Python-Based Algorithm for Estimating NRTL Model Parameters with UNIFAC Model Simulation Results
A major challenge in bioprocess simulation is the lack of physical and chemical property databases for biochemicals. A Python-based algorithm was developed for estimating the nonrandom two-liquid (NRTL) model parameters of aqueous binary systems in a straightforward manner from simplified molecular-...
Saved in:
| Published in | ACS omega Vol. 10; no. 3; pp. 2949 - 2957 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
American Chemical Society
28.01.2025
|
| Online Access | Get full text |
| ISSN | 2470-1343 2470-1343 |
| DOI | 10.1021/acsomega.4c09246 |
Cover
| Abstract | A major challenge in bioprocess simulation is the lack of physical and chemical property databases for biochemicals. A Python-based algorithm was developed for estimating the nonrandom two-liquid (NRTL) model parameters of aqueous binary systems in a straightforward manner from simplified molecular-input line-entry specification (SMILES) strings of substances in a system. This algorithm conducts a series of procedures: (1) fragmentation of the molecules into functional groups from SMILES, (2) calculation of activity coefficients under predetermined temperature and mole fraction conditions by employing universal quasi-chemical functional group activity coefficient (UNIFAC) model, and (3) regression of NRTL model parameters by employing UNIFAC model simulation results in the differential evolution algorithm (DEA) and Nelder–Mead method (NMM). The algorithm was applied to aqueous, binary mixture systems composed of 37 common biochemical substances such as amino acids, organic acids, and sugars. The obtained NRTL parameters were compared with those from Aspen Plus, a commercial software, which has an equivalent function for estimating the NRTL parameters. The percentage mean absolute residuals of the activity coefficients obtained using DEA, NMM, and the parameter estimation tool in Aspen Plus were in the ranges of 0.05–16.69, 0.05–16.69, and 0.09–326.77%, respectively. This in-house algorithm will be helpful for obtaining more accurate NRTL parameters in a timely manner and will facilitate the simulation of biochemical processes for process optimization, energy consumption estimation, and life cycle assessment. |
|---|---|
| AbstractList | A major challenge in bioprocess simulation is the lack of physical and chemical property databases for biochemicals. A Python-based algorithm was developed for estimating the nonrandom two-liquid (NRTL) model parameters of aqueous binary systems in a straightforward manner from simplified molecular-input line-entry specification (SMILES) strings of substances in a system. This algorithm conducts a series of procedures: (1) fragmentation of the molecules into functional groups from SMILES, (2) calculation of activity coefficients under predetermined temperature and mole fraction conditions by employing universal quasi-chemical functional group activity coefficient (UNIFAC) model, and (3) regression of NRTL model parameters by employing UNIFAC model simulation results in the differential evolution algorithm (DEA) and Nelder–Mead method (NMM). The algorithm was applied to aqueous, binary mixture systems composed of 37 common biochemical substances such as amino acids, organic acids, and sugars. The obtained NRTL parameters were compared with those from Aspen Plus, a commercial