality - No. 12QA1401800
istex:11F31F6AE864599CBD6F8C62ABE8B2BBEC23848B
ArticleID:NAG2287
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=http://hdl.handle.net/10197/12593
PQID 1644411424
PQPubID 996377
PageCount 20
ParticipantIDs unpaywall_primary_10_1002_nag_2287
proquest_miscellaneous_1746897138
proquest_miscellaneous_1660078606
proquest_journals_1644411424
crossref_citationtrail_10_1002_nag_2287
crossref_primary_10_1002_nag_2287
wiley_primary_10_1002_nag_2287_NAG2287
istex_primary_ark_67375_WNG_BQ42M8KV_G
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 10 February 2015
PublicationDateYYYYMMDD 2015-02-10
PublicationDate_xml – month: 02
  year: 2015
  text: 10 February 2015
  day: 10
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal for numerical and analytical methods in geomechanics
PublicationTitleAlternate Int. J. Numer. Anal. Meth. Geomech
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Hashash YMA, Whittle AJ. Ground movement prediction for deep excavations in soft clay. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 1996; 122(6):474-486.
Zhang LM, Li X. Microporosity structure of coarse granular soils. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2010; 136(10):1425-1436.
Levasseur S, Malecot Y, Boulon M, Flavigny E. Statistical inverse analysis based on genetic algorithm and principal component analysis: Method and developments using synthetic data. International Journal for Numerical and Analytical Methods in Geomechanics 2009; 33:1485-1511.
Hashash YMA, Marulanda C, Ghaboussi J, Jung S. Novel approach to integration of numerical modeling and field observations for deep excavations. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2006; 132(8):1019-1031.
Ou CY, Lai CH. Finite-element analysis of deep excavation in layered sandy and clayey soil deposits. Canadian Geotechnical Journal 1994; 31(2):204-214.
Nikolinakou M, Whittle A, Savidis S, Schran U. Prediction and Interpretation of the Performance of a Deep Excavation in Berlin Sand. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2011; 137(11):1047-1061.
Ledesma A, Gens A, Alonso EE. Estimation of parameters in geotechnical backanalysis - I. Maximum likelihood approach. Computers and Geotechnics 1996; 18(1):1-27.
Cui LJ, Sheng DC. Genetic algorithms in probabilistic finite element analysis of geotechnical problems. Computers and Geotechnics 2005; 32:555-563.
Tang YG, Kung GTC. Application of nonlinear optimization technique to back analyses of deep excavation. Computers and Geotechnics 2009; 36(1-2):276-290.
Zentar R, Hicher PY, Moulin G. Identification of soil parameters by inverse analysis. Computers and Geotechnics 2001; 28(2):129-144.
Das S, Suganthan PN. Differential Evolution: a survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation 2011; 15(1):4-31. doi:10.1109/TEVC.2010.2059031.
Chakraborty UK. Advances in Differential Evolution. Springer: Berlin, Germany, 2008.
Ng CWW, Yan WM. Three-dimensional modelling of a diaphragm wall construction sequence. Geotechnique 1999; 49(6):825-834.
Ou CY, Liao JT, Lin HD. Performance of diaphragm wall constructed using top-down method. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 1998; 124(9):798-808.
Simpson AR, Priest SD. Application of genetic algorithms to optimization problems in geotechnics. Computers and Geotechnics 1993; 15(1):1-19.
Obrzud RF, Truty A, Vulliet L. Numerical modeling and neural networks to identify model parameters from piezocone tests: II. Multi-parameter identification from piezocone data. International Journal for Numerical and Analytical Methods in Geomechanics 2012; 36(6):743-779.
Kemeny J, Post R. Estimating three-dimensional rock discontinuity orientation from digital images of fracture traces. Computers and Geosciencs 2003; 29(1):65-77.
Ou CY, Shiau BY, Wang IW. Three-dimensional deformation behavior of the Taipei National Enterprise Center (TNEC) excavation case history. Canadian Geotechnical Journal 2000; 37(2):438-448.
Kung GTC, Hsiao ECL, Juang CH. Evaluation of a simplified small-strain soil model for analysis of excavation-induced movements. Canadian Geotechnical Journal 2007; 44:726-736.
Papon A, Riou Y, Dano C, Hicher P-Y. Single- and multi-objective genetic algorithm optimization for identifying soil parameters. International Journal for Numerical and Analytical Methods in Geomechanics 2012; 36:597-618.
Guan Z, Jiang Y, Tanabashi Y. Rheological parameter estimation for the prediction of long-term deformations in conventional tunnelling. Tunnelling and Underground Space Technology 2009; 24(3):250-259.
Vardakos S, Gutierrez M, Xia C. Parameter identification in numerical modeling of tunneling using the Differential Evolution Genetic Algorithm (DEGA). Tunnelling and underground space technology 2012; 28(1):109-123.
Zhang J, Tang WH, Zhang LM. Efficient probabilistic back-analysis of slope stability model parameters. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2010; 136(1):99-109.
Zhang LL, Zuo ZB, Ye GL, Jeng DS, Wang JH. Probabilistic parameter estimation and predictive uncertainty based on field measurements for unsaturated soil slope. Computers and Geotechnics 2013; 48(1):72-81.
Levasseur S, Malecot Y, Boulon M, Flavigny E. Statistical inverse analysis based on genetic algorithm and principal component analysis: Applications to excavation problems and pressuremeter tests. International Journal for Numerical and Analytical Methods in Geomechanics 2010; 34:471-491.
Wu S, Ching J, Ou C. Predicting Wall Displacements for Excavations with Cross Walls in Soft Clay. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2012; DOI: http://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0000826.
Zolfaghari AR, Heath AC, McCombie PF. Simple genetic algorithm search for critical non-circular failure surface in slope stability analysis. Computers and Geotechnics 2005; 32:139-152.
Holland JH. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press: Cambridge MA, 1992.
Frey HC, Patil SR. Identification and review of sensitivity analysis methods. Risk Analysis 2002; 22(3):553-578.
Burland JB. Ninth Laurits Bjerrum Memorial Lecture: 'Small is beautiful' - the stiffness of soils at small strains. Canadian Geotechnical Journal 1989; 26(4):499-516.
