Python-Based Algorithm for Estimating NRTL Model Parameters with UNIFAC Model Simulation Results

A major challenge in bioprocess simulation is the lack of physical and chemical property databases for biochemicals. A Python-based algorithm was developed for estimating the nonrandom two-liquid (NRTL) model parameters of aqueous binary systems in a straightforward manner from simplified molecular-...

Full description

Saved in:
Bibliographic Details
Published inACS omega Vol. 10; no. 3; pp. 2949 - 2957
Main Authors Jo, Se-Hee, Lee, Jina, Won, Wangyun, Kim, Jun-Woo
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 28.01.2025
Online AccessGet full text
ISSN2470-1343
2470-1343
DOI10.1021/acsomega.4c09246

Cover

Abstract A major challenge in bioprocess simulation is the lack of physical and chemical property databases for biochemicals. A Python-based algorithm was developed for estimating the nonrandom two-liquid (NRTL) model parameters of aqueous binary systems in a straightforward manner from simplified molecular-input line-entry specification (SMILES) strings of substances in a system. This algorithm conducts a series of procedures: (1) fragmentation of the molecules into functional groups from SMILES, (2) calculation of activity coefficients under predetermined temperature and mole fraction conditions by employing universal quasi-chemical functional group activity coefficient (UNIFAC) model, and (3) regression of NRTL model parameters by employing UNIFAC model simulation results in the differential evolution algorithm (DEA) and Nelder–Mead method (NMM). The algorithm was applied to aqueous, binary mixture systems composed of 37 common biochemical substances such as amino acids, organic acids, and sugars. The obtained NRTL parameters were compared with those from Aspen Plus, a commercial software, which has an equivalent function for estimating the NRTL parameters. The percentage mean absolute residuals of the activity coefficients obtained using DEA, NMM, and the parameter estimation tool in Aspen Plus were in the ranges of 0.05–16.69, 0.05–16.69, and 0.09–326.77%, respectively. This in-house algorithm will be helpful for obtaining more accurate NRTL parameters in a timely manner and will facilitate the simulation of biochemical processes for process optimization, energy consumption estimation, and life cycle assessment.
AbstractList A major challenge in bioprocess simulation is the lack of physical and chemical property databases for biochemicals. A Python-based algorithm was developed for estimating the nonrandom two-liquid (NRTL) model parameters of aqueous binary systems in a straightforward manner from simplified molecular-input line-entry specification (SMILES) strings of substances in a system. This algorithm conducts a series of procedures: (1) fragmentation of the molecules into functional groups from SMILES, (2) calculation of activity coefficients under predetermined temperature and mole fraction conditions by employing universal quasi-chemical functional group activity coefficient (UNIFAC) model, and (3) regression of NRTL model parameters by employing UNIFAC model simulation results in the differential evolution algorithm (DEA) and Nelder–Mead method (NMM). The algorithm was applied to aqueous, binary mixture systems composed of 37 common biochemical substances such as amino acids, organic acids, and sugars. The obtained NRTL parameters were compared with those from Aspen Plus, a commercial software, which has an equivalent function for estimating the NRTL parameters. The percentage mean absolute residuals of the activity coefficients obtained using DEA, NMM, and the parameter estimation tool in Aspen Plus were in the ranges of 0.05–16.69, 0.05–16.69, and 0.09–326.77%, respectively. This in-house algorithm will be helpful for obtaining more accurate NRTL parameters in a timely manner and will facilitate the simulation of biochemical processes for process optimization, energy consumption estimation, and life cycle assessment.
A major challenge in bioprocess simulation is the lack of physical and chemical property databases for biochemicals. A Python-based algorithm was developed for estimating the nonrandom two-liquid (NRTL) model parameters of aqueous binary systems in a straightforward manner from simplified molecular-input line-entry specification (SMILES) strings of substances in a system. This algorithm conducts a series of procedures: (1) fragmentation of the molecules into functional groups from SMILES, (2) calculation of activity coefficients under predetermined temperature and mole fraction conditions by employing universal quasi-chemical functional group activity coefficient (UNIFAC) model, and (3) regression of NRTL model parameters by employing UNIFAC model simulation results in the differential evolution algorithm (DEA) and Nelder–Mead method (NMM). The algorithm was applied to aqueous, binary mixture systems composed of 37 common biochemical substances such as amino acids, organic acids, and sugars. The obtained NRTL parameters were compared with those from Aspen Plus, a commercial software, which has an equivalent function for estimating the NRTL parameters. The percentage mean absolute residuals of the activity coefficients obtained using DEA, NMM, and the parameter estimation tool in Aspen Plus were in the ranges of 0.05–16.69, 0.05–16.69, and 0.09–326.77%, respectively. This in-house algorithm will be helpful for obtaining more accurate NRTL parameters in a timely manner and will facilitate the simulation of biochemical processes for process optimization, energy consumption estimation, and life cycle assessment.