software, which has an equivalent function for estimating the NRTL parameters. The percentage mean absolute residuals of the activity coefficients obtained using DEA, NMM, and the parameter estimation tool in Aspen Plus were in the ranges of 0.05–16.69, 0.05–16.69, and 0.09–326.77%, respectively. This in-house algorithm will be helpful for obtaining more accurate NRTL parameters in a timely manner and will facilitate the simulation of biochemical processes for process optimization, energy consumption estimation, and life cycle assessment. A major challenge in bioprocess simulation is the lack of physical and chemical property databases for biochemicals. A Python-based algorithm was developed for estimating the nonrandom two-liquid (NRTL) model parameters of aqueous binary systems in a straightforward manner from simplified molecular-input line-entry specification (SMILES) strings of substances in a system. This algorithm conducts a series of procedures: (1) fragmentation of the molecules into functional groups from SMILES, (2) calculation of activity coefficients under predetermined temperature and mole fraction conditions by employing universal quasi-chemical functional group activity coefficient (UNIFAC) model, and (3) regression of NRTL model parameters by employing UNIFAC model simulation results in the differential evolution algorithm (DEA) and Nelder–Mead method (NMM). The algorithm was applied to aqueous, binary mixture systems composed of 37 common biochemical substances such as amino acids, organic acids, and sugars. The obtained NRTL parameters were compared with those from Aspen Plus, a commercial software, which has an equivalent function for estimating the NRTL parameters. The percentage mean absolute residuals of the activity coefficients obtained using DEA, NMM, and the parameter estimation tool in Aspen Plus were in the ranges of 0.05–16.69, 0.05–16.69, and 0.09–326.77%, respectively. This in-house algorithm will be helpful for obtaining more accurate NRTL parameters in a timely manner and will facilitate the simulation of biochemical processes for process optimization, energy consumption estimation, and life cycle assessment. A major challenge in bioprocess simulation is the lack of physical and chemical property databases for biochemicals. A Python-based algorithm was developed for estimating the nonrandom two-liquid (NRTL) model parameters of aqueous binary systems in a straightforward manner from simplified molecular-input line-entry specification (SMILES) strings of substances in a system. This algorithm conducts a series of procedures: (1) fragmentation of the molecules into functional groups from SMILES, (2) calculation of activity coefficients under predetermined temperature and mole fraction conditions by employing universal quasi-chemical functional group activity coefficient (UNIFAC) model, and (3) regression of NRTL model parameters by employing UNIFAC model simulation results in the differential evolution algorithm (DEA) and Nelder-Mead method (NMM). The algorithm was applied to aqueous, binary mixture systems composed of 37 common biochemical substances such as amino acids, organic acids, and sugars. The obtained NRTL parameters were compared with those from Aspen Plus, a commercial software, which has an equivalent function for estimating the NRTL parameters. The percentage mean absolute residuals of the activity coefficients obtained using DEA, NMM, and