Hashash YMA, Levasseur S, Osouli A, Finno R, Malecot Y. Comparison of two inverse analysis techniques for learning deep excavation response. Computers and Geotechnics 2010; 37(3):323-333.
Fourie AB, Potts DM. Comparison of finite element and limiting equilibrium analyses for an embedded cantilever retaining wall. Geotechnique 1989; 39(2):175-188.
Ou CY. Deep Excavation: Theory and Practice. Taylor & Francis: Netherlands, 2006.
Xue J-F, Gavin K. Simultaneous determination of critical slip surface and reliability index for slopes. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2007; 133(7):878-886.
Yin ZY, Hicher PY. Identifying parameters controlling soil delayed behaviour from laboratory and in situ pressuremeter testing. International Journal for Numerical and Analytical Methods in Geomechanics 2008; 32(12):1515-1535.
Rechea C, Levasseur S, Finno R. Inverse analysis techniques for parameter identification in simulation of excavation support systems. Computers and Geotechnics 2008; 35(3):331-345.
Navarro V, Candel M, Barenca A, Yustres A, Garcia B. Optimisation procedure for choosing Cam clay parameters. Computers and Geotechnics 2007; 34(6):524-531.
Chan C, Zhang L, Ng J. Optimization of pile groups using hybrid genetic algorithms. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2009; 35(4):497-505.
Price KV, Storn RM, Lampinen JA. Differential Evolution - A Practical Approach to Global Optimization. Springer: Germany, 2005.
Finno RJ, Harahap IS. Finite element analyses of HDR-4 excavation. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 1991; 117(10):1590-1609.
Juang CH, Luo Z, Atamturktur S, Huang H. Bayesian Updating of Soil Parameters for Braced Excavations Using Field Observations. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2013; 139(3):395-406.
Storn R, Price K. Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization 1997; 11(4):341-359.
Bica AVD, Clayton CRI. An experimental study of the behaviour of embedded lengths of cantilever walls. Geotechnique 1998; 48(6):731-745.
Zhang Y, Gallipoli D, Augarde CE. Simulation-based calibration of geotechnical parameters using parallel hybrid moving boundary particle swarm optimization. Computers and Geotechnics 2009; 36(4):604-615.
Lim A, Ou CY, Hsieh PG. Evaluation of clay constitutive models for analysis of deep excavation under undrained conditions. Journal of GeoEngineering 2010; 5(1):9-20.
Xing J, Jiang A, Wen Z, Qiu J. A nonlinear optimization technique of tunnel construction based on DE and LSSVM. Mathematical Problems in Engineering 2013; Article ID 980154, 11 pages. DOI: 10.1155/2013/980154.
Levasseur S, Malécot Y, Boulon M, Flavigny E. Soil parameter identification using a genetic algorithm. International Journal for Numerical and Analytical Methods in Geomechanics 2008; 32(2):189-213.
Zdravkovic L, Potts DM, St John HD. Modelling of a 3D excavation in finite element analysis. Geotechnique 2005; 55(7):497-513.
Finno RJ, Calvello M. Supported excavations: Observational method and inverse modeling. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2005; 131(7):826-836.
Zhang LL, Zhang J, Zhang LM, Tang WH. Back analysis of slope failure with Markov chain Monte Carlo simulation. Computers and Geotechnics 2010; 37(7-8):905-912.
Babu BV, Sastry KKN. Estimation of heat transfer parameters in a trickle-bed reactor using differential evolution and orthogonal collocation. Computers & Chemical Engineering 1999; 23(3):327-339.
Li JH, Zhang LM. Connectivity of a network of random discontinuities. Computers and Geotechnics 2011; 38(2):217-226.
Tan Y, Wei B. Observed behaviors of a long and deep excavation constructed by cut-and-cover technique in shanghai soft clay. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2012; 138(1):69-88.
2010; 34
2011; 137
1998; 48
2009; 24
1996; 18
2013; 48
2010; 37
2005; 131
2012
1999; 49
1999; 23
2008
2006; 132
2008; 35
2006
1996; 122
2008; 32
2005
2001; 28
1992
2011; 15
2002
1989; 26
2012; 36
1991; 117
2011; 38
2007; 34
1993; 15
2009; 33
2009; 36
2009; 35
1997; 11
2000; 37
2010; 136
2007; 133
2013; 139
2002; 22
2005; 32
2003; 29
2012; 28
2013
2007; 44
2010; 5
1998; 124
2012; 138
2005; 55
1989; 39
1994; 31
e_1_2_8_28_1
Price KV (e_1_2_8_43_1) 2005
e_1_2_8_24_1
Ou CY (e_1_2_8_53_1) 2006
Hashash YMA (e_1_2_8_4_1) 1996; 122
e_1_2_8_26_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_22_1
e_1_2_8_45_1
Vardakos S (e_1_2_8_47_1) 2012; 28
e_1_2_8_41_1
Chan C (e_1_2_8_37_1) 2009; 35
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
Kung GTC (e_1_2_8_7_1) 2007; 44
Ng CWW (e_1_2_8_5_1) 1999; 49
e_1_2_8_11_1
e_1_2_8_34_1
Amorim EP (e_1_2_8_46_1) 2012
Finno RJ (e_1_2_8_2_1) 1991; 117
e_1_2_8_30_1
Fourie AB (e_1_2_8_50_1) 1989; 39
e_1_2_8_29_1
e_1_2_8_25_1
Ou CY (e_1_2_8_55_1) 2000; 37
e_1_2_8_27_1
e_1_2_8_48_1
Lampinen J (e_1_2_8_49_1) 2002
Kemeny J (e_1_2_8_32_1) 2003; 29
Bica AVD (e_1_2_8_51_1) 1998; 48
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
Lim A (e_1_2_8_12_1) 2010; 5
Ou CY (e_1_2_8_3_1) 1994; 31
Ou CY (e_1_2_8_13_1) 1998; 124
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
References_xml – reference: Cui LJ, Sheng DC. Genetic algorithms in probabilistic finite element analysis of geotechnical problems. Computers and Geotechnics 2005; 32:555-563.
– reference: Xing J, Jiang A, Wen Z, Qiu J. A nonlinear optimization technique of tunnel construction based on DE and LSSVM. Mathematical Problems in Engineering 2013; Article ID 980154, 11 pages. DOI: 10.1155/2013/980154.