A major challenge in bioprocess simulation is the lack of physical and chemical property databases for biochemicals. A Python-based algorithm was developed for estimating the nonrandom two-liquid (NRTL) model parameters of aqueous binary systems in a straightforward manner from simplified molecular-input line-entry specification (SMILES) strings of substances in a system. This algorithm conducts a series of procedures: (1) fragmentation of the molecules into functional groups from SMILES, (2) calculation of activity coefficients under predetermined temperature and mole fraction conditions by employing universal quasi-chemical functional group activity coefficient (UNIFAC) model, and (3) regression of NRTL model parameters by employing UNIFAC model simulation results in the differential evolution algorithm (DEA) and Nelder-Mead method (NMM). The algorithm was applied to aqueous, binary mixture systems composed of 37 common biochemical substances such as amino acids, organic acids, and sugars. The obtained NRTL parameters were compared with those from Aspen Plus, a commercial software, which has an equivalent function for estimating the NRTL parameters. The percentage mean absolute residuals of the activity coefficients obtained using DEA, NMM, and the parameter estimation tool in Aspen Plus were in the ranges of 0.05-16.69, 0.05-16.69, and 0.09-326.77%, respectively. This in-house algorithm will be helpful for obtaining more accurate NRTL parameters in a timely manner and will facilitate the simulation of biochemical processes for process optimization, energy consumption estimation, and life cycle assessment.A major challenge in bioprocess simulation is the lack of physical and chemical property databases for biochemicals. A Python-based algorithm was developed for estimating the nonrandom two-liquid (NRTL) model parameters of aqueous binary systems in a straightforward manner from simplified molecular-input line-entry specification (SMILES) strings of substances in a system. This algorithm conducts a series of procedures: (1) fragmentation of the molecules into functional groups from SMILES, (2) calculation of activity coefficients under predetermined temperature and mole fraction conditions by employing universal quasi-chemical functional group activity coefficient (UNIFAC) model, and (3) regression of NRTL model parameters by employing UNIFAC model simulation results in the differential evolution algorithm (DEA) and Nelder-Mead method (NMM). The algorithm was applied to aqueous, binary mixture systems composed of 37 common biochemical substances such as amino acids, organic acids, and sugars. The obtained NRTL parameters were compared with those from Aspen Plus, a commercial software, which has an equivalent function for estimating the NRTL parameters. The percentage mean absolute residuals of the activity coefficients obtained using DEA, NMM, and the parameter estimation tool in Aspen Plus were in the ranges of 0.05-16.69, 0.05-16.69, and 0.09-326.77%, respectively. This in-house algorithm will be helpful for obtaining more accurate NRTL parameters in a timely manner and will facilitate the simulation of biochemical processes for process optimization, energy consumption estimation, and life cycle assessment.