the parameter estimation tool in Aspen Plus were in the ranges of 0.05-16.69, 0.05-16.69, and 0.09-326.77%, respectively. This in-house algorithm will be helpful for obtaining more accurate NRTL parameters in a timely manner and will facilitate the simulation of biochemical processes for process optimization, energy consumption estimation, and life cycle assessment.A major challenge in bioprocess simulation is the lack of physical and chemical property databases for biochemicals. A Python-based algorithm was developed for estimating the nonrandom two-liquid (NRTL) model parameters of aqueous binary systems in a straightforward manner from simplified molecular-input line-entry specification (SMILES) strings of substances in a system. This algorithm conducts a series of procedures: (1) fragmentation of the molecules into functional groups from SMILES, (2) calculation of activity coefficients under predetermined temperature and mole fraction conditions by employing universal quasi-chemical functional group activity coefficient (UNIFAC) model, and (3) regression of NRTL model parameters by employing UNIFAC model simulation results in the differential evolution algorithm (DEA) and Nelder-Mead method (NMM). The algorithm was applied to aqueous, binary mixture systems composed of 37 common biochemical substances such as amino acids, organic acids, and sugars. The obtained NRTL parameters were compared with those from Aspen Plus, a commercial software, which has an equivalent function for estimating the NRTL parameters. The percentage mean absolute residuals of the activity coefficients obtained using DEA, NMM, and the parameter estimation tool in Aspen Plus were in the ranges of 0.05-16.69, 0.05-16.69, and 0.09-326.77%, respectively. This in-house algorithm will be helpful for obtaining more accurate NRTL parameters in a timely manner and will facilitate the simulation of biochemical processes for process optimization, energy consumption estimation, and life cycle assessment. |
| Author | Lee, Jina Kim, Jun-Woo Won, Wangyun Jo, Se-Hee |
| AuthorAffiliation | CJ BIO Research Institute Department of Chemical and Biological Engineering |
| AuthorAffiliation_xml | – name: CJ BIO Research Institute – name: Department of Chemical and Biological Engineering |
| Author_xml | – sequence: 1 givenname: Se-Hee orcidid: 0009-0001-2799-2295 surname: Jo fullname: Jo, Se-Hee organization: CJ BIO Research Institute – sequence: 2 givenname: Jina orcidid: 0009-0002-8217-7039 surname: Lee fullname: Lee, Jina organization: CJ BIO Research Institute – sequence: 3 givenname: Wangyun orcidid: 0000-0003-1072-9842 surname: Won fullname: Won, Wangyun email: wwon@korea.ac.kr organization: Department of Chemical and Biological Engineering – sequence: 4 givenname: Jun-Woo orcidid: 0000-0002-2562-5491 surname: Kim fullname: Kim, Jun-Woo email: junwoo.kim1@cj.net organization: CJ BIO Research Institute |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39895723$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkc1v1DAQxSNUREvpnRPKkQNb_G3nhJZVW1ZaSlXas3GcSTYrJ97aCdX-9zVkW7UHJE62PO_9ZvzmbXbQ-x6y7D1GpxgR_NnY6DtozCmzqCBMvMqOCJNohimjB8_uh9lJjBuEEBaKKCLeZIe0UAWXhB5lv652w9r3s68mQpXPXeNDO6y7vPYhP4tD25mh7Zv88vpmlX_3Fbj8ygTTwQAh5vdJmt9eLs_ni33xZ9uNLll8n19DHN0Q32Wva-MinOzP4-z2_Oxm8W22-nGxXMxXM8M4HWaSM6pwQazglgEvmShBMkSoQSWjVNSFlNjKsrSVqDmWlZFKkkoVDCzloOhxtpy4lTcbvQ1p8rDT3rT674MPjTZhaK0DzRExDCoFVJKUHSqlkKC4EZKLWimSWHhijf3W7O6Nc09AjPSf8PVj-HoffvJ8mTzbseygstAPwbgXg7ys9O1aN_63xlgqxDBLhI97QvB3I8RBd2204JzpwY9RUyyIYgXmNEk_PG_21OVxr0mAJoENPsYA9f984NNkSRW98WPo07r-LX8A8aDGWQ |