– reference: Nikolinakou M, Whittle A, Savidis S, Schran U. Prediction and Interpretation of the Performance of a Deep Excavation in Berlin Sand. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2011; 137(11):1047-1061.
– reference: Li JH, Zhang LM. Connectivity of a network of random discontinuities. Computers and Geotechnics 2011; 38(2):217-226.
– reference: Zhang LL, Zhang J, Zhang LM, Tang WH. Back analysis of slope failure with Markov chain Monte Carlo simulation. Computers and Geotechnics 2010; 37(7-8):905-912.
– reference: Levasseur S, Malecot Y, Boulon M, Flavigny E. Statistical inverse analysis based on genetic algorithm and principal component analysis: Method and developments using synthetic data. International Journal for Numerical and Analytical Methods in Geomechanics 2009; 33:1485-1511.
– reference: Levasseur S, Malécot Y, Boulon M, Flavigny E. Soil parameter identification using a genetic algorithm. International Journal for Numerical and Analytical Methods in Geomechanics 2008; 32(2):189-213.
– reference: Zhang Y, Gallipoli D, Augarde CE. Simulation-based calibration of geotechnical parameters using parallel hybrid moving boundary particle swarm optimization. Computers and Geotechnics 2009; 36(4):604-615.
– reference: Ng CWW, Yan WM. Three-dimensional modelling of a diaphragm wall construction sequence. Geotechnique 1999; 49(6):825-834.
– reference: Storn R, Price K. Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization 1997; 11(4):341-359.
– reference: Ledesma A, Gens A, Alonso EE. Estimation of parameters in geotechnical backanalysis - I. Maximum likelihood approach. Computers and Geotechnics 1996; 18(1):1-27.
– reference: Zhang LL, Zuo ZB, Ye GL, Jeng DS, Wang JH. Probabilistic parameter estimation and predictive uncertainty based on field measurements for unsaturated soil slope. Computers and Geotechnics 2013; 48(1):72-81.
– reference: Ou CY, Liao JT, Lin HD. Performance of diaphragm wall constructed using top-down method. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 1998; 124(9):798-808.
– reference: Guan Z, Jiang Y, Tanabashi Y. Rheological parameter estimation for the prediction of long-term deformations in conventional tunnelling. Tunnelling and Underground Space Technology 2009; 24(3):250-259.
– reference: Papon A, Riou Y, Dano C, Hicher P-Y. Single- and multi-objective genetic algorithm optimization for identifying soil parameters. International Journal for Numerical and Analytical Methods in Geomechanics 2012; 36:597-618.
– reference: Chan C, Zhang L, Ng J. Optimization of pile groups using hybrid genetic algorithms. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2009; 35(4):497-505.
– reference: Frey HC, Patil SR. Identification and review of sensitivity analysis methods. Risk Analysis 2002; 22(3):553-578.
– reference: Lim A, Ou CY, Hsieh PG. Evaluation of clay constitutive models for analysis of deep excavation under undrained conditions. Journal of GeoEngineering 2010; 5(1):9-20.
– reference: Tang YG, Kung GTC. Application of nonlinear optimization technique to back analyses of deep excavation. Computers and Geotechnics 2009; 36(1-2):276-290.
– reference: Kemeny J, Post R. Estimating three-dimensional rock discontinuity orientation from digital images of fracture traces. Computers and Geosciencs 2003; 29(1):65-77.
– reference: Chakraborty UK. Advances in Differential Evolution. Springer: Berlin, Germany, 2008.
– reference: Juang CH, Luo Z, Atamturktur S, Huang H. Bayesian Updating of Soil Parameters for Braced Excavations Using Field Observations. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2013; 139(3):395-406.
– reference: Vardakos S, Gutierrez M, Xia C. Parameter identification in numerical modeling of tunneling using the Differential Evolution Genetic Algorithm (DEGA). Tunnelling and underground space technology 2012; 28(1):109-123.
– reference: Zdravkovic L, Potts DM, St John HD. Modelling of a 3D excavation in finite element analysis. Geotechnique 2005; 55(7):497-513.
– reference: Holland JH. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press: Cambridge MA, 1992.
– reference: Tan Y, Wei B. Observed behaviors of a long and deep excavation constructed by cut-and-cover technique in shanghai soft clay. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2012; 138(1):69-88.
– reference: Yin ZY, Hicher PY. Identifying parameters controlling soil delayed behaviour from laboratory and in situ pressuremeter testing. International Journal for Numerical and Analytical Methods in Geomechanics 2008; 32(12):1515-1535.
– reference: Simpson AR, Priest SD. Application of genetic algorithms to optimization problems in geotechnics. Computers and Geotechnics 1993; 15(1):1-19.
– reference: Hashash YMA, Whittle AJ. Ground movement prediction for deep excavations in soft clay. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 1996; 122(6):474-486.
– reference: Zhang LM, Li X. Microporosity structure of coarse granular soils. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2010; 136(10):1425-1436.
– reference: Obrzud RF, Truty A, Vulliet L. Numerical modeling and neural networks to identify model parameters from piezocone tests: II. Multi-parameter identification from piezocone data. International Journal for Numerical and Analytical Methods in Geomechanics 2012; 36(6):743-779.
– reference: Babu BV, Sastry KKN. Estimation of heat transfer parameters in a trickle-bed reactor using differential evolution and orthogonal collocation. Computers & Chemical Engineering 1999; 23(3):327-339.
– reference: Kung GTC, Hsiao ECL, Juang CH. Evaluation of a simplified small-strain soil model for analysis of excavation-induced movements. Canadian Geotechnical Journal 2007; 44:726-736.
– reference: Hashash YMA, Marulanda C, Ghaboussi J, Jung S. Novel approach to integration of numerical modeling and field observations for deep excavations. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2006; 132(8):1019-1031.
– reference: Ou CY, Lai CH. Finite-element analysis of deep excavation in layered sandy and clayey soil deposits. Canadian Geotechnical Journal 1994; 31(2):204-214.
– reference: Price KV, Storn RM, Lampinen JA. Differential Evolution - A Practical Approach to Global Optimization. Springer: Germany, 2005.
– reference: Bica AVD, Clayton CRI. An experimental study of the behaviour of embedded lengths of cantilever walls. Geotechnique 1998; 48(6):731-745.