Author Lee, Jina
Kim, Jun-Woo
Won, Wangyun
Jo, Se-Hee
AuthorAffiliation CJ BIO Research Institute
Department of Chemical and Biological Engineering
AuthorAffiliation_xml – name: CJ BIO Research Institute
– name: Department of Chemical and Biological Engineering
Author_xml – sequence: 1
  givenname: Se-Hee
  orcidid: 0009-0001-2799-2295
  surname: Jo
  fullname: Jo, Se-Hee
  organization: CJ BIO Research Institute
– sequence: 2
  givenname: Jina
  orcidid: 0009-0002-8217-7039
  surname: Lee
  fullname: Lee, Jina
  organization: CJ BIO Research Institute
– sequence: 3
  givenname: Wangyun
  orcidid: 0000-0003-1072-9842
  surname: Won
  fullname: Won, Wangyun
  email: wwon@korea.ac.kr
  organization: Department of Chemical and Biological Engineering
– sequence: 4
  givenname: Jun-Woo
  orcidid: 0000-0002-2562-5491
  surname: Kim
  fullname: Kim, Jun-Woo
  email: junwoo.kim1@cj.net
  organization: CJ BIO Research Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39895723$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1v1DAQxSNUREvpnRPKkQNb_G3nhJZVW1ZaSlXas3GcSTYrJ97aCdX-9zVkW7UHJE62PO_9ZvzmbXbQ-x6y7D1GpxgR_NnY6DtozCmzqCBMvMqOCJNohimjB8_uh9lJjBuEEBaKKCLeZIe0UAWXhB5lv652w9r3s68mQpXPXeNDO6y7vPYhP4tD25mh7Zv88vpmlX_3Fbj8ygTTwQAh5vdJmt9eLs_ni33xZ9uNLll8n19DHN0Q32Wva-MinOzP4-z2_Oxm8W22-nGxXMxXM8M4HWaSM6pwQazglgEvmShBMkSoQSWjVNSFlNjKsrSVqDmWlZFKkkoVDCzloOhxtpy4lTcbvQ1p8rDT3rT674MPjTZhaK0DzRExDCoFVJKUHSqlkKC4EZKLWimSWHhijf3W7O6Nc09AjPSf8PVj-HoffvJ8mTzbseygstAPwbgXg7ys9O1aN_63xlgqxDBLhI97QvB3I8RBd2204JzpwY9RUyyIYgXmNEk_PG_21OVxr0mAJoENPsYA9f984NNkSRW98WPo07r-LX8A8aDGWQ
Cites_doi 10.1016/j.compstruc.2004.03.072
10.1002/ceat.202300136
10.1016/j.compchemeng.2005.02.020
10.1002/aic.18251
10.1021/acsomega.3c09657
10.1016/j.jiec.2012.03.008
10.1016/j.cej.2023.144955
10.1023/A:1008202821328
10.1016/j.fluid.2022.113537
10.1590/0104-6632.20150321s00002825
10.1021/acssuschemeng.4c01718
10.1080/00986448708960487
10.1002/aic.690210607
10.1021/ie9004578
10.1021/ie00071a018
10.3390/molecules15085079
10.1016/j.scp.2024.101629
10.1002/ceat.202200361
10.1016/j.swevo.2016.01.004
10.1002/bip.360321011
10.1186/s13321-019-0382-3
10.1016/j.fuel.2020.117688
10.1063/1.1862245
10.1002/aic.690280410
10.1016/j.aej.2021.09.013
10.1007/s10589-010-9329-3
10.2172/257362
10.1093/comjnl/7.4.308
10.1002/aic.17935
10.1016/j.fluid.2022.113599
10.1016/j.fluid.2015.04.006
ContentType Journal Article
Copyright 2025 The Authors. Published by American Chemical Society
2025 The Authors. Published by American Chemical Society.
2025 The Authors. Published by American Chemical Society 2025 The Authors
Copyright_xml – notice: 2025 The Authors. Published by American Chemical Society
– notice: 2025 The Authors. Published by American Chemical Society.
– notice: 2025 The Authors. Published by American Chemical Society 2025 The Authors
DBID N~.
AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1021/acsomega.4c09246
DatabaseName American Chemical Society (ACS) Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: N~.
  name: American Chemical Society (ACS) Open Access
  url: https://pubs.acs.org
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2470-1343
EndPage 2957
ExternalDocumentID oai_doaj_org_article_502a4ed8e3724c00b767e85a6756f882
10.1021/acsomega.4c09246
PMC11780414
39895723
10_1021_acsomega_4c09246
a242329845
Genre Journal Article
GroupedDBID 53G
AAFWJ
AAHBH
ABUCX
ACS
ADBBV
ADUCK
AFEFF
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
EBS
GROUPED_DOAJ
HYE
M~E
N~.