| Cites_doi | 10.1016/j.compstruc.2004.03.072 10.1002/ceat.202300136 10.1016/j.compchemeng.2005.02.020 10.1002/aic.18251 10.1021/acsomega.3c09657 10.1016/j.jiec.2012.03.008 10.1016/j.cej.2023.144955 10.1023/A:1008202821328 10.1016/j.fluid.2022.113537 10.1590/0104-6632.20150321s00002825 10.1021/acssuschemeng.4c01718 10.1080/00986448708960487 10.1002/aic.690210607 10.1021/ie9004578 10.1021/ie00071a018 10.3390/molecules15085079 10.1016/j.scp.2024.101629 10.1002/ceat.202200361 10.1016/j.swevo.2016.01.004 10.1002/bip.360321011 10.1186/s13321-019-0382-3 10.1016/j.fuel.2020.117688 10.1063/1.1862245 10.1002/aic.690280410 10.1016/j.aej.2021.09.013 10.1007/s10589-010-9329-3 10.2172/257362 10.1093/comjnl/7.4.308 10.1002/aic.17935 10.1016/j.fluid.2022.113599 10.1016/j.fluid.2015.04.006 |
| ContentType | Journal Article |
| Copyright | 2025 The Authors. Published by American Chemical Society 2025 The Authors. Published by American Chemical Society. 2025 The Authors. Published by American Chemical Society 2025 The Authors |
| Copyright_xml | – notice: 2025 The Authors. Published by American Chemical Society – notice: 2025 The Authors. Published by American Chemical Society. – notice: 2025 The Authors. Published by American Chemical Society 2025 The Authors |
| DBID | N~. AAYXX CITATION NPM 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1021/acsomega.4c09246 |
| DatabaseName | American Chemical Society (ACS) Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: N~. name: American Chemical Society (ACS) Open Access url: https://pubs.acs.org sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 2470-1343 |
| EndPage | 2957 |
| ExternalDocumentID | oai_doaj_org_article_502a4ed8e3724c00b767e85a6756f882 10.1021/acsomega.4c09246 PMC11780414 39895723 10_1021_acsomega_4c09246 a242329845 |
| Genre | Journal Article |
| GroupedDBID | 53G AAFWJ AAHBH ABUCX ACS ADBBV ADUCK AFEFF AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV EBS GROUPED_DOAJ HYE M~E N~. OK1 RPM VF5 AAYXX ABBLG CITATION NPM 7X8 5PM ADTOC EJD ROL UNPAY |
| ID | FETCH-LOGICAL-a453t-75438192c65c4e5b46be74023a0b4336f9771c7bbcd6f517da7872d894ec35e83 |
| IEDL.DBID | UNPAY |
| ISSN | 2470-1343 |
| IngestDate | Fri Oct 03 12:42:56 EDT 2025 Sun Oct 26 03:43:57 EDT 2025 Tue Sep 30 17:05:23 EDT 2025 Fri Jul 11 07:34:08 EDT 2025 Mon Jul 21 05:47:33 EDT 2025 Tue Jul 01 00:50:30 EDT 2025 Thu Jan 30 12:41:47 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 2025 The Authors. Published by American Chemical Society. Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a453t-75438192c65c4e5b46be74023a0b4336f9771c7bbcd6f517da7872d894ec35e83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-1072-9842 0000-0002-2562-5491 0009-0001-2799-2295 0009-0002-8217-7039 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1021/acsomega.4c09246 |
| PMID | 39895723 |
| PQID | 3162849153 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_502a4ed8e3724c00b767e85a6756f882 unpaywall_primary_10_1021_acsomega_4c09246 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11780414 proquest_miscellaneous_3162849153 pubmed_primary_39895723 crossref_primary_10_1021_acsomega_4c09246 acs_journals_10_1021_acsomega_4c09246 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-28 |