– reference: Navarro V, Candel M, Barenca A, Yustres A, Garcia B. Optimisation procedure for choosing Cam clay parameters. Computers and Geotechnics 2007; 34(6):524-531.
– reference: Rechea C, Levasseur S, Finno R. Inverse analysis techniques for parameter identification in simulation of excavation support systems. Computers and Geotechnics 2008; 35(3):331-345.
– reference: Fourie AB, Potts DM. Comparison of finite element and limiting equilibrium analyses for an embedded cantilever retaining wall. Geotechnique 1989; 39(2):175-188.
– reference: Wu S, Ching J, Ou C. Predicting Wall Displacements for Excavations with Cross Walls in Soft Clay. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2012; DOI: http://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0000826.
– reference: Zhang J, Tang WH, Zhang LM. Efficient probabilistic back-analysis of slope stability model parameters. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2010; 136(1):99-109.
– reference: Burland JB. Ninth Laurits Bjerrum Memorial Lecture: 'Small is beautiful' - the stiffness of soils at small strains. Canadian Geotechnical Journal 1989; 26(4):499-516.
– reference: Das S, Suganthan PN. Differential Evolution: a survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation 2011; 15(1):4-31. doi:10.1109/TEVC.2010.2059031.
– reference: Finno RJ, Harahap IS. Finite element analyses of HDR-4 excavation. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 1991; 117(10):1590-1609.
– reference: Finno RJ, Calvello M. Supported excavations: Observational method and inverse modeling. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2005; 131(7):826-836.
– reference: Xue J-F, Gavin K. Simultaneous determination of critical slip surface and reliability index for slopes. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 2007; 133(7):878-886.
– reference: Levasseur S, Malecot Y, Boulon M, Flavigny E. Statistical inverse analysis based on genetic algorithm and principal component analysis: Applications to excavation problems and pressuremeter tests. International Journal for Numerical and Analytical Methods in Geomechanics 2010; 34:471-491.
– reference: Zentar R, Hicher PY, Moulin G. Identification of soil parameters by inverse analysis. Computers and Geotechnics 2001; 28(2):129-144.
– reference: Hashash YMA, Levasseur S, Osouli A, Finno R, Malecot Y. Comparison of two inverse analysis techniques for learning deep excavation response. Computers and Geotechnics 2010; 37(3):323-333.
– reference: Ou CY. Deep Excavation: Theory and Practice. Taylor & Francis: Netherlands, 2006.
– reference: Ou CY, Shiau BY, Wang IW. Three-dimensional deformation behavior of the Taipei National Enterprise Center (TNEC) excavation case history. Canadian Geotechnical Journal 2000; 37(2):438-448.
– reference: Zolfaghari AR, Heath AC, McCombie PF. Simple genetic algorithm search for critical non-circular failure surface in slope stability analysis. Computers and Geotechnics 2005; 32:139-152.
– volume: 32
  start-page: 1515
  issue: 12
  year: 2008
  end-page: 1535
  article-title: Identifying parameters controlling soil delayed behaviour from laboratory and in situ pressuremeter testing
  publication-title: International Journal for Numerical and Analytical Methods in Geomechanics
– volume: 36
  start-page: 743
  issue: 6
  year: 2012
  end-page: 779
  article-title: Numerical modeling and neural networks to identify model parameters from piezocone tests: II. Multi‐parameter identification from piezocone data
  publication-title: International Journal for Numerical and Analytical Methods in Geomechanics
– volume: 22
  start-page: 553
  issue: 3
  year: 2002
  end-page: 578
  article-title: Identification and review of sensitivity analysis methods
  publication-title: Risk Analysis
– volume: 26
  start-page: 499
  issue: 4
  year: 1989
  end-page: 516
  article-title: Ninth Laurits Bjerrum Memorial Lecture: 'Small is beautiful' ‐ the stiffness of soils at small strains
  publication-title: Canadian Geotechnical Journal
– volume: 15
  start-page: 4
  issue: 1
  year: 2011
  end-page: 31
  article-title: Differential Evolution: a survey of the state‐of‐the‐art
  publication-title: IEEE Transactions on Evolutionary Computation
– year: 2005
– volume: 136
  start-page: 99
  issue: 1
  year: 2010
  end-page: 109
  article-title: Efficient probabilistic back‐analysis of slope stability model parameters
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering, ASCE
– volume: 33
  start-page: 1485
  year: 2009
  end-page: 1511
  article-title: Statistical inverse analysis based on genetic algorithm and principal component analysis: Method and developments using synthetic data
  publication-title: International Journal for Numerical and Analytical Methods in Geomechanics
– volume: 24
  start-page: 250
  issue: 3
  year: 2009
  end-page: 259
  article-title: Rheological parameter estimation for the prediction of long‐term deformations in conventional tunnelling
  publication-title: Tunnelling and Underground Space Technology
– volume: 36
  start-page: 604
  issue: 4
  year: 2009
  end-page: 615
  article-title: Simulation‐based calibration of geotechnical parameters using parallel hybrid moving boundary particle swarm optimization