OK1
RPM
VF5
AAYXX
ABBLG
CITATION
NPM
7X8
5PM
ADTOC
EJD
ROL
UNPAY
ID FETCH-LOGICAL-a453t-75438192c65c4e5b46be74023a0b4336f9771c7bbcd6f517da7872d894ec35e83
IEDL.DBID UNPAY
ISSN 2470-1343
IngestDate Fri Oct 03 12:42:56 EDT 2025
Sun Oct 26 03:43:57 EDT 2025
Tue Sep 30 17:05:23 EDT 2025
Fri Jul 11 07:34:08 EDT 2025
Mon Jul 21 05:47:33 EDT 2025
Tue Jul 01 00:50:30 EDT 2025
Thu Jan 30 12:41:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
2025 The Authors. Published by American Chemical Society.
Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a453t-75438192c65c4e5b46be74023a0b4336f9771c7bbcd6f517da7872d894ec35e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1072-9842
0000-0002-2562-5491
0009-0001-2799-2295
0009-0002-8217-7039
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1021/acsomega.4c09246
PMID 39895723
PQID 3162849153
PQPubID 23479
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_502a4ed8e3724c00b767e85a6756f882
unpaywall_primary_10_1021_acsomega_4c09246
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11780414
proquest_miscellaneous_3162849153
pubmed_primary_39895723
crossref_primary_10_1021_acsomega_4c09246
acs_journals_10_1021_acsomega_4c09246
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-28
PublicationDateYYYYMMDD 2025-01-28
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-28
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS omega
PublicationTitleAlternate ACS Omega
PublicationYear 2025
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref34/cit34
ref37/cit37
ref28/cit28
ref20/cit20
Wooley R. J. (ref2/cit2) 1996
ref17/cit17
ref10/cit10
ref26/cit26
ref19/cit19
ref21/cit21
(ref29/cit29) 2024
ref12/cit12
ref15/cit15
IAPWS: The International Association for the Properties of Water and Steam (ref35/cit35) 2012
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref24/cit24
  doi: 10.1016/j.compstruc.2004.03.072
– year: 2012
  ident: ref35/cit35
  publication-title: Revised release on the IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam
– ident: ref11/cit11
  doi: 10.1002/ceat.202300136
– ident: ref37/cit37
– ident: ref30/cit30
  doi: 10.1016/j.compchemeng.2005.02.020
– ident: ref21/cit21
  doi: 10.1002/aic.18251
– ident: ref1/cit1
  doi: 10.1021/acsomega.3c09657
– ident: ref36/cit36
– ident: ref32/cit32
  doi: 10.1016/j.jiec.2012.03.008
– ident: ref3/cit3
  doi: 10.1016/j.cej.2023.144955
– ident: ref26/cit26
  doi: 10.1023/A:1008202821328
– ident: ref10/cit10
  doi: 10.1016/j.fluid.2022.113537
– ident: ref33/cit33
– ident: ref17/cit17
  doi: 10.1590/0104-6632.20150321s00002825
– ident: ref20/cit20
  doi: 10.1021/acssuschemeng.4c01718
– ident: ref22/cit22
– ident: ref5/cit5
  doi: 10.1080/00986448708960487
– ident: ref12/cit12
  doi: 10.1002/aic.690210607
– ident: ref7/cit7
  doi: 10.1021/ie9004578
– ident: ref13/cit13
  doi: 10.1021/ie00071a018
– ident: ref14/cit14
  doi: 10.3390/molecules15085079
– ident: ref18/cit18
  doi: 10.1016/j.scp.2024.101629
– ident: ref4/cit4
  doi: 10.1002/ceat.202200361
– ident: ref27/cit27
  doi: 10.1016/j.swevo.2016.01.004
– ident: ref38/cit38
  doi: 10.1002/bip.360321011
– ident: ref16/cit16
  doi: 10.1186/s13321-019-0382-3
– ident: ref19/cit19
  doi: 10.1016/j.fuel.2020.117688
– ident: ref34/cit34
  doi: 10.1063/1.1862245
– ident: ref6/cit6
  doi: 10.1002/aic.690280410
– ident: ref28/cit28
  doi: 10.1016/j.aej.2021.09.013
– ident: ref25/cit25
  doi: 10.1007/s10589-010-9329-3
– volume-title: Development of an ASPEN PLUS Physical Property Database for Biofuels Components
  year: 1996
  ident: ref2/cit2
  doi: 10.2172/257362
– ident: ref23/cit23
  doi: 10.1093/comjnl/7.4.308
– ident: ref8/cit8
  doi: 10.1002/aic.17935
– ident: ref15/cit15
– ident: ref31/cit31
  doi: 10.1016/j.fluid.2022.113599
– volume-title: Regression Mix, Model Parameter Regression Simultaneously to Multiple Properties
  year: 2024
  ident: ref29/cit29
– ident: ref9/cit9
  doi: 10.1016/j.fluid.2015.04.006
SSID ssj0001682826
Score 2.29052
Snippet A major challenge in bioprocess simulation is the lack of physical and chemical property databases for biochemicals. A Python-based algorithm was developed for...