| PublicationDateYYYYMMDD | 2025-01-28 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | ACS omega |
| PublicationTitleAlternate | ACS Omega |
| PublicationYear | 2025 |
| Publisher | American Chemical Society |
| Publisher_xml | – name: American Chemical Society |
| References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref34/cit34 ref37/cit37 ref28/cit28 ref20/cit20 Wooley R. J. (ref2/cit2) 1996 ref17/cit17 ref10/cit10 ref26/cit26 ref19/cit19 ref21/cit21 (ref29/cit29) 2024 ref12/cit12 ref15/cit15 IAPWS: The International Association for the Properties of Water and Steam (ref35/cit35) 2012 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
| References_xml | – ident: ref24/cit24 doi: 10.1016/j.compstruc.2004.03.072 – year: 2012 ident: ref35/cit35 publication-title: Revised release on the IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam – ident: ref11/cit11 doi: 10.1002/ceat.202300136 – ident: ref37/cit37 – ident: ref30/cit30 doi: 10.1016/j.compchemeng.2005.02.020 – ident: ref21/cit21 doi: 10.1002/aic.18251 – ident: ref1/cit1 doi: 10.1021/acsomega.3c09657 – ident: ref36/cit36 – ident: ref32/cit32 doi: 10.1016/j.jiec.2012.03.008 – ident: ref3/cit3 doi: 10.1016/j.cej.2023.144955 – ident: ref26/cit26 doi: 10.1023/A:1008202821328 – ident: ref10/cit10 doi: 10.1016/j.fluid.2022.113537 – ident: ref33/cit33 – ident: ref17/cit17 doi: 10.1590/0104-6632.20150321s00002825 – ident: ref20/cit20 doi: 10.1021/acssuschemeng.4c01718 – ident: ref22/cit22 – ident: ref5/cit5 doi: 10.1080/00986448708960487 – ident: ref12/cit12 doi: 10.1002/aic.690210607 – ident: ref7/cit7 doi: 10.1021/ie9004578 – ident: ref13/cit13 doi: 10.1021/ie00071a018 – ident: ref14/cit14 doi: 10.3390/molecules15085079 – ident: ref18/cit18 doi: 10.1016/j.scp.2024.101629 – ident: ref4/cit4 doi: 10.1002/ceat.202200361 – ident: ref27/cit27 doi: 10.1016/j.swevo.2016.01.004 – ident: ref38/cit38 doi: 10.1002/bip.360321011 – ident: ref16/cit16 doi: 10.1186/s13321-019-0382-3 – ident: ref19/cit19 doi: 10.1016/j.fuel.2020.117688 – ident: ref34/cit34 doi: 10.1063/1.1862245 – ident: ref6/cit6 doi: 10.1002/aic.690280410 – ident: ref28/cit28 doi: 10.1016/j.aej.2021.09.013 – ident: ref25/cit25 doi: 10.1007/s10589-010-9329-3 – volume-title: Development of an ASPEN PLUS Physical Property Database for Biofuels Components year: 1996 ident: ref2/cit2 doi: 10.2172/257362 – ident: ref23/cit23 doi: 10.1093/comjnl/7.4.308 – ident: ref8/cit8 doi: 10.1002/aic.17935 – ident: ref15/cit15 – ident: ref31/cit31 doi: 10.1016/j.fluid.2022.113599 – volume-title: Regression Mix, Model Parameter Regression Simultaneously to Multiple Properties year: 2024 ident: ref29/cit29 – ident: ref9/cit9 doi: 10.1016/j.fluid.2015.04.006 |
| SSID | ssj0001682826 |
| Score | 2.29052 |
| Snippet | A major challenge in bioprocess simulation is the lack of physical and chemical property databases for biochemicals. A Python-based algorithm was developed for... A major challenge in bioprocess simulation is the lack of physical and chemical property databases for biochemicals. A Python-based algorithm was developed for... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref acs |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 2949 |