  publication-title: Computers and Geotechnics
– volume: 124
  start-page: 798
  issue: 9
  year: 1998
  end-page: 808
  article-title: Performance of diaphragm wall constructed using top‐down method
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering, ASCE
– volume: 39
  start-page: 175
  issue: 2
  year: 1989
  end-page: 188
  article-title: Comparison of finite element and limiting equilibrium analyses for an embedded cantilever retaining wall
  publication-title: Geotechnique
– volume: 36
  start-page: 276
  issue: 1–2
  year: 2009
  end-page: 290
  article-title: Application of nonlinear optimization technique to back analyses of deep excavation
  publication-title: Computers and Geotechnics
– volume: 28
  start-page: 129
  issue: 2
  year: 2001
  end-page: 144
  article-title: Identification of soil parameters by inverse analysis
  publication-title: Computers and Geotechnics
– volume: 32
  start-page: 139
  year: 2005
  end-page: 152
  article-title: Simple genetic algorithm search for critical non‐circular failure surface in slope stability analysis
  publication-title: Computers and Geotechnics
– volume: 137
  start-page: 1047
  issue: 11
  year: 2011
  end-page: 1061
  article-title: Prediction and Interpretation of the Performance of a Deep Excavation in Berlin Sand
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering, ASCE
– year: 2013
  article-title: A nonlinear optimization technique of tunnel construction based on DE and LSSVM
  publication-title: Mathematical Problems in Engineering
– volume: 48
  start-page: 731
  issue: 6
  year: 1998
  end-page: 745
  article-title: An experimental study of the behaviour of embedded lengths of cantilever walls
  publication-title: Geotechnique
– volume: 132
  start-page: 1019
  issue: 8
  year: 2006
  end-page: 1031
  article-title: Novel approach to integration of numerical modeling and field observations for deep excavations
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering, ASCE
– volume: 49
  start-page: 825
  issue: 6
  year: 1999
  end-page: 834
  article-title: Three‐dimensional modelling of a diaphragm wall construction sequence
  publication-title: Geotechnique
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  end-page: 359
  article-title: Differential evolution ‐ A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of global optimization
– volume: 36
  start-page: 597
  year: 2012
  end-page: 618
  article-title: Single‐ and multi‐objective genetic algorithm optimization for identifying soil parameters
  publication-title: International Journal for Numerical and Analytical Methods in Geomechanics
– volume: 44
  start-page: 726
  year: 2007
  end-page: 736
  article-title: Evaluation of a simplified small‐strain soil model for analysis of excavation‐induced movements
  publication-title: Canadian Geotechnical Journal
– volume: 18
  start-page: 1
  issue: 1
  year: 1996
  end-page: 27
  article-title: Estimation of parameters in geotechnical backanalysis ‐ I. Maximum likelihood approach
  publication-title: Computers and Geotechnics
– year: 2008
– volume: 37
  start-page: 323
  issue: 3
  year: 2010
  end-page: 333
  article-title: Comparison of two inverse analysis techniques for learning deep excavation response
  publication-title: Computers and Geotechnics
– volume: 37
  start-page: 438
  issue: 2
  year: 2000
  end-page: 448
  article-title: Three‐dimensional deformation behavior of the Taipei National Enterprise Center (TNEC) excavation case history
  publication-title: Canadian Geotechnical Journal
– volume: 35
  start-page: 497
  issue: 4
  year: 2009
  end-page: 505
  article-title: Optimization of pile groups using hybrid genetic algorithms
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering, ASCE
– start-page: 1468
  year: 2002
  end-page: 1473
– volume: 55
  start-page: 497
  issue: 7
  year: 2005
  end-page: 513
  article-title: Modelling of a 3D excavation in finite element analysis
  publication-title: Geotechnique
– volume: 37
  start-page: 905
  issue: 7–8
  year: 2010
  end-page: 912
  article-title: Back analysis of slope failure with Markov chain Monte Carlo simulation
  publication-title: Computers and Geotechnics
– volume: 32
  start-page: 555
  year: 2005
  end-page: 563
  article-title: Genetic algorithms in probabilistic finite element analysis of geotechnical problems
  publication-title: Computers and Geotechnics
– volume: 34
  start-page: 524
  issue: 6
  year: 2007
  end-page: 531
  article-title: Optimisation procedure for choosing Cam clay parameters
  publication-title: Computers and Geotechnics
– volume: 35
  start-page: 331
  issue: 3
  year: 2008
  end-page: 345
  article-title: Inverse analysis techniques for parameter identification in simulation of excavation support systems
  publication-title: Computers and Geotechnics
– volume: 122
  start-page: 474
  issue: 6
  year: 1996
  end-page: 486
  article-title: Ground movement prediction for deep excavations in soft clay
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering, ASCE
– volume: 32
  start-page: 189
  issue: 2
  year: 2008
  end-page: 213
  article-title: Soil parameter identification using a genetic algorithm