A major challenge in bioprocess simulation is the lack of physical and chemical property databases for biochemicals. A Python-based algorithm was developed for...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2949
SummonAdditionalLinks – databaseName: American Chemical Society (ACS) Open Access
  dbid: N~.
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF5BOZQL4l3z0iLBAaQt3rd9TKNGFUJRVVqpN7O7HqeREqeqHaFe-O3MOk5KoAKu3vVjd2Y83-yMviHknS8rJ5SpmBU-MAVCMg85MO8gT7WWIUBX5Ts2R2fq87k-v6HJ-T2DL_gnF5rFHCZuX4UUgwVzl9wTxtqoweMf-zfnKQZjh667mlA2ZVwq2Wclb3tI9EWh2fJFHWX_bTjzz3LJ3WV96a6_u9nsF180ekge9CCSDlZSf0TuQP2Y7A7XvduekG_H15ETgB2gjyrpYDZZXE3bizlFhEoP0agjTK0ndHxy-oXGbmgzeuxilVak2qTxaJZiXDgaDPvBr9N53-WLnkCznLXNU3I2OjwdHrG-lwJzSsuWWa067rNgdFCgvTIeLMaO0qVeSWkqxIE8WO9DaSrNbenQkkWZ5QqC1JDJZ2SnXtSwR6iLmT0lARAtKe69QxBiM4wzpQ6IdkJC3uPeFr0tNEWX5ha8WMug6GWQkA_r3S8uV9Qaf5l7EMWzmRdJsbsLqClFb2OFToVTUGYgrcD7Um-NhUw7jIlMhZFEQt6uhVugPGJmxNWwWDaF5AbddI5__4Q8Xwl78yqZZ7hggSPZlhpsfcv2SD296Ii6Oe_onVRCPm405p9LffGf2_eS3BexF3HKmchekZ32agmvESC1_k1nGT8BQKoL4A
  priority: 102
  providerName: American Chemical Society
– databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYll_RS-q7btKjQHlpQY-tl-7hZsoRSQkgTyE2V5PFmwesNsZeSf5-RH8suLc2lV0nYkmak-UYzfEPIJ1eUlktdspQ7zyRwwRzkwJyFPFZKeA9dlu-pPrmU36_U1Vapr5AT1tMD9xt3qGJuJRQZiJRLH8cu1SlkyiLQ1SXCw3D7xlm-5Ux1rysaPQk-xiXRjh1a36yWMLff8CPocwSKEWzasUYdaf_fkOafCZP76_rG3v22VbVljWZPyZMBRtJJP_1n5BHUz8n-dKze9oL8OrsLrADsCK1UQSfVfHW7aK-XFDEqPcZjHYBqPaen5xc_aKiHVtEzG_K0AtkmDY-zFD3D2WQ6dP5cLIc6X_QcmnXVNi_J5ez4YnrChmoKzEolWpYq2bGfea28BOWkdpCi9yhs7KQQukQkmPjUOV_oUiVpYfEs8yLLJXihIBOvyF69quENoTbE9qQAQLwkE-cswpA0Q09TKI94x0fkM-6tGU5DY7pAN0_MKAMzyCAiX8bdNzc9ucY_xh4F8WzGBVrsrgGVxQzKYh5Sloh8HIVrUB4hNmJrWK0bIxKNhjrH-z8ir3thb34l8gwXzLEn21GDnbns9tSL646qO0k6gicZka8bjXlwqW__x1Lfkcc8lCqOE8azA7LX3q7hPeKn1n3ojso9EYoX2w
  priority: 102
  providerName: Directory of Open Access Journals
Title Python-Based Algorithm for Estimating NRTL Model Parameters with UNIFAC Model Simulation Results
URI http://dx.doi.org/10.1021/acsomega.4c09246
https://www.ncbi.nlm.nih.gov/pubmed/39895723
https://www.proquest.com/docview/3162849153
https://pubmed.ncbi.nlm.nih.gov/PMC11780414
https://doi.org/10.1021/acsomega.4c09246
https://doaj.org/article/502a4ed8e3724c00b767e85a6756f882
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society (ACS) Open Access
  customDbUrl:
  eissn: 2470-1343
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001682826
  issn: 2470-1343
  databaseCode: N~.