| SummonAdditionalLinks | – databaseName: American Chemical Society (ACS) Open Access dbid: N~. link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF5BOZQL4l3z0iLBAaQt3rd9TKNGFUJRVVqpN7O7HqeREqeqHaFe-O3MOk5KoAKu3vVjd2Y83-yMviHknS8rJ5SpmBU-MAVCMg85MO8gT7WWIUBX5Ts2R2fq87k-v6HJ-T2DL_gnF5rFHCZuX4UUgwVzl9wTxtqoweMf-zfnKQZjh667mlA2ZVwq2Wclb3tI9EWh2fJFHWX_bTjzz3LJ3WV96a6_u9nsF180ekge9CCSDlZSf0TuQP2Y7A7XvduekG_H15ETgB2gjyrpYDZZXE3bizlFhEoP0agjTK0ndHxy-oXGbmgzeuxilVak2qTxaJZiXDgaDPvBr9N53-WLnkCznLXNU3I2OjwdHrG-lwJzSsuWWa067rNgdFCgvTIeLMaO0qVeSWkqxIE8WO9DaSrNbenQkkWZ5QqC1JDJZ2SnXtSwR6iLmT0lARAtKe69QxBiM4wzpQ6IdkJC3uPeFr0tNEWX5ha8WMug6GWQkA_r3S8uV9Qaf5l7EMWzmRdJsbsLqClFb2OFToVTUGYgrcD7Um-NhUw7jIlMhZFEQt6uhVugPGJmxNWwWDaF5AbddI5__4Q8Xwl78yqZZ7hggSPZlhpsfcv2SD296Ii6Oe_onVRCPm405p9LffGf2_eS3BexF3HKmchekZ32agmvESC1_k1nGT8BQKoL4A priority: 102 providerName: American Chemical Society – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYll_RS-q7btKjQHlpQY-tl-7hZsoRSQkgTyE2V5PFmwesNsZeSf5-RH8suLc2lV0nYkmak-UYzfEPIJ1eUlktdspQ7zyRwwRzkwJyFPFZKeA9dlu-pPrmU36_U1Vapr5AT1tMD9xt3qGJuJRQZiJRLH8cu1SlkyiLQ1SXCw3D7xlm-5Ux1rysaPQk-xiXRjh1a36yWMLff8CPocwSKEWzasUYdaf_fkOafCZP76_rG3v22VbVljWZPyZMBRtJJP_1n5BHUz8n-dKze9oL8OrsLrADsCK1UQSfVfHW7aK-XFDEqPcZjHYBqPaen5xc_aKiHVtEzG_K0AtkmDY-zFD3D2WQ6dP5cLIc6X_QcmnXVNi_J5ez4YnrChmoKzEolWpYq2bGfea28BOWkdpCi9yhs7KQQukQkmPjUOV_oUiVpYfEs8yLLJXihIBOvyF69quENoTbE9qQAQLwkE-cswpA0Q09TKI94x0fkM-6tGU5DY7pAN0_MKAMzyCAiX8bdNzc9ucY_xh4F8WzGBVrsrgGVxQzKYh5Sloh8HIVrUB4hNmJrWK0bIxKNhjrH-z8ir3thb34l8gwXzLEn21GDnbns9tSL646qO0k6gicZka8bjXlwqW__x1Lfkcc8lCqOE8azA7LX3q7hPeKn1n3ojso9EYoX2w priority: 102 providerName: Directory of Open Access Journals |
| Title | Python-Based Algorithm for Estimating NRTL Model Parameters with UNIFAC Model Simulation Results |
| URI | http://dx.doi.org/10.1021/acsomega.4c09246 https://www.ncbi.nlm.nih.gov/pubmed/39895723 https://www.proquest.com/docview/3162849153 https://pubmed.ncbi.nlm.nih.gov/PMC11780414 https://doi.org/10.1021/acsomega.4c09246 https://doaj.org/article/502a4ed8e3724c00b767e85a6756f882 |
| UnpaywallVersion | publishedVersion |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society (ACS) Open Access customDbUrl: eissn: 2470-1343 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001682826 issn: 2470-1343 databaseCode: N~. dateStart: 20250121 isFulltext: true titleUrlDefault: https://pubs.acs.org providerName: American Chemical Society – providerCode: PRVABC databaseName: American Chemical Society (ACS) Open Access customDbUrl: eissn: 2470-1343 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001682826 issn: 2470-1343 databaseCode: N~. dateStart: 20160731 isFulltext: true titleUrlDefault: https://pubs.acs.org providerName: American Chemical Society – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 2470-1343 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001682826 issn: 2470-1343 databaseCode: ACS dateStart: 20160731 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2470-1343 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001682826 issn: 2470-1343 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2470-1343 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001682826 issn: 2470-1343 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2470-1343 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001682826 issn: 2470-1343 databaseCode: RPM dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JbtswECVa55Beui_qYrBAe2gBOeIq6egYNoKiNYwkBtKTSlKUY1SWg0hCkR7y7R3KslG1QZcLDyIJiZwh5w2HeoPQG51minKZ-SHVxueWMl_b2Ppa2TgQghljm1u-U3k05x_OxFl73uH-henE7yk5UKZcr-xCDbgJwFWQt9GeFIC6e2hvPp0NP7vccTwMfMI4a6OQN3VztseUHdvTUPTfhCt_vx65XxcX6uqbyvOfbM_k3oYIqWwoC92Vk6-DutID8_0XQsd_GdZ9dLcFoHi40ZgH6JYtHqL90Tbv2yP0ZXbl-AT8Q7BvKR7mi_XlsjpfYUC3eAwbgoO4xQJPj08_YpdJLccz5W54OZpO7I51MfiUk-GorTxZrtoMYfjYlnVelY_RfDI-HR35bR4GX3HBKj8UvOFNM1IYboXmUtsQ_E6mAs0ZkxlgSGJCrU0qM0HCVMEuQNMo5tYwYSP2BPWKdWGfIaxcVJAzawFpcaK1AgATRuCjMmEAKRkPvYWpSdp1VCZNiJySZDtfSTtfHnq3lWRysaHl-EPbQyfqXTtHqN08AIEk7fpMREAVt2lkWUihX6BDGdpIKPCnZAZeiIdebxUlAXm4qIoq7LouE0YkmPgYLIeHnm4UZ_cqFkcwYAo1UUelOt_SrSmW5w3JNyENNRT30Pud9v11qM__p_ELdIe6ZMYB8Wn0EvWqy9q-AoRV6T54GKOTfnM-AeWn6zGU0-tBv110PwDQ8ChV |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLbGeCgvjDsdNyPBA0jp4muSx65aVaBUU9dJewu243QVbTotqdD49Ry7SUdh4vIaO47tc-zzHR_nOwi90VmuKJd5EFFtAm4pC7RNbKCVTUIhmDHW3_IdycEp_3gmznYQaf6FgU6U0FLpg_jX7ALkAJ4tF3aqOtyE4DPIW-i2kJw4f6vbO7k-VpHgQvgka5RHYUAYZ3Vw8qZGnEky5ZZJ8sz9N8HN329NtlbFhbr6pubzn0xSfw-NN4PxN1G-dlaV7pjvv_A8_tdo76G7NUDF3bVG3Uc7tniAWr0mL9xD9OX4yvENBIdg_zLcnU-Xl7PqfIEB_eIj2DAcBC6meDSeDLHLtDbHx8rdAHM0ntgd-2LwOfvdXl14MlvUGcTw2JareVU-Qqf9o0lvENR5GgLFBauCSHDPq2akMNwKzaW2EfilTIWaMyZzwJjERFqbTOaCRJmCXYJmccKtYcLG7DHaLZaFfYqwclFDzqylTrhaKwA4UQw-LBMGkJRpo7cwNWm9zsrUh9ApSZv5Suv5aqN3jUjTizVtxx_qHjqZb-o5wm3_AISS1us3FSFV3GaxZRGF90IdycjGQoG_JXPwUtrodaMxKcjDRV1UYZerMmVEAgRIwLK00ZO1Bm0-xZIYBkyhJN7Sra2-bJcUs3NPAk6Ip47ibfR-o4Z_Her-P07fK9QaTD4P0-GH0adn6A51OY9DEtD4OdqtLlf2BQCxSr_0S-8HLGwtYw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zj9MwELaWRWJ54T7CaSR4AMkl8ZX0sVu2WmBVVXugfQu243Qr0rTaJELLr2fsJoXCiuM1dhwfM55vPM43CL3UWa4olzmJqTaEW8qItn1LtLL9UAhmjPW3fMdy_4R_OBWnW0h0_8JAJypoqfJBfKfVyyxvGQait_B8MbdT1eMmBL9BXkFXhQRNd4hoePTjaEWCG-ETrVEehyRinLUByssacWbJVBtmybP3XwY5f785udOUS3XxVRXFT2ZpdBN9Wg_I30b50mtq3TPffuF6_O8R30I3WqCKByvJuo22bHkH7Qy7_HB30efJheMdILtgBzM8KKaL81l9NseAgvEebBwOCpdTPD48PsAu41qBJ8rdBHN0ntgd_2LwPUeDYVt4NJu3mcTwoa2aoq7uoZPR3vFwn7T5GojigtUkFtzzqxkpDLdCc6ltDP4pU6HmjMkcsGZkYq1NJnMRxZmC3YJmSZ9bw4RN2H20XS5K-xBh5aKHnFkLiIxHWisAOnECviwTBhCVCdArmJq01bcq9aF0GqXdfKXtfAXodbes6XJF3_GHurtu3df1HPG2fwALk7Z6nIqQKm6zxLKYwnuhjmVsE6HA75I5eCsBetFJTQrr4aIvqrSLpkpZJAEK9MHCBOjBSorWn2L9BAZMoSTZkK-NvmyWlLMzTwYeRZ5CigfozVoU_zrUR_84fc_Rtcm7UXrwfvzxMbpOXerjMCI0eYK26_PGPgU8VutnXvu-A9VNL-Y |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegexgv4xsyPmQkeADJJf5M8thVqyaEqmqs0ngKtuN0FWk6LYnQ-Os5p2lFYOLjNbaV2Hf2_c53-R1Cr02WayZUTiJmLBGOcWJc4ojRLgml5Na6Nst3qk7m4sO5PO_uO_y_ML34PaPvta3WK7fQQ2FDcBXUbbSnJKDuAdqbT2ejz752nIhCQrngXRTypmHe9tiqZ3taiv6bcOXv6ZH7TXmpr7_povjJ9kzuboiQqpay0KecfB02tRna778QOv7LtO6hgw6A4tFGY-6jW658gPbH27pvD9GX2bXnEyBHYN8yPCoW66tlfbHCgG7xMRwIHuKWCzw9PfuIfSW1As-0z_DyNJ3YX-ti8Ckno3HX-Gm56iqE4VNXNUVdPULzyfHZ-IR0dRiIFpLXJJKi5U2zSlrhpBHKuAj8Tq5DIzhXOWBIaiNjbKZySaNMwynAsjgRznLpYv4YDcp16Z4irH1UUHDnAGkJaowGABPF4KNyaQEp2QC9gaVJu31UpW2InNF0u15pt14BeruVZHq5oeX4Q98jL-pdP0-o3T4AgaTd_kxlyLRwWex4xGBcaCIVuVhq8KdUDl5IgF5tFSUFefioii7duqlSThWY-AQsR4CebBRn9yqexDBhBi1xT6V639JvKZcXLck3pS01lAjQu532_XWqh__T-Rm6w3wx45ASFj9Hg_qqcS8AYdXmZbe5fgBGRiQc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Python-Based+Algorithm+for+Estimating+NRTL+Model+Parameters+with+UNIFAC+Model+Simulation+Results&rft.jtitle=ACS+omega&rft.au=Jo%2C+Se-Hee&rft.au=Lee%2C+Jina&rft.au=Won%2C+Wangyun&rft.au=Kim%2C+Jun-Woo&rft.date=2025-01-28&rft.eissn=2470-1343&rft.volume=10&rft.issue=3&rft.spage=2949&rft_id=info:doi/10.1021%2Facsomega.4c09246&rft_id=info%3Apmid%2F39895723&rft.externalDocID=39895723 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2470-1343&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2470-1343&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2470-1343&client=summon |