  publication-title: International Journal for Numerical and Analytical Methods in Geomechanics
– volume: 138
  start-page: 69
  issue: 1
  year: 2012
  end-page: 88
  article-title: Observed behaviors of a long and deep excavation constructed by cut‐and‐cover technique in shanghai soft clay
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering, ASCE
– volume: 131
  start-page: 826
  issue: 7
  year: 2005
  end-page: 836
  article-title: Supported excavations: Observational method and inverse modeling
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering, ASCE
– volume: 136
  start-page: 1425
  issue: 10
  year: 2010
  end-page: 1436
  article-title: Microporosity structure of coarse granular soils
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering, ASCE
– volume: 133
  start-page: 878
  issue: 7
  year: 2007
  end-page: 886
  article-title: Simultaneous determination of critical slip surface and reliability index for slopes
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering, ASCE
– year: 1992
– volume: 38
  start-page: 217
  issue: 2
  year: 2011
  end-page: 226
  article-title: Connectivity of a network of random discontinuities
  publication-title: Computers and Geotechnics
– volume: 31
  start-page: 204
  issue: 2
  year: 1994
  end-page: 214
  article-title: Finite‐element analysis of deep excavation in layered sandy and clayey soil deposits
  publication-title: Canadian Geotechnical Journal
– volume: 5
  start-page: 9
  issue: 1
  year: 2010
  end-page: 20
  article-title: Evaluation of clay constitutive models for analysis of deep excavation under undrained conditions
  publication-title: Journal of GeoEngineering
– volume: 48
  start-page: 72
  issue: 1
  year: 2013
  end-page: 81
  article-title: Probabilistic parameter estimation and predictive uncertainty based on field measurements for unsaturated soil slope
  publication-title: Computers and Geotechnics
– volume: 29
  start-page: 65
  issue: 1
  year: 2003
  end-page: 77
  article-title: Estimating three‐dimensional rock discontinuity orientation from digital images of fracture traces
  publication-title: Computers and Geosciencs
– year: 2012
  article-title: Predicting Wall Displacements for Excavations with Cross Walls in Soft Clay
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering, ASCE
– volume: 15
  start-page: 1
  issue: 1
  year: 1993
  end-page: 19
  article-title: Application of genetic algorithms to optimization problems in geotechnics
  publication-title: Computers and Geotechnics
– volume: 117
  start-page: 1590
  issue: 10
  year: 1991
  end-page: 1609
  article-title: Finite element analyses of HDR‐4 excavation
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering, ASCE
– start-page: 635
  year: 2012
  end-page: 648
– volume: 139
  start-page: 395
  issue: 3
  year: 2013
  end-page: 406
  article-title: Bayesian Updating of Soil Parameters for Braced Excavations Using Field Observations
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering, ASCE
– year: 2006
– volume: 34
  start-page: 471
  year: 2010
  end-page: 491
  article-title: Statistical inverse analysis based on genetic algorithm and principal component analysis: Applications to excavation problems and pressuremeter tests
  publication-title: International Journal for Numerical and Analytical Methods in Geomechanics
– volume: 28
  start-page: 109
  issue: 1
  year: 2012
  end-page: 123
  article-title: Parameter identification in numerical modeling of tunneling using the Differential Evolution Genetic Algorithm (DEGA)
  publication-title: Tunnelling and underground space technology
– volume: 23
  start-page: 327
  issue: 3
  year: 1999
  end-page: 339
  article-title: Estimation of heat transfer parameters in a trickle‐bed reactor using differential evolution and orthogonal collocation
  publication-title: Computers & Chemical Engineering
– ident: e_1_2_8_19_1
  doi: 10.1061/(ASCE)GT.1943-5606.0000205
– ident: e_1_2_8_9_1
  doi: 10.1139/t89-064
– volume: 124
  start-page: 798
  issue: 9
  year: 1998
  ident: e_1_2_8_13_1
  article-title: Performance of diaphragm wall constructed using top‐down method
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering, ASCE
  doi: 10.1061/(ASCE)1090-0241(1998)124:9(798)
– ident: e_1_2_8_6_1
  doi: 10.1680/geot.2005.55.7.497
– ident: e_1_2_8_39_1
  doi: 10.1016/j.compgeo.2009.11.005
– ident: e_1_2_8_16_1
  doi: 10.1016/0266-352X(95)00021-2
– ident: e_1_2_8_56_1
  doi: 10.1002/nag.684
– ident: e_1_2_8_21_1
  doi: 10.1016/j.compgeo.2012.09.011
– ident: e_1_2_8_40_1
  doi: 10.7551/mitpress/1090.001.0001
– volume: 31
  start-page: 204
  issue: 2
  year: 1994
  ident: e_1_2_8_3_1
  article-title: Finite‐element analysis of deep excavation in layered sandy and clayey soil deposits
  publication-title: Canadian Geotechnical Journal
  doi: 10.1139/t94-026
– volume-title: Differential Evolution – A Practical Approach to Global Optimization
  year: 2005
  ident: e_1_2_8_43_1
– ident: e_1_2_8_48_1
  doi: 10.1155/2013/980154
– volume: 49
  start-page: 825
  issue: 6
  year: 1999
  ident: e_1_2_8_5_1
  article-title: Three‐dimensional modelling of a diaphragm wall construction sequence
  publication-title: Geotechnique
  doi: 10.1680/geot.1999.49.6.825