  dateStart: 20250121
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org
  providerName: American Chemical Society
– providerCode: PRVABC
  databaseName: American Chemical Society (ACS) Open Access
  customDbUrl:
  eissn: 2470-1343
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001682826
  issn: 2470-1343
  databaseCode: N~.
  dateStart: 20160731
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org
  providerName: American Chemical Society
– providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 2470-1343
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001682826
  issn: 2470-1343
  databaseCode: ACS
  dateStart: 20160731
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2470-1343
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001682826
  issn: 2470-1343
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2470-1343
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001682826
  issn: 2470-1343
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2470-1343
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001682826
  issn: 2470-1343
  databaseCode: RPM
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JbtswECVa55Beui_qYrBAe2gBOeIq6egYNoKiNYwkBtKTSlKUY1SWg0hCkR7y7R3KslG1QZcLDyIJiZwh5w2HeoPQG51minKZ-SHVxueWMl_b2Ppa2TgQghljm1u-U3k05x_OxFl73uH-henE7yk5UKZcr-xCDbgJwFWQt9GeFIC6e2hvPp0NP7vccTwMfMI4a6OQN3VztseUHdvTUPTfhCt_vx65XxcX6uqbyvOfbM_k3oYIqWwoC92Vk6-DutID8_0XQsd_GdZ9dLcFoHi40ZgH6JYtHqL90Tbv2yP0ZXbl-AT8Q7BvKR7mi_XlsjpfYUC3eAwbgoO4xQJPj08_YpdJLccz5W54OZpO7I51MfiUk-GorTxZrtoMYfjYlnVelY_RfDI-HR35bR4GX3HBKj8UvOFNM1IYboXmUtsQ_E6mAs0ZkxlgSGJCrU0qM0HCVMEuQNMo5tYwYSP2BPWKdWGfIaxcVJAzawFpcaK1AgATRuCjMmEAKRkPvYWpSdp1VCZNiJySZDtfSTtfHnq3lWRysaHl-EPbQyfqXTtHqN08AIEk7fpMREAVt2lkWUihX6BDGdpIKPCnZAZeiIdebxUlAXm4qIoq7LouE0YkmPgYLIeHnm4UZ_cqFkcwYAo1UUelOt_SrSmW5w3JNyENNRT30Pud9v11qM__p_ELdIe6ZMYB8Wn0EvWqy9q-AoRV6T54GKOTfnM-AeWn6zGU0-tBv110PwDQ8ChV
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLbGeCgvjDsdNyPBA0jp4muSx65aVaBUU9dJewu243QVbTotqdD49Ry7SUdh4vIaO47tc-zzHR_nOwi90VmuKJd5EFFtAm4pC7RNbKCVTUIhmDHW3_IdycEp_3gmznYQaf6FgU6U0FLpg_jX7ALkAJ4tF3aqOtyE4DPIW-i2kJw4f6vbO7k-VpHgQvgka5RHYUAYZ3Vw8qZGnEky5ZZJ8sz9N8HN329NtlbFhbr6pubzn0xSfw-NN4PxN1G-dlaV7pjvv_A8_tdo76G7NUDF3bVG3Uc7tniAWr0mL9xD9OX4yvENBIdg_zLcnU-Xl7PqfIEB_eIj2DAcBC6meDSeDLHLtDbHx8rdAHM0ntgd-2LwOfvdXl14MlvUGcTw2JareVU-Qqf9o0lvENR5GgLFBauCSHDPq2akMNwKzaW2EfilTIWaMyZzwJjERFqbTOaCRJmCXYJmccKtYcLG7DHaLZaFfYqwclFDzqylTrhaKwA4UQw-LBMGkJRpo7cwNWm9zsrUh9ApSZv5Suv5aqN3jUjTizVtxx_qHjqZb-o5wm3_AISS1us3FSFV3GaxZRGF90IdycjGQoG_JXPwUtrodaMxKcjDRV1UYZerMmVEAgRIwLK00ZO1Bm0-xZIYBkyhJN7Sra2-bJcUs3NPAk6Ip47ibfR-o4Z_Her-P07fK9QaTD4P0-GH0adn6A51OY9DEtD4OdqtLlf2BQCxSr_0S-8HLGwtYw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zj9MwELaWRWJ54T7CaSR4AMkl8ZX0sVu2WmBVVXugfQu243Qr0rTaJELLr2fsJoXCiuM1dhwfM55vPM43CL3UWa4olzmJqTaEW8qItn1LtLL9UAhmjPW3fMdy_4R_OBWnW0h0_8JAJypoqfJBfKfVyyxvGQait_B8MbdT1eMmBL9BXkFXhQRNd4hoePTjaEWCG-ETrVEehyRinLUByssacWbJVBtmybP3XwY5f785udOUS3XxVRXFT2ZpdBN9Wg_I30b50mtq3TPffuF6_O8R30I3WqCKByvJuo22bHkH7Qy7_HB30efJheMdILtgBzM8KKaL81l9NseAgvEebBwOCpdTPD48PsAu41qBJ8rdBHN0ntgd_2LwPUeDYVt4NJu3mcTwoa2aoq7uoZPR3vFwn7T5GojigtUkFtzzqxkpDLdCc6ltDP4pU6HmjMkcsGZkYq1NJnMRxZmC3YJmSZ9bw4RN2H20XS5K-xBh5aKHnFkLiIxHWisAOnECviwTBhCVCdArmJq01bcq9aF0GqXdfKXtfAXodbes6XJF3_GHurtu3df1HPG2fwALk7Z6nIqQKm6zxLKYwnuhjmVsE6HA75I5eCsBetFJTQrr4aIvqrSLpkpZJAEK9MHCBOjBSorWn2L9BAZMoSTZkK-NvmyWlLMzTwYeRZ5CigfozVoU_zrUR_84fc_Rtcm7UXrwfvzxMbpOXerjMCI0eYK26_PGPgU8VutnXvu-A9VNL-Y
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegexgv4xsyPmQkeADJJf5M8thVqyaEqmqs0ngKtuN0FWk6LYnQ-Os5p2lFYOLjNbaV2Hf2_c53-R1Cr02WayZUTiJmLBGOcWJc4ojRLgml5Na6Nst3qk7m4sO5PO_uO_y_ML34PaPvta3WK7fQQ2FDcBXUbbSnJKDuAdqbT2ejz752nIhCQrngXRTypmHe9tiqZ3taiv6bcOXv6ZH7TXmpr7_povjJ9kzuboiQqpay0KecfB02tRna778QOv7LtO6hgw6A4tFGY-6jW658gPbH27pvD9GX2bXnEyBHYN8yPCoW66tlfbHCgG7xMRwIHuKWCzw9PfuIfSW1As-0z_DyNJ3YX-ti8Ckno3HX-Gm56iqE4VNXNUVdPULzyfHZ-IR0dRiIFpLXJJKi5U2zSlrhpBHKuAj8Tq5DIzhXOWBIaiNjbKZySaNMwynAsjgRznLpYv4YDcp16Z4irH1UUHDnAGkJaowGABPF4KNyaQEp2QC9gaVJu31UpW2InNF0u15pt14BeruVZHq5oeX4Q98jL-pdP0-o3T4AgaTd_kxlyLRwWex4xGBcaCIVuVhq8KdUDl5IgF5tFSUFefioii7duqlSThWY-AQsR4CebBRn9yqexDBhBi1xT6V639JvKZcXLck3pS01lAjQu532_XWqh__T-Rm6w3wx45ASFj9Hg_qqcS8AYdXmZbe5fgBGRiQc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Python-Based+Algorithm+for+Estimating+NRTL+Model+Parameters+with+UNIFAC+Model+Simulation+Results&rft.jtitle=ACS+omega&rft.au=Jo%2C+Se-Hee&rft.au=Lee%2C+Jina&rft.au=Won%2C+Wangyun&rft.au=Kim%2C+Jun-Woo&rft.date=2025-01-28&rft.eissn=2470-1343&rft.volume=10&rft.issue=3&rft.spage=2949&rft_id=info:doi/10.1021%2Facsomega.4c09246&rft_id=info%3Apmid%2F39895723&rft.externalDocID=39895723
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-1343&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-1343&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-1343&client=summon