– volume: 37
  start-page: 438
  issue: 2
  year: 2000
  ident: e_1_2_8_55_1
  article-title: Three‐dimensional deformation behavior of the Taipei National Enterprise Center (TNEC) excavation case history
  publication-title: Canadian Geotechnical Journal
  doi: 10.1139/t00-018
– volume: 28
  start-page: 109
  issue: 1
  year: 2012
  ident: e_1_2_8_47_1
  article-title: Parameter identification in numerical modeling of tunneling using the Differential Evolution Genetic Algorithm (DEGA)
  publication-title: Tunnelling and underground space technology
  doi: 10.1016/j.tust.2011.10.003
– ident: e_1_2_8_54_1
  doi: 10.1111/0272-4332.00039
– ident: e_1_2_8_22_1
  doi: 10.1061/(ASCE)GT.1943-5606.0000782
– ident: e_1_2_8_28_1
  doi: 10.1002/nag.1028
– ident: e_1_2_8_15_1
  doi: 10.1061/(ASCE)GT.1943-5606.0000826
– ident: e_1_2_8_27_1
  doi: 10.1016/j.compgeo.2008.09.005
– ident: e_1_2_8_30_1
  doi: 10.1002/nag.813
– ident: e_1_2_8_29_1
  doi: 10.1002/nag.776
– volume: 48
  start-page: 731
  issue: 6
  year: 1998
  ident: e_1_2_8_51_1
  article-title: An experimental study of the behaviour of embedded lengths of cantilever walls
  publication-title: Geotechnique
  doi: 10.1680/geot.1998.48.6.731
– ident: e_1_2_8_11_1
  doi: 10.1016/j.compgeo.2010.11.010
– ident: e_1_2_8_52_1
  doi: 10.1016/j.compgeo.2007.01.007
– ident: e_1_2_8_44_1
  doi: 10.1007/978-3-540-68830-3
– ident: e_1_2_8_33_1
  doi: 10.1016/j.tust.2008.08.001
– ident: e_1_2_8_36_1
  doi: 10.1061/(ASCE)1090-0241(2007)133:7(878)
– ident: e_1_2_8_26_1
  doi: 10.1016/S0266-352X(00)00020-3
– volume: 35
  start-page: 497
  issue: 4
  year: 2009
  ident: e_1_2_8_37_1
  article-title: Optimization of pile groups using hybrid genetic algorithms
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering, ASCE
  doi: 10.1061/(ASCE)1090-0241(2009)135:4(497)
– start-page: 1468
  volume-title: Proceedings of the 2002 IEEE Congress on Evolutionary Computation
  year: 2002
  ident: e_1_2_8_49_1
– ident: e_1_2_8_8_1
  doi: 10.1061/(ASCE)GT.1943-5606.0000518
– ident: e_1_2_8_25_1
  doi: 10.1002/nag.614
– ident: e_1_2_8_10_1
  doi: 10.1061/(ASCE)GT.1943-5606.0000348
– volume: 29
  start-page: 65
  issue: 1
  year: 2003
  ident: e_1_2_8_32_1
  article-title: Estimating three‐dimensional rock discontinuity orientation from digital images of fracture traces
  publication-title: Computers and Geosciencs
  doi: 10.1016/S0098-3004(02)00106-1
– volume: 39
  start-page: 175
  issue: 2
  year: 1989
  ident: e_1_2_8_50_1
  article-title: Comparison of finite element and limiting equilibrium analyses for an embedded cantilever retaining wall
  publication-title: Geotechnique
  doi: 10.1680/geot.1989.39.2.175
– start-page: 635
  volume-title: Computational Science and Its Applications, Proccedings of ICCSA 2012
  year: 2012
  ident: e_1_2_8_46_1
  doi: 10.1007/978-3-642-31125-3_48
– ident: e_1_2_8_18_1
  doi: 10.1061/(ASCE)1090-0241(2005)131:7(826)
– ident: e_1_2_8_20_1
  doi: 10.1016/j.compgeo.2010.07.009
– volume: 5
  start-page: 9
  issue: 1
  year: 2010
  ident: e_1_2_8_12_1
  article-title: Evaluation of clay constitutive models for analysis of deep excavation under undrained conditions
  publication-title: Journal of GeoEngineering
– ident: e_1_2_8_34_1
  doi: 10.1002/nag.1019
– ident: e_1_2_8_38_1
  doi: 10.1016/j.compgeo.2005.11.005
– volume-title: Deep Excavation: Theory and Practice
  year: 2006
  ident: e_1_2_8_53_1
– ident: e_1_2_8_14_1
  doi: 10.1061/(ASCE)GT.1943-5606.0000553
– ident: e_1_2_8_42_1
  doi: 10.1023/A:1008202821328
– volume: 122
  start-page: 474
  issue: 6
  year: 1996
  ident: e_1_2_8_4_1
  article-title: Ground movement prediction for deep excavations in soft clay
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering, ASCE
  doi: 10.1061/(ASCE)0733-9410(1996)122:6(474)
– volume: 117
  start-page: 1590
  issue: 10
  year: 1991
  ident: e_1_2_8_2_1
  article-title: Finite element analyses of HDR‐4 excavation
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering, ASCE
  doi: 10.1061/(ASCE)0733-9410(1991)117:10(1590)
– ident: e_1_2_8_17_1
  doi: 10.1016/j.compgeo.2007.08.008
– ident: e_1_2_8_31_1
  doi: 10.1016/0266-352X(93)90014-X
– ident: e_1_2_8_23_1
  doi: 10.1016/j.compgeo.2008.02.004
– ident: e_1_2_8_24_1
  doi: 10.1061/(ASCE)1090-0241(2006)132:8(1019)
– ident: e_1_2_8_45_1
  doi: 10.1109/TEVC.2010.2059031
– volume: 44
  start-page: 726
  year: 2007
  ident: e_1_2_8_7_1
  article-title: Evaluation of a simplified small‐strain soil model for analysis of excavation‐induced movements
  publication-title: Canadian Geotechnical Journal
  doi: 10.1139/t07-014
– ident: e_1_2_8_35_1
  doi: 10.1016/j.compgeo.2005.02.001
– ident: e_1_2_8_41_1
  doi: 10.1016/S0098-1354(98)00277-4
SSID ssj0005096
Score 2.2965972
Snippet Summary This paper presents the applications of the differential evolution (DE) algorithm in back analysis of soil parameters for deep excavation problems. A...
This paper presents the applications of the differential evolution (DE) algorithm in back analysis of soil parameters for deep excavation problems. A computer...
Summary This paper presents the applications of the differential evolution (DE) algorithm in back analysis of soil parameters for deep excavation problems. A...
SourceID unpaywall
proquest
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115
SubjectTerms Algorithms
Cam-clay model
Computer programs
Deflection
differential evolution
Excavation
excavations
Finite element method
inverse analysis
Mathematical analysis
Mathematical models
optimization algorithms
Soil (material)
Soil analysis
Walls
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N9gH2wPjUChsyCMFTutQfsfPYbV2noVUgURhPlp04Y1qWVl0LY3_9zvkoG7CJpzzk5Fi-s-938d3vAN5GNEsNC10glMkCnlobKJ7IwIZGGBUxmoa-wPlwFO2P-cGROFqBpj_hH_QCaC-x3EIfHLN70I4Ewu0WtMejj_1vzR1kHFacqAjFgxh9T0MwG9Ktwhx3KfXJctdcTtuv3sUNPHl_UUzNr58mz28i1NLF7K39LtSpMktOu4u57SaXf_M23j77R_CwBpikX1nEY1hxxRNYvUY7-BQOPLnG7NyRhpGETDKy69yUDC4SU_2jJWUuAdmt-6fgOZCTwY_aTkk_P57MTubfz57BeG_weWc_qHsqBMZTdwVOWketLy9Ney5lglmZxkwZZiIqHZcJd9ZknDqb2kxlqhclIrRKJFZx1DZnz6FVTAq3DsQybiVzcegQ9mFwG_dEhnDKISbCU0uYDrxvll0nNeG473uR64oqmWpUkPYK6sDrpeS0Itn4h8y7UnNLATM79UlpUuivo6He_sTpofrwRQ87sNGoVtf78VxjUIi4z1f14beWr3En-esRU7jJwst4rn6FEd0dMpJHKsbAXnXgzdJs7pp0aU-3CuhRf-ifL_5ntJfwAOFaWVDfCzegNZ8t3CZCorl9VW-KKwzdBro
  priority: 102
  providerName: Unpaywall
Title Inverse Analysis of Deep Excavation Using Differential Evolution Algorithm
URI https://api.istex.fr/ark:/67375/WNG-BQ42M8KV-G/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnag.2287
https://www.proquest.com/docview/1644411424
https://www.proquest.com/docview/1660078606
https://www.proquest.com/docview/1746897138
http://hdl.handle.net/10197/12593
UnpaywallVersion submittedVersion
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0363-9061
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1096-9853
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005096
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQewAOvBFbSmUQglO2iR-xc1zodquirgCxUMTBshOnoKbZ1T6g8OuZyYsuggpxyiFjxbFnxt_YM58JeRqzPLM89IHUNg9E5lygRaoCF1ppdcxZFmKB89E4PpiIw2N53GRVYi1MzQ_RbbihZVT-Gg3cusXuBdJQe9JngPfB_UY8rqKpt7-Yo5DVpD2mTGDNanlnQ7bbNlxbiTZxUM_XYObVVTmz37_ZolgHrtXKs3-TfGr7XCecnPZXS9dPf_xG5_h_P3WL3GgAKR3UGnSbXPHlHXL9Ak3hXXKIZBzzhactgwmd5nTP-xkdnqe23tOlVe4B3WvuWwG_UdDh10av6aA4mc6_LD-f3SOT_eG7lwdBcwdDYJHqK_DKeeawHDWLfMYldypLuLbcxkx5oVLhnc0F8y5zuc51FKcydFqmTgvQDsHvk41yWvoHhDounOI-CT3ARAiGk0jmAL88YCjwctL2yPN2PkzaEJTjPRmFqamVmYHRMTg6PfK4k5zVpBx_kHlWTWknYOenmMSmpPkwHpkXbwQ70q_em1GPbLdzbhr7XRgIIgEnYhUgfKt7DZaHxym29NMVyiC3v4YI8BIZJWKdqIjrHnnS6dNlna60468CZjwY4XPrXwUfkmsA8aoi_CjcJhvL-co_Ahi1dDuVweyQzcn49eDjT0xfGl8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4a28PggTuiMMAgBE_pEl8SRzwV1rVsayXQxvaAZNmJs00LadW1MPj1HOfGimBCPOUhnxXHPsf-ju3zGeBlSLNUM996QurM46kxnuRJ5BlfCy1DRlPfJTiPxuHwgO8ciaMVeNPkwlT6EO2Cm_OMcrx2Du4WpDcvqYbq4y5Fwn8N1niIYYpjRB9_aUc5XZNmozLGWatRnvXpZlNyaS5ac816sUQ01xfFVH__pvN8mbqWc8_2Lfjc1Lo6cnLWXcxNN_nxm6Djf_7WbbhZc1LSq4zoDqzY4i7cuKRUeA92nB7H7NySRsSETDKyZe2U9C8SXS3rkvL4Admqr1zBoSMn_a-1aZNefjyZnc5PvtyHg-3-_ruhV1_D4Gmn9uXZyFhqXEZqGtiUCWaiNGZSMx3SyPIo4dbojFNrUpPJTAZhInwjRWIkRwPh7AGsFpPCPgRiGDcRs7FvkSliPBwHIkMGZpFG4UAndAdeNx2iklqj3F2VkatKXZkqbB3lWqcDz1vktNLl-APmVdmnLUDPztw5tkiow_FAvf3A6UjuflKDDmw0na5qFz5XGEciVXSJgPit9jU6n9tR0YWdLBzGyftLDAKvwEQ8lHEUMNmBF61BXVXp0jz-ClDj3sA9H_0r8BmsD_dHe2rv_Xj3MVxHxlfm5Af-BqzOZwv7BFnV3DwtvecnCbIc0A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVuJx4FnEQgGDEJyyTWI7dsRpYR-lpStAFHqoZNnJpKCG7Gq7C6W_vnZedBFUiFMO-aw49oz92Z75DPAsCrNUUx89LnXmsdQYT7JEeMbXXMuIhqnvEpx3x9HWHtve5_sr8LLJhan0IdoNN-cZ5XjtHBynabZ5TjVUH3ZDS_gvwRrjsXTxfP0Pv7SjnK5Jc1AZ21mrUZ71w82m5NJctOaa9WSJaF5ZFFP984fO82XqWs49wxtw0NS6Cjk56i7mppuc_ibo-J-_dROu15yU9CojugUrWNyGa-eUCu_AttPjmB0jaURMyCQjfcQpGZwkutrWJWX4AenXV67YoSMng--1aZNefjiZfZ1_-bYOe8PBx9dbXn0Ng6ed2peHwmBoXEZqGmBKOTUijanUVEehQCYShkZnLESTmkxmMogS7hvJEyOZNRBG78JqMSnwHhBDmREUYx8tU7Tr4TjgmWVgaGmUHei47sCLpkNUUmuUu6syclWpK4fKto5yrdOBJy1yWuly_AHzvOzTFqBnRy6OTXD1eTxSr96zcFfufFKjDmw0na5qFz5Wdh1pqaJLBLTfal9b53MnKrrAycJhnLy_tIvACzCCRTIWAZUdeNoa1EWVLs3jrwA17o3c8_6_Ah_D5Xf9oXr7ZrzzAK5awlem5Af-BqzOZwt8aEnV3DwqnecMizgcVA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N9gH2wPjUChsyCMFTutQfsfPYbV2noVUgURhPlp04Y1qWVl0LY3_9zvkoG7CJpzzk5Fi-s-938d3vAN5GNEsNC10glMkCnlobKJ7IwIZGGBUxmoa-wPlwFO2P-cGROFqBpj_hH_QCaC-x3EIfHLN70I4Ewu0WtMejj_1vzR1kHFacqAjFgxh9T0MwG9Ktwhx3KfXJctdcTtuv3sUNPHl_UUzNr58mz28i1NLF7K39LtSpMktOu4u57SaXf_M23j77R_CwBpikX1nEY1hxxRNYvUY7-BQOPLnG7NyRhpGETDKy69yUDC4SU_2jJWUuAdmt-6fgOZCTwY_aTkk_P57MTubfz57BeG_weWc_qHsqBMZTdwVOWketLy9Ney5lglmZxkwZZiIqHZcJd9ZknDqb2kxlqhclIrRKJFZx1DZnz6FVTAq3DsQybiVzcegQ9mFwG_dEhnDKISbCU0uYDrxvll0nNeG473uR64oqmWpUkPYK6sDrpeS0Itn4h8y7UnNLATM79UlpUuivo6He_sTpofrwRQ87sNGoVtf78VxjUIi4z1f14beWr3En-esRU7jJwst4rn6FEd0dMpJHKsbAXnXgzdJs7pp0aU-3CuhRf-ifL_5ntJfwAOFaWVDfCzegNZ8t3CZCorl9VW-KKwzdBro
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inverse+Analysis+of+Deep+Excavation+Using+Differential+Evolution+Algorithm&rft.jtitle=International+journal+for+numerical+and+analytical+methods+in+geomechanics&rft.au=Zhao%2C+B+D&rft.au=Zhang%2C+L+L&rft.au=Jeng%2C+D+S&rft.au=Wang%2C+J+H&rft.date=2015-02-10&rft.issn=0363-9061&rft.eissn=1096-9853&rft.volume=39&rft.issue=2&rft.spage=115&rft.epage=134&rft_id=info:doi/10.1002%2Fnag.2287&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-9061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-9061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-9061&client=summon